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Abstract We study three classes of continuous time Markov processes (inclusion process,
exclusion process, independent walkers) and a family of interacting diffusions (Brownian
energy process). For each model we define a boundary driven process which is obtained by
placing the system in contact with proper reservoirs, working at different particle densities
or different temperatures. We show that all the models are exactly solvable by duality, using
a dual process with absorbing boundaries. The solution does also apply to the so-called ther-
malization limit in which particles or energy is instantaneously redistributed among sites.

The results shows that duality is a versatile tool for analyzing stochastic models of trans-
port, while the analysis in the literature has been so far limited to particular instances. Long-
range correlations naturally emerge as a result of the interaction of dual particles at the
microscopic level and the explicit computations of covariances match, in the scaling limit,
the predictions of the macroscopic fluctuation theory.

Keywords Heat conduction · Fourier’s law · Duality

1 Introduction

Interacting particle systems are classical models to study non-equilibrium statistical me-
chanics. The standard setting is the one in which a system is placed in contact with reservoirs
working at different parameters that create a stationary state characterized by a non-zero av-
eraged current. The prototypical example are the Symmetric Exclusion process with at most
one particle per site connected to birth and death process at the boundaries [10, 31] and
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the KMP process [27] connected to reservoirs which impose at the boundaries Boltzmann–
Gibbs distribution with different temperatures. The Symmetric exclusion process is a model
for transport of a discrete quantity, whereas the KMP process models transport of a contin-
uous quantity.

Problems that are very hard for classical Hamiltonian systems—for instance deriving
Fourier law starting from the microscopic evolution—can be successfully approached us-
ing stochastic models. Furthermore stochastic models of transport have been used to prove
new theorems in non-equilibrium statistical mechanics, such as the fluctuation theorem [17,
18, 28], to introduce new principles, such as the additivity principle [7], to construct new
schemes, such as the macroscopic fluctuation theory that describes the density and current
large deviations for diffusive systems [4, 14], to test new algorithms, such as cloning algo-
rithms to simulate rare events [23]. Recently, the connection between deterministic Hamil-
tonian systems and stochastic models is emerging either by considering evolutions in which
they are coupled [1] or by considering slow/fast variables [16] and thermodynamic formal-
ism [29].

An important tool in the study of interacting stochastic systems is duality [31, 33]. Du-
ality provides the connection between a process and a simpler dual process. This technique
has been applied in different contexts, including interacting particles systems, interacting
diffusions, queueing theory and mathematical population genetics. For a recent review on
duality, which also include many references, see [25]. For recent applications of duality in
the context of asymmetric processes and KPZ universality see [8].

In the context of interacting particle systems or interacting diffusion processes modeling
non-equilibrium systems, the main simplification coming from duality lies in the fact that
for an appropriate choice of the modeling of the boundary reservoirs, a dual process exists
where the reservoirs are replaced by absorbing boundaries. This was originally found for the
boundary driven Symmetric Exclusion process with at most one particle per site [34] and
for the KMP model [27]. As a consequence, the n-point correlation functions in the non-
equilibrium steady state can be obtained from absorption probabilities of n dual particles. In
particular, the stationary density or temperature profile can be easily obtained from a single
dual walker. Other simplifications due to duality include “from continuous to discrete”, i.e.,
connecting continuous systems with discrete particle systems and “from many to few”, i.e.,
correlation functions in a systems of possibly infinitely many particles reduce to as many
dual particles as the degree of the correlation function.

In this paper we introduce and study a large class of boundary driven processes which can
be dealt with via this technique of duality. We treat processes with interactions of “inclusion”
(attractive) and “exclusion” (repulsive) type.

The particle systems range from the Symmetric Inclusion Processes (SIP) with Negative-
Binomial product stationary measures at equilibrium, to the Symmetric Exclusion Processes
(SEP) having a Binomial product measures as equilibrium state, via Independent Random
Walkers (IRW) with a product Poisson stationary measures. The interacting diffusions cor-
responding to the SIP are given by the so-called Brownian Energy processes (BEP), having
product of Gamma distributions as equilibrium.

We also study “thermalized versions” of these processes. For the diffusion models ther-
malization leads to “energy redistribution models” of which the famous KMP model is a
particular instance. For particle systems thermalization leads to “occupation redistribution
models” where in one event associated to a nearest neighbour edge, occupations of parti-
cles are reshuffled according to a specific redistribution measure. The dual KMP model is a
particular instance of these thermalized particle systems. Most of these thermalized models
are new, as well as their boundary driven versions. A non-trivial stationary state is found for
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these boundary driven thermalized models even considering only one site, since the reser-
voirs are not additive.

Some of the processes we discuss here have already been introduced before: we have
chosen to include all of them, including independent random walkers, in order to provide a
(up to know and to our knowledge) complete and self-contained overview of the interacting
non-equilibrium systems that can be treated with duality. The main message of this paper is
thus an extension of duality and its consequences into the boundary driven non-equilibrium
setting for all the models discovered and studied in [20–22].

2 Models Definition

In this section we introduce our models. In the most complete setting, they are constituted
by a bulk which is kept in a non equilibrium state by the contact with particles or energy
reservoirs. In particular, we consider one-dimensional systems on a finite lattice {1, . . . ,L},
whose boundaries (i.e. sites 1 and L) interact with the reservoirs. When needed, the reser-
voirs themselves will be represented by two extra sites, namely sites 0 and L + 1.

Accordingly, the generators of the random processes associated with our models can be
generically expressed as the sum of three terms

L = La + L0 + Lb, (2.1)

where L0 represents the generator of the dynamics in the bulk, while La and Lb represent
the generators of the reservoirs.

We will consider four models: three classes of interacting particle systems, characterized
by the different interactions between the particles, and one family of interacting diffusions
introduced to model heat conduction [20–22]. The models are:

1. the Symmetric Inclusion Process (SIP), with attractive interaction between neighbouring
particles;

2. the Symmetric Exclusion Process (SEP), with repulsive interaction between neighbour-
ing particles;

3. the Independent Random Walkers (IRW), without interactions among particles;
4. the Brownian Energy Process (BEP).

In the first three cases the dynamic variable is a vector that specifies the number of particle
on each site: η = (η1, . . . , ηL) ∈ Ω ; here Ω , the state space, depends on the model and will
be defined ahead. In the case of the BEP the dynamic variable is a vector z representing the
energies on each site of the lattice: z = (z1, . . . , zL) ∈ Ω ≡ R

L+.

2.1 Interacting Particle Systems

The generators of the reservoirs for SIP, SEP and IRW have the following general form:

Laf (η) = b(η1)
[
f

(
η0,1

) − f (η)
] + d(η1)

[
f

(
η1,0

) − f (η)
]
, (2.2)

Lbf (η) = b(ηL)
[
f

(
ηL+1,L

) − f (η)
] + d(ηL)

[
f

(
ηL,L+1

) − f (η)
]
. (2.3)

Here ηi,i+1 denotes the configuration obtained from η by moving a particle from site i to site
i + 1, i.e. ηi,i+1 = (η1, . . . , ηi − 1, ηi+1 + 1, . . . , ηL). According to (2.2) and (2.3) particles
are injected into the system through the boundaries with rate b(n) with n ∈ N0, and removed
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Fig. 1 Schematic description of the Symmetric Inclusion Process SIP(2k). The arrows represent the possible
transitions and the corresponding rates, while the two cylinders represent the boundary reservoirs. Each site
can accommodate an arbitrary number of particles

from the same sites with rate d(n). While b(n) is model-dependent, the annihilation rate is
not, being in any case proportional to the number of particles at the boundary site.

We introduce now our models by defining the actions of the generators L on the functions
f : Ω → R.

Inclusion Walkers SIP(2k)

The inclusion process (without boundaries) is introduced first in [20], and also studied fur-
ther in [22].

In the SIP(2k), see Fig. 1, each site can accommodate an arbitrary number of particles,
thus Ω = N

L
0 . In the bulk each particle may jump to its left or right neighbouring site with

rates proportional to the number of particles in the departure site and to the number of
particles in the arrival site. In each boundary site particles are created with a rate proportional
to 2k plus the number of particles sitting in that site; k ∈ R+ labels the class of models. The
generator is

LSIPf (η) = LSIP
a f (η) + LSIP

0 f (η) + LSIP
b f (η)

= α(2k + η1)
[
f

(
η0,1

) − f (η)
] + γ η1

[
f

(
η1,0

) − f (η)
]

+
L−1∑

i=1

ηi(2k + ηi+1)
[
f

(
ηi,i+1

) − f (η)
] + ηi+1(2k + ηi)

[
f

(
ηi+1,i

) − f (η)
]

+ δ(2k + ηL)
[
f

(
ηL+1,L

) − f (η)
] + βηL

[
f

(
ηL,L+1

) − f (η)
]
. (2.4)

The positive numbers α and γ (resp. δ and β) tune the creation and annihilation rates of the
left (resp. right) reservoirs.

Exclusion Walkers SEP(2j)

For j = 1/2 the boundary driven simple exclusion process has been studied using duality in
[34]. The model for arbitrary j has been introduced and studied in [32]. From the mathe-
matical point of view a related model which also exhibits product measures, but which does
not have the self-duality property is studied (without boundary reservoirs) in [26].

In the SEP(2j) the maximum occupation number at each site is 2j ∈ N, thus Ω =
{0,1, . . . ,2j}L. In the bulk particles jump independently to nearest neighbouring lattices
sites at rate proportional to the number of particles in the departure site times the number of
holes in the arrival site. The reservoirs inject particles in the systems with a rate proportional
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Fig. 2 Schematic description of the Symmetric Exclusion Process SEP(2j). The arrows represent the pos-
sible transitions and the corresponding rates, while the two cylinders represent the boundary reservoirs. Each
site can accommodate up to 2j particles

to the holes in the boundary sites, see Fig. 2. The generator is

LSEPf (η) = LSEP
a f (η) + LSEP

0 f (η) + LSEP
b f (η)

= α(2j − η1)
[
f

(
η0,1

) − f (η)
] + γ η1

[
f

(
η1,0

) − f (η)
]

+
L−1∑

i=1

ηi(2j − ηi+1)
[
f

(
ηi,i+1

) − f (η)
] + ηi+1(2j − ηi)

[
f

(
ηi+1,i

) − f (η)
]

+ δ(2j − ηL)
[
f

(
ηL+1,L

) − f (η)
] + βηL

[
f

(
ηL,L+1

) − f (η)
]
. (2.5)

The parameters α, γ , δ, β have the same meaning as in the SIP(2k).

Independent Random Walkers IRW
This well-known model is first considered in [33], and with boundaries is also well-known
and studied e.g. in [30] (where also the more general boundary driven zero range process is
studied).

In the IRW model each particle jumps independently to nearest neighbouring lattices sites
at rate 1, and each site can accommodate an arbitrary number of particles, thus Ω = N

L
0 .

Jumps occur with the same probability to the right and to the left, while particles are created
at rates α and δ irrespective of the number of particles at the boundaries. Therefore the
system is described by the generator

LIRWf (η) = LIRW
a f (η) + LIRW

0 f (η) + LIRW
b f (η)

= α
[
f

(
η0,1

) − f (η)
] + γ η1

[
f

(
η1,0

) − f (η)
]

+
L−1∑

i=1

ηi

[
f

(
ηi,i+1

) − f (η)
] + ηi+1

[
f

(
ηi+1,i

) − f (η)
]

+ δ
[
f

(
ηL+1,L

) − f (η)
] + βηL

[
f

(
ηL,L+1

) − f (η)
]
. (2.6)

The dynamics in the bulk can be further described by saying that if at site i there are ηi

particles, one of the particle jumps at rate ηi either to the left or to the right. As in the
previous cases, parameters γ and β define the annihilation processes.

Remark 2.1 The effect of the reservoirs is to impose the average number of particles on
the left and on the right sides of the chains. With some misuse of language, but sticking to
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Fig. 3 Schematic description of
the Brownian Energy Process
BEP(2k). The length of the
arrows represent the energies zi

on the sites i’s, the two
rectangles represent the cold and
hot boundary reservoirs

standard notations, we will call “densities” these averages and we will denote them ρa (left
reservoir) and ρb (right reservoir). The values of ρa and ρb are reported in the table below
and computed in Sect. 3.

Remark 2.2 Note that the SIP process requires γ > α and β > δ. This condition turns out
to be necessary in order for the system to reach a stationary state (see also formula (3.8)).

Remark 2.3 It is interesting to remark that the exclusion (resp. inclusion) walkers with pa-
rameters (α, γ ′, δ, β ′) converges to the independent walkers with parameters (α, γ, δ,β) in
the limit j → ∞ (resp. k → ∞) under the scaling γ ′ = 2jγ , β ′ = 2jβ (resp. γ ′ = 2kγ ,
β ′ = 2kβ). Indeed, in this limit the generators LSIP

2j
and LSEP

2j
converge to LIRW. This re-

mark can be put on rigorous grounds by using the Trotter–Kurtz theorem (see Theorem 2.12
of [31]); see for instance [21] for the proof in the case of SEP(2j).

2.2 Interacting Diffusions

The last process we consider is the Brownian Energy Process (BEP), originally introduced
(without boundaries) in [21]. Here we present its boundary driven version. The bulk diffu-
sion process of the BEP also appears in genetics, as the multi-type Wright–Fisher diffusion
with parent independent mutation rate (see [9] and references therein for a discussion of
duality in the context of population dynamics).

Brownian Energy Process BEP(2k)

This model describes symmetric energy exchange between nearest neighbouring sites, see
Fig. 3. The dynamical variables (energies) are collected in the vector z = (z1, . . . , zL) ∈ R

L+
and the generator is

LBEP = LBEP
a + LBEP

0 + LBEP
b

= Ta

(
2k

∂

∂z1
+ z1

∂2

∂z2
1

)
− 1

2
z1

∂

∂z1

+
L−1∑

i=1

zizi+1

(
∂

∂zi

− ∂

∂zi+1

)2

− 2k(zi − zi+1)

(
∂

∂zi

− ∂

∂zi+1

)

+ Tb

(
2k

∂

∂zL

+ zL

∂2

∂z2
L

)
− 1

2
zL

∂

∂zL

. (2.7)

Remark 2.4 The origin of the bulk dynamics, generated by

LBEP
0 =

L−1∑

i=1

zizi+1

(
∂

∂zi

− ∂

∂zi+1

)2

− 2k(zi − zi+1)

(
∂

∂zi

− ∂

∂zi+1

)
(2.8)
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can be explained as follows [20, 21]. Consider m = 4k ∈ N velocity variables on each site i

and call them vi,α with α = 1, . . . ,m. Suppose that they evolve with the following generator

LBMP
0 =

L−1∑

i=1

m∑

α,β=1

(
vi,α

∂

∂vi+1,β

− vi+1,β

∂

∂vi,α

)2

(2.9)

which defines a process, called Brownian Momentum Process, introduced in [1, 19]. Each
term in LBMP

0 represents a rotation in the plane (vi,α, vi+1,β), therefore it conserves the total
length v2

i,α + v2
i+1,β , i.e. the total kinetic energy. One can check that the BEP(2k) is the

evolution process, induced by (2.9), of the total energies on each site

zi =
m∑

α=1

v2
i,α. (2.10)

The generator of the BEP reservoirs LBEP
a and LBEP

b , that will be discussed in some details in
Sect. 3, impose an average energy 4kTa on the left, and an average energy 4kTb on the right.
The choice of their form is motivated as follows. Consider an Ornstein–Uhlenbeck process
on each of the m velocities at site 1 of the Brownian Momentum process (2.9), namely

LBMP
a =

m∑

α=1

2T
∂2

∂v2
1,α

− v1,α

∂

∂v1,α

. (2.11)

Since in the stationary state of this reservoir the {v1,α}α=1,...,m are independent cen-
tered Gaussian with variance T then, using (2.10), the expectation of z1 is E(z1) =∑m

α=1 E(v2
1,α) = mT = 4kT .

2.3 Scaling Limit of the Particle Systems

Besides duality, there is another relation connecting the bulk part of the BEP with gener-
ator LBEP

0 (2.8), and the bulk part of the SIP with generator LSIP
0 (third line in (2.4)). The

BEP can be indeed obtained from the SIP, through a suitable scaling limit, by a reinter-
pretation of this process as a model of energy transport, by supposing that each particle
carries a quantum of energy ε. In this interpretation, since LSIP

0 conserves the number of
particles, then it conserves the total energy. Consider the free boundary inclusion process
η(t) = (η1(t), . . . , ηL(t)) generated by LSIP

0 and let N be the total number of particles, i.e.
N = ∑L

i=1 ηi . Let ε be a parameter of the order of 1/N , then one expects ηi to be of the
order of ε−1 as ε → 0 (despite attractive interactions for any finite k there are no conden-
sation phenomena in the SIP; one needs to rescale k with ε to see particles coalescing into
a single site; see [24]). Then one may investigate the continuous dynamics generated in the
limit as ε → 0 on the variables zi(t) = εηi(t). It turns out that the limiting dynamics for z(t)

is generated by LBEP
0 .

Proposition 2.5 Let η(t) = (η1(t), . . . , ηL(t)) be the bulk inclusion process generated
by LSIP

0 with N particles. Let ε = E /N for some fixed E > 0. Then the process z(t) =
(z1(t), . . . , zL(t)) where zi(t) = εηi(t) is, in the limit ε → 0, the bulk Brownian energy
process generated by LBEP

0 with total energy E .
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Proof Let F : R
L+ → R, F = F(z) be a two times continuously differentiable function, i.e.

F ∈ C 2(RL+). Let zε = (zε
1, . . . , z

ε
L) ∈ R

L+ be such that zε/ε ∈ N
L+, then for any F as above,

there exists f : N
L
0 → R, f = f (η), such that

F
(
zε

1, . . . , z
ε
L

) := f

(
zε

1

ε
, . . . ,

zε
L

ε

)
. (2.12)

Let Lε
0 be the generator of the process zε(t) induced by the SIP, then Lε

0 acts on F = F(zε)

as follows:

[
Lε

0F
](

zε
) = [

LSIP
0 f

](zε

ε

)

=
L−1∑

i=1

{
zε
i

ε

(
2k + zε

i+1

ε

)[
f

(
zε

1

ε
, . . . ,

zε
i

ε
− 1,

zε
i+1

ε
+ 1, . . . ,

zε
L

ε

)
− f

(
zε

ε

)]

+ zε
i+1

ε

(
2k + zε

i

ε

)[
f

(
zε

1

ε
, . . . ,

zε
i

ε
+ 1,

zε
i+1

ε
− 1, . . . ,

zε
L

ε

)
− f

(
zε

ε

)]}

=
L−1∑

i=1

{
zε
i

ε

(
2k + zε

i+1

ε

)[
F

(
zε

1, . . . , z
ε
i − ε, zε

i+1 + ε, . . . , zε
L

) − F
(
zε

)]

+ zε
i+1

ε

(
2k + zε

i

ε

)
[
F

(
zε

1, . . . , z
ε
i + ε, zε

i+1 − ε, . . . , zε
L

) − F
(
zε

)]
}
.

Suppose that zε converges to a finite limit zε → z ∈ R
L+ as ε → 0. Then, from the regularity

assumptions on F , we have

[
Δε

i,i+1F
](

zε
) := F

(
zε

1, . . . , z
ε
i−1 − ε, zε

i + ε, . . . , zε
L

) − F
(
zε

1, . . . , z
ε
i−1, z

ε
i , . . . , z

ε
L

)

= −ε

(
∂

∂zi

− ∂

∂zi+1

)
F

(
zε

) + o(ε), (2.13)

while

[
Δε

i+1,iF
](

zε
) := F

(
zε

1, . . . , z
ε
i−1 + ε, zε

i − ε, . . . , zε
L

) − F
(
zε

1, . . . , z
ε
i−1, z

ε
i , . . . , z

ε
L

)

= ε

(
∂

∂zi

− ∂

∂zi+1

)
F

(
zε

) + o(ε), (2.14)

and

[(
Δε

i+1,i + Δε
i,i+1

)
F

](
zε

) = ε2

(
∂

∂zi

− ∂

∂zi+1

)2

F
(
zε

) + o
(
ε2

)
.

Therefore we have

[
Lε

0F
](

zε
) =

[
−2k

(
zε
i − zε

i+1

)
(

∂

∂zi

− ∂

∂zi+1

)
+ zε

i z
ε
i+1

(
∂

∂zi

− ∂

∂zi+1

)2]
F

(
zε

) + o(1).

(2.15)
Thus, for any F as above, limε→0[Lε

0F ](zε) = [LBEP
0 F ](z). Moreover the total energy is

clearly conserved in the limit and it is given by
∑L

i=1 zi = ∑L

i=1 zε
i = εN = E . �
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The same scaling analysis of the inclusion walkers can be performed on the bulk dy-
namics of independent random walkers. This yields a deterministic process as scaling limit,
which is also dual to independent random walkers (cfr. [21]).

Proposition 2.6 Let η(t) = (η1(t), . . . , ηL(t)) be the bulk process generated by LIRW
0 with

N particles. Let ε = E /N for some fixed E > 0. Then the process y(t) = (y1(t), . . . , yL(t))

where yi(t) = εηi(t) is, in the limit ε → 0, the deterministic energy process (DEP) with total
energy

∑L−1
i=1 yi(t) = E generated by

LDEP
0 =

L−1∑

i=1

(yi − yi+1)

(
∂

∂yi+1
− ∂

∂yi

)
.

Remark 2.7 One may wonder whether there exists a diffusion process arising as a limit of
the Exclusion process. By performing an analogous scaling as above, the rates of the SEP
take the form Nzi(2j − Nzi+1) that become negative in the limit as N → ∞. Consistently
the limit of the SEP generator is a second order differential operator that cannot be inter-
preted as the generator of a Markov process, since it is has a negative coefficient in front of
the second order derivatives, i.e.

L∑

i=1

−zizi+1

(
∂

∂zi+1
− ∂

∂zi

)2

− 2j (zi − zi+1)

(
∂

∂zi

− ∂

∂zi+1

)
. (2.16)

Remark 2.8 The same scaling limit which transforms the bulk dynamics of the SIP into the
one of the BEP does not work with the reservoirs. Indeed, applying to LSEP

a the scaling of
Proposition 2.5, the resulting generator is

(α − γ )z1
∂

∂z1
(2.17)

which produces a deterministic behavior: z1(t) = z1(0)e(α−γ )t . On the other hand it is simple
to check that the thermal bath of the BEP can be obtained from a boundary driven SIP with
a modified reservoir generated by

LSIP
a,q =

(
2kq +

(
q − 1

2

)
η1

)[
f

(
η0,1

) − f (η)
] + qη1

[
f

(
η1,0

) − f (η)
]

(2.18)

with the condition qε → Ta as ε → 0.

3 Stationary Measures at Equilibrium

The models introduced in the previous section are Markov processes with discrete or contin-
uous state spaces. The long term behavior of the processes are described by their stationary
measures. In general it is hard to determine such measures and, in fact, the invariant states
of SIP, SEP and BEP in non-equilibrium conditions are not explicitly known. The problem
of finding the explicit form of the invariant states is greatly simplified at equilibrium. The
equilibrium condition for our systems can be obtained in two ways: either by suppressing the
reservoirs (i.e. considering only the bulk dynamics L0) or, retaining the reservoirs, by im-
posing equal densities or equal temperatures at the boundaries of the chain, i.e. ρ = ρa = ρb

or T = Ta = Tb .
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In the first case there exists an infinite family of reversible measures labelled by a contin-
uous parameter. In the second case (i.e. in the presence of the reservoir) at density ρ (resp.
at temperature T ) the boundary conditions select one reversible measure.

3.1 Equilibrium Product Measures

Reversible invariant probability measure P of the bulk dynamics generated by L0 can be
obtained by imposing the detailed balance condition. When the state space Ω is finite or
countable, this condition is expressed by requiring that for any pair of configurations η,
η′ ∈ Ω the probability P satisfies

L0

(
η,η′)

P(η) = L0

(
η′, η

)
P
(
η′) (3.1)

where L0(η, η′) is the transition rate from the configuration η to η′, i.e. L0(η, η′) = L0f (η)

with f (η) = δη,η′ . When the state space Ω is continuous, a probability measure with density
ψ(x) is said to be reversible stationary measure if, for all functions f and g in the domain
of the generator L0, it holds

∫
f (x)L0g(x)ψ(x)dx =

∫
L0f (x)g(x)ψ(x)dx. (3.2)

By imposing (3.1) in the case of SIP, SEP, IRW and (3.2) in the case of BEP and requiring
the factorization of the probability measure one obtain the reversible measures described in
the following proposition, whose proof is left to the reader.

Proposition 3.1 For the bulk processes with generator L0 defined in Sect. 2 we have

Inclusion Walkers SIP(2k)

The process with generator LSIP
0 has a reversible stationary measure given by products

of generalized Negative Binomial measures with parameters 2k > 0 and arbitrary
0 < p < 1, i.e.

P(η) =
L∏

i=1

pηi

ηi !
(2k + ηi)

(2k)
(1 − p)2k. (3.3)

Exclusion Walkers SEP(2j)

The process with generator LSEP
0 has reversible stationary measure given by products of

Binomial measures with parameters 2j ∈ N and arbitrary 0 < p < 1, i.e.

P(η) =
L∏

i=1

(
p

1−p
)ηi

ηi !
(2j + 1)

(2j + 1 − ηi)
(1 − p)2j . (3.4)

Independent Random Walkers IRW
The process with generator LIRW

0 has reversible stationary measure given by products of
Poisson distribution with arbitrary parameter λ > 0 i.e.

P(η) =
L∏

i=1

ληi

ηi ! e
−λ. (3.5)

Brownian Energy Process BEP(2k)
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The process with generator LBEP
0 has reversible measures given by product of Gamma dis-

tributions with parameters 2k > 0 and arbitrary θ > 0, i.e.

P(dz) =
L∏

i=1

1

(θ)2k(2k)
z2k−1
i e−zi /θ dzi . (3.6)

3.2 Equilibrium Product Measure with Reservoirs

We recall that, in the case of particle systems (see Sect. 2), the reservoirs are modeled by
birth-death processes with creation rate b(n) and annihilation rate d(n), n the number of
particles at the boundary. Each reservoir has, thus, its own reversible invariant probability
measure, p(n), which satisfies the detailed balance condition b(n)p(n) = d(n+1)p(n+1).
This condition can be used to compute p(n). The average value of the random number n

(that we call density, irrespective to its value) is the quantity imposed by the reservoir to the
system.

The effects of the reservoirs, under the equilibrium conditions, are described in the fol-
lowing proposition, which can easily be proved with an explicit computation.

Proposition 3.2 For the processes with generator L defined in Sect. 2 we have:

Inclusion Walkers SIP(2k)

The left reservoir is modeled by the birth and death process with rates

b(n) = α(2k + n), d(n) = γ n, n ∈ N. (3.7)

The stationary state of this reservoir is given by a Negative Binomial measure with param-
eters 2k and p = α

γ
. The reservoir density is ρ := 〈n〉 = 2k

p

1−p
= 2k α

γ−α
. The boundary

driven process with generator LSIP defined in (2.4), with parameters α, γ and β , δ such that
αβ − γ δ = 0 (and thus ρa = ρb) admits the stationary product distribution:

⊗L
i=1Negative-Binom(2k,p) with p := α

γ
= δ

β
for α < γ and δ < β (3.8)

Exclusion Walkers SEP(2j)

The left reservoir is modeled by

b(n) = α(2j − n), d(n) = γ n, n ∈ {0,1, . . . ,2j}. (3.9)

The stationary state of this reservoir is given by a Binomial measure with parameters 2j and
p = α

γ+α
. The reservoir density is ρ := 〈n〉 = 2jp = 2j α

γ+α
. The boundary driven process

with generator LSEP defined in (2.5), with parameters α, γ and β , δ such that αβ − γ δ = 0
(and thus ρa = ρb) admits the stationary product distribution:

⊗L
i=1Binom(2j,p) with p := α

γ + α
= δ

β + δ
. (3.10)

Independent Random Walkers IRW
The left reservoir has a constant birth rate

b(n) = α, d(n) = γ n, n ∈ N. (3.11)
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This reservoir imposes a Poisson measure with parameter λ = α
γ

. Therefore the density (i.e.

mean number of particle) is ρ := 〈n〉 = α
γ

. If α
γ

= δ
β

the process with generator LIRW defined
in (2.6) admits the stationary product measure:

⊗L
i=1Poisson(λ) with λ := α

γ
= δ

β
. (3.12)

Brownian Energy Process BEP(2k)

In this case the generator of the left reservoir is:

LBEP
a = Ta

(
2k

∂

∂z
+ y

∂2

∂z2

)
− 1

2
z

∂

∂z
, z ∈ R

+. (3.13)

The stationary measure of this reservoir is the Gamma distribution with parameters 2k and
θ = 2Ta . From the properties of the Gamma distribution one has 〈z〉 = 4kT . If Ta = Tb then
the process with generator LBEP defined in (2.7) admits the stationary product measure:

⊗L
i=1Gamma(2k,2T ) with T := Ta = Tb. (3.14)

4 Duality

When the reservoirs of our boundary driven processes work at different parameters value so
that different densities or temperatures are imposed on the two sides, the stationary measure
is in general unknown. Remarkable exceptions are the boundary driven SEP(1), with at most
one particle per site, for which a matrix product solution is available [13], and the case of
IRW, where the product structure of the equilibrium invariant measure is preserved.

An alternative approach to characterize the stationary non-equilibrium state is provided
by duality. In Sect. 4.1 we describe duality for the processes previously defined. Dual pro-
cesses have absorbing boundaries at two extra sites with suitable absorbing rates depending
on the parameters reservoirs. In general the duality functions are related to moments of the
stationary distribution. In Sect. 4.2 we show several applications of duality and we obtain
via duality the stationary non-equilibrium measure of independent random walkers.

4.1 Dual Processes

Consider the extended chain {0,1, . . . ,L,L + 1} obtained from the original one by adding
the boundary sites {0,L + 1}. Let η = (η1, . . . , ηL) be the configuration in the original pro-
cess, we denote by ξ = (ξ0, ξ1, . . . , ξL, ξL+1) ∈ Ωdual the configuration for the dual process,
where the configuration space ΩDual will be specified later. We say that (ηt )t≥0 and (ξt )t≥0

are dual with duality function D(η, ξ) if

Eη

[
D(ηt , ξ)

] = Eξ

[
D(η, ξt )

]
for any t ≥ 0, (η, ξ) ∈ Ω × ΩDual, (4.1)

where Eη denotes the expectation in the original process started from the configuration η,
whereas Eξ denotes the expectation in the dual process started from the configuration ξ .

Theorem 4.1 For the processes defined in Sect. 2 we have the following duality results.
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Inclusion Walkers SIP(2k)

The process (ηt )t≥0 defined by (2.4) is dual to the absorbing boundaries process (ξt )t≥0 with
configuration space ΩDual = N

L+2
0 with generator

LSIP
Dualf (ξ) = (γ − α)ξ1

[
f

(
ξ 1,0

) − f (ξ)
]

+
L−1∑

i=1

ξi(2k + ξi+1)
[
f

(
ξ i,i+1

) − f (ξ)
] + ξi+1(2k + ξi)

[
f

(
ξ i+1,i

) − f (ξ)
]

+ (β − δ)ξL

[
f

(
ξL,L+1

) − f (ξ)
]
, (4.2)

with duality function

DSIP(η, ξ) =
(

α

γ − α

)ξ0 L∏

i=1

ηi !
(ηi − ξi)!

(2k)

(2k + ξi)

(
δ

β − δ

)ξL+1

. (4.3)

Exclusion Walkers SEP(2j)

The process (ηt )t≥0 defined by (2.5) is dual to the absorbing boundaries process (ξt )t≥0 with
configuration space ΩDual = N0 × {0,1, . . . ,2j}L × N0 with generator

LSEP
Dualf (ξ) = (α + γ )ξ1

[
f

(
ξ 1,0

) − f (ξ)
]

+
L−1∑

i=1

ξi(2j − ξi+1)
[
f

(
ξ i,i+1

) − f (ξ)
] + ξi+1(2j − ξi)

[
f

(
ξ i+1,i

) − f (ξ)
]

+ (β + δ)ξL

[
f

(
ξL,L+1

) − f (ξ)
]
, (4.4)

with duality function

DSEP(η, ξ) =
(

α

α + γ

)ξ0 L∏

i=1

ηi !
(ηi − ξi)!

(2j + 1 − ξi)

(2j + 1)

(
δ

β + δ

)ξL+1

. (4.5)

Independent Random Walkers IRW
The process (ηt )t≥0 defined by (2.6) is dual to the absorbing boundaries process (ξt )t≥0 with
configuration space ΩDual = N

L+2
0 with generator

LIRW
Dualf (ξ) = γ ξ1

[
f

(
ξ 1,0

) − f (ξ)
]

+
L−1∑

i=1

ξi

[
f

(
ξ i,i+1

) − f (ξ)
] + ξi+1

[
f

(
ξ i+1,i

) − f (ξ)
]

+ βξL

[
f

(
ξL,L+1

) − f (ξ)
]
, (4.6)

with duality function

Dind(η, ξ) =
(

α

γ

)ξ0 L∏

i=1

ηi !
(ηi − ξi)!

(
δ

β

)ξL+1

. (4.7)

Brownian Energy Process BEP(2k)
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The process (zt )t≥0 defined by (2.7) is dual to the absorbing boundary process (ξt )t≥0 with
configuration space ΩDual = N

L+2
0 with generator

LBEP
Dualf (ξ) = ξ1

2

[
f

(
ξ 1,0

) − f (ξ)
]

+
L−1∑

i=1

ξi(2k + ξi+1)
[
f

(
ξ i,i+1

) − f (ξ)
] + ξi+1(2k + ξi)

[
f

(
ξ i+1,i

) − f (ξ)
]

+ ξL

2

[
f

(
ξL,L+1

) − f (ξ)
]
, (4.8)

the duality function is

DBEP(z, ξ) = (2Ta)
ξ0

L∏

i=1

z
ξi
i

(2k)

(2k + ξi)
(2Tb)

ξL+1 . (4.9)

Theorem 4.1 can be proven by explicit computations checking that the effect of the gen-
erator of a process on duality functions is the same as the effect of the generator of the dual
process. See [20, 21] for this explicit computation and the proof of duality for the bulk pro-
cess. The main novelty of Theorem 4.1 consists in including a general class of boundary
rates. Therefore, we only include the proof of the duality property for the boundary terms.
We treat the inclusion process, the proofs for the other processes being analogous.

Proof of duality for the SIP(2k) From [21] we know that the free boundary inclusion process
(i.e. the process generated by the operator LSIP

0 defined in (2.4)) is self-dual with duality
function:

DSIP
0 (η, ξ) =

L∏

i=1

ηi !
(ηi − ξi)!

(2k)

(2k + ξi)
(4.10)

this means that the action of LSIP
0 on DSIP

0 (·, ξ) and on DSIP
0 (η, ·) is the same, i.e.

[
LSIP

0 DSIP
0 (·, ξ)

]
(η) = [

LSIP
0 DSIP

0 (η, ·)](ξ) (4.11)

thus, since LSIP
0 does not act on the 0-th and L + 1-th components of ξ , we have

[
LSIP

0 DSIP(·, ξ)
]
(η) = [

LSIP
0 DSIP(η, ·)](ξ) (4.12)

It remains to verify that the actions of the operators LSIP and LSIP
Dual at the boundaries are the

same on the duality function. We verify this for the left boundary:

[
LSIP

a DSIP(·, ξ)
]
(η)

= α(2k + η1)
[
DSIP

(
η0,1, ξ

) − DSIP(η, ξ)
] + γ η1

[
DSIP

(
η1,0, ξ

) − DSIP(η, ξ)
]

= DSIP(η, ξ)
(η1 − ξ1)!

η1! ·
{
α(2k + η1)

[
(η1 + 1)!

(η1 + 1 − ξ1)! − η1!
(η1 − ξ1)!

]

+ γ η1

[
(η1 − 1)!

(η1 − 1 − ξ1)! − η1!
(η1 − ξ1)!

]}
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= DSIP(η, ξ)
ξ1

(η1 + 1 − ξ1)
· {α(2k + η1) − γ (η1 + 1 − ξ1)

}

= DSIP(η, ξ)
ξ1

(η1 + 1 − ξ1)
· {α(2k + ξ1 − 1) − (γ − α)(η1 + 1 − ξ1)

}

= α
(2k + ξ1 − 1)

(η1 + 1 − ξ1)
ξ1D

SIP(η, ξ) − (γ − α)ξ1D
SIP(η, ξ)

= (γ − α)ξ1
[
DSIP

(
η, ξ 1,0

) − DSIP(η, ξ)
] = [

LSIP
Dual,aD

SIP(η, ·)](ξ) (4.13)

We have used the notations LSIP
a and LSIP

Dual,a to denote the left boundary parts of the genera-
tors LSIP and LSIP

Dual (i.e. the first line in (2.4), resp. (4.2)). By an analogous computation it is
possible to verify that

[
LSIP

b DSIP(·, ξ)
]
(η) = [

LSIP
Dual,bD

SIP(η, ·)](ξ) (4.14)

where LSIP
b and LSIP

Dual,b are the right boundary parts of the two generators. This concludes
the proof of the duality property. �

Remark 4.2 At this point one may wonder whether there exists a diffusion process dual to
the SEP. All the attempts that we have done in this direction seem to suggest that this is
not the case. On the other hand, one may extend the definition of duality at the level of the
generators, i.e. we say that the operator L is dual to the operator LDual with duality function
D(z,η) if

[
LD(z, ·)](η) = [

LDualD(·, η)
]
(z). (4.15)

Notice that this definition does not require L and LDual to be Markov generators. Un-
der this definition, it turns out that the SEP(2j) free boundary operator LSEP

0 is “dual” to
the differential operator defined in (2.16) that has been obtained as a scaling limit of the
SEP(2j).

4.2 Moments and Duality

In this section we provide some applications of duality. These generalize the applications of
duality considered before in the context of the simple symmetric exclusion process or the
KMP model, [20, 27, 34]. Since the dual process voids the chain, the problem of computing
stationary expectations for the original process is reduced to the computation of the absorp-
tion probabilities at the boundaries of the dual walkers. In particular, we will see how the
n-points correlations are related to the absorption probabilities at the extra sites 0 and L + 1
of n dual walkers.

4.2.1 Stationary Expectations and Absorption Probabilities

In the following Proposition we provide a relation connecting the expectation of the duality
function and the absorption probabilities of the dual walkers.

Proposition 4.3 Let 〈·〉L denote expectation with respect to the stationary measure of the
processes defined in Sect. 2. Let (ξ(t))t≥0 denote the dual processes defined in Theorem 4.1.
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Table 1 Definition of ρa and ρb
System ρa ρb

SIP 2k α
γ−α 2k δ

β−δ

SEP 2j α
γ+α 2j δ

β+δ

IRW α
γ

δ
β

For a given ξ ∈ ΩDual let |ξ | = ∑L+1
i=0 ξi and define am(ξ) the absorption probabilities of the

corresponding dual walkers initialized at ξ (i.e. ξi dual walkers start from site i), namely

am(ξ) = P
({

ξ0(∞) = m,ξL+1(∞) = |ξ | − m
} | {ξi(0) = ξi, ∀i = 1, . . . ,L

})
. (4.16)

Then we have: in the case of the boundary driven processes SIP(2k), SEP(2j) and IRW

〈
D(η, ξ)

〉
L

=
|ξ |∑

m=0

(cρa)
m(cρb)

|ξ |−mam(ξ), (4.17)

where c = 1
2k

for SIP(2k) model, c = 1
2j

for SEP(2j) model, c = 1 for IRW model, and
where the densities ρa and ρb are defined in Table 1; in the case of the boundary driven
processes BEP(2k)

〈
D(z, ξ)

〉
L

=
|ξ |∑

m=0

(2Ta)
m(2Tb)

|ξ |−mam(ξ). (4.18)

Proof We prove (4.17). Let μL,ρa,ρb
be the stationary measure of the process η with bound-

ary densities ρa and ρb . From the definition of duality in (4.1) and exploiting the fact that
the dual walkers are absorbed at the boundaries, we have

〈
D(η, ξ)

〉
L

=
∫

D(η, ξ)μL,ρa,ρb
(dη)

= lim
t→∞ Eη

[
D(ηt , ξ)

]

= lim
t→∞ Eξ

[
D(η, ξt )

]

=
|ξ |∑

m=0

(cρa)
m(cρb)

|ξ |−m
Pξ

({
ξ0(∞) = m,ξL+1(∞) = |ξ | − m

})
, (4.19)

where Pξ is the probability law of the dual process (ξ(t))t≥0 started at ξ at time zero, and
the last identity follows from the formulas of the duality functions (4.3), (4.5), (4.7) and the
definitions of the densities given in Table 1. The proof of (4.18) is analogous. �

4.2.2 Averages in the Stationary State

In this section we will see that all the boundary driven stochastic models considered so far
have a linear density or temperature profile i.e. the expectations 〈ηi〉 or 〈zi〉 with respect to
the stationary measure is a linear function of i. This is an immediate consequence of duality
since, in order to study the average at site i in the original process, it is enough to consider
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Table 2 Dual processes jump
rates System SIP SEP IRW BEP

u γ − α γ + α γ 1/2

v β − δ β + δ β 1/2

c 1/2k 1/2j 1 1/2k

a single dual random walker started at i and it is an elementary fact that its absorption
probabilities at the boundaries will be linear in i. Let us see.

For a system of size L, the expectations 〈ηi〉L and 〈zi〉L can be written, up to a factor,
as the expectations (with respect to the stationary measures of the processes η(t) and z(t))
of the duality functions D(η, ξ i) computed in the configuration ξ i with ξ i

j = δi,j . Further-
more, using Proposition 4.3, they can be explicitly found as functions of the dual absorption
probabilities pi := a1(ξ

i) and a0(ξ
i) = 1 − pi (am(ξ) as in Proposition 4.3). We have

〈ηi〉L = 1

c

〈
D

(
η, ξ i

)〉
L

= ρapi + ρb(1 − pi) i = 1, . . . ,L (4.20)

for SIP, SEP and IRW, with c as in Proposition 4.3. Moreover, denoting by θa = 4kTa and
θb = 4kTb , we have

〈zi〉L = 2k
〈
D

(
z, ξ i

)〉
L

= θapi + θb(1 − pi) i = 1, . . . ,L (4.21)

for the BEP. It remains to compute pi .
Let Xt be the random walker moving on the chain {0,1, . . . ,L + 1} as follows. In the

bulk Xt jumps to one of the neighbouring sites with rate 1/c (with c as in Proposition 4.3),
whereas it is absorbed by the left boundary (site 0) with rate u and by the right boundary
(site L + 1) with rate v. The values of c,u and v depend on the model, they are listed in
Table 2.

The value pi can then be interpreted as the probability for the walker Xt started at i to
be absorbed by the left boundary, i.e. pi = P(X∞ = 0 | X0 = i). They verify the following
system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p0 = 1

p1 = 1
cu+1p2 + cu

cu+1p0

pi−1 − 2pi + pi+1 = 0, i = 2, . . . ,L − 1

pL = cv
cv+1 pL+1 + 1

cv+1pL−1

pL+1 = 0.

(4.22)

Thus pi is a linear function of i for 1 ≤ i ≤ L and the solution of (4.22) is given by:

pi = L + 1
c
v − i

L + 1
c
u + 1

c
v − 1

for i = 1, . . . ,L and p0 = 1, pL+1 = 0. (4.23)

Hence, from (4.20), for SIP, SEP, and IRW we get

〈ηi〉L = ρa(L + 1
c
v − i) + (i + 1

c
u − 1)ρb

L + 1
c
u + 1

c
v − 1

i = 1, . . . ,L (4.24)

with u,v as in Table 2, and ρa,ρb as in Table 1.
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Remark 4.4 Under a suitable rescaling of the constants tuning the annihilation rates at the
boundaries (see Remark 2.3), the solutions of the exclusion and of the inclusion walkers
scale to those of the independent walkers.

Finally, from (4.21) and (4.23), for the BEP we get

〈zi〉 = θa(L + 4k − i) + θb(i − 1 + 4k)

L + 8k − 1
i = 1, . . . ,L (4.25)

and, by a similar computation, we find

〈zi〉 = Ta(2L − 3 − 2i) + Tb(2i − 1)

2(L − 2)
i = 1, . . . ,L (4.26)

for the KMP model.

4.2.3 Stationary Product Measure for the Boundary Driven Independent Walkers

In the following proposition the stationary measure for the boundary driven IRW is obtained
as an application of the duality property.

Proposition 4.5 The stationary measure of the process with generator LIRW defined in (2.6)
is the product measure with marginals at each site i = 1, . . . ,L given by Poisson distribution
with parameter

λi = ρa(L + 1
β

− i) + ρb(i − 1 + 1
γ
)

L + 1
β

+ 1
γ

− 1
. (4.27)

Proof Since for a random variable X with Poisson distribution of parameter λ the n-th
factorial moment is given by E(X(X − 1) · · · (X − n + 1)) = λn, to prove the proposition is
enough to check the identity

〈
L∏

i=1

ηi !
(ηi − ξi)!

〉

L

=
L∏

i=1

λ
ξi
i . (4.28)

To this aim consider a dual walker that starts his walk from site i ∈ {1, . . . ,L}. The proba-
bility pi of its ultimate absorption at site 0 is given by

pi = L + 1
β

− i

L + 1
β

+ 1
γ

− 1
(4.29)

(see (4.23) and Table 2). Using formula (4.17) and observing that the absorption probabilities
of a total of

∑L

i=1 ξi dual walkers, with ξi of them initialized at site i, completely factorize
because the walkers are independent, one has

〈
L∏

i=1

ηi !
(ηi − ξi)!

〉

L

=
L∏

i=1

ξi∑

mi=0

ρmi
a ρ

ξi−mi

b

(
ξi

mi

)
p

mi

i (1 − pi)
ξi−mi

=
L∏

i=1

(
ρapi + ρb(1 − pi)

)ξi
.
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Inserting (4.29) in the above formula and remembering the definition of the λi , (4.28) is
verified and the proof of the proposition is completed. �

4.2.4 Duality Moment Functions

It turns out from the previous section that the expectations of the duality functions D(ηt , ξ)

with respect to the probability law of the original process ηt , i.e. the “duality moment func-
tions”

G(η, ξ, t) := Eη

[
D(ηt , ξ)

]
(4.30)

are usually some kind of moments of the original process ηt labelled by the discrete pa-
rameter ξ ∈ Ωdual. In the case of SEP, SIP and IRW, the function G(η, ξ, t) is, up to a
multiplicative constant depending on ξ , the ξ -th factorial moment at time t when the initial
value is η. In the case of BEP, the function G(z, ξ, t) := Ez[D(zt , ξ)] is the standard ξ -th
moment. Under suitable conditions, the set of moments, obtained on varying the parame-
ter ξ , completely characterizes the law of the original process. From duality we find that the
equations for the functions G(η, ξ, t) are closed and quite simple to write.

Proposition 4.6 Let ηt and ξt be two dual Markov processes with duality function D(η, ξ)

and let L and LDual be their generators, then the duality moment function G(η, ξ, t) defined
in (4.30) satisfies the following equation:

d

dt
G(η, ξ, t) = [

LDualG(η, ·, t)](ξ). (4.31)

Proof For any function f = f (η) we have

d

dt
Eη

[
f (ηt )

] = Eη

[
Lf (ηt )

]
. (4.32)

Given ξ ∈ Ωdual, applying (4.32) to f (η) = D(η, ξ) and using duality, namely
[LD(·, ξ)](η) = [LDualD(η, ·)](ξ) one has

d

dt
Eη

[
D(ηt , ξ)

] = Eη

[[
LDualD(ηt , ·)

]
(ξ)

] = [
LDualEη

[
D(ηt , ·)

]]
(ξ). (4.33)

Equation (4.31) follows from the definition of the function G (cfr. (4.30)). �

Corollary 4.7 Let 〈·〉 denote expectation in the stationary state and define the “stationary
duality moment functions”

G(ξ) := 〈
D(η, ξ)

〉
. (4.34)

It immediately follows from Proposition 4.6 that G(ξ) satisfies the equation

(LDualG)(ξ) = 0. (4.35)

We will see an application of the function G in Sect. 5.2.
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5 Instantaneous Thermalization and KMP Model

In this section we define the boundary driven process with instantaneous thermalization.
An instantaneous thermalization process gives rise, for each couple of nearest neighbour-
ing sites, to an instantaneous redistribution of the total energy (or of the total number of
particles). The class of instantaneous thermalization processes we consider in this paper is
obtained from the non-equilibrium processes defined so far after performing a suitable “in-
stantaneous thermalization limit”: for each bond, the total energy E (or the total number of
particles) of that bond is redistributed according to the stationary measure of the original
process at equilibrium on that bond, conditioned to the conservation of E.

5.1 Thermalized Models

To start with we recall a well known instantaneous thermalization model, the KMP model
(see [27]). The KMP model is defined by considering on each bond a uniform redistribution
of energy. At the boundaries the energy is fixed by a reservoir which imposes a Boltzmann–
Gibbs exponential energy distribution with different temperatures Ta and Tb . The generator
of the process is

LKMP f (z) =
∫ ∞

0
dz′

1

e−z′
1/Ta

Ta

(
f

(
z′

1, z2, . . . , zL

) − f (z)
)

+
L−1∑

i=1

∫ 1

0
dx

(
f

(
z1, . . . , x(zi + zi+1), (1 − x)(zi + zi+1), . . . , zL

) − f (z)
)

+
∫ ∞

0
dz′

L

e−z′
L
/Tb

Tb

(
f

(
z1, . . . , zL−1, z

′
L

) − f (z)
)

(5.1)

for any f : R
L+ → R.

At the end of this section we will see that the KMP model can be obtained as the instan-
taneous thermalization limit of the BEP(2k) model in the particular case k = 1/2.

From [27] we know that the KMP is dual to a suitable discrete Markov process. The
dual process ξ(t) = (ξ0(t), ξ1(t), . . . , ξL(t), ξL+1(t)) ∈ N

L+2
0 describes the motion of parti-

cles in a one dimensional L + 2-sites chain. The boundary sites ξ0 and ξL+1 are absorbing.
In the bulk, for each couple of neighbouring sites (i, i +1) there is an instantaneous uniform
redistribution of the total number of particles ξi + ξi+1. The redistribution takes place when-
ever an exponentially distributed clock rings. The clocks (one for each couple (i, i + 1)) are
mutually independent. The generator of this process is defined on functions f : N

L+2
0 → R

by

LKMP
Dual f (ξ) = [

f (ξ0 + ξ1,0, ξ2, . . . , ξL+1) − f (ξ)
]

+
L−1∑

i=1

ξi+ξi+1∑

r=0

[
f (ξ0, . . . , ξi−1, r, ξi + ξi+1 − r, . . . , ξL+1) − f (ξ)

]

+ [
f (ξ0, . . . ,0, ξL + ξL+1) − f (ξ)

]
, (5.2)

and the duality function is DKMP(z, ξ) = T
ξ0
a

∏N

i=1
z
ξi
i

ξi ! T
ξL+1
b .

We will see that, for each of the instantaneous thermalization processes that we are going
to introduce there is a dual process. The dual processes are instantaneous thermalization
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processes themselves. They have absorbing boundaries and can be naturally derived by a
thermalization limit from the dual processes of the original ones (see Sect. 4).

Thermalized Inclusion Walkers Th-SIP(2k)

The instantaneous thermalization limit of the Inclusion process is obtained as follows. Imag-
ine on each bond (i, i + 1) to run the SIP(2k) dynamics for an infinite amount of time. Then
the total number of particles on the bond will be redistributed according to the stationary
measure on that bond, conditioned to conservation of the total number of particles of the
bond. We consider two independent random variables ηi and ηi+1 distributed according to
the stationary measure of the SIP(2k) at the equilibrium. Thus ηi and ηi+1 are two Negative
Binomial random variables of parameters 2k and p. Hence ηi + ηi+1 is again a Negative
Binomial r.v. with parameters 4k and p and then the distribution of one of them, given that
the sum is fixed to ηi + ηi+1 = E, has a Negative Hypergeometric probability density of
parameters (E,4k − 1,2k), i.e.

νSIP
2k (r | E) := P(η1 = r | ηi + ηi+1 = E) =

(2k+r−1
r

) · (2k+E−r−1
E−r

)

(4k+E−1
E

) . (5.3)

On the other hand, the stationary distribution of the left Inclusion reservoir is the Negative
Binomial with parameters 2k and α

γ
(resp. δ

β
for the right reservoir). Then the generator of

the instantaneous thermalization limit of the Inclusion process with reservoirs can be defined
as follows

LSIP
th f (η)

=
∞∑

r=0

[
f (r, η2, . . . , ηL) − f (η)

]
(

2k + r − 1

r

)(
α

γ

)r(
γ − α

γ

)2k

+
L−1∑

i=1

ηi+ηi+1∑

r=0

[
f (η1, . . . , ηi−1, r, ηi + ηi+1 − r, ηi+2, . . . , ηL) − f (η)

]
νSIP

2k (r | ηi + ηi+1)

+
∞∑

r=0

[
f (η1, . . . , ηL−1, r) − f (η)

](2k + r − 1

r

)(
δ

β

)r(
β − δ

β

)2k

. (5.4)

It is easy to check that the thermalized inclusion process is dual, with duality func-
tion (4.3), to the process that behaves in the bulk as the thermalized SIP(2k) itself, and
which has absorbing boundaries at two extra sites with absorbing rate 1. In other words the
dual process is generated by:

LSIP
th,Dualf (ξ)

= [
f (ξ0 + ξ1,0, ξ2, . . . , ξL+1) − f (ξ)

]

+
L−1∑

i=1

ξi+ξi+1∑

r=0

[
f (ξ0, . . . , ξi−1, r, ξi + ξi+1 − r, ξi+2, . . . , ξL+1) − f (ξ)

]
νSIP

2k (r | ξi + ξi+1)

+ [
f (ξ0, . . . , ξL−1,0, ξL + ξL+1) − f (ξ)

]
, (5.5)

where ξ = (ξ0, ξ1, . . . , ξL, ξL+1).
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Thermalized Exclusion Walkers Th-SEP(2k)

If we take two independent random variables ηi and ηi+1 with Binomial distribution of
parameters 2j and p, then ηi + ηi+1 is again a Binomial r.v. with parameters 4j and p; then
the distribution of one of them, given the sum fixed to ηi +ηi+1 = E, has an Hypergeometric
distribution with parameters (E,4j,2j), i.e. a probability mass function

νSEP
2j (r | E) := P(η1 = r | η1 + η2 = E) =

(2j

r

) · ( 2j

E−r

)

(4j

E

) 1r≤2j . (5.6)

The stationary distribution of the left Exclusion reservoir is the Binomial with parameters 2j

and α
γ+α

(resp. δ
β+δ

for the right reservoir). Then we define the generator of the instantaneous
thermalization limit of the Exclusion process with reservoirs as follows

LSEP
th f (η)

=
2j∑

r=0

[
f (r, η2, . . . , ηL) − f (η)

]
(

2j

r

)(
α

γ

)r(
γ

γ + α

)2j

+
L−1∑

i=1

ηi+ηi+1∑

r=0

[
f (η1, . . . , ηi−1, r, ηi + ηi+1 − r, ηi+2, . . . , ηL)−f (η)

]
νSEP

2j (r | ηi +ηi+1)

+
2j∑

r=0

[
f (η1, . . . , ηL−1, r) − f (η)

]
(

2j

r

)(
δ

β

)r(
β

β + δ

)2j

. (5.7)

The thermalized exclusion process is dual, with duality function (4.5), to the process that
behaves in the bulk as the process itself, and which has absorbing boundaries at two extra
sites with absorbing rate 1:

LSEP
th,Dualf (ξ)

= [
f (ξ0 + ξ1,0, ξ2, . . . , ξL+1) − f (ξ)

]

+
L−1∑

i=1

ξi+ξi+1∑

r=0

[
f (ξ1, . . . , ξi−1, r, ξi + ξi+1 − r, ξi+2, . . . , ξL) − f (ξ)

]
νSEP

2j (r | ξi + ξi+1)

+ [
f (ξ0, . . . , ξL−1,0, ξL + ξL+1) − f (ξ)

]
, (5.8)

where ξ = (ξ0, ξ1, . . . , ξL, ξL+1).

Thermalized Indepent Walkers Th-IRW
Let ηi and ηi+1 be two independent random variables with Poisson distribution of parame-
ter λ, then ηi + ηi+1 is again a Poisson r.v. with parameter 2λ then the distribution of one of
them, given the sum fixed to ηi + ηi+1 = E, has a Binomial density of parameters (E,1/2):

νIRW(r | E) := P(η1 = r | η1 + η2 = E) =
(

E

r

)
1

2E
. (5.9)

Moreover the stationary distribution of the left IRW reservoir is the Poisson with parame-
ter α

γ
(resp. δ

β
for the right reservoir). Then the generator of the instantaneous thermalization
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limit of the independent walkers process with reservoirs is given by

LIRW
th f (η)

=
∞∑

r=0

[
f (r, η2, . . . , ηL) − f (η)

]
(

α

γ

)r
e−α/γ

r!

+
L−1∑

i=1

ηi+ηi+1∑

r=0

[
f (η1, . . . , ηi−1, r, ηi + ηi+1 − r, ηi+2, . . . , ηL)−f (η)

]
νIRW(r | ηi +ηi+1)

+
∞∑

r=0

[
f (η1, . . . , ηL−1, r) − f (η)

]( δ

β

)r
e−δ/β

r! . (5.10)

The thermalized independent walkers process is dual, with duality function (4.7), to the
process that behaves in the bulk as the process itself, and which has absorbing boundaries at
two extra sites:

LIRW
th,Dualf (ξ)

= [
f (ξ0 + ξ1,0, ξ2, . . . , ξL+1) − f (ξ)

]

+
L−1∑

i=1

ηi+ηi+1∑

r=0

[
f (ξ1, . . . , ξi−1, r, ξi + ξi+1 − r, ξi+2, . . . , ξL) − f (ξ)

]
νIRW(r | ξi + ξi+1)

+ [
f (ξ0, . . . , ξL−1,0, ξL + ξL+1) − f (ξ)

]
, (5.11)

where ξ = (ξ0, ξ1, . . . , ξL, ξL+1).

Thermalized Brownian Energy Process Th-BEP(2k)

We define the instantaneous thermalization limit of the Brownian Energy process as follows.
On each bond we run the BEP(2k) for an infinite time. Then the energies on the bond
will be redistributed according to the stationary measure on that bond, conditioned to the
conservation of the total energy of the bond. If we take two independent random variables
zi and zi+1 with Gamma distribution of parameters 2k and θ , then the distribution of one of
them, given the sum fixed to zi + zi+1 = E, has density

p(zi |zi + zi+1 = E) = z2k−1
i (E − zi)

2k−1

∫ E

0 z2k−1
i (E − zi)2k−1dzi

. (5.12)

Equivalently, the variable x = zi/E has a Beta(2k,2k) distribution. Denoting by νBEP
2k (x)

the density of such a random variable, we can define the generator of the instantaneous
thermalization limit of the Brownian Energy process with reservoirs as follows

LBEP
th f (z)

=
∫ ∞

0
dz′

1

1

(Ta)2k(2k)

(
z′

1

)2k−1
e−z′

1/Ta
(
f

(
z′

1, z2, . . . , zL

) − f (z)
)

+
L−1∑

i=1

∫ 1

0

[
f

(
z1, . . . , x(zi + zi+1), (1 − x)(zi + zi+1), . . . , zL

) − f (z)
]
νBEP

2k (x)dx
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+
∫ ∞

0
dz′

L

1

(Tb)2k(2k)

(
z′
L

)2k−1
e−z′

L
/Tb

(
f

(
z1, . . . , zL−1, z

′
L

) − f (z)
)
. (5.13)

Remark 5.1 For k = 1/2 this reproduces the uniform redistribution rule of the KMP model
on each bond of the bulk. The same is true for the reservoirs since the stationary distribution
of the Brownian Energy reservoir is Gamma with parameters 2k and θ . If one takes k = 1/2,
then one obtains an Exponential distribution with parameter θ .

The thermalized Brownian Energy process is dual, with duality function (4.9) to the pro-
cess that behaves in the bulk as the thermalized inclusion process, and which has absorbing
boundaries at two extra sites with absorbing rate 1. In other words the dual process is gen-
erated by:

LBEP
th,Dualf (ξ)

= [
f (ξ0 + ξ1,0, ξ2, . . . , ξL+1) − f (ξ)

]

+
L−1∑

i=1

ξi+ξi+1∑

r=0

[
f (ξ0, . . . , ξi−1, r, ξi + ξi+1 − r, ξi+2, . . . , ξL+1) − f (ξ)

]
νSIP

2k (r | ξi + ξi+1)

+ [
f (ξ0, . . . , ξL−1,0, ξL + ξL+1) − f (ξ)

]
, (5.14)

where ξ = (ξ0, ξ1, . . . , ξL, ξL+1).

Remark 5.2 It is immediately seen that for k = 1/2, this gives the KMP-dual process defined
in (5.2).

5.2 Stationary Measures for L = 1

In this section we compute the moments of the instantaneous thermalization processes de-
fined so far, by using the result obtained in Corollary 4.7. When L = 1 there is no bulk
contribution in the generator, since we have a site interacting with two sources.

The L = 1 case is trivial for our original processes (SEP, SIP, IRW and BEP), because for
these models the contributions of the baths are additive. Then the system is indeed equivalent
to the system of one site interacting with one bath whose parameters are recombinations of
the parameters of the two original baths. The stationary measure is, then, the stationary
measure of this total bath.

The interest of the L = 1 case for the thermalized processes lies in the fact that for
these models the baths contribution are no longer additive. Thus, even in this basic case the
computation of the stationary measure is worth to be investigated. A result in this direction
has been obtained in [6] (see also the remark at the end of this section).

Thermalized Inclusion Walkers Th-SIP(2k)

From the previous section we know that the thermalized inclusion process ηt is dual to the
process defined in (5.5), with duality function (4.3), then the duality moment function is

GSIP
th (ξ) = 〈

DSIP(η, ξ)
〉 =

(
α

γ − α

)ξ0 (2k)

(2k + ξ1)

(
δ

β − δ

)ξ2

M(ξ1), (5.15)
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where M(ξ) is the ξ -th factorial moment with respect to the stationary measure of η1:

M(ξ1) =
〈

η1!
(η1 − ξ1)!

〉
. (5.16)

In order to find M(ξ), from Corollary 4.7 we impose

0 = LSIP
th,DualG(ξ) = G(ξ0 + ξ1,0, ξ2) − 2G(ξ0, ξ1, ξ2) + G(ξ0,0, ξ1 + ξ2)

=
(

α

γ − α

)ξ0
(

δ

β − δ

)ξ2

·
{(

α

γ − α

)ξ1

− 2M(ξ1)
(2k)

(2k + ξ1)
+

(
δ

β − δ

)ξ1
}
.

This yields

M(ξ1) = (2k + ξ1)

2(2k)

[(
α

γ − α

)ξ1

+
(

δ

β − δ

)ξ1
]
. (5.17)

Thermalized Exclusion Walkers Th-SEP(2j)

The thermalized inclusion process ηt is dual to the process in (5.8), with duality func-
tion (4.5), then the stationary duality moment function is

GSEP
th (ξ) = 〈

DSEP(η, ξ)
〉 =

(
α

γ + α

)ξ0 (2j + 1 − ξ1)

(2j + 1)

(
δ

β + δ

)ξ2

M(ξ1), (5.18)

where M(ξ) is the ξ -th factorial moment with respect to the stationary measure ν of η1:

M(ξ1) =
〈

η1!
(η1 − ξ1)!

〉
. (5.19)

From Corollary 4.7, we have

0 = LSEP
th,DualG(ξ) = G(ξ0 + ξ1,0, ξ2) − 2G(ξ0, ξ1, ξ2) + G(ξ0,0, ξ1 + ξ2)

=
(

α

γ + α

)ξ0
(

δ

β + δ

)ξ2

·
{(

α

γ + α

)ξ1

− 2M(ξ1)
(2j + 1 − ξ1)

(2j + 1)
+

(
δ

β + δ

)ξ1
}
.

This yields

M(ξ1) = (2j + 1)

2(2j + 1 − ξ1)
·
[(

α

γ + α

)ξ1

+
(

δ

β + δ

)ξ1
]
. (5.20)

Thermalized Independent Random Walkers Th-IRW
The thermalized IRW process ηt is dual to the process defined in (5.11), with duality func-
tion (4.7), then the stationary duality moment function is

GIRW
th (ξ) = 〈

DIRW(η, ξ)
〉 =

(
α

γ

)ξ0
(

δ

β

)ξ2

M(ξ1), (5.21)

where M(ξ1) is the ξ -th factorial moment with respect to the stationary measure η1 as above.
To find M(ξ1) we impose
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0 = LIRW
th,DualG(ξ) = G(ξ0 + ξ1,0, ξ2) − 2G(ξ0, ξ1, ξ2) + G(ξ0,0, ξ1 + ξ2)

=
(

α

γ

)ξ0
(

δ

β

)ξ2

·
{(

α

γ

)ξ1

− 2M(ξ1) +
(

δ

β

)ξ1
}
.

This gives

M(ξ1) = 1

2

[(
α

γ

)ξ1

+
(

δ

β

)ξ1
]
. (5.22)

Thermalized Brownian Energy Process Th-BEP(2k)

The thermalized Brownian energy process zt is dual to the process defined in (5.14), with
duality function (4.9), then the stationary duality moment function is

GBEP
th (ξ) = 〈

DBEP(η, ξ)
〉 = (2Ta)

ξ0
(2k)

(2k + ξ1)
(2Tb)

ξ2M(ξ1) (5.23)

where M(ξ1) is now the ξ1-th moment with respect to the stationary measure of z1:

M(ξ1) = 〈
z
ξ1
1

〉
. (5.24)

In order to find M(ξ1), from Corollary 4.7 we impose

0 = LBEP
th,DualG(ξ) = G(ξ0 + ξ1,0, ξ2) − 2G(ξ0, ξ1, ξ2) + G(ξ0,0, ξ1 + ξ2)

= (2Ta)
ξ0(2Tb)

ξ2 ·
{
(2Ta)

ξ1 − 2M(ξ1)
(2k)

(2k + ξ1)
+ (2Tb)

ξ1

}

This yields

M(ξ1) = (2k + ξ1)

2(2k)
· [(2Ta)

ξ1 + (2Tb)
ξ1

]
(5.25)

Remark 5.3 For k = 1/2 the M(ξ1) above becomes

M(ξ1) = ξ1!
2

· [(2Ta)
ξ1 + (2Tb)

ξ1
]
. (5.26)

The knowledge of all the moments fully describes the stationary measure of the KMP pro-
cess with 1 particle. A similar result was obtained in [6]. In that paper an explicit form of
the stationary measure for 1 particle connected to two reservoirs is given, however for a
process which is slightly different that the original KMP process. The difference lies at the
boundaries thermalization mechanism: in the KMP model the first and last sites are directly
thermalized by the reservoirs, in [6] the first and last sites share uniformly their energies
with thermalized reservoirs.

6 Correlations in the Stationary State

For some of our processes, such as for the SEP(1) model [34], the BEP(1/2) model [20], the
KMP model [6], the covariances have been proven to be bilinear. For the boundary driven
SEP(1), from the exact solution of the microscopic stationary state (see e.g. [11, 13, 15]),
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we know even more. Indeed for this process all the correlations 〈ηi1 . . . ηin〉 in the stationary
state are multilinear in the variables i1, . . . , in, and can be explicitely computed through a
recursive argument on n and L by a matrix method.

The algebraic similarity of the generators for our whole class of models, that includes
the SEP(1), leads us to expect multilinear correlation functions. This turns out to be false in
general, as we will see in this section. For instance bilinearity of the covariances holds only
for a certain choice of the boundary parameters for the SEP(2j) and for the SIP(2k) and
only in the case k = 1/4 for the BEP. From Proposition 4.3, multilinearity of the correlation
functions is in turn implied by multilinearity of the absorption probabilities of the dual
walkers.

In this section we compute the two points correlations w.r. to the stationary measure, for
a suitable choice of the parameters. We do this by direct computation, i.e. for the particle
models we require that the generator of the process vanishes on the functions f (η) = ηiη�.
This yields a linear system in the variables Xi,� := 〈ηiη�〉, i ≤ �. Analogous computations,
with ηi replaced by zi , are performed for the BEP model.

6.1 Covariances

The correlations in the stationary state, i.e. the expectations Xi,� = 〈ηiη�〉 with 1 ≤ i ≤
� ≤ L, satisfy a system of L(L + 1)/2 equations. The equations are quite complicated (we
include them in the Appendix) and then hard to solve directly. What we found is that, for a
generic choice of the boundary parameters, for none of our processes there exists a bilinear
function satisfying them. In other words, the ansatz

Xi,� = Ai� + Bi + C� + D for i < � and Xi,i = Ei2 + Fi + G (6.1)

does not produce a solution for the systems in (8.1) and (8.2) (since the number of indepen-
dent equations that the coefficients in (6.1) should satisfy is larger than 7). But there exist
some conditions on α,β, γ, δ producing an effective simplification of the systems (8.1). Un-
der this conditions the correlations for the SIP(2k) and for the SEP(2j) are bilinear and then
explicitly computable through the ansatz (6.1). In what follows we provide such explicit bi-
linear forms. In order to verify their validity one can simply put the generic forms (6.1) in
the systems (8.1), find the equations that must be satisfied by the 7 coefficients and solve
them.

Finally, at the end of the paragraph, we will see by duality that one needs to fix k = 1/4
in order to have bilinear correlations for the BEP.

We denote by 〈ηiη�〉c the covariances (truncated correlations) in the stationary state of
the particle models, namely 〈ηiη�〉c := 〈ηiη�〉 − 〈ηi〉〈η�〉. Replacing ηi with zi one defines
the covariances of the BEP model.

Inclusion Walkers SIP(2k)

If the parameters satisfy the condition

γ = 2k + α and β = 2k + δ, (6.2)

i.e.

ρa = 2k
α

γ − α
= α and ρb = 2k

δ

δ − β
= δ, (6.3)
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one has

〈ηiη�〉c = i(L + 1 − �)

(L + 1)2(2k(L + 1) + 1)
(ρa − ρb)

2 for i < �, (6.4)

whereas 〈η2
i 〉 is a quadratic function of i. Notice that, under this same choice of parameters,

the expression for the averages is simplified to

〈ηi〉 = ρa + (ρb − ρa)
i

L + 1
. (6.5)

Exclusion Walkers SEP(2j)

Under the choice of the parameters

γ = 2j − α and β = 2j − δ, (6.6)

i.e.

ρa = 2j
α

α + γ
= α and ρb = 2j

δ

β + δ
= δ, (6.7)

the two points correlations are bilinear and they are given by

〈ηiη�〉c = − i(L + 1 − �)

(L + 1)2(2j (L + 1) − 1)
(ρa − ρb)

2 for i < �, (6.8)

the variances are quadratic and the average profile becomes

〈ηi〉 = ρa + (ρb − ρa)
i

L + 1
. (6.9)

Brownian Energy Process BEP(1/2)

In [20] it was studied the BEP model for k = 1/4 and it was found that the two points
correlations are bilinear. For i < � they are given by:

〈ziz�〉c = 2i(L + 1 − �)

(L + 3)(L + 1)2
(θb − θa)

2. (6.10)

In this case one has the neat linear profile

〈zi〉 = θa + (θb − θa)
i

L + 1
. (6.11)

The result in (6.10) can be obtained from (6.4) and duality. Indeed, comparing (4.2)
and (4.8), one notices that the dual processes of BEP(2k) and SIP(2k) with γ − α = 2k and
β − δ = 2k do coincide if and only if k = 1/4. Under this choice, when the dual process is
initialized from the configuration ξ̄ having one particle at site i and one particle at site �,
(4.3) becomes

DSIP(η, ξ̄ ) = (2α)ξ0 4ηiη�(2δ)ξL+1 (6.12)
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and (4.9) becomes

DBEP(z, ξ̄ ) = (2Ta)
ξ0 4ziz�(2Tb)

ξL+1 . (6.13)

Therefore, with this choice of parameters and initial conditions, the duality functions are
the same if one identifies Ta = α = ρa and Tb = δ = ρb and the result (6.10) immediately
follows from (6.4).

We can summarize the situation as follows. The covariances are bilinear at least in the
following cases:

(a) SEP(1), (j = 1/2) and generic α,β, γ, δ.
(b) SEP(2j) for j ∈ {1,3/2,2,5/2, . . .} and γ + α = 2j and β + δ = 2j .
(c) SIP(2k) for k > 0 and γ − α = 2k and β − δ = 2k.
(d) BEP( 1

2 ), (k = 1/4) and generic Ta,Tb .

We remark that the conditions (b), (c), (d) are those giving the neat average profile of (6.5),
(6.9) and (6.11), i.e. those yielding exactly the densities ρa and ρb (resp. the temperatures Ta

and Tb) in the proximity of the reservoirs (i.e. for i = 0 and i = L + 1).
The following further properties of the covariances are observed by solving the equations

in the Appendix on Mathematica. As the parameters are varied, the covariances are:

(i) proportional to (ρb − ρa)
2 or (Tb − Ta)

2.
(ii) positive for the inclusion walkers and for the Brownian energy process, negative for the

exclusion walkers: this is related to the attractive (bosonic) interaction of the first two
system, compared to the repulsive (fermionic) interaction of exclusion. For the proof of
this property see [22].

6.2 Results for the n-Points Correlations

The multilinearity of the correlations seems to be, thus, prerogative of some special cases.
One may wonder about the multilinearity for the 3-points correlations, in the same range
of parameters leading to bilinearity for the 2-points correlations (i.e. in the cases (b), (c),
(d) above). The explicit solution of the n-points correlations problem becomes harder and
harder as n increases and even the case n = 3 is quite difficult to solve exactly.

In this paragraph we provide the results of some numerical computations. We solved
numerically the master equation for the invariant distribution of SEP(2j) in the cases L = 6
and j = 1/2,1,3/2,2 and computed the correlations 〈ηiηj 〉c and 〈ηiηjη�〉c . If 〈η1ηi〉c were
multilinear, the differences di = 〈η1ηi+1〉c − 〈η1ηi〉c , i = 2,3,4,5 would be constant. The
simulations seem to confirm the bilinearity of the covariances in the cases (a) and (b) above,
and the loss of bilinearity in the other cases. In Fig. 4 (top panel) the values of di are reported
for the case α = 1, γ = 1, β = 1/2, δ = 3/2: they are clearly constant for j = 1/2 (case (a)
above) and for j = 1 (case (b) above) but not for j = 3/2 and j = 2.

Concerning the 3-points correlations, the simulations show that the multilinearity is lost
even in the cases where it holds for n = 2 (i.e. in the case (b)), while it is conserved for the
SEP(1) with at most one particle per site. Figure 4 gives evidence for this phenomenon by
showing that ei = 〈η1η2ηi+1〉c −〈η1η2ηi〉c , i = 3,4,5 are constant only for j = 1/2 (case (a)
above).

The deviation from multilinearity is in any case very small and, very likely, it is decreas-
ing as L increases.
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Fig. 4 Test for the multilinearity of the connected correlations 〈η1ηi 〉c , 〈η1η2ηi 〉c for SEP(2j), j = 1/2 (),
j = 1 (�), j = 3/2 (∗), j = 2 (◦) with α = 1, γ = 1, β = 1/2, δ = 3/2 and L = 6. In the top panel
di = 〈η1ηi+1〉c −〈η1ηi 〉c , i = 2,3,4,5; in the bottom panel ei = 〈η1η2ηi+1〉c −〈η1η2ηi 〉c , i = 3,4,5. Non
constant di or ei imply violation of the multilinearity

7 Macroscopic Fluctuation Theory

The aim of this section is to show that the large scale properties of the models studied so far
can be obtained by a suitable adaptation of the macroscopic fluctuation theory of [2, 4–6].
In particular we verify that the macroscopic limit of the exact solutions for the covariances
found in Sect. 6 does match the prediction of the macroscopic fluctuation theory (see [12, 14]
for the exclusion process with at most one particle per site).

7.1 Macroscopic Fluctuation Theory and Density Large Deviations Functional

We briefly review the approach of the macroscopic fluctuation theory. Let us consider a one
dimensional diffusive systems of linear size L in contact with two reservoirs at densities
ρa and ρb . The macroscopic fluctuation theory describes the behavior of the system in the
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hydrodynamic limit in terms of the two quantities D(ρ) and σ(ρ), called diffusivity and
mobility, defined by

D(ρ) := lim
δρ→0

lim
L→∞

L

δρ
· 〈Qi,i+1(t)〉L,ρ,ρ+δρ

t
, (7.1)

σ(ρ) := lim
L→∞

〈Q2
i,i+1(t)〉L,ρ,ρ

t
, (7.2)

where

Qi,i+1(t) =
∫ t

0
ji,i+1

(
t ′
)
dt ′. (7.3)

In the above equation Qi,i+1(t) is the total flow through the bond i, i + 1 in the time interval
[0, t], while ji,i+1(t

′) is the instantaneous flow at time t ′. The bracket 〈·〉L,ρa,ρb
denotes the

expectation with respect to the stationary state for the system of size L whose density on the
left (resp. right) boundary is ρa (resp. ρb).

From the macroscopic fluctuation theory [5], we know that the probability of observing
a time dependent density and current profiles ρ(x, τ ) and j (x, τ ) in a macroscopic time
interval [τ1, τ2], under the diffusive scaling x = i/L and τ = t/L2, is ∼ exp(−LA), where
A is the action functional given by:

A
({

ρ(x, s), j (x, s)
}; τ1, τ2

) =
∫ τ2

τ1

ds

∫ 1

0
dx

[j (x, s) + D(ρ(x, s))
∂ρ(x,s)

∂x
]2

2σ(ρ(x, s))
. (7.4)

Then the probability of observing a density profile ρ(x) in the stationary state is P(ρ(x)) ∼
e−LF (ρ(x)) where F is the large deviation functional:

F
(
ρ(x)

) = min
{ρ(x,s),j (x,s)}

A
({

ρ(x, s), j (x, s)
};−∞, τ

)
(7.5)

with the minimum in (7.5) taken over all the trajectories conditioned to the extreme values
ρ(x,−∞) = ρ∗(x), ρ∗(x) the typical profile, and ρ(x, τ ) = ρ(x). Density and current must
also satisfy the continuity equation

∂ρ/∂τ = −∂j/∂x. (7.6)

The density correlation functions in the stationary state can be obtained from the large
deviation functional F through the derivatives of its Legendre transform G (see [10]):

G
({

α(x)
}) = sup

{ρ(x)}

{∫ 1

0
α(x)ρ(x)dx − F

({
ρ(x)

})
}
. (7.7)
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Then, for large L we have

〈
ρ(x)

〉 = ∂G
∂α(x)

|α(x)=0

〈
ρ(x)ρ(y)

〉
c
= 1

L

∂2 G
∂α(x)∂α(y)

|α(x)=0

...
...

〈
ρ(x1)ρ(x2) . . . ρ(xk)

〉
c
= 1

Lk−1

∂k G
∂α(x1) . . . ∂α(xk)

|α(x)=0.

(7.8)

7.2 From SEP(1) to Models with Constant Diffusivity and Quadratic Mobility

In this section we use a scaling argument to deduce the density large deviations functional
of a model with constant diffusivity and quadratic mobility from that of the SEP(1) (cfr.
also [5]). We start by recalling that for the SEP(1) one has

D(ρ) = 1, σ (ρ) = 2ρ(1 − ρ), (7.9)

and therefore

ASEP(1)

({
ρ(x, s), j (x, s)

}; τ1, τ2
) =

∫ τ2

τ1

ds

∫ 1

0
dx

[j (x, s) + ∂ρ(x,s)

∂x
]2

4ρ(x, s)(1 − ρ(x, s))
(7.10)

then, from (7.5), one finds that the density large deviation functional is (see [2, 14])

FSEP(1)

({
ρ(x)

})

= sup
F(x)

∫ 1

0
dx

[
ρ(x) log

ρ(x)

F (x)
+ (

1 − ρ(x)
)

log

(
1 − ρ(x)

1 − F(x)

)
+ log

F ′(x)

ρa − ρb

]
(7.11)

where the supremum is taken over the monotone functions with boundary values F(0) = ρa ,
F(1) = ρb . The supremum is attained for F = Fρ , monotone solution of the following dif-
ferential problem:

ρ(x) = F + F(1 − F)F ′′

(F ′)2
with F(0) = ρa and F(1) = ρb. (7.12)

The connected correlation functions can be obtained by computing the derivatives of the
functional GSEP(1) as in (7.7). One finds that the lowest order correlations are, for large L,

〈
ρ(x)

〉SEP(1) = ρa(1 − x) + ρbx

〈
ρ(x)ρ(y)

〉SEP(1)

c
= − (ρa − ρb)

2

L
x(1 − y) (7.13)

〈
ρ(x)ρ(y)ρ(z)

〉SEP(1)

c
= −2

(ρa − ρb)
3

L2
x(1 − 2y)(1 − z),

for 0 < x < y < z.
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Let us now consider the generalization of (7.9) obtained by assuming that the diffusivity
is constant and the mobility is a quadratic function parametrized as

D(ρ) = C, σ(ρ) = 2Aρ(B − ρ), (7.14)

where A, B and C are given numbers. The action functional of this system

A
({

ρ(x, s), j (x, s)
}; τ1, τ2

) =
∫ τ2

τ1

ds

∫ 1

0
dx

[j (x, s) + C
∂ρ(x,s)

∂x
]2

4Aρ(x, s)(B − ρ(x, s))
(7.15)

is related to ASEP(1) through the following change of variables (cfr. [12])

A
({

ρ(x, τ ), j (x, τ )
}; τ1, τ2

) = C

A
ASEP(1)

({
ρ̃(x, s), j̃ (x, s)

};Cτ1,Cτ2

)
, (7.16)

with

ρ̃(x, s) := 1

B
ρ
(
x,C−1s

)
and j̃ (x, s) := 1

B
Cj

(
x,C−1s

)
(7.17)

The scaling (7.16) has been chosen among all the possible scalings connecting A and ASEP(1)

as it is the only one preserving the conservation law (7.6) between ρ̃(x, s) and j̃ (x, s).
Then, by (7.16) and (7.5) it follows that the large deviation functional for the system

characterized by (7.14) is given by

F
({

ρ(x)
}) = C

A
FSEP(1)

({
B−1ρ(x)

})
, (7.18)

and thus

F
({

ρ(x)
})

= C

AB
sup
F̃ (x)

∫ 1

0
dx

[
ρ(x) log

ρ(x)

F̃ (x)
+ (

B − ρ(x)
)

log

(
B − ρ(x)

B − F̃ (x)

)
+ B log

F̃ ′(x)

ρ̃a − ρ̃b

]
,

(7.19)

with

ρ̃a = Bρa, ρ̃b = Bρb and F̃ (x) = BF(x), (7.20)

where F(x) is the monotone function satisfying (7.12). Equivalently F̃ is the monotone
solution of the differential problem

ρ(x) = F̃ + F̃ (B − F̃ )F̃ ′′

(F̃ ′)2
with F̃ (0) = ρ̃a and F̃ (1) = ρ̃b. (7.21)

Using (7.7) and (7.18) we find
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G
({

α(x)
}) = sup

{ρ̃(x)}

{∫ 1

0
α(x)ρ̃(x)dx − F

({
ρ̃(x)

})}

= sup
{ρ̃(x)}

{∫ 1

0
α(x)ρ̃(x)dx − C

A
FSEP(1)

({
B−1ρ̃(x)

})}

= C

A
sup
{ρ(x)}

{∫ 1

0

AB

C
α(x)ρ(x)dx − FSEP(1)

({
ρ(x)

})
}

= C

A
GSEP(1)

({
ABC−1α(x)

})
(7.22)

and, from (7.8) and (7.13), we have

〈
ρ(x)

〉 = ∂G
∂α(x)

|α(x)=0 = B
〈
ρ(x)

〉SEP(1) = ρ̃a(1 − x) + ρ̃bx

〈
ρ(x)ρ(y)

〉
c
= 1

L

∂2 G
∂α(x)∂α(y)

|α(x)=0

= AB2

C

〈
ρ(x)ρ(y)

〉SEP(1)

c
= −

(
A

C

)
(ρ̃a − ρ̃b)

2

L
x(1 − y) (7.23)

〈
ρ(x)ρ(y)ρ(z)

〉
c
= 1

L2

∂3 G
∂α(x)∂α(y)∂α(z)

|α(x)=0 = A2B3

C2

〈
ρ(x)ρ(y)ρ(z)

〉SEP(1)

c

= −2

(
A

C

)2
(ρ̃a − ρ̃b)

3

L2
x(1 − 2y)(1 − z)

and, more generally, one gets a factor Bn(A/C)n−1 for the n-point connected correlation
function.

7.3 Macroscopic Behavior of the Correlations

With suitable choices of the parameters A,B,C we can generate the large scale limits of
models that we have considered in the previous sections.

Inclusion Walkers SIP(2k)

For interacting particle systems, the flux across bond (i, i + 1) in a time interval [0, t] is
given by the number of particles which jump from i to i + 1 minus the number of particles
which jump from i + 1 to i. i.e.

Qi,i+1(t) =
∫ t

0
dt ′

[
ηi+1

(
t ′
)(

2k + ηi

(
t ′
)) − ηi

(
t ′
)(

2k + ηi+1
(
t ′
))]

= 2k

∫ t

0
dt ′

[
ηi+1

(
t ′
) − ηi

(
t ′
)]

. (7.24)

As a consequence, the expectation of the flow Qi,i+1(t) in the stationary state with boundary
densities ρa,ρb is given by

〈
Qi,i+1(t)

〉
L,ρa,ρb

= 2k · t · 〈ηi+1 − ηi〉L,ρa,ρb
. (7.25)

It follows, from (7.1) and (4.24), that D(ρ) = 2k.
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From Sect. 3.2 we know that the SIP(2k) equilibrium stationary measure at density ρ is
the product of NegativeBinomial (2k,ρ/(ρ + 2k)) with a variance Var(ηi) = ρ(ρ+2k)

2k
.

Using (7.24)

〈
Q2

i,i+1(t)
〉
L,ρ,ρ

= (2k)2
∫ t

0
dt ′

∫ t

0
dt ′′

〈[
ηi+1

(
t ′
) − ηi

(
t ′
)][

ηi+1
(
t ′′

) − ηi

(
t ′′

)]〉
L,ρ,ρ

. (7.26)

Now we have

lim
t→∞

1

t

∫ t

0
dt ′

∫ t

0
dt ′′

〈(
ηi+1

(
t ′
) − ηi

(
t ′
))(

ηi+1

(
t ′′

) − ηi

(
t ′′

))〉
L,ρ,ρ

= lim
t→∞

2

t

∫ t

0
dt ′

∫ t

t ′
dt ′′

〈(
ηi+1

(
t ′
) − ηi

(
t ′
))(

ηi+1

(
t ′′

) − ηi

(
t ′′

))〉
L,ρ,ρ

= 2
∫ ∞

0
dt

〈(
ηi+1(0) − ηi(0)

)(
ηi+1(t) − ηi(t)

)〉
L,ρ,ρ

= 2
∫ ∞

0
dt ·

∑

η

{
(ηi+1 − ηi)Eη

[
ηi+1(t) − ηi(t)

]
μL,ρ,ρ(η)

}
(7.27)

where, in the last display, μL,ρ,ρ denotes the stationary equilibrium measure. By duality,

Eη

[
ηi+1(t) − ηi(t)

] = 2k
{
Eη

[
DSIP

0

(
η(t), ξ i+1

)] − Eη

[
DSIP

0

(
η(t), ξ i

)]}

= 2k
{
Eξ i+1

[
DSIP

0

(
η, ξ(t)

)] − Eξ i

[
DSIP

0

(
η, ξ(t)

)]}
(7.28)

where ξ i is the L-dimensional configuration (ξ i
1, . . . , ξ

i
L) with ξ i

j = δi,j and DSIP
0 is the

duality function defined in (4.10). Let pt(i, j) be the transition probability from the site i

to the site j in the time interval [0, t] of a random walker on the set {1, . . . ,L} moving at
rate 2k, then

Eξ i

[
DSIP

0

(
η, ξ(t)

)] = 1

2k

∑

j

ηj · pt(i, j). (7.29)

As a consequence (7.27) is equal to

2
L∑

j=1

〈
(ηi+1 − ηi)ηj

〉
L,ρ,ρ

·
∫ ∞

0
dt

(
pt(i + 1, j) − pt(i, j)

)

= 4
〈
(ηi+1 − ηi)ηi+1

〉
L,ρ,ρ

·
∫ ∞

0
dt

(
pt(i + 1, i + 1) − pt(i, i + 1)

)

= 4 Var(ηi) ·
∫ ∞

0
dt

(
pt(0,0) − pt(0,1)

)
(7.30)

where the two identities above follow from the product character of the equilibrium measure,
and from the fact that pt(i, j) depends only on the distance |i − j |. Now the random walk
pt is moving at rate 2k, then, from the master equation we have

2
(
pt(0,0) − pt(0,1)

) = −(
pt(0,1) + pt(0,−1) − 2pt(0,0)

) = − 1

2k
· d

dt
pt (0,0). (7.31)
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Then (7.30) is given by

−2 Var(ηi) ·
∫ ∞

0

1

2k

d

d
tpt (0,0) · dt = 2

1

(2k)2
· ρ(ρ + 2k) · (1 − p∞(0,0)

)
. (7.32)

Since p∞(0,0) vanishes as L → ∞, we finally obtain, using (7.2) σ(ρ) = 2ρ(ρ + 2k).
Summarizing, for the inclusion process SIP(2k), we have

D(ρ) = 2k, σ (ρ) = 2ρ(ρ + 2k), (7.33)

which implies A = −1, B = −2k and C = 2k. This choice produces (see (7.23)) the follow-
ing correlation functions:

〈
ρ(x)

〉 = ρa(1 − x) + ρbx

〈
ρ(x)ρ(y)

〉
c
= 1

2k

(ρa − ρb)
2

L
x(1 − y)

〈
ρ(x)ρ(y)ρ(z)

〉
c
= −

(
1

2k

)2 2(ρa − ρb)
3

L2
x(1 − 2y)(1 − z), (7.34)

where ρa and ρb are the SIP(2k) boundary densities (ρa = 2kα/(γ − α) and ρb = 2kδ/

(β −δ) in terms of our boundary parameters). Notice that the covariances in (7.34) do indeed
agree with the macroscopic limit of the microscopic covariances that have been found in
Sect. 6.1 (see (6.4)) for a particular choice of the parameters. Similarly, one gets for the
density large deviation functional:

F
({

ρ(x)
}) =

∫ 1

0
dx

[
ρ(x) log

ρ(x)

F (x)
+ (

2k + ρ(x)
)

log

(
2k + ρ(x)

2k + F(x)

)
+ 2k log

F ′(x)

ρa − ρb

]
,

(7.35)

where F = Fρ is the monotone solution of

ρ(x) = F + F(2k + F)F ′′

(F ′)2
with F(0) = ρa and F(1) = ρb. (7.36)

Exclusion Walkers SEP(2j)

The flux is now given by

Qi,i+1(t) =
∫ t

0
dt ′

[
ηi+1

(
t ′
)(

2j − ηi

(
t ′
)) − ηi

(
t ′
)(

2j − ηi+1

(
t ′
))]

= 2j

∫ t

0
dt ′

[
ηi+1

(
t ′
) − ηi

(
t ′
)]

. (7.37)

As a consequence, the expectation of Qi,i+1(t) with respect to the steady state measure reads

〈
Qi,i+1(t)

〉
L,ρa,ρb

= 2j · t · 〈ηi+1 − ηi〉L,ρa,ρb
. (7.38)

Thus, from (7.1) and (4.24), we get D(ρ) = 2j . From Sect. 3.2 we know that the SEP(2j)

stationary measure at density ρ is the product of Binomial (2j,ρ/2j) with a variance
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Var(ηi) = ρ(2j−ρ)

2j
. Using a similar computation as for the inclusion walkers then, one can

compute also the mobility, obtaining:

D(ρ) = 2j, σ (ρ) = 2ρ(2j − ρ). (7.39)

Therefore we have A = 1, B = 2j , C = 2j and, from (7.23), we have the following
correlation functions:

〈
ρ(x)

〉 = ρa(1 − x) + ρbx

〈
ρ(x)ρ(y)

〉
c
= − 1

2j

(ρa − ρb)
2

L
x(1 − y) (7.40)

〈
ρ(x)ρ(y)ρ(z)

〉
c
= −

(
1

2j

)2 2(ρa − ρb)
3

L2
x(1 − 2y)(1 − z)

where ρa and ρb are the SEP(2j) boundary densities (ρa = 2jα/(α + γ ) and ρb = 2jδ/

(β + δ) in terms of our boundary parameters). The second line in (7.40) does agree with the
microscopic SEP-covariances that have been found in Sect. 6.1 (see (6.8)) for a particular
choice of the parameters. Moreover the density large deviation functional is given by

F
({

ρ(x)
}) =

∫ 1

0
dx

[
ρ(x) log

ρ(x)

F (x)
+ (

2j − ρ(x)
)

log

(
2j − ρ(x)

2j − F(x)

)
+ 2j log

F ′(x)

ρa − ρb

]

(7.41)

where F = Fρ is the monotone function satisfying

ρ(x) = F + F(2j − F)F ′′

(F ′)2
with F(0) = ρa and F(1) = ρb. (7.42)

Independent Random Walkers IRW
As observed in [12], the independent random walkers model, for which

D(ρ) = 1, σ (ρ) = 2ρ (7.43)

is obtained in the limit as A = B−1 → 0 and C = 1. Under this choice, see (7.23), all the
correlation functions vanish (this obviously reflects the fact that the stationary measure has
a product structure, see Proposition 4.5). As B → ∞, one can see from (7.19) that, due to
the concavity of the logarithm, the derivative F ′(x) is constant. Therefore in this limit the
optimal F(x) is given by

F(x) = (1 − x)ρa + xρb (7.44)

and one get

F
({

ρ(x)
}) =

∫ 1

0
dx

[
ρ(x) log

(
ρ(x)

(1 − x)ρa + xρb

)
− ρ(x) + (1 − x)ρa + xρb

]
. (7.45)
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KMP Model
The expectation of Qi,i+1(t) with respect to the steady state measure μL,Ta,Tb

is now given
by

〈
Qi,i+1(t)

〉
L,Ta,Tb

= t ·
∫ 1

0
dx

〈[
x(zi + zi+1) − zi

] − [
(1 − x)(zi + zi+1) − zi+1

]〉
L,Ta,Tb

= t · 〈zi+1 − zi〉L,Ta,Tb
(7.46)

then, from (7.1) and (4.26), we get D(ρ) = 1. We know that the KMP stationary measure at
temperature T is the product of Exponential(1/T ). By a duality argument we compute
also the mobility and get

D(ρ) = 1, σ (ρ) = 2ρ2. (7.47)

The KMP model can be, then, obtained (see [12]) by taking the unphysical limit B → 0,
A → −1 with C = 1. In this limit the first three connected correlations functions (see 7.23)
are

〈
ρ(x)

〉 = ρa(1 − x) + ρbx

〈
ρ(x)ρ(y)

〉
c
= (ρa − ρb)

2

L
x(1 − y) (7.48)

〈
ρ(x)ρ(y)ρ(z)

〉
c
= −2

(ρa − ρb)
3

L2
x(1 − 2y)(1 − z),

which agree with (2.38) of [6]. Moreover the density large deviation functional that we
obtain

F
({

ρ(x)
}) = − sup

F(x)

∫ 1

0
dx

[
1 − ρ(x)

F (x)
+ log

ρ(x)

F (x)
+ log

F ′(x)

ρa − ρb

]
(7.49)

agrees with the same function computed in [3].
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Appendix: Equations for the two points correlations

We provide the linear systems that must be satisfied by the two points correlation functions
in the steady state, i.e. Xi,� = 〈ηiη�〉 with 1 ≤ i ≤ � ≤ L. In the following, equations (1), (2),
(3) are obtained by letting act the generator on a couple of sites at distance larger or equal
than two, equations (4), (5), (6) are derived from nearest-neighbouring sites, equations (7),
(8), (9) correspond to the diagonal, equation (10) is obtained from the couple (1,L).

Inclusion/Exclusion Walkers: the equations for the inclusion walkers SIP(2k) and for the
exclusion walkers SEP(2j) are similar, with some relevant change of signs in the two cases;
therefore we write them together. With the convention to use upper symbol for inclusion
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and lower symbol for exclusion in ± and ∓ and with the further convention that h = k for
SIP(2k) and h = j for SEP(2j), the equations read

(1) Xi−1,� + Xi+1,� + Xi,�−1 + Xi,�+1 − 4Xi,� = 0 for i + 1 < �, i > 1, � < L

(2) 2h(X2,� + X1,�−1 + X1,�+1) − (6h ∓ α + γ )X1,� + 2hαx� = 0 for � > 2

(3) 2h(Xi,L−1 + Xi+1,L + Xi−1,L) − (6h + β ∓ δ)Xi,L + 2hδxi = 0 for i < L − 1

(4) hXi,i + hXi+1,i+1 + (∓1 − 4h)Xi,i+1 + hXi−1,i+1 + hXi,i+2 − h(xi + xi+1) = 0

for 1 < i < L − 1

(5) 2hX1,1 + 2hX2,2 − (2(3h ± 1) + (∓α + γ ))X1,2 + 2hX1,3 − 2hx1

− 2h(1 − α)x2 = 0

(6) 2hXL,L + 2hXL−1,L−1 − (2(3h ± 1) + (β ∓ δ))XL−1,L + 2hXL−2,L − 2hxL

− 2h(1 − δ)xL−1 = 0

(7) h(xi−1 + 2xi + xi+1) + (2h ± 1)Xi−1,i − 4hXi,i + (2h ± 1)Xi,i+1 = 0

for 1 < i < L

(8) 2(2h + (∓α + γ ))X1,1 − 2(2h ± 1)X1,2 − (2h(2α + 1) + γ ± α)x1 − 2hx2

− 2hα = 0

(9) 2(2h + (β ∓ δ))XL,L − 2(2h ± 1)XL−1,L − (2h(2δ + 1) + β ± δ)xL − 2hxL−1

− 2hδ = 0

(10) − (4h + γ ∓ δ ∓ α + β)X1,L + 2hX2,L + 2hX1,L−1 + 2h(δx1 + αxL) = 0
(8.1)

Brownian Energy Process BEP(2k): the equations for the BEP(2k) read

(1) Xi−1,� + Xi+1,� + Xi,�−1 + Xi,�+1 − 4Xi,� = 0 for i + 1 < �, i > 1, � < L

(2) 4k(X1,�−1 + X1,�+1 + X2,�) − (1 + 12k)X1,� + 4kTa〈z�〉 = 0 for � > 2

(3) 4k(Xi−1,L + Xi+1,L + Xi,L−1) − (12k + 1)Xi,L + 4kTb〈zi〉 = 0 for i < L − 1

(4) 2kXi,i + 2kXi+1,i+1 − 2(4k + 1)Xi,i+1 + 2k(Xi−1,i+1 + Xi,i+2) = 0

for 1 < i < L − 1

(5) 4k(X1,1 + X2,2) − (12k + 5)X1,2 + 4kX1,3 + 4kTa〈z2〉 = 0

(6) 4k(XL,L + XL−1,L−1) − (12k + 5)XL−1,L + 4kXL−2,L + 4kTb〈zL−1〉 = 0

(7) (2k + 1)Xi−1,i + (2k + 1)Xi,i+1 − 4kXi,i = 0 for 1 < i < L

(8) 2(2k + 1)X1,2 − (4k + 1)X1,1 + 2(2k + 1)Ta〈z1〉 = 0

(9) 2(2k + 1)XL−1,L − (4k + 1)XL,L + 2(2k + 1)Tb〈zL〉 = 0

(10) 4kTa〈zL〉 + 4kTb〈z1〉 − 2(1 + 4k)X1,L + 4k(X2,L + X1,L−1) = 0
(8.2)
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