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Abstract The signed loop approach is a beautiful way to rigorously study the two-
dimensional Ising model with no external field. In this paper, we explore the foundations
of the method, including details that have so far been neglected or overlooked in the litera-
ture. We demonstrate how the method can be applied to the Ising model on the square lattice
to derive explicit formal expressions for the free energy density and two-point functions in
terms of sums over loops, valid all the way up to the self-dual point. As a corollary, it follows
that the self-dual point is critical both for the behaviour of the free energy density, and for
the decay of the two-point functions.

Keywords Ising model · Signed loops · Critical point · Free energy density · Two-point
functions

1 Introduction and Main Results

The Ising model [14] was introduced to explain certain properties of ferromagnets, in partic-
ular, the phenomenon of spontaneous magnetization. In 1952, Kac and Ward [15] proposed
a method for approaching the Ising model on Z

2, based on studying configurations of signed
loops. In this self-contained paper, we explore this method in detail and with mathematical
rigour. This leads to new explicit formal expressions for the free energy density and two-
point functions in terms of sums over signed loops, which in turn allow us to rederive several
classical results about the Ising model.
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We consider the Ising model on finite rectangles in Z
2, by which we mean graphs G =

(V ,E) whose vertex sets V consist of all points of Z
2 contained in a rectangle [a, b]× [c, d]

in R
2, and whose edge sets E consist of all unordered pairs {u,v} with u,v ∈ V such that

their L1 distance ‖u − v‖ is 1. For brevity, we will also write uv instead of {u,v} for the edge
between u and v (note that uv = vu). The boundary ∂G of G is the set of those vertices u

in V for which there is a v ∈ Z
2 \ V with ‖u − v‖ = 1.

We associate to G a space of spin configurations ΩG = {−1,+1}V . For σ ∈ ΩG, σv

denotes the spin at v. Sometimes we impose positive boundary conditions, meaning that we
restrict ourselves to the set of configurations

Ω+
G = {σ ∈ ΩG : σu = +1 if u ∈ ∂G}.

In contrast, when we speak of free boundary conditions, we work with the unrestricted set
of spin configurations Ω free

G = ΩG.
The Ising model defines a (Gibbs–Boltzmann) probability distribution on the set of spin

configurations. At inverse temperature β , it is given by

P �
G,β(σ ) = 1

Z�
G,β

∏

uv∈E

eβσuσv , σ ∈ Ω�
G , (1.1)

where � ∈ {free,+} stands for the imposed boundary condition, and Z�
G,β is the partition

function of the model, defined as

Z�
G,β =

∑

σ∈Ω�

∏

uv∈E

eβσuσv . (1.2)

To simplify the notation, and following the physics literature, we will write

〈 · 〉�G,β = E�
G,β( · ) (1.3)

for expectations with respect to P �
G,β . Important functions are the Helmholtz free energy

F�
G,β = −β−1 lnZ�

G,β

and the free energy density f (β), obtained as the infinite-volume limit

lim
G→Z2

1

|V |F
�
G,β = lim

G→Z2
− 1

β|V | lnZ�
G,β =: f (β).

It is well known that this limit exists, and also not difficult to show that the limit is the same
for all boundary conditions, see for example [26, Sect. II.3] (as we shall see, existence of the
limit actually also follows from the signed loop approach for non-critical β). The formalism
of statistical mechanics predicts that phase transitions coincide with discontinuities or other
singularities in derivatives of the free energy density.

In the case of the Ising model on Z
2, the classical arguments of Peierls [23] and Fisher [9]

(see also [6, 11, 12]) established that it does undergo a phase transition, which can be
characterized in terms of a change in behaviour of the infinite-volume limits 〈σuσv〉�

Z2,β

of the two-point functions 〈σuσv〉�G,β . Peierls’ argument implies that as ‖u − v‖ → ∞,
these infinite-volume two-point functions stay bounded away from 0 for large enough β .
In contrast, Fisher’s argument yields exponential decay to 0 of these two-point functions as
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‖u − v‖ → ∞, for sufficiently small β . However, there is a gap between the two ranges of β

for which these arguments work, so they are not strong enough to conclude that the phase
transition is sharp. As we shall see, the signed loop method studied here does lead to a proof
of this fact.

To be more specific, a signed loop is essentially a closed, non-backtracking walk, with a
positive or negative weight assigned to it; see Sect. 1.1 for a precise definition. In this paper,
we demonstrate how the free energy and two-point functions can be expressed as (infinite)
sums over signed loops in Z

2, and moreover, how the rate of convergence of these sums
can be controlled. For instance, Theorem 1.2 below expresses the free energy density f (β)

as an explicit formal sum of the weights of all loops for which the origin is the “smallest”
vertex visited (in lexicographic order). Likewise, Theorems 1.4 and 1.6 express the two-
point functions 〈σuσv〉�

Z2,β
as infinite sums over explicitly defined classes of signed loops.

In all cases, we first derive the corresponding loop expressions for finite rectangles G.
These were also obtained simultaneously and independently by Helmuth [13] via the theory
of heaps of pieces, but we in addition give explicit bounds on the rates of convergence to take
the infinite-volume limit. As corollaries, without requiring any external results, we rederive
several classical results about the Ising model, which can be summarized as follows:

Corollary 1.1 (Sharpness of phase transition) The free energy density f (β) is analytic for
all β > 0 except at the self-dual point β = βc given by

exp(−2βc) = tanhβc = √
2 − 1. (1.4)

Moreover, as ‖u − v‖ → ∞, 〈σuσv〉free
Z2,β

decays to 0 exponentially fast when β ∈ (0, βc),

while 〈σuσv〉+
Z2,β

stays bounded away from 0 when β ∈ (βc,∞).

Of course, various other approaches to the Ising model have been developed and explored
in the past. Most famous are the original algebraic methods of Onsager and Kaufman [17,
18, 21], used by them to compute the free energy and study correlations (see also [22]). We
also mention the approach of Aizenman, Barsky and Fernández [1], who prove sharpness of
the phase transition using differential inequalities (this approach actually applies to a large
class of ferromagnetic spin models in any dimension). More recently, in [2], the fermionic
observables, originally introduced by Smirnov [27] to study the Ising model at criticality,
have been used in an interesting way for yet another derivation of the value of the critical
point.

The method considered here (based on the proposition of Kac and Ward) is combinatorial
in nature, and as such often referred to as the combinatorial method, but there are other ap-
proaches which include combinatorial aspects, such as the dimer approach exposed in [20].
We therefore prefer to refer to the method considered here as the signed loop approach.

Over the years, a number of articles developing the signed loop approach have appeared
in the physics literature, of which the most relevant are [3, 5, 10, 24, 25, 28]. However, from
a mathematical point of view, these papers leave a lot to be desired in terms of rigour and
technical details. Moreover, doubts have been cast on the very validity of the whole method
to begin with, not only in the years following the Kac–Ward paper, but still recently by
Dolbilin et al. [7], who rightly pointed out an error in Vdovichenko’s article [28] (reproduced
in [19, §151]) on the signed loop method.

With the present paper, we aim to remove these doubts and deficiencies once and for
all. To this end, we provide complete, rigorous and detailed proofs of the combinatorial
identities central to the signed loop method, all in a geometric manner. Our proofs of these
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identities essentially follow the same steps as Vdovichenko’s paper. A key feature of this
particular approach is that each configuration of s loops is assigned a signed weight which
is simply the product of the signed weights of the individual loops, divided by s!. This
factorization of weights is a crucial aspect of the method, which we believe could well be
the key to further results beyond this paper. We show here that the desired factorization can
be made to work if one defines the weight of a loop in the right way. Specifically, the error
of Vdovichenko was that she did not include a loop’s multiplicity into its weight, as we do
in equation (1.7) below. In addition to clarifying the signed loop approach and correcting
Vdovichenko’s error in this way, we also apply the results to the Ising model on Z

2 in ways
not considered before to derive both new and classical results about the Ising model, as was
already mentioned above.

The paper is organized as follows. A precise definition of signed loops and the formu-
lation of our main results follows in Sects. 1.1–1.4, with our results for the Ising model in
Sect. 1.2, and our key combinatorial identities in Sect. 1.4. A brief discussion of the history
and status of the combinatorial identities is included at the end of Sect. 1.4. The proofs of
these identities are given in Sect. 2, and the proofs of our results about the Ising model are
in Sect. 3.

1.1 Signed Loops

Although our applications are in Z
2, it will be both necessary for this paper and of interest

for future applications to study signed loops on a more general class of graphs. Our starting
point is a (finite or infinite) graph G = (V ,E) embedded in the plane, with vertex set V and
edge set E. We identify G with its embedding. We assume G does not have multiple edges,
but we do not assume that G is planar. For convenience (although this is not strictly neces-
sary), we require that edges are straight line segments in the embedding, and that except for
the vertices at the two endpoints, no other vertices lie on an edge. As before, we write uv

or vu for the (undirected) edge between u and v.
A path of n steps in G is a sequence (v0, v1, . . . , vn−1) ∈ V n such that vivi+1 ∈ E for

i = 0,1, . . . , n − 2, and vi+2 	= vi for i = 0,1, . . . , n − 3 (paths are non-backtracking). If all
rotations of the sequence (v0, . . . , vn−1) are also paths (so that in particular, v0vn−1 ∈ E),
then we call the path closed. We now order the vertices of G lexicographically by their
coordinates in the plane, and define a loop as a closed path (v0, . . . , vn−1) which is the lexi-
cographically smallest element in the collection consisting of all rotations of (v0, . . . , vn−1)

and all rotations of the reverse sequence (vn−1, . . . , v0) (note that these are all in a way
closed paths traversing the same loop).

If � = (v0, . . . , vn−1) is a loop or a closed path, we shall make the identification vj ≡
vj mod n for all j ∈ Z. We say that a loop � is edge-disjoint if vivi+1 	= vjvj+1 for all i, j ∈
{0, . . . , n − 1} with i 	= j . If � is not edge-disjoint, it might be the case that the sequence
(v0, . . . , vn−1) is periodic, in which case we call � a periodic loop. The multiplicity of �,
denoted by m(�), is its number of steps divided by its smallest period. In particular, the
multiplicity of every nonperiodic loop is 1.

Given two distinct edges uv and vw, we define ∠(v −u,w −v) ∈ (−π,π) as the turning
angle in the plane from the vector v − u to w − v, see Fig. 1 (left). The winding angle α(�)

of a loop � = (v0, . . . , vn−1) is simply the sum of all turning angles along the loop, that is,

α(�) =
n−1∑

i=0

∠(vi+1 − vi, vi+2 − vi+1). (1.5)
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Fig. 1 The turning angle from the vector v − u to the vector w − v (left). The loop (v1, v2, v3, v4, v5, v6)

on the right has sign −1, the loop (v1, v2, v3, v5, v4, v6) has sign +1

We now define the sign sgn(�) of � as

sgn(�) = − exp

(
i

2
α(�)

)
. (1.6)

Observe that the winding angle of every loop is a multiple of 2π (here we use the fact that
the edges of G are straight line segments), hence the sign of a loop is either +1 or −1.

To define the signed weight of a loop, we require a vector x = (xuv)uv∈E of edge weights
xuv ∈ R (or C). Given these edge weights xuv , the signed weight of a loop � = (v0, . . . , vn−1)

in G is defined as

w(�;x) = sgn(�)

m(�)

n−1∏

i=0

xvivi+1 . (1.7)

Remark If a loop is edge-disjoint, it follows from Whitney’s formula [29] that the sign of
the loop is −1 if and only if the loop crosses itself an odd number of times (see Fig. 1). For
loops that are not edge-disjoint, it may not be so clear what is meant by a “crossing”, but
definition (1.6) makes sense for both kinds of loop. However, if one draws loops in such a
way that each visit to an edge is drawn slightly apart from a previous visit, the number of
crossings one is forced to draw will always be odd for a loop of sign −1, and even for a loop
of sign +1 (see for instance Fig. 5 below).

1.2 Main Results for the Ising Model

We now return to the Ising model on Z
2. In this section we will formulate our main theorems

for the Ising model, which express the free energy density and two-point functions in terms
of sums over signed loops. Each of our theorems will be accompanied by a corollary, which
taken together constitute Corollary 1.1. Similar results as the ones presented here can be ob-
tained for the hexagonal and triangular lattices using the same methods. In fact, the method
applies to the Ising model on even more general graphs, and also allows one to study general
k-point functions. We intend to go into these issues in a subsequent paper.

We start with the free energy density f (β). As we shall prove, f (β) can be expressed
as a sum over those loops in Z

2 for which the origin o = (0,0) is the lexicographically
smallest vertex traversed. To be more specific, we define L◦

r (Z
2) as the collection of all loops

� = (v0, . . . , vr−1) of r steps in Z
2 such that v0 = o. We take all edges of Z

2 to have the same
edge weight x. The weights w(�;x) of all loops � ∈ L◦

r (Z
2) are now defined by (1.7), where

by slight abuse of notation, we let x denote both the weight of a single edge, and the vector



358 W. Kager et al.

of all edge weights. Write

f ◦
r (x) =

∑

�∈L◦
r (Z2)

w(�;x).

Theorem 1.2 The free energy density satisfies

−βf (β) =
{

ln(2 cosh2 β) +∑∞
r=1 f ◦

r (tanhβ) if β ∈ (0, βc),

2β +∑∞
r=1 f ◦

r (exp(−2β)) if β ∈ (βc,∞).
(1.8)

Note that since f ◦
r (x) = f ◦

r (1) xr ,
∑

r f ◦
r (x) is really a power series in the variable x.

The power series expressions (1.8) show directly that the free energy density is an analytic
function of β on (0, βc)∪(βc,∞). Thus, in terms of the behaviour of the free energy density,
the Ising model can only be critical at the self-dual point βc . That f (β) is not analytic at βc

follows from Onsager’s formula, which we will obtain as a corollary to Theorem 1.2:

Corollary 1.3 (Onsager’s formula) For β ∈ (0, βc) and for β ∈ (βc,∞), the free energy
density f (β) is given by the formula

− 1

β

1

8π2

∫ 2π

0

∫ 2π

0
ln
[
4 cosh2 2β − 4 sinh 2β(cosω1 + cosω2)

]
dω1 dω2.

The functions f and u = ∂(βf )/∂β , which is the internal energy density of the system,
are both continuous functions of β . However, in [21] Onsager has shown that the specific
heat, which is the derivative of u with respect to temperature, diverges as β approaches βc .
This shows that βc is indeed critical for the behaviour of the free energy.

Next, we look at the magnetic behaviour of the model by considering the one-point and
two-point functions above and below βc . We start with the case β ∈ (βc,∞). What we will
show is that for fixed u,v ∈ Z

2, the functions 〈σu〉+G,β and 〈σuσv〉+G,β have infinite-volume
limits along rectangles G, where the limits can be identified in terms of sums over certain
classes of loops in Z

2∗, the dual graph of Z
2, defined as follows. Given u,v ∈ Z

2, let γ be
a self-avoiding path in Z

2 from u to v (see Fig. 2, left). We call a loop in Z
2∗ uv-odd if

it crosses γ an odd number of times. Similarly, we call a loop in Z
2∗ u-odd if it crosses a

self-avoiding path γ in Z
2 from u to ∞ an odd number of times. It is not difficult to see

that neither of these definitions depends on the particular choice of γ . We write Lu
r (Z

2∗) and
Luv

r (Z2∗) for the sets of u-odd and uv-odd loops in Z
2∗ of r steps, respectively.

Let x be the vector of edge weights on Z
2∗ such that every edge has the weight exp(−2β),

and define the weights of loops in Z
2∗ by (1.7). Set

f u
r (x) =

∑

�∈Lu
r (Z2∗)

w(�;x); f uv
r (x) =

∑

�∈Luv
r (Z2∗)

w(�;x).

Theorem 1.4 For all β ∈ (βc,∞) and fixed u,v ∈ Z
2 (u 	= v),

lim
G→Z2

〈σu〉+G,β = exp

(
−2

∞∑

r=1

f u
r (x)

)
=: 〈σu〉+

Z2,β
> 0;

lim
G→Z2

〈σuσv〉+G,β = exp

(
−2

∞∑

r=1

f uv
r (x)

)
=: 〈σuσv〉+

Z2,β
> 0.
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Fig. 2 The paths γ (with bold edges), that we use to study the 2-point functions 〈σuσv〉�
G,β

. The low-tem-
perature case is on the left (spins are −1 in the gray squares, +1 in the white regions), the high-temperature
case on the right

As a corollary to the proof of this theorem, we will obtain that for β ∈ (βc,∞), the two-
point functions in the infinite-volume limit stay bounded away from 0 as ‖u − v‖ → ∞:

Corollary 1.5 (Positive two-point functions above βc) For all β ∈ (βc,∞),

lim
‖u−v‖→∞

〈σuσv〉+
Z2,β

= [〈σo〉+
Z2,β

]2
> 0.

We now turn to the two-point functions for β ∈ (0, βc). Fix u,v ∈ Z
2, and choose dual

vertices u∗ and v∗ of Z
2∗ such that ‖u − u∗‖ = ‖v − v∗‖ = 1. This choice is not unique, but

every choice of u∗ and v∗ will do. Next, choose a self-avoiding path γ in Z
2∗ from u∗ to v∗

(see Fig. 2, right). Let Vγ denote the set of vertices in γ , and let Eγ denote the union of
{uu∗, vv∗} with the set of edges traversed by γ . Write Z

2
γ for the graph obtained from Z

2 by
adding the vertices and edges from Vγ and Eγ to it.

We define Luu∗
r (Z2

γ ) as the collection of loops in Z
2
γ that visit the edge uu∗ exactly once

and have r − |Eγ | steps. Note that by definition, if � ∈ Luu∗
r (Z2

γ ), r only counts the number
of steps taken by � along edges of Z

2, that is, the steps along the edges in Eγ are excluded.
As our edge weight vector on Z

2
γ we take the vector x ′

γ such that the weight of every edge
in Eγ is 1, the weight of every edge in Z

2 which intersects γ is − tanhβ , and the weight of
all other edges is tanhβ . Set

f uu∗
r

(
x ′

γ

)=
∑

�∈Luu∗
r (Z2

γ )

w
(
�;x ′

γ

)
,

with w(�;x ′
γ ) defined by (1.7). Let β∗ denote the inverse temperature which is dual to β ,

i.e. such that exp(−2β∗) = tanhβ .

Theorem 1.6 For all β ∈ (0, βc) and fixed u,v ∈ Z
2 (u 	= v),

lim
G→Z2

〈σuσv〉free
G,β =

( ∞∑

r=1

f uu∗
r

(
x ′

γ

)
)

〈σu∗σv∗ 〉+
Z2∗,β∗ =: 〈σuσv〉free

Z2,β
.

The term 〈σu∗σv∗ 〉+
Z2∗,β∗ appearing here is the infinite-volume limit of a two-point func-

tion for an Ising model on the dual square lattice Z
2∗ at the dual inverse temperature β∗

with positive boundary conditions. It can be expressed in terms of signed loops by means
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of Theorem 1.4. As an aside, we note that the result in Theorem 1.6 simplifies when u

and v are on the same face of Z
2 (i.e. ‖u − v‖ = 1), since then we can take u∗ = v∗, so that

σu∗σv∗ = 1. Moreover, since the path γ is void in this case, none of the edge weights will be
equal to − tanhβ .

As a corollary to Theorem 1.6 we will obtain that the two-point functions decay expo-
nentially to 0 with the distance ‖u − v‖ for β ∈ (0, βc), which together with Corollaries 1.3
and 1.5 implies Corollary 1.1:

Corollary 1.7 (Decaying two-point functions below βc) For all β ∈ (0, βc) and fixed u,v ∈
Z

2, we have that

0 ≤ 〈σuσv〉free
Z2,β

≤ 16
∑

r≥‖u−v‖

(
tanhβ

tanhβc

)r

.

Note that Corollaries 1.5 and 1.7 show contrasting behaviour of the two-point functions
above and below βc: at low temperatures they stay bounded away from 0, while for high
temperatures they decay to 0. However, we have used different boundary conditions above
and below the critical point. Ideally, we would like to use the signed loop method to show
that for all β 	= βc , the infinite-volume limit of the two-point functions is the same for both
boundary conditions. We leave this issue for a subsequent paper.

1.3 Additional Edges and Loop Length

The set of edges Eγ that we introduced above to formulate our Theorem 1.6 is an example of
what we call additional edges. As this example shows, we occasionally need these additional
edges in our applications. They act as “shortcuts” that our loops can follow, and in general,
just as we did above, we do not want to count the steps taken by our loops along these
shortcuts.

Another example of the use of additional edges is in our proofs leading to Corollary 1.3,
in which we compare loops in Z

2 with loops on a torus. Here we face a problem, because our
methods and theorems about signed loops (to be presented below) require that the graph we
work on is embedded in the plane. As a solution, we will not work on the torus directly, but
on a representation of it in the plane. As our representation, we take a rectangle in Z

2 with
opposite sides connected by additional edges, as illustrated in Fig. 3. In this example, the
additional edges do not correspond to edges that can be traversed by a loop on the torus, and
this is the reason why steps taken along the additional edges again should not be counted.

In general, these considerations lead us to allow the edge set E of the graph G = (V ,E)

we work on to be divided into a set EA of additional edges and a set E \ EA of edges that
we call representative. For reasons that will become clear, we must impose that the set EA

is such that the graph (V ,EA) is free of cycles, but otherwise, the edge set can in principle
be any subset of edges. We now define the length r(�) of a loop � = (v0, . . . , vn−1) as the
number of i in {0, . . . , n − 1} such that vivi+1 ∈ E \ EA. Note the distinction between the
length of a loop and its number of steps.

1.4 The Combinatorial Identities

We next formulate our combinatorial identities about signed loops for a fixed finite graph
G = (V ,E) embedded in the plane, satisfying the same assumptions as in Sect. 1.1. In
particular, recall that edges are straight line segments, and that we do not assume G is
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Fig. 3 A square lattice wrapped around a torus (right) and a representation of it in the plane (left). The gray
square corresponds to the torus, the dotted lines and open circles are the additional edges and vertices

planar, which implies that two edges can intersect in a point which is not a vertex. In this
case, we say that the two edges cross each other.

We call a subset F of E even if every vertex in the subgraph (V ,F ) of G has even degree
(the empty set is also even). By CF we denote the total number of unordered pairs of edges
in F that cross each other. Given a vector x = (xuv)uv∈E of edge weights on G, we now
define the generating function Z(x) of even subgraphs of G as

Z(x) =
∑

even F⊂E

(−1)CF

∏

uv∈F

xuv. (1.9)

If the graph G is planar, we can embed it in such a way that no edges cross each other,
so that CF = 0 for all F , but in general, an even F ⊂ E may give a negative contribution
to the right-hand side of (1.9). This makes our generating function different from the one
usually studied in the literature. Note as a consequence that different embeddings of the
same (abstract) graph can lead to different functions Z(x). Since we identify G with its
embedding, this last fact does not concern us here.

Our combinatorial identities express the generating function Z(x) in terms of sums over
the signed loops in G, with their weights defined by (1.7). This is what allows us to study
the Ising model in terms of signed loops, since the free energy and the two-point functions
of the Ising model can be expressed in terms of graph generating functions, as we shall see.
Our first identity:

Theorem 1.8 For uv ∈ E, let duv denote the maximum of the degrees of u and v in the
graph G. If |xuv| < (duv − 1)−1 for all uv ∈ E, then

Z(x) = exp

(∑

� in G

w(�;x)

)
. (1.10)

We will show that under the condition of Theorem 1.8, the loop weights are absolutely
summable, so that the order of summation does not matter. In particular, let Lr be the col-
lection of all loops of length r in G, and let

fr(x) =
∑

�∈Lr

w(�;x). (1.11)

Then Theorem 1.8 implies that Z(x) equals exp(
∑

r fr (x)), but we claim that this latter
equality already holds under a significantly weaker condition.
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This condition can be formulated in terms of the transition matrix Λ(x), which we now
introduce. If uv is an edge of G, then by −→

uv we will denote the directed edge from u to v.
The matrix Λ(x) will be indexed by the directed representative edges of G. Given two
directed representative edges −→

uv and −→
wz, we say that v is linked to w if either v = w, or

there exists a sequence of distinct additional edges v1v2, v2v3, . . . , vn−1vn such that v = v1

and vn = w. In the former case, if v = w and u 	= z, we write

∠(
−→
uv,

−→
wz) = ∠(v − u, z − w)

for the turning angle from −→
uv to −→

wz. In the latter case, the sequence (v1, . . . , vn) is a path
(the chain) linking v to w, passing through additional edges only, and we say that “v � w

via (v1, . . . , vn)”. By our assumption that the additional edges form no cycles, there can be
at most one such path. Hence, without ambiguity, if v is linked to w in this way, we can
define

∠(
−→
uv,

−→
wz) = ∠(v − u,v2 − v)

+
n−2∑

i=1

∠(vi+1 − vi, vi+2 − vi+1) + ∠(w − vn−1, z − w).

The transition matrix Λ(x) is now defined as follows. Write Λ−→
uv,

−→
wz(x) for the entry of

the matrix with row index −→
uv and column index −→

wz. Then

Λ−→
uv,

−→
wz(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xuve
i∠(

−→
uv,

−→
wz)/2 if v = w and u 	= z;

xuv

n−1∏

i=1

xvivi+1e
i∠(

−→
uv,

−→
wz)/2 if v � w via (v1, . . . , vn);

0 otherwise.

(1.12)

Let λi(x), i = 1,2, . . . ,2|E \ EA|, denote the eigenvalues of Λ(x), and let ρ(x) =
maxi |λi(x)| be its spectral radius. We will show that if ρ(x) < 1, then the fr(x) are ab-
solutely summable. This leads to our second identity, which forms the core of the signed
loop approach:

Theorem 1.9 If ρ(x) < 1, then

Z(x) = exp

( ∞∑

r=1

fr(x)

)
=
√

det
(
I − Λ(x)

)
. (1.13)

Clearly, to apply Theorem 1.9 to the Ising model on Z
2, we will need a bound on the

spectral radius ρ(x). Since ρ(x) is bounded from above by the operator norm ‖Λ(x)‖ of
Λ(x) induced by the Euclidean metric, the desired bound is provided by the next theorem:

Theorem 1.10 For a finite rectangle G in Z
2 with no additional edges,

∥∥Λ(x)
∥∥≤ (

√
2 + 1)‖x‖∞,

and
∣∣fr(x)

∣∣≤ 2|V |r−1(
√

2 + 1)r‖x‖r
∞.
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If we take all edge weights to be 1, Theorem 1.10 says that the “number” of signed loops
of n steps, counted with signs and multiplicities included, grows (in absolute value) like
(
√

2 + 1)n. Contrast this with the number of unsigned non-backtracking loops in Z
2, which

grows like 3n. It is this reduction in growth rate which allows us to go all the way to the
critical point, while the classical Peierls and Fisher arguments stay far from it. Indeed, in
Sect. 1.2 we have seen that we will take our edge weights to be either exp(−2β) or tanhβ ,
so by Theorem 1.10 and (1.4), the spectral radius will be smaller than 1 for all β ∈ (βc,∞)

or all β ∈ (0, βc), respectively.
We conclude this introduction with a few remarks about the history and status of the

combinatorial identities presented above. Kac and Ward observed in their paper [15] that
the Onsager–Kaufman formula for the partition function ZG,β of the Ising model on Z

2 (or
rather its square) appears to be proportional to the determinant of a matrix AG, which for
rectangles in Z

2 is equivalent to our matrix I − Λ(x). Various attempts were subsequently
undertaken to justify the formula Z2

G,β ∝ detAG, and to rederive the Onsager–Kaufman
formula in this way. These attempts involved expanding the partition function into a formal
infinite product over signed loops [3, 24, 25], or a formal infinite sum over signed loop
configurations [28]. In either case, the correct interpretation and convergence of the obtained
formal expressions are serious mathematical issues.

These issues were circumvented by Dolbilin et al. [8] by directly comparing the co-
efficients of the finite polynomials Z2

G,β and detAG, thus rigorously proving the formula
Z2

G,β ∝ detAG for finite planar graphs G. The same method was then employed by Cimasoni
to generalize this Kac–Ward formula to graphs embedded in surfaces of higher genus [4]. He
also exposed a direct relation between the Kac–Ward determinant and the adjacency matrix
arising in the dimer approach.

Historically then, the main focus appears to have been on the equality between the ex-
treme left-hand and right-hand sides of equation (1.13), in cases where Z(x) is proportional
to the Ising partition function and AG = I − Λ(x). For the applications to the Ising model
presented in this paper, however, the first equality in (1.13) is the more important and rele-
vant one. Therefore, our proof proceeds along the lines of the Vdovichenko paper, which is
targeted at directly expressing Z(x) as an infinite sum over configurations of signed loops.
As we go along, we carefully address the issues of interpretation and convergence of this
sum, mentioned above. In particular, Theorem 1.10, the key to the convergence issue, is to
the best of our knowledge a new result.

Moreover, for our applications of the combinatorial results to the Ising model, it turns out
to be necessary to allow crossing edges. This means that our function Z(x) (and hence also
Theorem 1.9) is not quite the same as the one considered in the literature so far. In particular,
our Z(x) need not be proportional to the Ising partition function for the graph G.

2 Proofs of the Combinatorial Identities

We now turn to the proof of our main Theorems 1.8 and 1.9. Recall that here G = (V ,E)

is a general finite graph embedded in the plane, potentially containing crossing edges or
additional edges. The proof proceeds in a number of steps. In the first step, detailed in
Sect. 2.1, we will identify each even subgraph (V ,F ) of G with a number of edge-disjoint
collections of loops, and show that the sum of their weights yields precisely the contribution
of F to the generating function Z(x). In the second step, in Sect. 2.2, we will explain the
conditions under which we can express Z(x) in terms of

∑
r fr (x) and det(I −Λ(x)), under

the assumption that the weights of all remaining configurations of loops in G of total length r

cancel each other. The proof of this assumption, the last step, is carried out in Sect. 2.3.
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2.1 Expansion into Collections of Edge-Disjoint Loops

We will be concerned with crossings of loops and paths, and we need to carefully establish
the relevant definitions first. More specifically, we will consider collections {�1, . . . , �s} of
loops with the properties that all loops �1, . . . , �s are edge-disjoint, and no two loops in the
collection visit a common edge. We call these edge-disjoint collections of loops. Intuitively
it may be clear what we mean by a crossing of such edge-disjoint loops, but some care is
needed, so we will now give the precise definitions.

First, consider two paths (u, v,w) and (x, y, z) in G, and let A be the union of the two
half-lines {v+ t (u−v) : t ≥ 0} and {v+ t (w−v) : t ≥ 0}. We say that (u, v,w) and (x, y, z)

cross each other at the vertex v if v = y and the vertices x and z do not lie in the same infinite
component of the complement of A in the plane.

Now let �1 = (u0, . . . , un−1) and �2 = (v0, . . . , vm−1) be two loops that form an edge-
disjoint pair {�1, �2}. By CV (�1, �2) we denote the number of pairs (i, j), where 0 ≤ i < n

and 0 ≤ j < m, such that the paths (ui−1, ui, ui+1) and (vj−1, vj , vj+1) cross each other
at ui . We call CV (�1, �2) the number of vertex crossings between �1 and �2. Similarly, we
define the number of edge crossings between �1 and �2, denoted CE(�1, �2), as the number
of pairs (i, j) such that 0 ≤ i < n and 0 ≤ j < m, and the edges uiui+1 and vjvj+1 cross
each other in G.

We also need to formally define the number of times a loop crosses itself, so consider an
edge-disjoint loop � = (v0, . . . , vn−1). We define the number of vertex self-crossings of �,
denoted CV (�), as the number of pairs (i, j), where 0 ≤ i < j < n, such that (vi−1, vi, vi+1)

and (vj−1, vj , vj+1) cross each other at the vertex vi . The number of edge self-crossings
of �, denoted CE(�), is defined as the number of pairs (i, j) such that 0 ≤ i < j < n, and the
edges vivi+1 and vjvj+1 cross each other in the graph G.

As was already mentioned in the introduction, Whitney’s formula [29] says that the sign
of an edge-disjoint loop is −1 if the loop crosses itself an odd number of times, and +1
otherwise. In other words, we have

sgn(�) = (−1)CV (�)+CE(�)

if � is edge-disjoint. We now simply define the sign of an edge-disjoint collection of loops
{�1, . . . , �s} as

sgn{�1, . . . , �s} =
s∏

i=1

sgn(�i) = (−1)
∑s

i=1{CV (�i )+CE(�i )}. (2.1)

If F ⊂ E is even, we can decompose F into an edge-disjoint collection of loops in such
a way, that the union of all edges traversed by the loops is F (one way to find such a
decomposition is given in the proof of Proposition 2.1 below). This decomposition is in
general not unique. We write D(F ) for the set of all possible edge-disjoint decompositions
of F , and recall that CF denotes the number of unordered pairs of edges in F that cross each
other.

Proposition 2.1 For all even subsets F of E we have that

∑

{�1,...,�s }∈D(F )

sgn{�1, . . . , �s} = (−1)CF .
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Fig. 4 The neighbours
v1, v2, . . . of a vertex v in an
even subgraph (V ,F ) are ordered
in a clockwise fashion around v.
Two neighbours that are
connected by edges drawn in the
same line style are paired to each
other (see the text)

Proof Let {�1, . . . , �s} be an edge-disjoint collection of loops. Since �1, . . . , �s are all closed
loops in the plane, any two distinct loops �i and �j from the collection necessarily cross
each other an even number of times. That is, CV (�i, �j ) + CE(�i, �j ) is even for all i 	= j .
Therefore,

sgn{�1, . . . , �s} = (−1)
∑

1≤i≤s {CV (�i )+CE(�i )}+
∑

1≤i<j≤s {CV (�i ,�j )+CE(�i ,�j )}.

Furthermore, if {�1, . . . , �s} ∈ D(F ), then clearly the total number of edge crossings occur-
ring among the loops must coincide with CF , that is,

CF =
∑

1≤i≤s

CE(�i) +
∑

1≤i<j≤s

CE(�i, �j ).

Hence, it suffices to prove that
∑

{�1,...,�s }∈D(F )

(−1)
∑

1≤i≤s CV (�i )+
∑

1≤i<j≤s CV (�i ,�j ) = 1. (2.2)

Let VF denote the set of vertices in V whose degree in the subgraph (V ,F ) is nonzero,
and let deg(v,F ) denote the degree of v in (V ,F ). For v ∈ VF of degree 2k, write v1, . . . , v2k

for the endpoints of the edges in F that are incident to v. Assume that these vertices are
ordered in a clockwise manner around v, starting from the lexicographically smallest one
(see Fig. 4). Denote by Pv(F ) the collection of partitions of the vertices v1, . . . , v2k into sets
of size 2. We call these partitions pairings at the vertex v. We write

P(F ) =
∏

v∈VF

Pv(F ),

and call an element of P(F ) a pairing associated with the subgraph (V ,F ).
We have a natural 1–1 correspondence between P(F ) and D(F ). Indeed, starting from

any vertex v ∈ VF and any i ∈ {1, . . . ,deg(v,F )}, the pairing π ∈ P(F ) defines a unique
closed path (u0, . . . , un−1) with the properties that u0 = vi , u1 = v, and for all j , uj−1 is
paired with uj+1 at the vertex uj . Continuing this way, and replacing each closed path ob-
tained by the corresponding loop, yields an edge-disjoint collection {�1, . . . , �s} ∈ D(F ). It
is easy to see that this defines a bijective relation between P(F ) and D(F ).

Using this bijection, we can express the sum in (2.2) equally well as a sum over all
pairings. More precisely, for π ∈ P(F ) let πv denote the pairing it induces at the vertex
v ∈ VF , and write Cv(πv) for the number of crossings at the vertex v introduced by this
pairing. We call πv even (odd) if Cv(πv) is even (odd). Note that (2.2) is equivalent to

∑

π∈P(F )

(−1)
∑

v∈VF
Cv(πv) =

∏

v∈VF

∑

πv∈Pv(F )

(−1)Cv(πv) = 1,
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from which we see that it suffices to prove that for all v ∈ VF , the number of even pairings πv

exceeds the number of odd pairings πv by 1.
We prove this by induction on the degree 2k of v. Write N+

k and N−
k for the numbers of

even, resp. odd, pairings for v of degree 2k. For k = 1 we clearly have N+
k = 1 and N−

k = 0.
Now let k > 1, and suppose that we pair the vertex v1 with vi at v. Next pair the remaining
2k − 2 neighbours vj of v in all possible ways. For even i, there is an even number of j in
between 1 and i, and therefore the pairing we obtain will be even if and only if the pairing
of the remaining 2k − 2 vertices is even (see Fig. 4). Likewise, for odd i, the obtained
pairing will be even if and only if the pairing of the remaining vertices is odd. Since we
have k even values for i, and k − 1 odd values, this gives N+

k = kN+
k−1 + (k − 1)N−

k−1 and
N−

k = kN−
k−1 + (k − 1)N+

k−1. Hence by the induction hypothesis, N+
k − N−

k = 1. �

From Proposition 2.1 we will now obtain our first main result. Recall that

Z(x) =
∑

even F⊂E

(−1)CF

∏

uv∈F

xuv.

The case F = ∅ is treated separately: by convention it contributes 1 to the sum. Hence,
Proposition 2.1 implies that

Z(x) = 1 +
∑

even F⊂E:
F 	=∅

∑

{�1,...,�s }∈D(F )

sgn{�1, . . . , �s}
∏

uv∈F

xuv.

Recall that the multiplicity m(�) of an edge-disjoint loop � is 1. Therefore, using (2.1) and
the definition (1.7) of the weight of a loop, we can write

Z(x) = 1 +
∑

even F⊂E:
F 	=∅

∑

{�1,...,�s }∈D(F )

s∏

i=1

w(�i;x).

Since this is a finite sum, we do not need to worry about the order of summation, so we have

Z(x) = 1 +
∞∑

r=1

∑

even F⊂E:|F\EA|=r

∑

{�1,...,�s }∈D(F )

s∏

i=1

w(�i;x).

If we now denote by Dr the set consisting of all those edge-disjoint collections of loops
{�1, . . . , �s} for which the total length

∑s

i=1 r(�i) is r , we see that we have established the
following theorem:

Theorem 2.2

Z(x) = 1 +
∞∑

r=1

∑

{�1,...,�s }∈Dr

s∏

i=1

w(�i;x).

2.2 Extension to All Loop Configurations

In Theorem 2.2, we have expressed the generating function Z(x) as a sum over all edge-
disjoint collections of loops in G. In this section, we will see that if the edge weights are
sufficiently small, we can drop the condition that the loops have to be edge-disjoint, and
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sum instead over all possible loop configurations in G. Here, a loop configuration is simply
an ordered sequence (�1, . . . , �s) of loops; there is no condition that loops have to be edge-
disjoint, nor that two loops in the configuration have to be distinct (i.e. it is allowed that
�i = �j for some i 	= j , which is why we work with ordered sequences of loops now).

Write Cr for the collection of all loop configurations (�1, . . . , �s) satisfying r(�1) + · · · +
r(�s) = r . Some of these loop configurations will consist of distinct loops that together form
an edge-disjoint collection of loops. Let C∗

r denote the subset of Cr containing only these
edge-disjoint loop configurations. Observe that if {�1, . . . , �s} is an edge-disjoint collection
of loops, then the corresponding loop configuration (�1, . . . , �s) has s! permutations. There-
fore, by Theorem 2.2 we already have that

Z(x) = 1 +
∞∑

r=1

∞∑

s=1

∑

(�1,...,�s )∈C∗
r

1

s!
s∏

i=1

w(�i;x),

but we claim that here we may sum over Cr instead of C∗
r :

Theorem 2.3

Z(x) = 1 +
∞∑

r=1

∞∑

s=1

∑

(�1,...,�s )∈Cr

1

s!
s∏

i=1

w(�i;x).

Clearly, since Cr is a finite set for every fixed r , this result is an immediate consequence
of the following proposition:

Proposition 2.4 For all r > 0,

∞∑

s=1

∑

(�1,...,�s )∈Cr \C∗
r

1

s!
s∏

i=1

w(�i;x) = 0.

The proof of Proposition 2.4 is involved, and we postpone it to Sect. 2.3. For now, we
assume that Proposition 2.4 and hence Theorem 2.3 hold, and explain how Theorems 1.8
and 1.9 follow from this.

Proof of Theorem 1.8 By splitting the sum over the set of loop configurations Cr in Theo-
rem 2.3 according to the lengths of the individual loops, using (1.11) we can write

Z(x) = 1 +
∞∑

r=1

∞∑

s=1

1

s!
∑

r1+···+rs=r

s∏

i=1

(∑

�∈Lri

w(�;x)

)

= 1 +
∞∑

r=1

∞∑

s=1

1

s!
∑

r1+···+rs=r

s∏

i=1

fri (x). (2.3)

Now suppose that, given x, there exist γ ∈ (0,1) and C < ∞ such that
∣∣fr(x)

∣∣≤ Cγ r for all r. (2.4)

For future reference, we note that this condition is implied by the stronger condition that
∑

�∈Lr

∣∣w(�;x)
∣∣≤ Cγ r for all r. (2.5)
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Under condition (2.4), if we write h(r, s) for the summand in (2.3), we have

∣∣h(r, s)
∣∣=

∣∣∣∣∣
1

s!
∑

r1+···+rs=r

s∏

i=1

fri (x)

∣∣∣∣∣≤
Cs

s!
(

r − 1

s − 1

)
γ r,

and thus
∞∑

s=1

∞∑

r=1

∣∣h(r, s)
∣∣≤

∞∑

s=1

Cs

s!
∞∑

r=s

(
r − 1

s − 1

)
γ r = exp

(
Cγ

1 − γ

)
− 1.

Hence, we can apply Fubini’s theorem to interchange the order of summation over r and s

in (2.3), which yields

Z(x) = 1 +
∞∑

s=1

1

s!
∞∑

r=1

∑

r1+···+rs=r

s∏

i=1

fri (x).

Note that under condition (2.4),
∑

r fr (x) is absolutely convergent. We now apply Mertens’
theorem, which says that if a series

∑
r ar converges absolutely, and the series

∑
r br con-

verges, then their Cauchy product converges to (
∑

r ar )(
∑

r br ). In particular, by induction,
the s-fold Cauchy product of the series

∑
r ar with itself, which is

∑
r

∑
r1+···+rs=r ar1ar2 . . .

ars , converges to (
∑

r ar )
s . Applying this with ar = fr(x), we obtain

Z(x) = 1 +
∞∑

s=1

1

s!

( ∞∑

r=1

fr(x)

)s

= exp

( ∞∑

r=1

fr(x)

)
. (2.6)

Observe that this result holds already under the weaker of the two conditions (2.4)
and (2.5), but that under the stronger condition (2.5), the loop weights can in fact be summed
in any order. We will now show that the condition of Theorem 1.8 implies (2.5). Indeed, un-
der the condition of Theorem 1.8, there exists γ ∈ (0,1) such that (duv − 1)|xuv| ≤ γ for all
edges uv ∈ E. Observing that if a loop takes a step along uv, then there are at most duv − 1
possibilities for the next step, this implies that the sum of |w(�;x)| over all loops � of n steps
is bounded by |V |γ n. Since a loop of length r takes at least r steps, summing over n ≥ r

yields (2.5). �

Proof of Theorem 1.9 Recall definition (1.12) of the entries of Λ(x), which are indexed by
the directed representative edges of G. We can interpret this matrix as a transition matrix
for non-backtracking paths on the graph G′ which is represented by G. This represented
graph G′ can be obtained from G by removing every chain of additional edges from G, and
identifying the two vertices at the ends of this chain (see Fig. 3 for an example).

Indeed, consider two directed representative edges −→
uv and −→

wz 	= −→
vu in G, and write −→

uv′
and −→

wz′ for the corresponding directed edges in the represented graph G′. By construction,
a non-backtracking path in G′ can make a step from −→

uv′ to −→
wz′ if and only if v is linked

to w in the graph G, since only then will v be identified with w in G′. This step corresponds
to either a direct step from −→

uv to −→
wz in G (if v = w), or to a sequence of steps along the

chain linking v to w. In either case, the matrix entry Λ−→
uv,

−→
wz(x) picks up all edge weights

and turning angles associated with these steps in G.
We can now interpret this entry as describing the weight picked up by a non-backtracking

walk in G′ when it steps from −→
uv′ to −→

wz′. Viewed in this way, the entry of the matrix Λr(x)

indexed by −→
uv and −→

wz is equal to the sum of the weights of all non-backtracking paths in G′
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of r steps starting from −→
uv′ and ending on −→

wz′. In particular, the sum of the diagonal entries
of Λr(x) is equal to the sum of the weights of all non-backtracking paths in G′ of r steps
starting and ending on the same directed edge.

Now consider a loop � of length r in G. Note that it is possible to start traversing this loop
from each step it takes along a representative edge in two directions. Mapping the paths thus
obtained to the represented graph G′ yields precisely 2r/m(�) different non-backtracking
paths of r steps in G′ that start and end on the same directed edge. By (1.7), (1.6) and (1.11),
it now follows that

trΛr(x) = −2rfr(x),

where the minus sign comes from the minus sign in the definition (1.6) of the sign of a loop
in terms of its winding angle. Expressed in the eigenvalues λi(x) of Λ(x), we therefore have
that

fr(x) = − 1

2r

∑

i

λr
i (x). (2.7)

In particular, condition (2.4) is satisfied if ρ(x) = maxi |λi(x)| < 1, so in this case the
same argument as in the proof of Theorem 1.8 yields (2.6). Moreover, if ρ(x) < 1, then
using (2.7) we can write

Z(x) = exp

(
−1

2

∞∑

r=1

∑

i

λr
i (x)

r

)
= exp

(
−1

2

∑

i

∞∑

r=1

λr
i (x)

r

)
,

and since
∑∞

r=1 ur/r = − ln(1 − u) if |u| < 1, we conclude that

Z(x) =
∏

i

(
1 − λi(x)

)1/2 =
√

det
(
I − Λ(x)

)
.

�

2.3 Cancellation of Non-edge-disjoint Loop Configurations

We now turn to the missing step in the proofs of Theorems 1.8 and 1.9, which is the proof of
Proposition 2.4. That is, we must show that the weights of all loop configurations (�1, . . . , �s)

which are not edge-disjoint and satisfy r(�1) + · · · + r(�s) = r for a given r , cancel each
other. What complicates matters here, is the fact that these loop configurations do not cancel
each other one by one, see for example Fig. 5.1 Our strategy of the proof is to map loop
configurations to so-called labelled loop configurations, which do cancel each other one
by one, and show that this implies cancellation of the unlabelled loop configurations for
combinatorial reasons.

We will therefore start by introducing the notion of a labelled loop, and work our way
from there towards the notion of a labelled loop configuration, and the proof of their cancel-
lation. In words, a labelled loop is a loop with a label attached to each step it takes, where
the labels are distinct positive integers. For periodic loops, the first step is repeated after
completing a period, and we require that the label of the first step of the loop is smaller than
the label associated with each of these repetitions.

Formally, a labelled loop �♦ is a sequence (v0, a0, v1, a1, . . . , vn−1, an−1) satisfying the
following conditions:

1A picture of the same configurations appears in [7] to point out the error in Vdovichenko’s paper; it is crucial
here to take the multiplicities of the loops into account.
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Fig. 5 Four loop configurations on the same vertices and edges, where the traversals of the same edge have
been drawn slightly apart to make them discernible. The factors 1

s!
∏s

i=1 sgn(�i )/m(�i ) are spelled out below
each loop configuration to show that the sum of their signed weights is 0

L1 � = (v0, . . . , vn−1) is a loop;
L2 (a0, a1, . . . , an−1) is a sequence of distinct positive integers, called the labelling of the

loop;
L3 if � is periodic, i.e. m(�) > 1, then a0 is smaller than akn/m(�) for all k ∈ {1,2, . . . ,m(�)−

1}.
We call the number ai the label on step i + 1 of the loop �; we also regard it as a label
assigned to the edge vivi+1. We will use the superscript ♦ for labelled loops, and the unla-
belled loop corresponding to a labelled loop will consistently be denoted by dropping this
superscript: if �♦ is a labelled loop, then � is the corresponding unlabelled loop, and so on.

Observe that one of the effects of labelling loops is that it breaks the periodicity of peri-
odic loops: sequences representing labelled loops cannot be periodic. Therefore, if � is peri-
odic, we do not assign to the labelled loop �♦ = (v0, a0, . . . , vn−1, an−1) the same weight as
to its unlabelled counterpart. Instead, we define the weights of labelled loops in general by

w
(
�♦;x)= sgn(�)

n−1∏

i=0

xvivi+1 , (2.8)

where the sign is defined in terms of the winding angle of � by (1.6), as before. Note that this
weight is actually independent of the particular labelling of the loop, and that w(�♦;x) =
m(�)w(�;x).

We write n(�) for the number of steps of a loop � (recall that this is not necessarily the
same as the length r(�) of the loop). By a labelled loop configuration we mean a collection
{�♦

1 , . . . , �♦
s } of labelled loops, in which all labels are distinct and take values from the

set {1,2, . . . ,
∑s

i=1 n(�i)}. In particular, any loop configuration (�1, . . . , �s) can be turned
into a labelled loop configuration by attaching a label to every step of every loop in such
a way, that condition L3 above is fulfilled for every labelled loop obtained, and all labels
1,2, . . . ,

∑s

i=1 n(�i) are used.
Now fix r and n, and consider a loop configuration (�1, . . . , �s) which is not edge-disjoint

and satisfies
∑s

i=1 r(�i) = r and
∑s

i=1 n(�i) = n. Let t denote the number of distinct loops in
(�1, . . . , �s), and write k1, . . . , kt for the respective number of times each of them occurs, so
that k1 +· · ·+kt = s. Consider the collection of all labelled loop configurations {�♦

1 , . . . , �♦
s }

that can be obtained from (�1, . . . , �s) by labelling the loops, as described above. For a peri-
odic loop �i , only one of the rotations of its labelling, rotated over a multiple of the smallest
period, satisfies condition L3. Furthermore, interchanging the labellings of two identical
loops �i and �j (�i = �j but i 	= j ) yields the same labelled loop configuration. Therefore,
the number of labelled loop configurations we obtain from (�1, . . . , �s) is precisely

n!
∏s

i=1 m(�i)
∏t

i=1 ki !
.
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We assign to each of these labelled loop configurations the same weight
∏s

i=1 w(�
♦
i ;x),

where we use the fact that according to the definition (2.8), w(�
♦
i ;x) does not depend on

the actual labelling. Then the total weight of all labelled loop configurations associated with
(�1, . . . , �s) is

n!
∏s

i=1 m(�i)
∏t

i=1 ki !
s∏

i=1

w
(
�

♦
i ;x)= n!

∏t

i=1 ki !
s∏

i=1

w(�i;x).

We claim that this is exactly n! times the total weight that all the permutations of the loop
configuration (�1, . . . , �s) contribute to the sum in Proposition 2.4. Indeed, there are pre-
cisely

s!∏s

i=1 ki !
such permutations, and the weight each of them contributes to the sum is

1

s!
s∏

i=1

w(�i;x).

We conclude that to prove Proposition 2.4, it suffices to show that for given n and r ,
the weights of all labelled loop configurations {�♦

1 , . . . , �♦
s } such that

∑s

i=1 n(�i) = n,∑s

i=1 r(�i) = r and (�1, . . . , �s) is not edge-disjoint, sum to 0. Write C♦
n,r for this collec-

tion of labelled loop configurations. We will now prove the desired cancellation of weights,
and hence Proposition 2.4, by finding a bijection g : C♦

n,r → C♦
n,r which maps each labelled

loop configuration to a labelled loop configuration which has a weight of the opposite sign,
but with the same absolute value.

Proof of Proposition 2.4 Before we go into the formal details of the bijection, let us
give an informal description of how it will work. Consider a labelled loop configuration
{�♦

1 , . . . , �♦
s } ∈ C♦

n,r , and let E♦ be the set of edges in G that are assigned more than 1 label
in this configuration. Find the smallest of all the labels that are assigned to the edges in E♦,
let a be this label, and let uv be the edge to which this label is assigned. Next, find the
second smallest label b which is assigned to the edge uv.

The label a labels a step of one of the loops �i . The label b either labels another step
of the same loop �i , or it labels a step of a second loop �j , i 	= j . The bijection involves
interchanging the “connections” on one side of the two steps marked a and b (either at the
vertex u or at the vertex v), as illustrated in Fig. 6. It is clear that this operation does not
change the absolute value of the weight of the configuration, since the total number of steps
that go through a given edge does not change. But Fig. 6 also suggests that the operation
corresponds to increasing or decreasing the number of “crossings” in the configuration by 1,
which should indeed lead to a change in sign.

However, signs were formally defined in terms of winding angles, not numbers of cross-
ings, since it is more difficult to make sense of the latter when loops are not edge-disjoint.
Furthermore, we must still formally define the mapping g. We will now deal with these
technical issues.

For the formal treatment of the bijection, we need to introduce some additional notation.
Given a sequence a = (a0, . . . , an) of arbitrary elements, we write a−1 for its reversion
a−1 = (an, an−1, . . . , a0). If b = (b0, . . . , bm) is another sequence of arbitrary elements, we
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Fig. 6 All cases that occur in the cancellation of labelled loop diagrams, as explained in the text. The curves
℘1 and ℘2 represent arbitrary paths connected to the vertices u and v

write a ⊕ b for the concatenation of a with b, that is,

a ⊕ b = (a0, . . . , an, b0, . . . , bm).

The weight of a labelled loop configuration {�♦
1 , . . . , �♦

s } is defined as the product of
the signs of the loops �1, . . . , �s , times the product of all the edge weights picked up by
all the loops. As was anticipated above, the product of edge weights will not change under
the bijection, so we will only be concerned with the product of the signs of the loops. We
recall from (1.5) and (1.6) that the sign of a loop � = (v0, . . . , vn−1) is defined in terms of its
winding angle as

sgn(�) = − exp

(
i

2
α(�)

)
, (2.9)

where the winding angle α(�) is given by

α(�) =
n−1∑

i=0

∠(vi+1 − vi, vi+2 − vi+1). (2.10)

We now define the winding angle and sign of a closed path (v0, . . . , vn−1) by the exact
same formulas. In particular, all rotations of a loop � have the same winding angle and sign.
On the other hand, the reversion �−1 of � and all its rotations are traversed in the opposite
direction, and therefore they all have winding angle α(�−1) = −α(�). However, since the
winding angle of a loop is a multiple of 2π , we do have that

sgn
(
�−1

)= sgn(�) for all closed paths �. (2.11)

We call all the rotations of a loop �, and all rotations of its reversion �−1, alternative rep-
resentations of �. All these representations have the same sign. Likewise, the rotations of a
labelled loop �♦ and its reversion (�♦)−1 will be called representations of this labelled loop.

We also need to define the winding angle for paths in G which are not loops. Note that
a path ℘ = (v0, . . . , vn−1) is not a loop if v0vn−1 /∈ E, v0 = vn−2, or v1 = vn−1. If we follow
such a path from v0 to vn−1, we turn through n − 2 angles, and it is natural to define the
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winding angle of ℘ by

α(℘) =
n−3∑

i=0

∠(vi+1 − vi, vi+2 − vi+1).

We now have all the notation we need to define and analyse the bijection formally.
So consider a labelled loop configuration {�♦

1 , . . . , �♦
s } ∈ C♦

n,r , and define E♦, a, b and
uv as above. We will now explain to which labelled loop configuration our configuration
{�♦

1 , . . . , �♦
s } is mapped by the bijection, and prove that the image has the opposite sign, and

hence the opposite weight. There are three possible cases to consider, which are illustrated
in Fig. 6.

Case 1: The labels a and b belong to different labelled loops. Let �
♦
i be the labelled loop

containing label a, and let �
♦
j be the labelled loop containing label b. Then these labelled

loops have representations of the form �̂
♦
i = (u, a, v)⊕℘

♦
1 and �̂

♦
j = (u, b, v)⊕℘

♦
2 , respec-

tively, where ℘
♦
1 and ℘

♦
2 are paths interspersed with labels. We can now form the combined

representation

�̂
♦
ij = (u, a, v) ⊕ ℘

♦
1 ⊕ (u, b, v) ⊕ ℘

♦
2

of a new labelled loop �
♦
ij . Our bijection maps {�♦

1 , . . . , �♦
s } to the labelled loop configuration

{
�

♦
1 , . . . , �♦

s , �
♦
ij

} \ {�♦
i , �

♦
j

}
.

To see that this labelled loop configuration has the opposite sign of its pre-image
{�♦

1 , . . . , �♦
s }, note that by (2.9)–(2.11),

sgn(�i) sgn(�j ) = sgn(�̂i ) sgn(�̂j ) = exp

(
i

2
α(�̂i) + i

2
α(�̂j )

)

= exp

(
i

2
α(�̂ij )

)
= − sgn(�̂ij ) = − sgn(�ij ).

Case 2: The labels a and b are on steps of the same labelled loop taken in the same direction.

This case is the reverse of Case 1. The labels a and b are in a labelled loop �
♦
i which has a

representation of the form

�̂
♦
i = (u, a, v) ⊕ ℘

♦
1 ⊕ (u, b, v) ⊕ ℘

♦
2 .

From this we obtain the representations (u, a, v) ⊕ ℘
♦
1 and (u, b, v) ⊕ ℘

♦
2 of two new la-

belled loops �
♦
i1 and �

♦
i2. The bijection maps {�♦

1 , . . . , �♦
s } to the labelled loop configuration

{
�

♦
1 , . . . , �♦

s , �
♦
i1, �

♦
i2

} \ {�♦
i

}
.

The same argument as in Case 1 shows that sgn(�i1) sgn(�i2) = − sgn(�i).

Case 3: The labels a and b are on steps of the same labelled loop taken in opposite direc-
tions. In this case the labels a and b are in a labelled loop �

♦
i which has a representation of

the form

�̂
♦
i = (u, a, v) ⊕ ℘

♦
1 ⊕ (v, b,u) ⊕ ℘

♦
2 .
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From this we can construct the representation

�̂♦ = (u, a, v) ⊕ (
℘

♦
1

)−1 ⊕ (v, b,u) ⊕ ℘
♦
2

of a new labelled loop �♦. The bijection maps {�♦
1 , . . . , �♦

s } to the labelled loop configuration

{
�

♦
1 , . . . , �♦

s , �♦} \ {�♦
i

}
.

To verify that these loop configurations have opposite signs, observe that

α(�̂i) = α
(
(u, v) ⊕ ℘1 ⊕ (v,u)

)+ α
(
(v,u) ⊕ ℘2 ⊕ (u, v)

)
, (2.12)

and likewise

α(�̂) = α
(
(u, v) ⊕ ℘−1

1 ⊕ (v,u)
)+ α

(
(v,u) ⊕ ℘2 ⊕ (u, v)

)
, (2.13)

where ℘1 and ℘2 are the paths obtained from ℘
♦
1 and ℘

♦
2 by dropping the labels. Now notice

that upon reversion,

α
(
(u, v) ⊕ ℘1 ⊕ (v,u)

)= −α
(
(u, v) ⊕ ℘−1

1 ⊕ (v,u)
)
. (2.14)

Furthermore, it is not difficult to see that

α
(
(u, v) ⊕ ℘1 ⊕ (v,u)

)= 2mπ + π for some m ∈ Z.

Together with (2.12), (2.13) and (2.14), this implies

sgn(�i)

sgn(�)
= sgn(�̂i )

sgn(�̂)
= exp

(
i

2
α(�̂i) − i

2
α(�̂)

)
= −1.

We conclude that in all cases, the labelled loop configuration {�♦
1 , . . . , �♦

s } is mapped to a
labelled loop configuration of opposite weight. From the explicit descriptions given above, it
is not difficult to see that the mapping is bijective. As we have explained above, this implies
Proposition 2.4. �

3 Proofs of Our Results for the Ising Model

In this section, we will apply Theorem 1.9 to the Ising model on the square lattice Z
2. This

will lead to explicit expressions for the free energy density and two-point functions in terms
of sums over loops in Z

2 or its dual Z
2∗, valid all the way up to the critical point. We start

with a brief review of the low- and high-temperature expansions in Sect. 3.1. The bound on
the operator norm in Theorem 1.10 will be derived in Sect. 3.2. Then we will study the free
energy density in Sect. 3.3, and finally the two-point functions at low and high temperatures
in Sects. 3.4 and 3.5, respectively.
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Fig. 7 Left: the graph G and its weak dual G∗ , with an even subgraph of G∗ marked by bold dashed edges.
The spins in the gray squares have value −1, the rest have value +1. Right: the subgraph of G drawn with
bold edges contributes σ 2

x σ 2
y σ 3

z σ 2
uσv(tanhβ)5 in the high-temperature expansion

3.1 Low- and High-Temperature Expansions

The partition function of the Ising model is closely related to the graph generating func-
tion Z(x) from Sect. 1.4. This can be seen from the low- and high-temperature expansions
considered in this section. More details on these expansions and the related duality of the
Ising model can be found in [26, Sect. II.7].

Let G = (V ,E) be a finite rectangle in Z
2. By G∗ = (V ∗,E∗) we shall denote the weak

dual graph of G, i.e. the rectangle in Z
2∗ whose vertices are the centres of the faces of G

(see Fig. 7, left). For our purposes, the low-temperature expansion is best considered in the
case of positive boundary conditions. It is not difficult to see that in this case, there is a 1–1
correspondence between the even subgraphs of the weak dual G∗ and the spin configurations
in Ω+: given σ ∈ Ω+, one obtains the corresponding even subset F(σ) of E∗ by including
the edge dual to uv in F(σ) if and only if σu 	= σv , for every uv ∈ E. See Fig. 7 (left) for an
illustration.

Note that by this correspondence, if F ⊂ E∗ is even, then every edge in F separates two
spins that have opposite sign. This means that adding an edge uv to F decreases σuσv from
+1 to −1, and hence has a “cost” exp(−2β) in the probability distribution (1.1). It follows
that we can write

P +
G,β(σ ) = exp(β|E|)

Z+
G,β

∏

uv∈F(σ)

xuv, σ ∈ Ω+
G, (3.1)

where xuv = exp(−2β) for every uv ∈ E∗, and

Z+
G,β = exp(β|E|)

∑

even F⊂E∗

∏

uv∈F

xuv. (3.2)

This is the low-temperature expansion of the partition function for positive boundary con-
ditions. Observe that up to the factor exp(β|E|), this expansion takes exactly the form (1.9)
of the graph generating function Z(x) for the dual graph G∗ (in which no edges cross each
other), if we set the edge weights of all dual edges uv ∈ E∗ equal to xuv = exp(−2β).

We now turn to the high-temperature expansion, for which we impose free boundary
conditions. The expansion will be over even subgraphs of the graph G, rather than of the
dual G∗. Unlike in the low-temperature expansion, these subgraphs do not have a clear
geometric interpretation, so we will take some time to explain how they arise.
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The high-temperature expansion starts from equation (1.2) and the observation that σuσv

can only take the values −1 or +1. Since exp(±β) = coshβ ± sinhβ , we see that

Zfree
G,β = (coshβ)|E| ∑

σ∈Ωfree
G

∏

uv∈E

(1 + σuσv tanhβ).

The next step is to expand the product over uv ∈ E. Each term in the expansion will be a
product of factors obtained by choosing for each edge uv whether 1 is taken as a factor,
or σuσv tanhβ , so that the expansion becomes a sum over all choices of factors for each
edge uv. We can represent each choice graphically by removing the edge uv if we choose
the factor 1 for this edge, and keeping uv if we choose the factor σuσv tanhβ . This gives a
1–1 correspondence between all terms in the expansion, and all F ⊂ E (not just the even
ones). See also Fig. 7 (right).

Using this correspondence, and then interchanging the order of summation over σ and F ,
we may now write the partition function as

Zfree
G,β = (coshβ)|E| ∑

F⊂E

∑

σ∈Ωfree
G

∏

u∈V

σ deg(u,F )
u

∏

uv∈F

xuv,

where xuv = tanhβ for all uv ∈ E and deg(u,F ) denotes the degree of u in the graph (V ,F ).
Note that the sum over σ vanishes unless deg(u,F ) is even for all u ∈ V , in which case the
sum yields simply 2|V |. Therefore,

Zfree
G,β = 2|V |(coshβ)|E| ∑

even F⊂E

∏

uv∈F

xuv. (3.3)

Again, up to a multiplicative constant, the expansion takes exactly the form (1.9) of the
graph generating function Z(x), this time for the graph G, if we set the edge weights equal
to xuv = tanhβ .

3.2 Bound on the Operator Norm

Let G = (V ,E) be a fixed finite rectangle in Z
2 with no additional edges (i.e. EA = ∅).

Without loss of generality, we may assume that the vertex set is

V = {0,1, . . . ,M − 1} × {0,1, . . . ,N − 1}. (3.4)

Since we are on the square lattice, directed edges can point in only 4 directions, and we now
introduce some convenient notation for this specific case. We write v↑, v↓, v→ and v← for
the directed edges from v to, respectively, v + (0,1), v − (0,1), v + (1,0) and v − (1,0).
We also write ↑v for the directed edge pointing from v − (0,1) to v, and define ↓v, →v,
←v analogously.

Given a vector of edge weights x = (xuv)uv∈E on E, Λ(x) is the transition matrix indexed
by the directed edges of G, defined by (1.12). For a vertex v not on the boundary of G, the
row of Λ(x) indexed by →v, for instance, has exactly 3 nonzero entries, corresponding to
the 3 possible steps that a loop can take from →v. To be precise, with u = v − (1,0), these
3 entries are

Λ→v,v→(x) = xuv, Λ→v,v↑(x) = xuve
iπ/4, Λ→v,v↓(x) = xuve

−iπ/4.
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Observe that most rows of Λ(x) have exactly 3 nonzero entries. The only exceptions are the
rows indexed by directed edges pointing to a vertex in ∂G. These exceptional rows make it
impossible to compute the eigenvalues of Λ(x) directly. We will therefore make the graph
periodic by connecting opposite sides, as described in Sect. 1.3, so that all vertices can be
treated alike, and then bound the eigenvalues of Λ(x) in terms of those of the periodic graph
(or equivalently, a graph wrapped on a torus).

To be precise, we first extend our graph G to a graph G� (� stands for “torus”), by
adding edges and vertices as shown in Fig. 3 (left). Note that this adds directed representative
edges v→ and ←v for every vertex v on the right boundary of G, and v↑ and ↓v for v on
the top boundary. All other edges that are added are considered as additional edges in the
graph G�. Henceforth, when we work on the graph G�, computations will be performed
modulo M and N in the two respective lattice directions.

We define Λ� as the transition matrix for the graph G�, with specific edge weights
chosen as follows: all representative edges of G� have edge weight 1; for the additional
edges, we choose the edge weights in such a way, that the product of the edge weights along
every chain of additional edges linking opposite sides of the rectangle to each other is −1.
Note that by this choice, the factor −1 will exactly compensate the sign picked up by a path
which follows the chain, because of the 4 quarter-turns it makes.

Proof of Theorem 1.10 We first prove that the operator norm of the matrix Λ� is
√

2+1. To
this end, assume that the rows of Λ� are arranged in such a way, that for every vertex v ∈ V ,
the 4 rows indexed by →v, ↑v, ←v and ↓v immediately succeed each other in this order.
Let Π be the permutation matrix which permutes the columns of Λ� so that column vd

maps to column dv, for all v ∈ V and d ∈ {↑,↓,→,←}.
By construction, the matrix Λ�Π with the permuted columns is now a block-diagonal

matrix, since the 4 rows indexed by the directed edges pointing to v are matched along
the diagonal with the 4 columns indexed by the directed edges pointing out from v. By
considering the turning angles, it is easy to see that each 4×4 block is equal to the Hermitian
matrix

A =

⎡

⎢⎢⎣

1 exp(iπ/4) 0 exp(−iπ/4)

exp(−iπ/4) 1 exp(iπ/4) 0
0 exp(−iπ/4) 1 exp(iπ/4)

exp(iπ/4) 0 exp(−iπ/4) 1

⎤

⎥⎥⎦ ,

which has eigenvalues
√

2 + 1 and
√

2 − 1, both of multiplicity 2.
Since A is Hermitian, its spectral radius is equal to its operator norm ‖A‖. It follows that

the operator norm of Λ�Π is given by ‖A‖ = √
2 + 1, and since permuting columns does

not change the operator norm of a matrix, we conclude that ‖Λ�‖ = √
2 + 1.

We will now use this fact, together with the sub-multiplicativity of the operator norm, to
bound ‖Λ(x)‖. To this end, let D(x) be the diagonal matrix of the same dimensions as Λ�,
defined as follows. For vertices v on the right boundary of G, the diagonal entries of D(x)

on the rows v→ and ←v are 0, and so are the diagonal entries on the rows v↑ and ↓v for
v on the top boundary of G. For all other directed edges −→

uv in the graph G�, the diagonal
entry of D(x) on row −→

uv is equal to the edge weight xuv .
Now consider the matrix D(x)Λ�D(1), where 1 denotes the edge weight vector on G�

with constant weight 1 on every edge. The multiplication by D(x) multiplies all rows of Λ�

corresponding to directed edges −→
uv in the graph G by xuv , and zeroes out all rows corre-

sponding to directed edges which are in the graph G�, but not in the graph G. The multi-
plication by D(1) then zeroes out all columns of Λ� corresponding to directed edges which
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are in G� but not in G. In other words, D(x)Λ�D(1) is just the matrix Λ(x) with rows and
columns of zeros added to it for every directed edge which is in G� but not in G. Therefore,

∥∥Λ(x)
∥∥= ∥∥D(x)Λ�D(1)

∥∥≤ ∥∥D(x)
∥∥ · ∥∥Λ�∥∥ · ∥∥D(1)

∥∥= (
√

2 + 1)‖x‖∞.

The desired bound on |fr(x)| now follows from (2.7) and the facts that ρ(x) ≤ ‖Λ(x)‖ and
the number of directed edges in G is bounded by 4|V |. �

Remark Using Fourier transforms, we can actually compute all eigenvalues of Λ�, and
show that its spectral radius is

√
2 + 1. Also, with some extra effort, it is possible to show

that for all finite rectangles, the spectral radius of Λ(x) is strictly less than (
√

2 + 1)‖x‖∞.

3.3 Free Energy Density

We are now going to use the bound obtained in Theorem 1.10 to prove Theorem 1.2 and it’s
Corollary 1.3.

Proof of Theorem 1.2 We start with the high-temperature case, so fix β ∈ (0, βc) and set
x = tanhβ . Let G be a rectangle in Z

2, and take the set of additional edges to be empty.
Note that by (1.4), x ∈ (0,

√
2 − 1). By (3.3),

lnZfree
G,β = |V | ln 2 + |E| ln(coshβ) + lnZG(x), (3.5)

where ZG(x) is the generating function for the graph G with edge weights equal to x. By
Theorems 1.9 and 1.10, lnZG(x) equals

∑
r fG,r (x), where fG,r (x) denotes the sum of the

weights of all loops of length r in G.
Consider these loops of length r in G. For each vertex v ∈ V , let Lv

r (G) denote the
collection of loops in G of length r for which v is the smallest vertex traversed. Observe
that if v has distance at least r to the boundary of G, then Lv

r (G) can be mapped bijectively
to L◦

r (Z
2) by a translation on Z

2, hence
∑

�∈Lv
r (G) w(�;x) = f ◦

r (x). There are at most |∂G|r
vertices at a distance less than r from ∂G, and since |x| < 1, for such a vertex v we have∑

�∈Lv
r (G) |w(�;x)| ≤ 3r (by counting non-backtracking paths). From these observations and

the fact that limG→Z2 |∂G|/|V | = 0, it follows that

lim
G→Z2

1

|V |fG,r (x) = lim
G→Z2

1

|V |
∑

v∈V

∑

�∈Lv
r (G)

w(�;x) = f ◦
r (x) for all r ≥ 1.

Furthermore, Theorem 1.10 says that |fG,r (x)| ≤ 2|V |r−1(
√

2 + 1)rxr . Therefore, by dom-
inated convergence and Theorem 1.9,

lim
G→Z2

1

|V | lnZG(x) = lim
G→Z2

∞∑

r=1

1

|V |fG,r (x) =
∞∑

r=1

f ◦
r (x).

We now combine this with (3.5), and use limG→Z2 |E|/|V | = 2 to obtain

−βf (β) = lim
G→Z2

1

|V | lnZfree
G,β = ln

(
2 cosh2 β

)+
∞∑

r=1

f ◦
r (x).
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The low-temperature case can be treated in a similar manner, except that one must work
on the dual graphs G∗ with edge weights x = exp(−2β) on the dual edges, and use (3.2)
instead of (3.3). �

Proof of Corollary 1.3 We will now show that Onsager’s formula follows from the ex-
pressions for f (β) derived above. First, we claim that with x = tanhβ for β ∈ (0, βc) and
x = exp(−2β) for β ∈ (βc,∞), we have

−βf (β) = ln

[
2 cosh 2β

1 + x2

]
+

∞∑

r=1

f ◦
r (x) (3.6)

for all these β . This follows from (1.8) and the equality cosh2 β + sinh2 β = cosh2 β(1 +
x2) = cosh 2β for β ∈ (0, βc), and from (1.8) together with the logarithm of the equality
2 cosh 2β = e2β(1 + x2) for β ∈ (βc,∞).

In the proof of Theorem 1.2, we have obtained
∑

r f ◦
r (x) as the limit of |V |−1

∑
r fG,r (x).

It is clear from the proof that here we may as well replace fG,r (x) by the corresponding sum
of loop weights for the periodic graph G� from Sect. 3.2. In fact, the argument becomes
even simpler on G�, since we no longer have to treat vertices near the boundary sepa-
rately. The transition matrix generating the loops in G� with the desired edge weights x

is xΛ�. Hence, by Theorem 1.9 and the proof of Theorem 1.10 in Sect. 3.2, which gives
‖xΛ�‖ ≤ x(

√
2 + 1), we see that for x ∈ (0,

√
2 − 1),

∞∑

r=1

f ◦
r (x) = lim

G→Z2

1

|V |
∞∑

r=1

fG�,r (x) = lim
G→Z2

1

|V |
1

2
ln det

(
I − xΛ�). (3.7)

We can compute det(I − xΛ�) by taking the Fourier transform of Λ�. This computation
has appeared in the literature before, see for instance [10, 24, 28], but we also present it in
brief form here for completeness.

Without loss of generality, we may assume that V is the set (3.4), in which case the
Fourier transform of Λ� is defined as

Λ̃
�
(p,q)d,(p′,q ′)d ′ = 1

MN

M−1∑

k,k′=0

N−1∑

l,l′=0

e− 2πi
M

(pk−p′k′)− 2πi
N

(ql−q ′l′)Λ�
(k,l)d,(k′,l′)d ′ ,

where d, d ′ ∈ {↑,↓,→,←}. The calculation of this Fourier transform is made straightfor-
ward by the periodicity of Λ�, and reveals that the only entries surviving the summations are
those for which p′ = p and q ′ = q . Hence, Λ̃� is a block-diagonal matrix of 4 × 4 blocks.
To be precise, writing ωp = 2πp/M , ωq = 2πq/N , the 4 × 4 block for given p and q is

Λ̃
�
(p,q)·,(p,q)· =

⎡

⎢⎢⎣

eiωp eiωp+iπ/4 0 eiωp−iπ/4

eiωq−iπ/4 eiωq eiωq+iπ/4 0
0 e−iωp−iπ/4 e−iωp e−iωp+iπ/4

e−iωq+iπ/4 0 e−iωq−iπ/4 e−iωq

⎤

⎥⎥⎦ .
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Since det(I − xΛ�) = det(I − xΛ̃�), from this Fourier transform we obtain

det
(
I − xΛ�)=

M−1∏

p=0

N−1∏

q=0

det
(
I − xΛ̃

�
(p,q)·,(p,q)·

)

=
M−1∏

p=0

N−1∏

q=0

[(
1 + x2

)2 − 2x
(
1 − x2

)
(cosωp + cosωq)

]
.

Using (3.7), we conclude that

∞∑

r=1

f ◦
r (x) = lim

M,N→∞
1

2MN
ln det

(
I − xΛ�)

= 1

8π2

∫ 2π

0

∫ 2π

0
ln
[(

1 + x2
)2 − 2x

(
1 − x2

)
(cosω1 + cosω2)

]
dω1 dω2. (3.8)

To finish the computation, note that by (3.6), we have

−βf (β) = 1

8π2

∫ 2π

0

∫ 2π

0
ln

[
4 cosh2 2β

(1 + x2)2

]
dω1 dω2 +

∞∑

r=1

f ◦
r (x).

Combining this with (3.8), and then using the identity

2x(1 − x2)

(1 + x2)2
= sinh 2β

cosh2 2β
,

which holds both for x = exp(−2β) and for x = tanhβ , we obtain

−βf (β) = 1

8π2

∫ 2π

0

∫ 2π

0
ln
[
4 cosh2 2β − 4 sinh 2β(cosω1 + cosω2)

]
dω1 dω2.

This is Onsager’s formula for the isotropic Ising model on Z
2. �

3.4 Low-Temperature Correlations

In this section, we discuss the Ising model with positive boundary conditions. We consider
rectangles G = (V ,E) in Z

2 (which later tend to Z
2) and denote by G∗ the weak dual

of G. Recall that every spin configuration σ ∈ Ω+
G on G corresponds bijectively to an even

subgraph of G∗, that is, a graph in which all vertices in V ∗ have even degree. For given σ ,
we denote the corresponding even subset of E∗ by F(σ); for given even F ⊂ E∗, we denote
the corresponding spin configuration by σ(F ).

Setting xe = e−2β for every edge e in Z
2∗, by (3.1) and (3.2) we have

P +
G,β(σ ) = 1

ZG∗(x)

∏

e∈F(σ)

xe, σ ∈ Ω+
G, (3.9)

where ZG∗(x) is the generating function for G∗ with edge weight vector x = (xe)e∈E∗ . Note
that here we implicitly restrict the edge weight vector x on Z

2∗ to the edges of the graph G∗
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we work on. Such implicit restrictions to the relevant edges will occur throughout this and
the following section.

Proof of Theorem 1.4 Fix u,v ∈ Z
2, u 	= v, and let γ be a self-avoiding path in Z

2 from
u to v. We may assume that G is large enough so that u, v and γ are all contained in
the area spanned by G, see Fig. 2. We will express the two-point function 〈σuσv〉+G,β as
the quotient of two generating functions. To this end, we define new edge weights x ′

e on
the edges of Z

2∗ such that x ′
e = −xe if e crosses γ , and x ′

e = xe otherwise. The reason for
defining the weights x ′

e in this way is the crucial fact that for all σ ∈ Ω+
G ,

σuσv

∏

e∈F(σ)

xe =
∏

e∈F(σ)

x ′
e. (3.10)

To see this, recall that the edges in F(σ), by their very definition, cross edges xy ∈ E for
which σx 	= σy . If σu = σv , then following γ from u to v, we necessarily cross an even
number of such edges. If σu 	= σv , then we cross an odd number. In either case, (3.10) holds.

With the help of (3.9), we can write

〈σuσv〉+G,β =
∑

σ∈Ω+
G

σuσvP
+
G,β(σ ) = 1

ZG∗(x)

∑

σ∈Ω+
G

σuσv

∏

e∈F(σ)

xe,

and using (3.10) and the bijection between even F and Ω+
G , we obtain

〈σuσv〉+G,β = 1

ZG∗(x)

∑

even F⊂E∗

∏

e∈F

x ′
e = ZG∗(x ′)

ZG∗(x)
. (3.11)

The idea that correlations in the Ising model can be studied by means of ratios of generating
functions with changed edge weights (or equivalently, changed spin-spin interactions) has
arisen before in the physics literature, see [16]. It now follows from Theorems 1.9 and 1.10
that for β > βc , we have

〈σuσv〉+G,β = exp

( ∞∑

r=1

∑

�∈Lr (G∗)

[
w
(
�;x ′)− w(�;x)

]
)

,

where Lr (G
∗) is the collection of loops of length r in the graph G∗.

Recall that we call a loop in G∗ uv-odd if it crosses γ an odd number of times. Ob-
serve that for uv-odd loops �, w(�;x ′) = −w(�;x), while for loops � that are not uv-odd,
w(�;x ′) = w(�;x). It follows that

〈σuσv〉+G,β = exp

(
−2

∞∑

r=1

∑

�∈Luv
r (G∗)

w(�;x)

)
, (3.12)

where Luv
r (G∗) is the collection of uv-odd loops of length r in the graph G∗.

Note that a uv-odd loop of length r cannot travel far from u and v. To be precise, these
loops must be contained in Bu

r ∪ Bv
r , where Bu

r is a square in the plane of side length r

centred at u, and Bv
r is defined similarly. To study the convergence of (3.12) as G → Z

2,
for arbitrary rectangles R in Z

2 that can be finite or infinite, and even equal to Z
2, we now

define

ar

(
R∗;x) :=

∑

�∈Luv
r (R∗)

w(�;x).
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This definition makes sense both for finite and infinite R, since the loops contributing to the
sum must be contained in Bu

r ∪ Bv
r .

Let Buv
r denote the smallest rectangle in R

2 containing both Bu
r and Bv

r , and write R∗ ∩
Buv

r for the largest subgraph of R∗ which is a rectangle in Z
2∗ entirely contained in Buv

r .
Then for all R,

ar

(
R∗;x)= ar

(
R∗ ∩ Buv

r ;x)= 1

2

∑

�∈Lr (R∗∩Buv
r )

[
w(�;x) − w

(
�;x ′)]. (3.13)

Now, since the volume of Buv
r is bounded from above by (‖u − v‖ + r)2, and exp(2βc) =√

2 + 1 by (1.4), Theorem 1.10 yields the uniform bound

∣∣ar

(
R∗;x)∣∣≤ 2

(‖u − v‖ + r
)2

r−1 exp
(−2(β − βc)r

)
for all R. (3.14)

We now return to (3.12). Since eventually, G∗ ∩ Buv
r = Z

2∗ ∩ Buv
r when G → Z

2,
from (3.13) we conclude that

ar

(
G∗;x)→ ar

(
Z

2∗;x) for all r ≥ 1.

Moreover, the ar(G
∗;x) are uniformly bounded in G by the right-hand side of (3.14), which

is summable over r . Therefore, by dominated convergence,

lim
G→Z2

∞∑

r=1

ar

(
G∗;x)=

∞∑

r=1

ar

(
Z

2∗;x),

where the series on the right is absolutely summable. Using (3.12), this proves the conver-
gence of 〈σuσv〉+G,β in Theorem 1.4.

Next, we consider 〈σu〉+G,β for u ∈ G\∂G. We can treat this like 〈σuσv〉+G,β by taking v on
the boundary of G, since then σv = +1. We now call a loop which crosses γ an odd number
of times u-odd, since this depends only on u, not v. The box Buv

r can be replaced by Bu
r in

the argument, which replaces (‖u − v‖ + r)2 by r2 in (3.14). This completes the proof of
Theorem 1.4. �

Proof of Corollary 1.5 The limit 〈σu〉+
Z2,β

in Theorem 1.4 is easily seen to be independent of
the choice of u, and we take u = o as the canonical choice. We now consider what happens to
the two-point function when we take u and v further and further apart. When r < ‖u − v‖/2,
the boxes Bu

r and Bv
r in the proof of Theorem 1.4 above are disjoint. If this is the case, a

uv-odd loop of length r in Z
2∗ must be contained in either Bu

r or Bv
r . Hence,

〈σuσv〉+
Z2,β

= exp

(
−2

∑

r≥‖u−v‖/2

ar

(
Z

2∗;x)
)

× exp

(
−2

∑

r<‖u−v‖/2

[
ar

(
Z

2∗ ∩ Bu
r ;x)+ ar

(
Z

2∗ ∩ Bv
r ;x)]

)
.

When ‖u − v‖ → ∞, the first factor converges to 1 exponentially fast, since the uniform
bound in (3.14) applies to ar(Z

2∗;x). In the second factor, the first term in the sum is a sum
over the u-odd loops of length r , and the second term is a sum over the v-odd loops. Hence
the second factor factorizes and converges (exponentially fast) to [〈σo〉+

Z2,β
]2. �
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3.5 High-Temperature Correlations

In this section, we discuss the Ising model on rectangles G = (V ,E) in Z
2 (which will

again tend to Z
2) with free boundary conditions. From the definitions (1.1), (1.2) and (1.3),

we have

〈σuσv〉free
G,β =

∑

σ∈Ωfree
G

σuσvP
free
G,β (σ ) = 1

Zfree
G,β

∑

σ∈Ωfree
G

σuσv

∏

xy∈E

eβσxσy .

Performing the high-temperature expansion on the right-hand side of this expression, in the
way explained in Sect. 3.1, leads to

〈σuσv〉free
G,β = 2|V |(coshβ)|E|

Zfree
G,β

∑

F⊂E :
δF={u,v}

∏

e∈F

xe,

where xe = tanhβ for every edge e in Z
2, and δF denotes the set of all vertices that have

odd degree in (V ,F ). Using (3.3), we conclude that

〈σuσv〉free
G,β = 1

ZG(x)

∑

F⊂E :
δF={u,v}

∏

e∈F

xe, (3.15)

where ZG(x) is the graph generating function for the graph G with edge weight vector
x = (xe)e∈E .

Proof of Theorem 1.6 Fix u,v ∈ Z
2, u 	= v, and recall the definitions of u∗, v∗, the path γ

and the additional edges Eγ and vertices Vγ from Sect. 1.2 (see Fig. 2, right). For an arbitrary
rectangle R in Z

2 (either finite or infinite) containing u and v, we denote by Rγ the graph
obtained from R by adding all vertices in Vγ to its vertex set, and all edges in Eγ to its
edge set. In Rγ , all edges added from the set Eγ are considered as additional, and the edges
from R are considered as representative.

As in the low-temperature case, we now define weights x ′
e on the edge set of Z

2 such that
x ′

e = −xe if e crosses γ , and x ′
e = xe otherwise. We also define edge weights x ′

γ (t)e on the
edge set of Z

2
γ , as follows:

x ′
γ (t)e =

⎧
⎪⎨

⎪⎩

x ′
e if e is an edge of Z

2;
1 if e ∈ Eγ \ {uu∗};
t if e = uu∗.

To motivate this definition, consider a given rectangle G = (V ,E) in Z
2, large enough so

that u,v ∈ V . We claim that
∑

F⊂E :
δF={u,v}

∏

e∈F

xe =
∑

even F⊂E∪Eγ :
F⊃Eγ

(−1)CF

∏

e∈F

x ′
γ (1)e. (3.16)

To see this, note that we can bijectively map every F contributing to the first sum to a
subgraph in the second sum, by taking the union F ∪ Eγ . Doing this may introduce edge
crossings, whence the factor (−1)CF , but these are compensated by switching from the edge
weight vector x to x ′

γ (1).
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The crucial step is now to recognize the last expression as the derivative of a graph
generating function. Indeed, a simple consideration shows that

∑

even F⊂E∪Eγ :
F⊃Eγ

(−1)CF

∏

e∈F

x ′
γ (1)e = ∂

∂t

( ∑

even F⊂E∪Eγ

(−1)CF

∏

e∈F

x ′
γ (t)e

)
,

evaluated at any t , since any even F ⊂ Eγ contributes at most one factor t to the product of
edge weights on the right. In particular, we are allowed to evaluate the derivative at t = 0.
By (3.15) and (3.16), this establishes that

ZG(x) · 〈σuσv〉free
G,β = ∂

∂t
ZGγ

(
x ′

γ (t)
)∣∣

t=0
. (3.17)

We now fix β ∈ (0, βc), so that by (1.4), xe ∈ (0,
√

2 − 1) for every e ∈ E, and by The-
orem 1.10, the spectral radius of Λ(x ′) is strictly less than 1. We now need a similar bound
on the spectral radius of the matrix Λγ (x ′

γ (t)), which is the transition matrix for the mod-
ified graph Gγ with edge weight vector x ′

γ (t). The difference between these two matrices
is that Λγ (x ′

γ (t)) allows transitions between u and v along the chain of additional edges
in Eγ . This means that the 32 matrix entries from du to vd ′ and from dv to ud ′, with
d, d ′ ∈ {↑,↓,→,←}, are nonzero in Λγ (x ′

γ (t)) for t 	= 0, while they are 0 in Λ(x ′); all
other entries of the two matrices are the same.

The 32 deviating matrix entries are all of the form teiφ/2, where φ is a sum of turning
angles. Here, t will be treated as a complex variable. For t = 0, Λγ (x ′

γ (t)) = Λ(x ′). Since
the eigenvalues vary continuously with t , we conclude that there exists ε > 0 such that for
all t satisfying |t | < ε, the spectral radius of Λγ (x ′

γ (t)) is bounded from above by some
α ∈ (0,1).

Hence, if |t | < ε, Theorem 1.9 applies, and we obtain

ZGγ

(
x ′

γ (t)
)= exp

( ∞∑

r=1

fγ r(t)

)
,

where

fγ r(t) =
∑

�∈Lr (Gγ )

w
(
�;x ′

γ (t)
)
.

Note that, this last sum being finite, the fγ r(t) are polynomials in t . Also, from (2.7) it
follows that |fγ r(t)| ≤ 2|V |αr . Therefore, the partial sums of the series

∑
r fγ r (t) are uni-

formly convergent for |t | < ε, and the sum of the series is an analytic function of t . More-
over, the derivatives of the partial sums also converge uniformly to the derivative of the sum
of the series.

From all this, it follows that the right-hand side of (3.17) is equal to

( ∞∑

r=1

∂

∂t

∑

�∈Lr (Gγ )

w
(
�;x ′

γ (t)
)
∣∣∣∣∣
t=0

)
exp

( ∞∑

r=1

∑

�∈Lr (Gγ )

w
(
�;x ′

γ (0)
)
)

.

In the first factor, the only loops that survive the differentiation are those that visit the
edge uu∗, since only they contribute a factor t to the weight. Taking the derivative at t = 0,
we are only left with those loops that visit the edge uu∗ exactly once. In the second factor,
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because we set t = 0, the only loops that contribute are those that do not visit uu∗. This
leaves precisely all loops in the graph G. The right-hand side of (3.17) therefore becomes

( ∞∑

r=1

∑

�∈Luu∗
r (Gγ )

w
(
�;x ′

γ (1)
)
)

exp

( ∞∑

r=1

∑

�∈Lr (G)

w
(
�;x ′)

)
,

where Luu∗
r (Gγ ) is the set of loops of length r in Gγ that visit uu∗ once. From this, applying

Theorem 1.9 again to the second factor, we find that

〈σuσv〉free
G,β =

( ∞∑

r=1

∑

�∈Luu∗
r (Gγ )

w
(
�;x ′

γ (1)
)
)

ZG(x ′)
ZG(x)

. (3.18)

Note the ratio of graph generating functions in (3.18). Recall that we have seen such a
ratio of graph generating functions before in the low-temperature case, namely in (3.11).
Thus, this ratio can be interpreted as a two-point function between the spins at u∗ and v∗ in
a dual Ising model with positive boundary conditions at the dual low temperature β∗, given
by exp(−2β∗) = tanhβ . Using (3.12), we can express this ratio in terms of a sum over all
u∗v∗-odd loops in the graph G, if we like.

Next, we want to consider the limit as G → Z
2. By the argument given in Sect. 3.4, we al-

ready know that the ratio of graph generating functions in (3.18) converges to 〈σu∗σv∗ 〉+
Z2∗,β∗ .

It remains to consider what happens to the sum over the loops that visit uu∗ once. To this
end, for a general finite or infinite rectangle R in Z

2 containing u and v, we define

ar

(
Rγ ;x ′

γ

) :=
∑

�∈Luu∗
r (Rγ )

w
(
�;x ′

γ

)
, (3.19)

where we have simplified the notation by letting x ′
γ ≡ x ′

γ (1).
As in the low-temperature case, the loops that contribute to ar(Rγ ;x ′

γ ) must be confined
to the box Buv

r , defined in the same way as before, except possibly for the steps taken along
the additional edges in Eγ , which are not counted in the length of the loop, and are allowed
to go outside Buv

r . Hence,

ar

(
Rγ ;x ′

γ

)= ar

((
R ∩ Buv

r

)
γ
;x ′

γ

)
, (3.20)

where R ∩ Buv
r is the largest subgraph of R contained in Buv

r , as before. It follows that
ar(Gγ ;x ′

γ ) → ar(Z
2
γ ;x ′

γ ) for all r ≥ 1. As before, we now want to use dominated conver-
gence to prove that

lim
G→Z2

∞∑

r=1

ar

(
Gγ ;x ′

γ

)=
∞∑

r=1

ar

(
Z

2
γ ;x ′

γ

)
, (3.21)

and that the right-hand side is absolutely summable. This requires an appropriate uniform
bound (in R) on the right-hand side of (3.19).

To obtain this bound, by (3.20) it is sufficient to consider an arbitrary finite rectangle R

in Z
2 containing u and v, and such that R is contained in Buv

r . Note that every loop of
length r in Rγ which visits the edge uu∗ once, has a representation of the form ℘ ⊕ γ ,
where ℘ is a path of length r in R from v to u. Here, we use the facts that the part ℘ of the
loop never visits uu∗, and that the steps taken along γ from u to v do not contribute towards
the length of the loop, since they are along additional edges.
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Let ΛR(x ′) be the transition matrix for the graph R with edge weights x ′
e . Note that the

sum of the weights of all paths ℘ of length r from v→ to ↑u, for instance, is given by the
entry of the matrix Λr

R(x ′) in row v→ and column ↑u. To compute the sum of the weights
of the corresponding loops ℘ ⊕ γ , we only need to multiply this entry by the factor eiφ/2,
where φ is the sum of the turning angles encountered in the path from ↑u to v→ along the
edges in Eγ . From these observations, we can conclude that

ar

(
Rγ ;x ′

γ

)≤ 16
∥∥Λr

R

(
x ′)∥∥

max
,

where ‖·‖max denotes the maximum-entry norm, and the factor 16 comes from the fact that
there are 4 directed (representative) edges pointing out from v, and 4 pointing to u. By
Theorem 1.10 and the fact that the maximum-entry norm of a matrix is bounded by the
operator norm, and using that (tanhβc)

−1 = √
2 + 1 by (1.4), we obtain

ar

(
Rγ ;x ′

γ

)≤ 16
∥∥Λr

R

(
x ′)∥∥≤ 16

∥∥ΛR

(
x ′)∥∥r ≤ 16

(
tanhβ

tanhβc

)r

. (3.22)

We emphasize that this bound holds uniformly for all finite and infinite rectangles R

containing u and v. Hence, (3.21) holds by dominated convergence, and this completes the
proof of Theorem 1.6. �

Proof of Corollary 1.7 We now consider what happens to the two-point function studied
above when we let ‖u − v‖ tend to infinity. Since the loops that visit uu∗ necessarily have
length at least ‖u − v‖, we can write

〈σuσv〉free
Z2,β

=
( ∑

r≥‖u−v‖
ar

(
Z

2
γ ;x ′

γ

))〈σu∗σv∗ 〉+
Z2∗,β∗ .

By Theorem 1.4, the two-point function on the right is bounded between 0 and 1. Alter-
natively, at this stage we could also observe that the ratio of graph generating functions
in (3.18) is always between −1 and +1, since the same even subgraphs contribute to both
generating functions, but only in the numerator, some of them come with a negative sign.
Furthermore, the bound in (3.22) holds for ar(Z

2
γ ;x ′

γ ). This gives the desired upper bound.
That the two-point function is nonnegative follows directly from (3.15). �
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