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Abstract A bosonic analogue of the fractional quantum Hall effect occurs in rapidly rotat-
ing trapped Bose gases: There is a transition from uncorrelated Hartree states to strongly
correlated states such as the Laughlin wave function. This physics may be described by ef-
fective Hamiltonians with delta interactions acting on a bosonic N -body Bargmann space of
analytic functions. In a previous paper (Rougerie et al. in Phys. Rev. A 87:023618, 2013) we
studied the case of a quadratic plus quartic trapping potential and derived conditions on the
parameters of the model for its ground state to be asymptotically strongly correlated. This
relied essentially on energy upper bounds using quantum Hall trial states, incorporating the
correlations of the Bose-Laughlin state in addition to a multiply quantized vortex pinned
at the origin. In this paper we investigate in more details the density of these trial states,
thereby substantiating further the physical picture described in (Rougerie et al. in Phys. Rev.
A 87:023618, 2013), improving our energy estimates and allowing to consider more general
trapping potentials. Our analysis is based on the interpretation of the densities of quantum
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Hall trial states as Gibbs measures of classical 2D Coulomb gases (plasma analogy). New
estimates on the mean-field limit of such systems are presented.

Keywords Rotating Bose gases · Bosonic Quantum Hall Effect · 2D Coulomb gases

1 Introduction

The advent in the 90’s of powerful techniques to cool and trap atoms has opened the way
to new investigations of quantum phenomena on a macroscopic scale. It has now become
possible to isolate extremely cold and dilute atomic gases and maintain them in metastable
states that can be efficiently modeled as ground states of effective many-body Hamiltonians
with repulsive short range interactions. Although the atoms typically trapped are neutral, one
can impose an artificial magnetic field to them. This is usually achieved by rotating the trap
[13, 20] although there now exist more refined techniques [17]. Exploiting the analogy be-
tween the Lorentz and Coriolis force, one can easily realize that the Hamiltonian for neutral
atoms in a rotating frame resembles that of charged particles in a uniform magnetic field.

The analogy has been demonstrated by the nucleation of quantized vortices in cold rotat-
ing Bose gases (see [20] and references therein, in particular [10]), similar to those appearing
in type II superconductors submitted to external magnetic fields. In this regime, the atoms
all condense in the same one-particle state and the gas forms a Bose-Einstein condensate
(BEC). The peculiar properties of quantized vortices, demonstrating the superfluid nature of
BECs, have motivated numerous theoretical and mathematical works, see [1, 13, 15, 16, 20]
and references therein.

An even more striking possibility is to create with cold atomic gases phases characteristic
of the fractional quantum Hall effect (FQHE), a phenomenon originally observed in 2D
electron gases submitted to very large magnetic fields [51]. In this regime, the Bose gas is no
longer a condensate and mean-field theories fail to capture the physics of the system. One has
to use a truly many-body description, and strongly correlated phases, such as the celebrated
Laughlin state [29] may occur. This regime has been hitherto elusive in trapped Bose gases.
For large rotation speeds, the centrifugal force can compensate the trapping force and lead
to an instability of the gas. As of now, the competing demands of a large rotation speed on
the one hand, necessary for entering the FQHE regime, and of a sufficiently stable system
on the other hand, have left the FQHE regime unattainable with current technology (see [45]
for a precise discussion of this point).

Several ideas to get around this difficulty have been proposed, and it is one of those that
we examine from a mathematical point of view, here and in the companion paper [47]. As
we will see, the proposed modification of the experimental set-up also leads to new physics
and mathematics.

When discussing the quantum Hall regime it is common [1, 13, 20] to assume that the gas
is essentially 2D, that the single-particle states are restricted to lie in the ground eigenspace
of the “magnetic” kinetic energy operator (i.e. in the lowest Landau level) and that the inter-
particles interactions are described by a Dirac delta potential. We will give more details on
these approximations, that can to some extent be backed with rigorous mathematics [32], in
Sect. 2.1. Assuming their validity, the system may be described in the rotating frame by the
following many-body Hamiltonian:1

1L stands for Landau, referring to the lowest Landau level.
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H L =
N∑

j=1

(
V (zj ) − 1

2
Ω2|zj |2

)
+ g

∑

i<j

δ(zi − zj ) (1.1)

“acting” on the Lowest Landau Level (LLL) for N bosons

H
N = {

F(z1, . . . , zN)e
−∑N

j=1 |zj |2/2 ∈ L2
(
R

2N
)
, F holomorphic and symmetric

}
. (1.2)

We have here identified the positions of the particles in the plane with complex numbers
z1, . . . , zN and by ‘symmetric’ we mean invariant under the exchange of zi and zj for i �= j .
The parameter Ω ≥ 0 is the angular frequency, with the convention that the rotation vector
points in the direction perpendicular to the plane in which the particles are confined. The
interaction between particles i and j is given by the delta function gδ(zi − zj ) where g

is proportional to the scattering length of the original 3D interaction potential between the
particles [32]. In our units � = m = 1 and we will also fix Ω = 1 in the sequel.

To find the ground state energy EL of the system we minimize the expectation value
〈H L〉Ψ amongst N -particles states Ψ in HN :

EL := inf
{

E L[Ψ ] = 〈
Ψ,H L Ψ

〉
, Ψ ∈ H

N,‖Ψ ‖L2(R2N ) = 1
}
. (1.3)

More precisely, the energy of a state Ψ reads

E L[Ψ ] :=
N∑

j=1

∫

R2N

(
V (zj ) − 1

2
Ω2|zj |2

)∣∣Ψ (Z)
∣∣2dZ + g

∑

1≤i<j≤N

∫

R2(N−1)

∣∣Ψ (zi = zj )
∣∣2dẐi

(1.4)
where Z = (z1, . . . , zN), dZ = dz1 . . . dzN , Ψ (zi = zj ) is the function Ψ evaluated on the
diagonal zi = zj and dẐi is dZ with the factor dzi removed. Note that it makes perfect sense
to use a delta interaction potential in HN : since functions in this space are all smooth, the
integral

〈
Ψ,δ(z1 − z2)Ψ

〉 :=
∫

R2(N−1)

∣∣Ψ (z2, z2, z3, . . . , zN)
∣∣2dz2 . . . dzN =

∫

R2(N−1)

∣∣Ψ (z1 = z2)
∣∣2dẐ1

is always well-defined. We remark that strictly speaking (1.1) does not act on (1.2) since
it does not leave that space invariant. The actual Hamiltonian under consideration is that
arising from the quadratic form (1.4). We will also use another equivalent formulation of the
problem below.

In most experiments, the trapping potential V is quadratic

V (x) = 1

2
Ω2

⊥|x|2

and hence the effective potential,

Veff(x) = V (x) − 1

2
Ω2|x|2, (1.5)

that includes the effect of the centrifugal force is bounded below only if Ω ≤ Ω⊥. There is
thus a maximum angular frequency that one can impose on the gas, and the FQHE regime
of strong correlations is expected to occur when Ω → Ω⊥, i.e. when the centrifugal force
almost compensates the trapping force. To avoid this singularity of the limit Ω → Ω⊥, it
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has been proposed [39, 52] to add a weak anharmonic component to the trapping potential.
A simple example is provided by a quadratic plus quartic trap of the form

V (r) = 1

2
Ω2

⊥r2 + kr4. (1.6)

With such a potential there is no theoretical limit to the rotation speed that one can impose
on the system. One may thus expect the regime Ω → Ω⊥ to be less singular and more
manageable experimentally. This has been demonstrated in the Gross-Pitaevskii regime by
using this kind of trap to rotate Bose-Einstein condensates beyond the centrifugal limit [10].

In [47] and the present paper we focus on the particular case where the trap V in (1.1) is
given by (1.6):

H L =
N∑

j=1

(
ω|zj |2 + k|zj |4

)+ g
∑

i<j

δ(zi − zj ) (1.7)

with

ω := 1

2

(
Ω2

⊥ − Ω2
)
.

We are mainly interested in two questions:

1. In which parameter regime can one obtain strongly correlated states as approximate
ground states for this model?

2. Can the addition of the quartic part of the potential lead to new physics and to phases not
accessible with the purely harmonic trap?

Let us now be more precise about what we mean by strongly correlated states. In the simpler
case where k = 0, it is easy to see (we give more details in Sect. 2.1) that for sufficiently
large ratio g/ω, the exact ground state of the system is given by the bosonic Laughlin state

Ψ Lau = cLau

∏

1≤i<j≤N

(zi − zj )
2e

−∑N
j=1 |zj |2/2 (1.8)

where cLau is a normalization constant. This wave function2 was originally introduced in [29,
30] as a proposal to approximate the ground state of a 2D electron gas in a strong magnetic
field. The correlations encoded in the holomorphic factor in (1.8) decrease the interaction
energy and even cancel it in our case of contact interactions.

More generally (see [32, Sect. 2.2] for further discussion), it is expected that for g/(Nω)

of order unity, one encounters a series of strongly correlated states with smaller and smaller
interaction energy, ultimately leading to the Laughlin state. Several candidates have been
proposed in the literature (see [13, 52] for review) for the other correlated states that should
occur before eventually reaching the Laughlin state. Although there is some numerical evi-
dence that they have a good overlap with the true ground states, none of these trial functions
is as firmly established as the Laughlin state.

On the other hand, for small g/(Nω) one can show that the ground state energy of (1.7)
is well approximated by Gross-Pitaevskii theory [37], that is by taking a Hartree trial state

Ψ (z1, . . . , zN) =
N∏

j=1

φ(zj ) (1.9)

2Or rather its fermionic analogue where the exponent of the (zi − zj ) factor is an odd number, ensuring
fermionic symmetry.
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for some single particle wave function φ. The corresponding GP theory with states restricted
to the lowest Landau level has some very interesting features, studied in [3, 4]. One thus goes
from a fully uncorrelated state for small g/(Nω) to a highly correlated Laughlin state for
large g/(Nω).

Now, what changes in this scenario when a quartic component is added to the trap? The
tools of [37] still apply in the Gross-Pitaevskii regime [19], which leads to a GP theory
with some specific new aspects [5, 46]. The strongly correlated regime is more difficult: The
Laughlin state is no longer an exact eigenstate of the Hamiltonian, so it is not obvious that
one should eventually reach this state. One should certainly expect that the ground state will
essentially live in the kernel of the interaction operator IN =∑

i<j δ(zi − zj )

Ker(IN) = {
Ψ LauF(z1, . . . , zN), F holomorphic and symmetric

}⊂ H
N (1.10)

in a regime where the interaction energy dominates the physics, i.e. when g is sufficiently
large and ω,k sufficiently small. It is of interest to derive explicit conditions on the order of
magnitude of these parameters that is needed to obtain a strongly correlated state in a certain
limit, and also to obtain rigorous estimates for the energy EL in this regime.

Also, a remarkable new feature of the model with k �= 0 is that it is now possible to
consider negative values of ω, that is, to go beyond the centrifugal limit of the harmonic
trap by taking Ω > Ω⊥. In this case, the effective potential (1.5) has a local maximum at the
origin, which can lead to new physics. Indeed, it can be shown (see below) that the matter
density of the Laughlin state is almost flat in a disc around the origin. If the trap develops
a maximum there, the Laughlin state will have a large potential energy and one may expect
that other strongly correlated phases belonging to Ker(IN), with depleted density at the
center of the trap, will be preferred to the Laughlin state, even for large g and small ω,k.

Our main results on the model (1.7), derived in [47], can be summarized as follows

• we rigorously identify conditions on the parameters of the problem g,ω, k and N under
which the ground state of H L is fully correlated in the sense that its projection on the
orthogonal complement of (1.10) vanishes in a certain limit,

• within this regime we obtain upper and lower bounds to the energy whose order of mag-
nitudes match in the appropriate limit,

• we can identify a regime where the Laughlin state does not approximate the true ground
state, even if it almost fully lives in Ker(IN). We prove that a state with higher angular
momentum is preferred, which can never happen in a purely harmonic trap with k = 0.

Precise statements are given in Sect. 2 below, after we have recalled several facts about
the formulation of Problem (1.3) using the Bargmann space of holomorphic functions. The
proofs are given in [47, Sect. 5]. They mostly rely on adequate energy upper bounds derived
with fully-correlated states of the form (1.10). Indeed, since the Laughlin state is no longer
a true eigenstate of the Hamiltonian, the evaluation of its potential energy, and that of other
candidate trial states, is a non trivial problem. Also, as discussed above, the effective poten-
tial changes from having a local minimum at the origin to having a local maximum when ω

is decreased. We thus need to have some flexibility in the matter density of our trial states to
adapt to this behavior, which leads us to the form

Ψ qh
m = cm

N∏

j=1

zm
j

∏

1≤i<j≤N

(zi − zj )
2e

−∑N
j=1 |zj |2/2 (1.11)

were cm is a normalization constant. One recovers the pure Laughlin state for m = 0 and the
states with m > 0 are usually referred to as Laughlin quasi-holes [29, 30] (hence the label
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‘qh’). They were introduced as elementary excitations of the pure Laughlin state. The factor∏N

j=1 zm
j is interpreted as an additional multiply quantized vortex located at the origin. Its

role is to deplete the density of the state when ω < 0 to reduce potential energy.
We have no rigorous argument allowing to prove that the true ground states are asymp-

totically of the form above in the strongly correlated regime although we do believe that it
is the case. A rudimentary lower bound to the energy confirms however that the trial states
(1.11) at least give the correct order of magnitude for the energy in the strongly correlated
regime, as stated in Theorem 2.3 below.

The method we use in [47] to evaluate the energy of these states relies on the representa-
tion of the effective potential

Vω,k(r) = ωr2 + kr4 (1.12)

in terms of angular momentum operators on the Bargmann space of analytic functions (see
Sect. 2.1 below). This leads relatively easily to energy estimates that imply criteria for full
correlation. On the other hand, this method allows only a limited physical interpretation of
the results because it says nothing about the character of the particle density and its change
as the parameters are varied. Moreover, it is from the outset limited to radial potentials of a
special kind. Anisotropic potentials, but also a radial potential like

V (r) = −k4r
4 + k6r

6

with k4, k6 > 0 cannot be treated by this method. For these reasons the focus of the present
paper is on a different aspect than in [47], namely on rigorous estimates on the particle
density in strongly correlated states. Such density estimates imply in particular an alternative
method for obtaining energy estimates that works also for more complicated potentials than
(1.12). In the following we summarize this method.

Since we are interested in the strongly correlated regime, all the trial states we use will
belong to Ker(IN) and thus have zero interaction energy. Our task is then to calculate their
potential energy

N

∫

R2
V (z)ρΨ (z)dz (1.13)

where

ρΨ (z) =
∫

R2(N−1)

∣∣Ψ (z, z2, . . . , zN)
∣∣2dz2 . . . dzN (1.14)

is the one-particle density of the state Ψ , that we have defined so that its integral is 1. Given
a candidate trial state we thus want to evaluate precisely what the corresponding matter
density is. This will also provide a better understanding of the wave functions (1.11) that
play a central role in FQHE physics [22, 31, 51]. As we will see, this understanding is
crucial for the interpretation of our results on the minimization problem (1.3).

Our main tool is the well-known plasma analogy, originating in [29, 30], wherein the
density of the Laughlin state is interpreted as the Gibbs measure of a classical 2D Coulomb
gas (one component plasma). More precisely, after a scaling of space variables, one can
identify the N -particle density of the Laughlin state with the Gibbs measure of a 2D jellium
with mean-field scaling, that is a system of N particles in the plane interacting via weak
(with a prefactor N−1) logarithmic pair-potentials and with a constant neutralizing back-
ground. Within this analogy the vortex of degree m in (1.11) is interpreted as an additional
point charge pinned at the origin.
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Existing knowledge (e.g. [11, 27, 28, 38, 49]) about the mean-field limit for classical
particles then suggests that we should be able to extract valuable information on the density
of the Laughlin and related states in the limit N → ∞. For our purpose, precise estimates
that are not available in the literature are required, so we develop a new strategy for the study
of the mean field limit that gives explicit and quantitative estimates on the fluctuations about
the mean field density that are of independent interest.

It is convenient to work with scaled variables, defining (we do not emphasize the depen-
dence on m)

μN(Z) := NN
∣∣Ψ qh

m (
√

NZ)
∣∣2. (1.15)

The plasma analogy consists in comparing the one-body density corresponding to (1.15),
i.e.

μ
(1)
N (z) =

∫

R2(N−1)

μN(z, z2, . . . , zN)dz2 . . . dzN ,

with the minimizer �MF of the mean-field free energy functional3

E MF[ρ] =
∫

R2
Wmρ + 2D(ρ,ρ) + N−1

∫

R2
ρ logρ (1.16)

amongst probability measures on R
2, ρ ∈ P(R2). Here

Wm(r) = r2 − 2
m

N
log r

and the notation

D(ρ,ρ) = −
∫∫

R2×R2
ρ(x) log |x − y|ρ(y)dxdy (1.17)

stands for the 2D Coulomb energy.
We will provide new estimates for this classical problem, discussed at length in Sect. 3.

Theorem 3.2 therein is our main result in this direction. Combined with Proposition 3.1
below it can be summarized as follows

Theorem 1.1 (Plasma analogy for QH trial states) There exists a constant C > 0 such that
for large enough N and any smooth function V on R

2

∣∣∣∣
∫

R2
V
(
μ

(1)
N − �MF

)∣∣∣∣≤ CN−1/2 logN‖∇V ‖L2(R2) + CN−1/2‖∇V ‖L∞(R2) (1.18)

if m � N2, and
∣∣∣∣
∫

R2
V
(
μ

(1)
N − �MF

)∣∣∣∣≤ CN1/2m−1/4‖V ‖L∞(R2) (1.19)

if m � N2.

This result allows to evaluate the one-particle density of our trial states in a simple and
explicit way. Of course it cannot be directly applied with V = Vω,k(

√
N · ), i.e., the suitably

rescaled physical potential, because of the growth at infinity of this potential. To compensate

3Here and in the sequel we will drop integration elements from integrals when there is no possible confusion.
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this growth we shall provide exponential decay estimates for the density of our trial states
(see Theorem 3.1). These show that the contribution of large radii r to (1.13) is negligible, so
we can apply Theorem 1.1 to a suitable truncation of V = Vω,k(

√
N · ) and deduce estimates

of the potential energy (1.13). Optimizing these over m, we find

mopt =
{

0 if ω ≥ −2kN

− ω
2k

− N if ω < −2kN.
(1.20)

We interpret this as a strong indication that, within the fully correlated regime, a transition
occurs for ω < 0 and |ω| ∝ kN between a pure Laughlin state and a correlated state with a
density depletion at the origin. Interestingly we also find that the character of the mean-field
density �MF and thus that of the one-particle density of the state (1.11) strongly depends
on m: For m � N2 it is correctly approximated by a flat density profile located in a disc
or an annulus (depending on the value of m), whereas for m � N2 the density profile is
approximately a radial Gaussian centered on some circle. This is due to a transition from a
dominantly electrostatic to a dominantly thermal behavior of the 2D Coulomb gas to which
we compare our trial states. Using the expression of the optimal value of m given in (1.20)
this suggests a further transition in the ground state of (1.3) in the regime |ω| ∝ kN2. Estab-
lishing these phenomena rigorously remains a challenging open problem.

The rest of the paper is organized as follows: In Sect. 2.1 we formulate (1.3) precisely as
a minimization problem over the Bargmann space of analytic functions. In Sect. 2.2 we state
our main results about this model, whose proofs are given in [47], and discuss in Sect. 2.3
how Theorem 1.1 allows to interpret and improve them. Section 3 is the mathematical core
of the present paper. It contains the details on the plasma analogy, along with the proof of
Theorem 1.1 and related results. Finally, Sect. 4 shows how to use the plasma analogy to
obtain rigorous estimates of the potential energy of our QH trial states.

2 Rotating Bosons in the Lowest Landau Level

2.1 The Model

In this section we discuss the derivation of the effective Hamiltonian that we will study and
its most important properties. Our starting point, Eq. (2.1) below, is the full 3D Hamiltonian
for a rotating trapped Bose gas with repulsive interactions given by a two-body potential
v ≥ 0. We make three standard approximations: (1) the motion along the axis of rotation is
frozen, (2) the states for the motion in the plane are reduced to the lowest Landau level, (3)
the interaction potential is replaced by a delta function gδ where g is proportional to the
scattering length of v (see [36, Appendix C] for a definition).

These approximations have been studied in [32] in the case k = 0. Rigorous bounds
quantifying their validity have been derived, and the approach can be adapted with almost
no modifications to the case k �= 0. For these reasons we only sketch the derivation of the
reduced Hamiltonian and focus on its essential properties.

2.1.1 The Full Many-Body Hamiltonian

The rotating Bose gases, where it is proposed to try to create quantum Hall phases can be
described in the rotating frame using the following many-body Hamiltonian

H 3D
N =

N∑

j=1

{
1

2

(
i∇j + A(xj )

)2 + V (xj ) − 1

2
Ω2

(
x2

j,1 + x2
j,2

)}+
∑

i<j

v
(|xi − xj |

)
. (2.1)
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Here xj = (xj,1, xj,2, xj,3) ∈ R
3 is the coordinate of the j -th particle, V is a confining exter-

nal potential and v the two-body interaction potential. Units are chosen so that � = m = 1.
We also choose the coordinate axis so that the rotation vector Ω = Ωe3 is proportional to
the unit vector e3 in the 3-direction. The vector potential

A(x) = Ω(x2,−x1,0)

in (2.1) represents the Coriolis force (analogous to the Lorentz force) while the negative
quadratic potential proportional to Ω2 corresponds to the centrifugal force. We are interested
in the ground state of this Hamiltonian.

We consider a trapping potential of the form

V (x) = 1

2
Ω2

⊥
(
x2

1 + x2
2

)+ k
(
x2

1 + x2
2

)2 + 1

2
Ω‖x2

3 (2.2)

and it is necessary for H 3D
N to be bounded below to require that the effective potential

Veff(x) = V (x) − 1

2
Ω2

(
x2

1 + x2
2

)
, (2.3)

taking into account the effect of the centrifugal force, remains bounded below. This is en-
sured if either k > 0 or k = 0 and Ω < Ω⊥.

2.1.2 Reduction to the Lowest Landau Level

The 1-particle Hamiltonian in (2.1) is given by

H1 = 1

2

(
i∇ + A(x)

)2 + 1

2

(−∂2
3 + Ω2

‖ x2
3

)+ V (x) − 1

2
Ω2

(
x2

1 + x2
2

)
. (2.4)

The first term is the 2D Landau Hamiltonian with spectrum 2(n + 1
2 )Ω , n ∈ N, the second a

one-dimensional harmonic oscillator in the 3-direction with spectrum (n‖ + 1
2 )Ω‖, n‖ ∈ N.

These two terms commute and can thus be diagonalized simultaneously.
When the energy scales associated with the effective trapping potential in the 12-plane

1

2
Ω2

⊥
(
x2

1 + x2
2

)+ k
(
x2

1 + x2
2

)2 − 1

2
Ω2

(
x2

1 + x2
2

)

are much smaller than the gaps between the energy levels of the first two operators in (2.4)
it is natural to restrict attention to joint eigenstates of the first two terms of (2.4) with n =
n‖ = 0. The motion in the 3-direction is then ‘frozen’ in the ground state of the harmonic
oscillator.4 As far as the 12-plane is concerned the state is in the lowest Landau level (LLL).

Henceforth we choose units so that Ω = 1. Replacing (x1, x2) by the complex variables
z = x1 + ix2 and z̄ = x1 − ix2 and denoting ∂z = 1

2 (∂1 − i∂2), ∂z̄ = ∂̄z = 1
2 (∂1 + i∂2) we can

write the Landau Hamiltonian as

1

2

(
i∇⊥ + A(x)

)2 = 2

(
a†a + 1

2

)
(2.5)

4We could also consider a more general trapping potential in the 3-direction.
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with the creation and annihilation operators a† = −∂ + 1
2 z̄, a = ∂̄ + 1

2z. Eigenfunctions
ψ(z, z̄) in the lowest Landau level are solutions of the equation aψ = 0, i.e.,

∂̄zψ(z, z̄) = −1

2
zψ(z, z̄).

They are therefore of the form

ψ(z, z̄) = f (z) exp
(−|z|2/2

)
(2.6)

with ∂̄zf (z) = 0, i.e., f is an analytic function of z.

2.1.3 The Bargmann Space

As seen above, single particle wave functions in the LLL correspond uniquely to functions
in the Bargmann [6, 23] space B of analytic functions f on C such that

〈f,f 〉B =
∫

C

∣∣f (z)
∣∣2 exp

(−|z|2)dz < ∞ (2.7)

where dz denotes the Lebesgue measure on C � R
2. We denote by H the space of the full

wave functions ψ including the Gaussian factor in (2.6). It is a subspace of the Hilbert space
of square integrable functions w.r.t. dz. Thus, state vectors in the LLL can either be regarded
as elements of B or of H and we shall make use of both points of view.

For our N -body system of bosons in the LLL the corresponding Hilbert spaces are the
symmetric tensor powers of B or H, denoted by BN and HN :

BN = {
F holomorphic and symmetric such that F(z1, . . . , zN)e

−∑N
j=1 |zj |2/2 ∈ L2

(
R

2N
)}

(2.8)

H
N = {

Ψ (z1, . . . , zN) = F(z1, . . . , zN)e
−∑N

j=1 |zj |2/2 ∈ L2
(
R

2N
)
,F ∈ BN

}
. (2.9)

(Note that the functions in HN actually depend on both zi and z̄i because of the Gaussian
factor.) The scalar product on BN is given by

〈F, G〉BN = 〈
Fe

−∑N
j=1 |zj |2/2

,Ge
−∑N

j=1 |zj |2/2〉
L2(R2N )

. (2.10)

2.1.4 The Reduced N -Body Hamiltonian

We can now define our energy functional. When the above reductions have been made, the
only term in the one-particle Hamiltonian (2.4) that is not fixed is the effective potential
term in the 12 plane. For a short range potential it makes sense physically to replace v by a
delta pair-potential gδ. It also makes sense mathematically since the wave functions of the
lowest Landau level are smooth. Justifying the substitution rigorously is a difficult task [32]
on which we will not elaborate, but if we take this for granted we obtain

E L[Ψ ] = N

∫

R2
Vω,k(r)ρΨ (z)dz + 4N(N − 1)g

∫

R2(N−1)

∣∣Ψ (z2, z2, z3 . . . , zN)
∣∣2dz2 . . . dzN

(2.11)
where ρΨ is the one-body density normalized to 1, g the coupling constant and

Vω,k(r) = ωr2 + kr4. (2.12)
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The ground-state energy EL is then defined as in (1.3). It is useful to reformulate this prob-
lem in the Bargmann space:

Lemma 2.1 (Hamiltonian in the Bargmann Space) Define the Hamiltonian acting on BN

H B := N(ω + 2k) +
N∑

j=1

(
(ω + 3k)Lj + kL2

j

)+ g
∑

1≤i<j≤N

δij (2.13)

with Lj = zj ∂zj
the angular momentum operator in the j -th variable and

δijF (. . . , zi, . . . , zj . . . ) = 1

2π
F

(
. . . ,

1

2
(zi + zj ), . . . ,

1

2
(zi + zj ), . . .

)
. (2.14)

We have

E L[Ψ ] = 〈
F,H BF

〉
BN with Ψ = F exp

(
−

N∑

j=1

|zj |2
2

)
,F ∈ BN . (2.15)

In particular

EL = EB := infσBN H B. (2.16)

Proof The fact that the δ interaction operator acts as (2.14) seems to have been noticed
first in [41]. Indeed, taking (2.14) as the definition of the interaction operator and using the
analyticity of F ∈ BN , one easily realizes that

〈F, δijF 〉BN =
∫

CN

∣∣F(. . . , z, . . . , z, . . .)
∣∣2 exp

(−2|z|2)dz exp

(
−
∑

k �=i,j

|zk|2
) ∏

k �=i,j

dzk.

(2.17)

It is sufficient to perform the computation for a two-body f ∈ B2:

〈f, δ12f 〉B2 = 1

2π

∫∫

C2
f̄ (z1, z2)f

(
z1 + z2

2
,
z1 + z2

2

)
e−|z1|2−|z2|2dz1dz2

= 2

π

∫

C

f (u,u)e−2|u|2
∫

C

f̄ (u + v,u − v)e−2|v|2dvdu.

Fixing u, writing g(v) = f (u + v,u − v) with a holomorphic g(v) =∑
n≥0 gnv

n we find

∫

C

f̄ (u + v,u − v)e−2|v|2dv = ḡ0

∫

C

e−2|v|2dv = π

2
ḡ(0) = π

2
f̄ (u,u),

which is what we need.
On B the operator of the 3-component of the angular momentum is Lz = z∂z and an

integration by parts shows (see e.g. [2, Lemma 3.1]) that, for f ∈ B,

〈f,Lzf 〉B =
∫

C

(|z|2 − 1
)∣∣f (z)

∣∣2 exp
(−|z|2)dz. (2.18)
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Integrating by parts twice we also obtain
∫

C

|z|4∣∣f (z)
∣∣2 exp

(−|z|2)dz = 〈
f,L2

zf
〉

B + 3〈f,Lzf 〉B + 2〈f,f 〉B. (2.19)

Putting (2.17), (2.18) and (2.19) together proves (2.15) and (2.16). �

Note that the angular momentum operator z∂z on B has eigenvalues  = 0,1,2, . . . with
corresponding normalized eigenfunctions f(z) = (π!)−1/2 z. On H it acts as z∂z − z̄∂̄z

rather than z∂z.

2.1.5 Existence of a Ground State

The essential virtue of writing the Hamiltonian as in Lemma 2.1 is that the operator H B

sends BN onto BN . Clearly (2π)δij , defined in (2.14), is a projector, in particular a bounded
operator. Also H B commutes with the total angular momentum operator

LN =
N∑

j=1

zj ∂zj
(2.20)

and we have

Lemma 2.2 (Existence of a ground state) EB , as defined in (2.16) is an eigenvalue of H B

with (possibly non unique) eigenfunction F B . One may choose F B to have a definite angular
momentum, say L0:

LNF B = L0F
B.

Equivalently, the infimum in (1.3) is attained. One may choose a minimizer Ψ L with definite
angular momentum L0.

Proof Since H B commutes with LN we may look for its ground state by looking at the joint
spectrum of H B and LN ,

EB = inf
L∈N

inf
{〈

F,H BF
〉
, F ∈ BN, LNF = LF

}
. (2.21)

The subspace of BN given by LNF = LF has finite dimension (it is spanned by the elemen-
tary symmetric polynomials of N variables with total degree L) and thus the bottom of the
spectrum of H B in this subspace is an eigenvalue. Obviously we have

H B ≥ N(ω + 2k) +
N∑

j=1

(
(ω + 3k)Lj + kL2

j

)

and it is easy to deduce (see Lemma 4.1 below) that

inf
{〈

F,H BF
〉
, F ∈ BN, LNF = LF

}→ ∞ when L → ∞.

The infimum over L in (2.21) is thus attained, say at L0, and the bottom of σBN H B is an
eigenvalue, with eigenfunction (a priori not unique) F B , which may be chosen with angular
momentum L0. �
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2.1.6 The Yrast Curve and Fully Correlated States

In the case k = 0, the Hamiltonian H B is simply

H B = Nω + ωLN + gIN (2.22)

with LN the total angular momentum (2.20) and IN the total interaction operator

IN =
∑

1≤i<j≤N

δij . (2.23)

This Hamiltonian has been studied extensively in the literature see e.g. the reviews [13,
52] and [32, 37, 47] for references. Its essential property is that the operators LN and IN

commute. The lower boundary of (the convex hull of) their joint spectrum in a plot with
angular momentum as the horizontal axis is called the yrast curve (see [42–44, 53] and [32]
for plots showing its qualitative features). As a function of the eigenvalues L of LN the Yrast
curve I (L) is monotonously decreasing, starting at I (0) = CN(N − 1) and hitting zero
at L = N(N − 1). The monotonicity follows from the observation that if a simultaneous
eigenfunction of LN and IN is multiplied by the center of mass, (z1 + · · · + zN)/N , the
interaction is unchanged while the angular momentum increases by one unit.

For a given ratio ω/g the ground state of (2.22) (in general not unique) is determined
by the point(s) on the yrast curve where a supporting line has slope −ω/g. For L ≤ N the
ground state of (2.22) is explicitly known [41, 50] while for large N and L � N2 a Gross-
Pitaevskii description with an uncorrelated ground state is asymptotically correct [37]. For
L = N(N − 1) the unique ground state of IN with eigenvalue 0 is the bosonic Laughlin
state (1.8) whose wave function in BN is the symmetric polynomial

FLau(z1, . . . , zN) = cLau

∏

1≤i<j≤N

(zi − zj )
2 (2.24)

with a normalization constant cLau. More generally we have

Lemma 2.3 (Null space of the interaction operator) The null space of the interaction oper-
ator (2.14) is given by

Ker(IN) = {
FLauF, F ∈ BN

}
. (2.25)

Proof Null states of IN must vanish on the diagonals zi = zj , hence contain the factor∏
i<j (zi − zj ) by analyticity. Null state are thus of the form

F(z1, . . . , zN) =
∏

1≤i<j≤N

(zi − zj )G̃(z1, . . . , zN)

and the bosonic symmetry of the wave function F imposes that G̃ be anti-symmetric
(fermionic) with respect to particles exchanges

G̃(. . . , zi, . . . , zj , . . .) = −G̃(. . . , zj , . . . , zi, . . .), for any i, j.

Then G̃ also has to vanish on the diagonals zi = zj , which leads to the form
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F(z1, . . . , zN) =
∏

1≤i<j≤N

(zi − zj )
2G(z1, . . . , zN) (2.26)

by analyticity again and proves (2.25). �

We shall call states of the form (2.26) fully correlated states because adding more cor-
relations to them cannot decrease further the interaction energy. Their angular momentum
spectrum is contained in L ≥ N(N − 1) and amongst them only the Laughlin state has
angular momentum exactly N(N − 1).

2.1.7 Spectral Gaps of the Interaction Operator

Clearly, a proof that a ground state of H B almost fully lives in Ker(IN) will rely on the op-
erator IN having a spectral gap above its ground state. However this is not known at present
although it is widely believed to be true. It is however possible to restrict our attention to
states satisfying bounds on their angular momentum. For example, states having too large
an angular momentum will be proved to also have an unreasonably large potential energy
as compared to that of the trial states we are going to construct. Once restricted to states
with finite angular momentum, the interaction operator is a non zero operator on a finite
dimensional space and thus it trivially has a gap. Important quantities for us will be the gaps
that one obtains when restricting the interaction operator in such a manner:

gap(L) := min
(
σ(IN |{LN =L}) \ {0}) (2.27)

where LN is given by (2.20). The function L �→ gap(L) is decreasing for the same reason
that the yrast curve is.

Numerical diagonalizations of the interaction operator (see e.g. [42–44, 53]) for small
numbers of particles suggest that the unrestricted operator truly has a gap, and that it is
attained at angular momentum N(N − 1) − N :

gap(L) = gap
(
N(N − 1) − N

)
for any L ≥ N(N − N).

It is also believed (see e.g. discussions in [32]) that this gap stays of order 1 when N → +∞.
Proofs of these conjectures are unknown to us and hence our criteria for the ground state of
(1.7) being strongly correlated will depend on quantities whose N -dependence is not known.
If true, the conjectures would imply a uniform lower bound

gap(L) ≥ gap
(
N(N − 1) − N

)≥ C for any L ∈ N

which would simplify the conditions on the parameters to have strong correlations in the
ground state that we give below and make explicit their dependence on N .

2.2 Main Results

With the notation above one can easily see [32, Sect. 2.2] that when k = 0 and g/ω is large
enough (in dependence of N ), the ground state of H B is exactly given by the Laughlin state.

When k �= 0, the single particle part of H B is no longer a multiple of LN as in (2.22).
In particular it no longer commutes with the interaction operator and the Laughlin state is
no longer an exact eigenstate of the full Hamiltonian. One may only hope that F B becomes
almost fully correlated in an appropriate limit. Identifying such a limit is the main goal of
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the companion paper [47]. Note also that the spectrum of the single particle Hamiltonian in
(2.13) is given (up to an additive constant) by

(ω + 3k) + k2,  ∈ N

with normalized eigenfunctions f(z) = (π!)−1/2 z. When ω < 0, which is allowed if k �=
0, the single particle part thus favors states with non zero angular momentum , in contrast
with the situation when ω ≥ 0. One may thus imagine to obtain fully correlated states with
angular momentum larger than N(N − 1).

We now state precisely our results, starting by providing estimates on the angular mo-
mentum of the ground state of (1.7). In particular, this will provide the reduction to states
having finite angular momenta we were alluding to before. Since our Hamiltonian com-
mutes with the total angular momentum LN we may choose Ψ L in a definite total angular
momentum sector. We denote L0 the total momentum of such a ground state:

N∑

j=1

(zj ∂zj
− z̄j ∂̄zj

)Ψ L = L0Ψ
L (2.28)

and we have

Theorem 2.1 (Angular momentum estimates) In the limit N → ∞, ω,k → 0 the angular
momentum L0 of a ground state of H L satisfies

1. If ω ≥ −2kN ,

L0 ≤ 2N2. (2.29)

2. If ω ≤ −2kN and |ω|/k � N2,

|L0 − Lqh| ≤
√

3N2, (2.30)

where

Lqh = −ωN

2k
+ O(1). (2.31)

In particular L0/Lqh → 1 if N � |ω|/k � N2.
3. If ω ≤ −2kN and |ω|/k � N2,

|L0 − Lqh| ≤
√

3L
1/2
qh N. (2.32)

In particular L0/Lqh → 1 if |ω|/k � N2.

The situation described in Item 1 of the above is compatible with the Laughlin state
staying the ground state of the Hamiltonian. On the other hand, Items 2 and 3 show that the
Laughlin state is not the true ground state for sufficiently negative values of the ratio ω/kN :
in this case the ground state has a momentum given to leading order by Lqh (qh stands
for quasi-hole again). A state with much larger angular momentum than Laughlin’s is thus
favored. As we will discuss below, we prove that a wave function containing a vortex at the
origin in addition to the correlations of the Laughlin state has a lower energy than the pure
Laughlin state.
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Our next theorem is a criterion for the ground state of (2.13) to be asymptotically fully
correlated, in the sense that its projection PKer(IN )⊥(Ψ L) on the orthogonal complement of
Ker(IN) (as defined in (1.10)) vanishes in a certain limit. As anticipated above, our criteria
depend on spectral gaps of the interaction operator. Recalling (2.27), let us define

�1 = gap
(
2N2

)

�3 = gap
(
Lqh + √

3N2
)

(2.33)

�4 = gap
(
Lqh + √

3L
1/2
qh N

)
,

where Lqh is defined as in (2.31). The indices in the notation correspond to the different
cases in the following theorem. A reader willing to take for granted the conjectures about
the spectral gaps of IN we discussed above may replace these quantities by fixed numbers
in the following statements.

Theorem 2.2 (Criteria for strong correlations in the ground state) Let Ψ L be a minimizer of
(1.3). We have

∥∥PKer(IN )⊥Ψ L
∥∥→ 0 (2.34)

in the limit N → ∞, ω,k → 0 if one of the following conditions holds:

Case 1. ω ≥ 0 and

(g�1)
−1
(
ωN2 + kN3

)→ 0.

Case 2. −2kN ≤ ω ≤ 0 and

(g �1)
−1
(
Nω2/k + ωN2 + kN3

)→ 0.

Case 3. ω ≤ −2kN and

(g�3)
−1kN3 → 0.

Case 4. ω ≤ −2kN and

(g�4)
−1|ω|N → 0.

Note that, given some ω and k depending on N in a definite manner, one can always
choose g so large that one of the criteria in Theorem 2.2 is satisfied in the limit N → ∞.

We now state some energy estimates. In the cases described in Theorem 2.2 we are able to
determine the order of magnitude of the leading order of the energy, though with unmatching
constants.

Theorem 2.3 (Energy bounds) The ground state energy EL satisfies the following bounds:
Cases 1 and 2

(
ωN2 + kN3

)(
1 − o(1)

)≤ EL ≤
(

ωN2 + 4

3
kN3

)(
1 + o(1)

)
. (2.35)

Case 3

−ω2N

4k

(
1 − o(1)

)≤ EL ≤
(

−ω2N

4k
+ 1

3
kN3

)(
1 + o(1)

)
. (2.36)
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Case 4

−ω2N

4k

(
1 − o(1)

)≤ EL ≤
(

−ω2N

4k
+ 3

2
|ω|N

)(
1 + o(1)

)
. (2.37)

The proofs of these results are given in [47]. The rest of the paper is devoted to their
interpretation, using the plasma analogy that we expose in details in Sect. 3.1.

2.3 Discussion

The reason for the occurrence of different cases in Theorems 2.2 and 2.3 can be interpreted
in view of the plasma analogy. Indeed, the minimization of (1.16) is a simple electrostatics
problem and accurate approximations to �MF may be computed, leading to the following
picture:

• In case 1 the effective potential is increasing and it is favorable to use the pure Laughlin
state as a trial state. We prove that in this case the mean-field density is approximately
constant in a disc around the origin.

• In cases 2 to 4, the effective potential has a local maximum at the origin and a minimum
along some circle of radius ropt(ω, k). In case 2 the potential well along r = ropt(ω, k) is
not deep enough to make it favorable to deplete the density of the trial state at the origin,
and the Laughlin state is still preferred.

• For the cases 3 and 4, we notice that the mean-field density �MF is well approximated by a
profile with a maximum along a circle of radius r(m,N). Equating ropt(ω, k) and r(m,N)

in order that the maximum of the density coincides with the minimum of the potential we
find an optimal choice for the phase circulation m of the giant vortex at the origin

mopt =
{

0 if ω ≥ −2kN

− ω
2k

− N if ω < −2kN.
(2.38)

The Laughlin state is thus favored for ω ≥ −2kN whereas there is a tendency towards
adding a vortex at the origin in the opposite regime.

• The character of the density of the optimal trial state changes from an almost constant
profile when m � N2 to a Gaussian profile when m � N2, corresponding to the change
in the order of magnitude of the subleading contribution to the energy upper bound in
Theorem 2.3 that distinguishes case 3 from case 4.

The fact that the mean-field density profile changes in the regime m ∝ N2 is the reason
why the estimates of Theorem 1.1 are stated differently when m � N2 and m � N2. The
change in the physics is reflected by the need of a different approach to the mean-field limit
in the two regimes.

We thus see that the plasma analogy provides a rationale for the occurrence of different
cases in the minimization of the energy functional describing rotating bosons in the lowest
Landau level when the trapping potential is of the form (1.5) (more complicated expressions
could be considered). As we prove below (Sect. 4), it also allows to improve some of our
energy upper bounds. The rest of the paper is devoted to the proof of Theorem 1.1 and to
the study of the mean-field energy functional (1.16).

3 Quantum Hall States and the Plasma Analogy

In this core section of the paper we use the interpretation of the modulus squared of fully
correlated trial states as the Gibbs measure of a 2D Coulomb gas (one-component plasma)
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to compute the single-particle density of the trial states in the limit of large particle number.
This interpretation has been instrumental since the first introduction of the Laughlin state
[29, 30] in the context of the fractional quantum Hall effect, see [22] for a review. Ideas
derived from the plasma analogy are commonly used in the literature (see e.g. [9, 12, 18,
24–26, 31]), and we shall provide a rigorous justification to some of them.

It is convenient to scale distances by a factor
√

N :

μN(Z) := NN
∣∣Ψ qh

m (
√

NZ)
∣∣2. (3.1)

With such a rescaling, we can recognize the Gibbs measure of a 2D Coulomb gas with
temperature T = N−1 and a mean-field scaling in the interactions (ZN is a normalization
factor)

μN(Z) = Z −1
N exp

(
N∑

j=1

(−N |zj |2 + 2m log |zj |
)− 4

∑

i<j

log |zi − zj |
)

= Z −1
N exp

(
− 1

T

(
N∑

j=1

(
|zj |2 − 2

m

N
log |zj |

)
− 4

N

∑

i<j

log |zi − zj |
))

= Z −1
N exp

(
− 1

T
HN

)
, (3.2)

where the Coulomb Hamiltonian HN is defined as

HN(Z) :=
N∑

j=1

Wm(zj ) − 2

N

∑

i �=j

log |zi − zj | (3.3)

with

Wm(z) = |z|2 − 2
m

N
log |z|. (3.4)

This model describes N classical 2D particles located at points z1, . . . , zN in the com-
plex plane, interacting via 2D Coulomb forces and feeling the electric potential gener-
ated by a constant background of opposite charge (the |zj |2 terms). When m �= 0, the term
−2 m

N
log |zj | describes the effect of a particle of charge 2 m

N
fixed at the origin. Our classi-

cal one-component plasma is thus more precisely a jellium with an additional point charge
pinned at the origin.

Note the 1/N factor in front of the interaction term: the interest of scaling the distances
is to put us in a mean-field regime. Common wisdom about the thermodynamic limit for
classical particles then suggests that we shall be able to extract information about μN from
a limit N → ∞. More precisely, one should expect that μN factorizes

μN ≈ ρ⊗N when N → ∞, (3.5)

for some well-chosen probability measure ρ ∈ P(R2) (see Sect. 3.1 below), in the sense that

μ
(k)
N ≈ ρ⊗k when N → ∞ and k is fixed. (3.6)
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Here we denote by μ(k) the k particle density of a symmetric measure μ over a Cartesian
product, defined by integrating μ(k) over N − k variables:

μ(k)(z1, . . . , zk) :=
∫

R2(N−k)

μ(z1, . . . , zN)dzk+1 . . . dzN . (3.7)

Results in this direction are given in [11, 27, 28, 38] for related models. A large deviation
result is presented in [7]. Adapting these methods we could prove that μ

(k)
N ⇀ ρ⊗k weakly

as measures for any fixed k. For our purpose, however, quantitative estimates are needed and
we thus use a different method.

Our new approach to the mean-field limit of the Coulomb gas works in any scaling of
the spatial variables but it is important to note that once a scaling has been chosen, the
dependence of the temperature on N is fixed. In the most convenient mean-field scaling that
we have chosen above, the temperature is

T = N−1 (3.8)

and thus T → 0 when N → ∞. One could thus expect the plasma, to which we compare the
density of our QH states, to be close to being in its ground state. These heuristic considera-
tions have to be taken with caution however since the potential Wm depends on both m and
N . As it turns out there is a transition in the physics of our trial state, the dividing line being
given by m ∝ N2: For m � N2, electrostatic effects dominate, i.e. the plasma is close to its
ground state at zero temperature, whereas for m � N2 entropy considerations dominate the
physics, i.e. the temperature plays an important role.

Although we shall not use this analogy, it is worth recalling the strong connection be-
tween Coulomb gases and Gaussian random matrices, noted first by Wigner, see [21] for
references. Interestingly, in the random matrix context, one also has to analyze a Coulomb
gas with mean-field interactions and temperature of order N−1, see [28]. The study of the
2D Coulomb gas problem, or some of its generalizations, is also related to vortex systems
in classical and quantum fluids, see e.g. [11, 14, 49] for discussions.

3.1 The Mean-Field One Component Plasma

Let us now go into more details about our approach to the mean-field limit. As is well-known
[11, 27] and easy to prove, μN minimizes the free-energy functional (recall the temperature
is N−1)

FN [μ] :=
∫

R2N

HN(Z)μ(Z)dZ + T

∫

R2N

μ(Z) logμ(Z)dZ (3.9)

amongst symmetric probability measures μ ∈ Ps(R
2N). We denote by

FN = FN [μN ] = −T log ZN (3.10)

the minimum free energy.
We will prove estimates relating the minimization of (3.9) to that of the mean-field free

energy functional

E MF[ρ] =
∫

R2
Wmρ + 2D(ρ,ρ) + T

∫

R2
ρ logρ (3.11)
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amongst probability measures ρ ∈ P(R2). We denote by �MF and EMF respectively the
ground state and the ground state (free) energy of the mean-field free energy functional.
The notation

D(ρ,ρ) = −
∫∫

R2×R2
ρ(x) log |x − y|ρ(y)dxdy (3.12)

stands for the 2D Coulomb energy.
As usual, E MF is obtained by restricting FN to trial states of the form ρ⊗N , which should

be a reasonable approximation when N is large. The main goal of this section is to justify
this approximation by proving that

FN ≈ NEMF, μN ≈ �MF ⊗N

in a sense to be made precise below, and with quantitative estimates.
The transition in the physics of our trial states between dominantly electrostatic and

thermal behaviors can be taken into account by introducing two simplified functionals that
will be used to approximate (3.11) in the two different regimes. In the electrostatic regime
we drop the entropy term and define

E el[ρ] =
∫

R2
Wmρ + 2D(ρ,ρ) (3.13)

with ground state �el and ground state energy Eel whereas in the thermal regime we drop
the electrostatic term to obtain

E th[ρ] =
∫

R2
Wmρ + T

∫

R2
ρ logρ (3.14)

with ground state �th and ground state energy Eth. For our computational purpose it is much
more convenient to estimate the difference between μ

(1)
N and �el or �th because, at least with

the relatively simple potentials Wm we consider, the two latter functions are explicit, see
Proposition 3.1 below.

The main output of the plasma analysis is the following theorem. We denote

ropt =
√

m

N

the minimum point of the potential Wm.

Theorem 3.1 (Plasma analogy for quantum Hall phases) There exists a constant C > 0 such
that we have

1. (Mean-field limit in the electrostatic regime.) For m � N2 and any V such that ∇V ∈
L∞(R2) ∩ L2(R2)

∣∣∣∣
∫

R2

(
μ

(1)
N − �el

)
V

∣∣∣∣≤ CN−1/2(logN)1/2‖∇V ‖L2(R2) + CN−1/2‖∇V ‖L∞(R2). (3.15)

Also, for some constants c,C > 0 and for N large enough

μ
(1)
N (z) ≤ C exp

(−cN
((|z| − ropt

)2 − logN
))

when
∣∣|z| − ropt

∣∣≥ C max
(
N1/2m−1/2,N−1/2

)
. (3.16)
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2. (Mean-field limit in the thermal regime.) For m � N2 and any V ∈ L∞(R2)

∣∣∣∣
∫

R2

(
μ

(1)
N − �th

)
V

∣∣∣∣≤ CN1/2m−1/4‖V ‖L∞(R2). (3.17)

Moreover there exists c,C > 0 such that

μ
(1)
N (z) ≤ exp

(−cN
(|z| − ropt

)2)
when

∣∣|z| − ropt

∣∣≥ CN1/2m−1/4. (3.18)

The proof of this theorem relies on upper and lower bounds to the free energy proving that
FN ∼ NEMF with controlled error. Our approach can also give information on the reduced
densities μ

(k)
N , for k fixed in the limit N → ∞ see Remark 3.3 below. We state only (3.15)

and (3.17) explicitly because they will be our main tools for estimating the energy of our
quantum Hall trial states. What these equations say is that we can replace μ

(1)
N by �el or

�th, making a controlled error. Note that to put them to good use in the proofs of our main
results we will have to truncate the physical potential Vω,k so that the norms appearing in the
right-hand sides be finite. To estimate the error this induces we need to know that μ

(1)
N has

a suitable decay, which is the purpose that (3.16) and (3.18) serve. As we will prove below,
�MF decays rather fast in the regions where �el and �th are small so that one can hope not to
make a large error when truncating the physical potential.

The proof of this result goes as follows: In Sect. 3.2 we first study the mean-field func-
tional and prove that �MF can be approximated by �el (respectively �th) when m � N2

(respectively when m � N2). We also study the decay of �MF, which will provide the de-
sired decay of μ

(1)
N in the electrostatic regime according to (3.16). In Sect. 3.3 we study the

mean-field limit and thereby relate μ
(1)
N to �MF, which will complete the proof of (3.15).

Most of the arguments in this part apply to much more general situations than that we are
directly interested in. The interested reader should have no difficulty in adapting our proofs
to different potentials than our specific Wm, and to other temperature regimes than T = N−1.
Finally Sect. 3.4 contains the proof of (3.17). As explained below we have to follow different
strategies for the electrostatic and thermal regimes, which accounts for the different norms
of V appearing in the right-hand sides of (3.15) and (3.17), and the different forms of the
decay estimates (3.16) and (3.18).

3.2 The Mean-Field Functionals

We now state several facts about the mean-field problems, some being well-known from
potential theory (see [48] for references).

Proposition 3.1 (The mean-field functionals) The following properties hold

1. (Existence, uniqueness) The functionals (3.11), (3.13) and (3.14) each admit a unique
minimizer among probability measures, respectively denoted �MF, �el and �th. Moreover

0 < �MF ≤ 1

2π
a.e. in R

2. (3.19)

2. (Electrostatic regime) We have the explicit expression

�el = 1

2π
1B(0,

√
2) if m = 0 (3.20)
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�el = 1

2π
1AN

if m > 0 (3.21)

where AN is the annulus of inner radius R−
m = √

m/N and outer radius R+
m =√

2 + m/N centered at the origin. Moreover

D
(
�el − �MF, �el − �MF

)≤ CN−1. (3.22)

3. (Thermal regime) We have the explicit expression

�th(r) = 1

Zth
exp

(−T Wm(r)
)= 1

πm!z
m exp

(−|z|2) (3.23)

where Zth is a normalization constant satisfying Eth = −T logZth. Moreover,

D
(
�th − �MF, �th − �MF

)≤ Cm−1/2 (3.24)

for any m � N2 and

∥∥�th − �MF
∥∥

TV
≤ C

N1/2

m1/4
(3.25)

where ‖μ‖TV = ∫ |μ+| + ∫ |μ−| stands for the total variation norm of a measure μ.

Remark 3.1

1. Norms. Note that D(., .) is the square of a norm on the space of measures with total mass
0 as we will see below. It is actually the square of the Ḣ−1 norm (L2 norm in Fourier
space with weight |k|−2). Comparing (3.22) and (3.24) one can see that �MF is better
approximated by �el (respectively �th) when m � N2 (respectively m � N2). When
m � N2, it becomes possible to use the total variation norm to estimate the difference
between �MF and �th (3.25), which is more convenient for practical purposes. Note that
in our case �MF and �th are L1 functions, so their total variation norm coincides with
their L1 norm.

2. Comparing the profiles. When m � N it is safe to approximate Wm with its second
variation around ropt = m1/2N−1/2, noting that W ′′

m(ropt) = O(1), which means that �th

is roughly speaking a Gaussian profile centered on the minimum of Wm. Obviously this
is a very different shape from the electrostatic profile, which is constant in an annulus
close to ropt. More important are the scales involved in the two profiles: the electrostatic
density has its maximum of order 1 and consequently its support has a thickness of order
m−1/2N1/2, whereas the thermal profile has a maximum of order m−1/2N and thus is
spread over an annulus of thickness N−1/2 to ensure normalization.

3. Heuristics for the electrostatic/thermal transition. A good criterion for the transition,
that can be backed with energetic considerations, is the comparison of the length scales:
To favor the potential energy, �MF wants to be as concentrated as possible close to the
minimum of Wm, the meaning of “possible” being set by the other terms in the functional.
The entropy and electrostatic terms are associated with different length scales, N−1/2

for the entropy and m−1/2N1/2 for the Coulomb term. In order to minimize the energy,
the true profile �MF is spread over the maximum of these two length scales, i.e. on the
electrostatic length scale for m � N2 and on the thermal length scale for m � N2. �

We start the proof of Theorem 3.1 by recalling some well-known lemmas that we shall
use several times in the sequel:
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Lemma 3.1 (Positivity of relative entropies and CKP inequality) Let μ and ν be two prob-
ability measures with μ absolutely continuous with respect to ν. Then

∫
μ log

μ

ν
≥ 0. (3.26)

More precisely one has the Csiszár-Kullback-Pinsker (CKP) inequality

∫
μ log

μ

ν
≥ 1

2
‖μ − ν‖2

TV. (3.27)

Proof A simple application of Jensen’s inequality:

∫
μ log

μ

ν
=
∫

ν
μ

ν
log

μ

ν
≥
(∫

ν
μ

ν

)
log

(∫
ν
μ

ν

)
= 0,

since μ and ν are probability measures and x �→ x logx is convex. A proof of the CKP
inequality and some generalizations may be found in [8]. �

Lemma 3.2 (Positivity properties of the 2D Coulomb energy) Let μ be a Radon mea-
sure over R

2 whose positive and negative parts μ+ and μ− satisfy |D(μ+,μ+)| < ∞,
|D(μ−,μ−)| < ∞. If

∫

R2
μ = 0

then

D(μ,μ) ≥ 0 (3.28)

with equality if and only if μ = 0.
Consequently, the functional μ �→ D(μ,μ) is strictly convex on the convex set P(R2) of

probability measures on R
2.

Proof This is a consequence of the formula

D(μ,μ) = 1

2π

∫

R2

(∫

R2

1

|t − z|dμ(z)

)2

dt

that holds whenever
∫

R2 μ = 0, see [48, Chap. I, Lemma 1.8].
To see that (3.28) implies the claimed convexity property, pick μ1,μ2 ∈ P(R2) and notice

that

1

2
D(μ1,μ1)+ 1

2
D(μ2,μ2)−D

(
1

2
μ1 + 1

2
μ2,

1

2
μ1 + 1

2
μ2

)
= 1

4
D(μ1 −μ2,μ1 −μ2) ≥ 0

since
∫

R2 μ1 = ∫
R2 μ2 = 1. �

Lemma 3.3 (Newton’s theorem) For a measure μ let

hμ(x) = −
∫

R2
log |x − y|μ(dy) (3.29)
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be the potential generated by μ. If μ is radial then

hμ(x) = − log |x|
∫

|y|<|x|
μ(dy) −

∫

|y|>|x|
log |y|μ(dy). (3.30)

Proof Simply reproduce the proof of the corresponding result in 3D, see [34, Theo-
rem 9.7]. �

Proof of Theorem 3.1 Step 1 (Existence, uniqueness). The existence part is standard mate-
rial, as are the following Euler-Lagrange equations

4h�MF + Wm + N−1 log
(
�MF

)= EMF + 2D
(
�MF, �MF

)
on R

2 (3.31)

Wm + N−1 log
(
�th

)= Eth on R
2. (3.32)

Strictly speaking, studying the variations of E MF and E th only tells that the above equations
hold on the support of �MF, respectively �th. However, as we prove below, �MF and �th are
strictly positive a.e. which is why the above equations hold on R

2.
On the contrary, �el has compact support (see below), which makes the Euler-Lagrange

equation a little bit more subtle [48]:

4h�el + Wm = Eel + 2D
(
�el, �el

)
on supp

(
�el

)
(3.33)

4h�el + Wm ≥ Eel + 2D
(
�el, �el

)
on R

2 \ supp
(
�el

)
. (3.34)

Here h�MF and h�el are defined as in (3.29). The value of the constants on the right-hand
sides of the Euler-Lagrange equations is evaluated by multiplying the equations by �MF, �th

and �el respectively, and integrating. The formula (3.23) is a direct consequence of (3.32)
once one knows that �th > 0 a.e. and thus that (3.32) holds on the whole space.

The fact that we have equality on the whole of R
2 in (3.31) and (3.32) follows from

the fact that supp(�MF) = supp(�th) = R
2, which is probably a point that deserves a little

discussion. We follow an argument from [40] (proof of Proposition 15 therein): Suppose for
contradiction that supp(�MF)c contains a set S of nonzero Lebesgue measure. Consider the
trial state

ρ = �MF + ε1S

1 + ε|S|
for some ε small enough. Evaluating E el[ρ] is easy and we find that for small enough ε there
is a constant C > 0 such that (we consider N , m and T as fixed here)

E el[ρ] ≤ E el
[
�MF

]+ Cε.

To compute the entropy of ρ, the key point to notice is that since �MF and ε1S have disjoint
supports we have

∫

R2

(
�MF + ε1S

)
log

(
�MF + ε1S

) =
∫

R2
�MF log�MF + ε

∫

R2
1S log(ε1S)

≤
∫

R2
�MF log�MF + Cε(1 + log ε),
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and thus

E MF[ρ] ≤ E MF
[
�MF

]+ Cε(1 + log ε) < EMF

for ε small enough, which is a contradiction. The proof that also supp(�th) = R
2 is identical.

To see that �MF ≤ (2π)−1 a.e. in R
2, we take the Laplacian of (3.31) and obtain

−T
��MF

�MF
+ T

|∇�MF|2
(�MF)2

+ 8π�MF − 4 + 4πm

N
δ0 = 0

which implies

−T ��MF + 8π
(
�MF

)2 − 4�MF ≤ 0.

At any local maximum of �MF we have ��MF ≤ 0 and thus

�MF ≤ 1

2π
,

which proves the claim.
The uniqueness of the minimizer of E MF follows from the strict convexity of the func-

tional. Quantitatively, we have the following stability identity: For any probability measure
ρ that we write as ρ = �MF + ν,

E MF[ρ] =
∫

R2
Wm�MF +

∫

R2
Wmν + 2D

(
�MF, �MF

)+ 4D
(
�MF, ν

)+ 2D(ν, ν)

+ T

∫

R2

(
�MF + ν

)
log

(
�MF + ν

)

=
∫

R2
Wm�MF + 2D

(
�MF, �MF

)+ T

∫

R2

(
�MF

)
log

(
�MF

)+ 2D(ν, ν)

+ T

∫

R2

((
�MF + ν

)
log

(
�MF + ν

)− ν log�MF − �MF log�MF
)

= EMF + 2D(ν, ν) + T

∫

R2

(
�MF + ν

)
log

(
�MF + ν

�MF

)
(3.35)

where we have used (3.31) and the fact that
∫

R2 ν = 0 to go to the second line. This yields
uniqueness for �MF using Lemmas 3.1 and 3.2. Note for later use that this also proves sta-
bility of the minimizer in Ḣ−1 and TV norms.

Step 2 (The electrostatic profile). The proof of (3.20) and (3.21) relies on (3.33). We start
with the easiest case m = 0 where we obtain the circle law for the Ginibre ensemble (see [28]
for example). A proof of (3.20) may be found in [48]; we give details for the convenience of
the reader. Taking the Laplacian of (3.33) we have

�el = 1

2π
on supp

(
�el

)
. (3.36)

By uniqueness of the minimizer of E el and the radiality of Wm, �el must be radial. Its support
is thus in any case a union of some annuli (counting a disc as an annulus with inner radius
zero). Suppose for contradiction that the support is not a disc. Then there is a nonempty
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annulus A (or a disc centered at the origin as a special case) in the complement of the
support and enclosed by the support. The potential

ϕ = 4h�el + Wm − Eel − 2D
(
�el, �el

)
(3.37)

satisfies ϕ = 0 on ∂A by (3.33) and −�ϕ = −2 < 0 in A since �el = 0 there by definition.
We deduce by the maximum principle that ϕ ≤ 0 and thus ϕ = 0 in A because by (3.34)
we already know that ϕ ≥ 0. Taking the Laplacian of the equation ϕ = 0 on A we would
conclude as before that �el = (2π)−1 in A which is a contradiction with the fact that A ∩
supp(�el) = ∅. We conclude that the support of �el must be a disc centered at the origin,
which implies (3.20) via (3.36) and the normalization constraint.

The result in the case m > 0 follows from the same kind of arguments. We have from
(3.33)

�el = 1

2π
− m

2N
δ0 on supp

(
�el

)

and since �el ≥ 0, we deduce that 0 /∈ supp(�el). By the same maximum principle argument
as above we deduce that supp(�el) is an annulus and that (3.36) also holds in the case m > 0.
We consider again ϕ as defined in (3.37). By (3.33), it must be that ϕ ≡ 0 on supp(�el). In
particular it is constant there. On the other hand,

ϕ = −Eel − 2D
(
�el, �el

)+ ϕ̃ = const + ϕ̃

is a constant plus the potential ϕ̃ = 4h�el + Wm generated by

• a constant background of charge density −(2π)−1 (coming from the |z|2 term in Wm)
• a point charge of strength 2m

N
located at the origin (coming from the 2 m

N
log |z| term in

Wm)
• the charge density 4�el, equal to (2π)−1 in an annulus of radii say R−

m and R+
m and 0

elsewhere.

Using Newton’s theorem, Lemma 3.3, this potential, evaluated at any R−
m ≤ r ≤ R+

m equals
that generated by a point charge of strength 2m

N
−2R−

m
2 located at the origin plus another con-

stant (the constant background and the charge density 4�el cancel each other in supp(�el)).
The only possibility for ϕ̃, and therefore ϕ, to be constant in supp(�el) is then to have

R−
m =

√
m

N

so that the effective potential generated on supp(�el) by the constant background in B(0,R−
m)

is canceled (screened) by the point charge sitting at the origin. Using the normalization of
�el and (3.36), we compute R+

m and (3.21) follows.

Step 3 (Electrostatic regime). We now turn to the proof of (3.22). First, taking �el as a
trial state for E MF we have

EMF ≤ Eel + T

∫

R2
�el log�el

which, in view of (3.20) and (3.21), yields

EMF ≤ Eel − log(2π)T . (3.38)
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Next, we denote

ρ0(z) = π−1 exp
(−|z|2)

and note that
∫

R2 ρ0 = 1. Using Lemma 3.1 we have

EMF = 2D
(
�MF, �MF

)+
∫

R2
Wm�MF + T

∫

R2
�MF logρ0 + T

∫

R2
�MF log

�MF

ρ0

≥ 2D
(
�MF, �MF

)+
∫

R2

(
Wm − T |z|2)�MF − log(π)T . (3.39)

Now, the functional

Ẽ el[ρ] := 2D(ρ,ρ) +
∫

R2

(
Wm − T |z|2)ρ

is of the same type as E el, at least if N is large enough for the −T |z|2 term in the above to
be smaller than the |z|2 term in Wm (recall that we have T = N−1). We denote by Ẽel and
�̃el respectively the ground-state energy and the minimizer of Ẽ el. Using the Euler-Lagrange
equation satisfied by �̃el, similar to (3.33), and a computation analogous to (3.35) we obtain
for any measure ρ

Ẽ el[ρ] ≥ Ẽel + 2D
(
ρ − �̃el, ρ − �̃el

)
. (3.40)

Note that in this case there is no entropy term in the analogue of (3.35) and the second
line becomes an inequality because �̃el has compact support and thus it satisfies an Euler-
Lagrange equation only on its support. Outside of the support we have an inequality as in
(3.34). We deduce from (3.39) and (3.40) that

EMF ≥ Ẽel + 2D
(
�̃el − �MF, �̃el − �MF

)− CT . (3.41)

Using the explicit expression for �̃el, similar to (3.21), it is then not difficult to see that also

Ẽel = Eel + O(T ),

and thus (3.38) and (3.41) combine to give

D
(
�MF − �̃el, �MF − �̃el

)≤ CT .

We deduce that (3.22) holds by noting that also

D
(
�̃el − �el, �̃el − �el

)≤ CT

which can be proved easily, inspecting the explicit expressions for �̃el and �el.

Step 4 (Thermal regime). Taking �th as a trial state for E th we have

EMF ≤ Eth + 2D
(
�th, �th

)
. (3.42)

To obtain a lower bound we write

D
(
�MF, �MF

)= D
(
�MF − �th, �MF − �th

)− D
(
�th, �th

)+ 2D
(
�th, �MF

)
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and deduce

EMF ≥ Ẽ th
[
�MF

]+ 2D
(
�MF − �th, �MF − �th

)− 2D
(
�th, �th

)
(3.43)

where (we denote h�th the potential associated to �th)

Ẽ th[ρ] :=
∫

R2
(Wm + 4h�th)ρ + T

∫

R2
ρ logρ

with ground state �̃th and ground state energy Ẽth. Of course

�̃th = 1

Z̃th
exp

(−T −1(Wm + 4h�th)
)

(3.44)

for some normalization constant Z̃th satisfying

Ẽth = −T log Z̃th. (3.45)

Now, h�th is radial and satisfies on R
2

−�h�th = �th ≥ 0.

Integrating this equation over B(0, r) and using Stokes’ theorem we deduce

2πr∂rh�th(r) = −
∫

B(0,r)

�th

and thus |∇h�th(t)| ≤ Cr−1 for any t ∈ B(r/2,2r). From this we deduce the estimate

∣∣h�th(r) − h�th(ropt)
∣∣≤ Cr−1

opt |r − ropt| for any r ∈ B

(
1

2
ropt,2ropt

)
. (3.46)

Since on the other hand Wm − minWm grows as C(r − ropt)
2 close to ropt, it is easy to

deduce from (3.44) that �̃th is exponentially small in the region where �th is, that is for
|r − ropt| � N−1/2. Indeed, note that in this region

|Wm − minWm| ∝ C|r − ropt|2 � (N/m)1/2|r − ropt| ∝ r−1
opt |r − ropt| ∝

∣∣h�th(r) − h�th(ropt)
∣∣

provided m � N2. Simple estimates then show that

Ẽth = −T log Z̃th = −T log

[∫

R2
exp

(−T −1Wm

)
exp

(−T −1
(
4h�th(ropt) + O

(
m−1/2

)))]

= −T log

(∫

R2
exp

(−T −1Wm

))+ 4h�th(ropt) + O
(
m−1/2

)

= Eth + 4h�th(ropt) + O
(
m−1/2

)
. (3.47)

On the other hand, similar considerations based on (3.23) and (3.46) lead to

D
(
�th, �th

)=
∫

R2
h�th�th = h�th(ropt) + O

(
m−1/2

)
(3.48)
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where the last term is r−1
opt = √

N/m times the length scale of �th (we are basically saying
that �th resembles a delta function concentrated along the circle of radius ropt). Coming back
to (3.43), using (3.47) and (3.48), we have thus proved that for m � N2

EMF ≥ Eth + 2D
(
�th, �th

)+ 2D
(
�MF − �th, �MF − �th

)+ O
(
m−1/2

)
,

which we combine with (3.42) to obtain (3.24).
To prove (3.25) we go back to (3.43) again and note that for any ρ ∈ P(R2) we have

Ẽ th[ρ] ≥ Ẽth + T

∫

R2
ρ log

ρ

�̃th
≥ Ẽth + T

2

∥∥ρ − �̃th
∥∥2

TV

as a consequence of the explicit expression of �̃th and the CKP inequality (3.27). Combining
this with the considerations above, our lower bound can be improved to

EMF ≥ Eth + 2D
(
�th, �th

)+ 2D
(
�MF − �th, �MF − �th

)+ T

2

∥∥�MF − �̃th
∥∥2

TV
+ O

(
m−1/2

)
.

Combining with the upper bound (3.42) we deduce
∥∥�MF − �̃th

∥∥
TV

≤ CT −1/2m−1/4 = CN1/2m−1/4

and (3.25) follows by estimating the difference between �̃th and �th, using (3.46) and the
explicit expressions (3.23) and (3.44). �

As announced, the proof of (3.16) requires an estimate of the decay of �MF. This is the
content of the following

Proposition 3.2 (Decay of the mean-field density) There exists a C > 0 such that for any
r ∈ R satisfying |r − ropt| > C max(N1/2m−1/2,N−1/2)

�MF(r) ≤ C exp
(−CN(r − ropt)

2
)
. (3.49)

Proof Step 1. We start by proving that the potential

h�el−�MF = h�el − h�MF = 2π(−�)−1
(
�el − �MF

)
(3.50)

is in Ḣ 1(R2) and that one has the bound
∫

R2
|∇h�el−�MF |2 ≤ CT . (3.51)

Let us denote f̂ the Fourier transform of a function f . We have (formally for the moment)

ĥ�el−�MF(k) = 2π

|k|2
(
�̂MF(k) − �̂el(k)

)
.

Now, since both �MF and �el are uniformly bounded in L1 and in L∞, they also are uniformly
bounded in L2, which implies that �̂MF − �̂el is uniformly bounded in L2. On the other hand,
since

∫
R2 Wm�MF and

∫
R2 Wm�el are finite, we deduce

∫

R2
|x|�MF(x)dx < ∞,

∫

R2
|x|�el(x)dx < ∞
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which implies that ∇(�̂MF − �̂el) ∈ L∞(R2). It remains to recall that

�̂MF(0) − �̂el(0) =
∫

R2

(
�MF − �el

)= 0

to deduce that, for |k| small enough

∣∣�̂MF(k) − �̂el(k)
∣∣≤ C|k|.

Together with the fact that �̂MF − �̂el ∈ L2(R2) this implies that

∫

R2
|∇h�el−�MF |2 = 4π2

∫

R2

1

|k|2
∣∣�̂MF(k) − �̂el(k)

∣∣2 < ∞.

We can thus justify the integration by parts leading to

∫

R2
|∇h�el−�MF |2 =

∫

R2
−�h�el−�MF

(
�el − �MF

)= D
(
�el − �MF, �el − �MF

)

and (3.51) then follows from (3.22).

Step 2. We now claim that for any r ∈ R

4h�el−�MF(r) ≤ Eel + 2D
(
�el, �el

)− EMF − 2D
(
�MF, �MF

)

+ C

(
T + T 1/2 (r − ropt)

1/2(r + ropt)
1/2

min(ropt, r)

)
. (3.52)

First note that taking the difference of Eqs. (3.31) and (3.33) we obtain

4h�el−�MF(ropt) = Eel + D
(
�el, �el

)− EMF − D
(
�MF, �MF

)+ T log�MF(ropt)

≤ Eel + D
(
�el, �el

)− EMF − D
(
�MF, �MF

)+ CT

by using (3.19). Using radiality we then have

h�el−�MF(r) = h�el−�MF(ropt) +
∫ r

ropt

h′
�el−�MF(t)dt

≤ h�el−�MF(ropt) + 1

min(ropt, r)

∫ r

ropt

|∇h�el−�MF |tdt

≤ h�el−�MF(ropt) + CT 1/2

min(ropt, r)

(
r2

2
− r2

opt

2

)1/2

where we use (3.51) and the Cauchy-Schwarz inequality. This proves (3.52).

Step 3. Using (3.31) we have

�MF = exp

(
1

T

(
EMF + 2D

(
�MF, �MF

)− Wm − 4h�MF

))
.
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Inserting (3.52) and using h�el−�MF = h�el − h�MF we deduce

�MF(r) ≤ exp

[
1

T

(
Eel + 2D

(
�el, �el

)− Wm(r) − 4h�el(r)
)]

× exp

[
C

T

(
T + T 1/2 (ropt + r)1/2(ropt − r)1/2

min(ropt, r)

)]
. (3.53)

Then the exponential fall-off in (3.49) is provided by the decay of

Eel + 2D
(
�el, �el

)− Wm(r) − 4h�el(r) (3.54)

away from the support of �el as a consequence of (3.34). More precisely, since (3.33) implies

Eel + 2D
(
�el, �el

)= Wm

(
R+

m

)+ 4h�el

(
R+

m

)
,

we see that (3.54) decays as

Wm

(
R+

m

)+ 4h�el

(
R+

m

)− 4h�el(r) − Wm(r)

for r ≥ R+
m (we only detail this case, the proof is the same for the region r ≤ R−

m ). Reasoning
as when proving (3.46), one easily sees that

∣∣4h�el

(
R+

m

)− 4h�el(r)
∣∣≤ Cr−1

opt

∣∣r − R+
m

∣∣≤ Cm−1/2N1/2
∣∣r − R+

m

∣∣.

On the other hand, approximating Wm by its second variation around ropt we have

Wm

(
R+

m

)−Wm(r) ≈ C(r −ropt)
2 −C

(
R+

m −ropt

)2 = −C
((

r −R+
m

)2 +2
(
r −R+

m

)(
R+

m −ropt

))

and since |R+
m − ropt| = O(m−1/2N1/2) we deduce that

Eel + 2D
(
�el, �el

)− Wm(r) − 4h�el(r) ≤ −C
(
r − R+

m

)2
(3.55)

for r ≥ R+
m + cm−1/2N1/2 with well-chosen c and C.

This decay compensates for the other terms in (3.53) as soon as

∣∣r − R+
m

∣∣� max

(√
N

m
,
√

T , (mN)−1/6

)
. (3.56)

Note that the first length scale in the max above is of the order of magnitude of the thickness
of the support of �el. The second length scale accounts for the mass spreading due to the
entropy term and the third is associated with the “error” term

T 1/2 (ropt + r)1/2(ropt − r)1/2

min(ropt, r)
= (ropt + r)1/2(ropt − r)1/2

N1/2 min(ropt, r)
.

Indeed, for example when r is sufficiently close to ropt,

(ropt + r)1/2(ropt − r)1/2

N1/2 min(ropt, r)
∝ (Nropt)

−1/2|r − R+
m |1/2 ∝ (mN)−1/4|r − R+

m |1/2,

using the approximations r ≈ ropt and |r − ropt| ≈ |r − R+
m | and recalling that ropt = √

m/N .
To see that the third term in the right-hand side of (3.56) is really an error, recall that we use
(3.49) when T = N−1. There are then two cases
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• m � N2, which implies
√

N

m
� (mN)−1/6 � √

T ,

i.e. the electrostatic length scale dominates the error and the entropic length,
• m � N2, in which case

√
T � (mN)−1/6 �

√
N

m
,

i.e. the entropic length dominates the error and the electrostatic length.

In both cases the error term is dominated by either the electrostatic or the entropic term.
Recalling that |ropt − R+

m | ≤ CN1/2m−1/2 we thus have proved that (3.49) holds if

m � N2 and |r − ropt| �
√

N

m

or

m � N2 and |r − ropt| � N−1/2,

which is the desired result. �

3.3 Thermodynamic Limit in the Electrostatic Regime

We now turn to the study of the large N limit of (3.9). This is a rather classical question,
especially since we are in a mean-field scaling. A line of attack for this kind of statistical
mechanics problems has been pioneered in [38] for regular interparticle interactions and
then carried on independently in [11, 27] in the case of logarithmic interactions. These works
deal with the regime T = O(1) in which all three terms in (3.11) are of the same order of
magnitude. They also consider the case of negative temperature which is more involved but
irrelevant in our context. In connection with several ensembles of random matrices, [28]
extends this approach to the regime T ∝ N−1 and more general Hamiltonians.

Common to these approaches is a compactness argument, which does not lead to quan-
titative estimates on the precision of the mean-field approximation. As far as we know, it is
only very recently [49] that constructive estimates have been obtained, in the specific case
of the 2D Coulomb gas that we consider here. We could employ some of these estimates (in
particular Theorem 3 therein) in our context, but they would not be sufficient. We thus prefer
to implement a new method that gives different estimates, more suited to our purpose, with
a simpler proof.

Theorem 3.2 (Mean field limit for 2D Coulomb gases) There exists a constant C > 0 such
that, for N large enough, we have

1. Upper bound.

FN ≤ NEMF − D
(
�MF, �MF

)
. (3.57)

2. Lower bound.

FN ≥ NEMF − logN

2
− C. (3.58)
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3. Estimate on the first marginal of the Gibbs measure.
For any V ∈ Ḣ 1(R2) with ∇V ∈ L∞(R2) we have

∣∣∣∣
∫

R2

(
μ

(1)
N − �MF

)
V

∣∣∣∣≤ C

(
logN

N

)1/2

‖∇V ‖L2(R2) + CN−1/2‖∇V ‖L∞(R2). (3.59)

Remark 3.2

1. This result is not limited to the particular type of potential Wm we consider in the plasma
analogy. Our method can accommodate any potential as soon as the associated mean-field
functional and its minimizers are reasonably well-behaved. Note also that the estimates
apply to any T , the two most interesting regimes being T = O(1) (more natural from
the Coulomb gas point of view) and T = O(N−1) (in relation with random matrices and
quantum Hall phases).

2. In [49] a different scaling convention is used, their β being given as β = N−1T −1 in our
units. The approach therein is limited to β ≥ O(1) and a fixed potential Wm. It shows that
the − log(N)/2 term gives exactly the second order correction in the regime β ≥ O(1)

(i.e. T ∝ N−1) with fixed potential. It moreover gives the exact third order correction to
the free energy FN in the limit β → ∞, that is T � N−1 (see [49, Theorem 1]). This
is more difficult, since this connection is related to a Coulombian renormalized energy,
whose definition is rather complex. The approach we develop here allows to recover the
lower bound on FN in the regime where β is bounded above, i.e. T ∝ N−1. To see this,
compare Theorem 3.2 with Theorem 1 in [49], keeping in mind that when T ∝ N−1, the
entropy term in EMF is a lower order correction: EMF = Eel + O(N−1).

3. In the regime T ∝ N−1, we could most likely adapt arguments from [49, Sect. 4 and 7]
in order to construct a trial state capturing exactly the − log(N)/2 in the upper bound.
This would be rather technical because, in contrast with what is assumed in [49], our
mean-field densities do depend on N when m �= 0. We thus content ourselves with a non
optimal upper bound that has only a marginal impact on our main theorems. �

We need two classical lemmas. The first is the 2D version of the so-called Onsager lemma
(see e.g. [35, Lemma 6.1]):

Lemma 3.4 (2D Onsager lemma) Let μ be a radial probability measure on R
2. Denote, for

some l > 0

μxi
(z) = μ

(
z − xi

l

)
.

We have, for any ρ such that
∫

R2 ρ = N and any (x1, . . . , xN) ∈ R
2N

−
∑

i �=j

log |xi − xj | ≥ D

(
ρ −

N∑

i=1

μxi
, ρ −

N∑

i=1

μxi

)
− D(ρ,ρ)

+ 2
N∑

i=1

D(ρ,μxi
) −

N∑

i=1

D(μxi
,μxi

). (3.60)

Proof By Newton’s theorem, Lemma 3.3, the radiality of μ implies

−
∑

i �=j

log |xi − xj | ≥
∑

i �=j

D(μxi
,μxj

)
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with (by the way) equality if μ is supported in the unit disc and mini,j |xi − xj | ≤ l. The rhs
of the above is equal to the rhs of (3.60), which proves the lemma. Note that

D

(
ρ −

N∑

i=1

μxi
, ρ −

N∑

i=1

μxi

)
≥ 0

using Lemma 3.2, because by assumption

∫

R2

(
ρ −

N∑

i=1

μxi

)
= 0.

�

The first term in the right-hand side of (3.60) is usually dropped to obtain a convenient
lower bound to the Coulomb Hamiltonian. The core of our argument consists in obtaining
a bound on its expectation value in the Gibbs measure from our upper and lower bounds to
the free energy and using it to control the fluctuations around the mean field density. As we
shall prove, this allows to obtain estimates on the marginals of the Gibbs measure and in
particular (3.59).

The functions μxi
in Lemma 3.4 should be thought of as unit charges smeared over small

balls that we use to replace the point charges of the Coulomb gas. This is essential in our
approach but has some cost that we quantify in the next lemma, which is an adaptation of a
well-known lemma used by Lieb and Oxford (cf. [35, Chap. 6] for references).

Lemma 3.5 (The cost of smearing out charges) Here μ denotes the normalized (in L1)
characteristic function of the disc of radius l. For any ρ ∈ L∞(R2)

∣∣D(ρ, δxi
− μxi

)
∣∣≤ Cl2‖ρ‖L∞ (3.61)

Proof We denote hν the potential associated to a charge distribution ν. By Newton’s theorem

hμxi
= hδxi

in R
2 \ B(0, l). We are thus left with computing

∫

B(0,l)

ρ(hμxi
− hδxi

)

which is easily found to be equal to

∫

B(0,l)

ρ

(
1

2π
log

r

l
− r2 − l2

2l2

)
rdrdθ.

The second term is easily bounded by a Cl2‖ρ‖L∞ while the first term is proportional to
(adapting the analogous computation in 3D, cf. [33] and [35, Chap. 6])

∫ l

0

F(r)

r
dr (3.62)

with

F(r) := 1

2π

∫ 2π

0

∫ r

0
ρ(s, θ)sdsdθ.
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Using

|F(r)| ≤ ‖ρ‖L∞
r2

2
,

we can bound (3.62) and complete the proof of the lemma. �

We can now proceed to the

Proof of Theorem 3.2 The upper bound is proved by taking the trial state (�MF)⊗N in (3.9),
(3.10). The −D(�MF, �MF) error term comes from the fact that there are N(N − 1) pairs of
particles, to be divided by the 1/N mean-field scaling factor.

For the lower bound we use Onsager’s lemma with ρ = N�MF, μ the normalized indica-
tive function of the unit ball and l = N−1/2 to obtain

HN(x1, . . . , xN) ≥
N∑

i=1

Wm(xi) + 2

N
D

(
N�MF −

N∑

i=1

μxi
,N�MF −

N∑

i=1

μxi

)

− 2ND
(
�MF, �MF

)+ 4
N∑

i=1

D
(
�MF,μxi

)− 2
N∑

i=1

1

N
D(μxi

,μxi
)

(3.63)

and we will drop the second term of the right-hand side, which is positive, for the moment.
We now invoke Lemma 3.5 and use (3.19) to claim that

D
(
�MF,μxi

)= D
(
�MF, δxi

)+ O
(
N−1

)= h�MF(xi) + O
(
N−1

)

which turns into

4D
(
�MF,μxi

)= EMF + 2D
(
�MF, �MF

)− Wm(xi) − T log�MF(xi) + O
(
N−1

)
(3.64)

thanks to the variational equation (3.31). Inserting into (3.63) we obtain

HN(x1, . . . , xN) ≥ NEMF − T

N∑

i=1

log�MF(xi) − 2

N

N∑

i=1

D(μxi
,μxi

) − C

= NEMF − T

N∑

i=1

log�MF(xi) − D(μ,μ) + log

(
1√
N

)
− C (3.65)

where the second line follows from a simple computation (recall that μxi
is a unit charge

smeared over the ball B(xi,N
−1/2)). There only remains to use (3.65) to compute a lower

bound to the free energy of μN :

FN [μN ] ≥ NEMF − C − 1

2
logN + T

∫

R2N

μN

(
logμN −

N∑

i=1

log�MF(xi)

)
dx1 . . . dxN

= NEMF − C − 1

2
logN + T

∫

R2N

μN log

(
μN

�MF⊗N

)
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which ends the proof of the lower bound since the last term is the relative entropy of μN

with respect to (�MF)⊗N and hence is positive by Lemma 3.1.
Going back to (3.63) and retrieving the positive term we had discarded we see that our

upper and lower bounds to the energy imply the additional estimate

∫

R2N

μN(x1, . . . , xN)D

(
N�MF −

N∑

i=1

μxi
,N�MF −

N∑

i=1

μxi

)
dx1 . . . dxN ≤ CN logN.

(3.66)
This bound quantifies how close μN is to (�MF)⊗N . In particular it implies (3.59), a fact that
we state as a lemma:

Lemma 3.6 (Using the Onsager term) For any V : R
2 �→ R regular enough and any sym-

metric probability measure μN ∈ Ps((R
2)N)

∣∣∣∣
∫

R2
V (z)

(
μ

(1)
N (z) − �MF(z)

)
dz

∣∣∣∣

≤ CN−1/2‖∇V ‖L∞

+ CN−1‖∇V ‖L2

(∫

R2N

μN(Z) D

(
N�MF −

N∑

i=1

μxi
,N�MF −

N∑

i=1

μxi

))1/2

.

(3.67)

Proof Given a one-body potential V we start with

∫

R2
V
(
μ

(1)
N − �MF

)= 1

N

∫

R2N

μN(x1, . . . , xN)

(
N∑

i=1

V (xi) − N

∫

R2
V �MF

)
dx1 . . . dxN,

(3.68)
which follows from the symmetry and normalization of μN . Next, note that (with μxi

defined
as above)

N∑

i=1

V (xi) =
∫

R2
V

N∑

i=1

δxi
=
∫

R2
V

N∑

i=1

μxi
+ O

(√
N‖∇V ‖L∞

)
(3.69)

where we use that μxi
is a unit charge smeared over a ball of radius N−1/2. Thus

∫

R2
V
(
μ

(1)
N − �MF

) = 1

N

∫

R2N

μN(x1, . . . , xN)

(∫

R2
V

(
N∑

i=1

μxi
− N�MF

))
dx1 . . . dxN

+ O
(
N−1/2‖∇V ‖L∞

)
. (3.70)

Then
∣∣∣∣∣

∫

R2
V

(
N�MF −

N∑

i=1

μxi

)∣∣∣∣∣=
∣∣∣∣
∫

R2
∇V · ∇h

∣∣∣∣

≤ C‖∇V ‖L2(R2)

(∫

R2
|∇h|2

)1/2
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≤ C‖∇V ‖L2(R2)D

(
N�MF −

N∑

i=1

μxi
,N�MF −

N∑

i=1

μxi

)1/2

(3.71)

where

h = h
N�MF−∑N

i=1 μxi
= 2π(−�)−1

(
N�MF −

N∑

i=1

μxi

)
.

To justify these computations we argue as in Step 1 of the proof of Proposition 3.2, using
that the Coulomb kernel is the Green function of −� in R

2 and that

∫

R2
N

(
�MF −

N∑

i=1

μxi

)
= 0.

On the other hand
∣∣∣∣∣

∫

R2N

dXμN(x1, . . . , xN)

∫

R2
V (z)

(
N�MF(z) −

N∑

i=1

μxi
(z)

)
dz

∣∣∣∣∣

≤
(∫

R2N

dXμN(x1, . . . , xN)

(∫

R2
V

(
N�MF(z) −

N∑

i=1

μxi
(z)

)
dz

)2)1/2

by the Cauchy-Schwarz inequality and using the normalization of μN . Using (3.71), we thus
have

∣∣∣∣∣

∫

R2N

dXμN(x1, . . . , xN)

∫

R2
V (z)

(
N�MF(z) −

N∑

i=1

μxi
(z)

)
dz

∣∣∣∣∣

≤ C‖∇V ‖L2(R2)

(∫

R2N

μND

(
N�MF −

N∑

i=1

μxi
,N�MF −

N∑

i=1

μxi

))1/2

that we insert into (3.70) to conclude the proof. �

Our final estimate (3.59) follows by combining (3.66) and (3.67). �

Remark 3.3 (Estimates for higher-order marginals) Our approach can give estimates on not
only the first marginal μ

(1)
N but on any reduced density μ

(k)
N , provided k is suitably small as

compared to N (for example, k fixed when N → ∞). This can be seen to be a consequence
of our main technical estimate (3.66) as follows: Consider for example a smooth 2-body
potential V2(z1, z2) and evaluate

∫

R4
μ

(2)
N V2 = 1

N2

∑

1≤i,j≤N

∫

R2N

μN(x1, . . . , xN)V2(xi, xj )dX

= 1

N2

∑

1≤i,j≤N

∫

R2N

μN(x1, . . . , xN)

(∫

R4
V2(z1, z2)μxi

(z1)μxj
(z2)dz1dz2

)
dX
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+ O
(
N−1/2 sup

y

∥∥∇V2(y, .)
∥∥

L∞
)

+ O
(
N−1/2 sup

y

∥∥∇V2(., y)
∥∥

L∞
)

as in (3.69). Then
∣∣∣∣
∑

i,j

∫

R4
V2(z1, z2)μxi

(z1)μxj
(z2)dz1dz2 − N2

∫

R4
V2(z1, z2)�

MF(z1)�
MF(z2)dz1dz2

∣∣∣∣

=
∣∣∣∣∣

∫

R4
V2(z1, z2)

((
N∑

i=1

μxi
(z1)

)(
N∑

i=1

μxi
(z2)

)
− N2�MF(z1)�

MF(z2)

)∣∣∣∣∣

=
∣∣∣∣∣

∫

R4
V2(z1, z2)

((
N∑

i=1

μxi
(z1)

)(
N∑

i=1

μxi
(z2) − N�MF(z2)

)

+ N�MF(z2)

(
N∑

i=1

μxi
(z1) − N�MF(z1)

))∣∣∣∣∣

≤ CN
(

sup
y

∥∥∇V2(y, .)
∥∥

L2 + sup
y

∥∥∇V2(., y)
∥∥

L2

)
D

×
(

N�MF −
N∑

i=1

μxi
,N�MF −

N∑

i=1

μxi

)1/2

.

We have used the fact that N−1
∑N

i=1 μxi
and �MF are normalized in L1, integrated over z1

and z2 separately and argued as in (3.71). There only remains to use the Cauchy-Schwarz
inequality as before to obtain an estimate of the form
∣∣∣∣
∫

R4
V2

(
μ

(2)
N − (

�MF
)⊗2)

∣∣∣∣ ≤ CN−1/2(logN)1/2
(

sup
y

∥∥∇V2(y, .)
∥∥

L2 + sup
y

∥∥∇V2(., y)
∥∥

L2

)

+ CN−1/2
(

sup
y

∥∥∇V2(y, .)
∥∥

L∞ + sup
y

∥∥∇V2(., y)
∥∥

L∞
)
,

which generalizes (3.59). Estimates for μ
(k)
N , k > 2 follow along the same lines. �

Remark 3.4 (More information when T is larger) Note that we have dropped one term that
we could have estimated in the proof above, namely we have

∫

R2N

μN log
μN

�MF ⊗N
≤ CT −1 logN. (3.72)

This estimate is useless in the regime T = N−1 which interests us most but can become
interesting when T is larger, in particular in the somehow more natural case where T is
fixed.

Indeed, using subadditivity of entropy (see e.g. [27, Proposition 1])
∫

R2N

μN logμN ≥ N

∫

R2
μ

(1)
N logμ

(1)
N

and the fact that
∫

R2N

μN log
(
�MF

)⊗N = N

∫

R2
μ

(1)
N log�MF,
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(3.72) implies
∫

R2
μ

(1)
N log

μ
(1)
N

�MF
≤ C

logN

T N
.

This can be turned into

∥∥μ(1)
N − �MF

∥∥
TV

≤ C

√
logN

T N
, (3.73)

where ‖.‖TV stands for the total variation norm, thanks to the Csiszár-Kullback-Pinsker in-
equality recalled in Lemma 3.1. As already mentioned, (3.73) becomes interesting only for
relatively large temperature (take e.g. T fixed independently of N ), in which case it is a
somehow better estimate than (3.59).

Our approach to the mean-field limit in the thermal regime, presented in the next section,
is based on this kind of considerations. �

We now conclude the proof of Theorem 3.1, Item 1. Our main estimate (3.15) follows by
combining (3.59) and (3.22). Indeed, using the Cauchy-Schwarz inequality in Fourier space
as before,

∣∣∣∣
∫

R2

(
�MF − �el

)
V

∣∣∣∣≤ CD
(
�MF − �el, �MF − �el

)1/2‖∇V ‖L2(R2).

We conclude this section by giving the proof of (3.16). We use the explicit expression
(3.2) and the lower bound (3.65) to obtain

μN(z1, . . . , zN) ≤ 1

ZN

exp

(
N∑

j=1

log�MF(zj ) − N

T
EMF + logN

2T
+ C

T

)
.

On the other hand, we recall that

FN = −T log ZN,

so, using (3.57) we have

ZN ≥ exp

(
−N

T
EMF + C

T

)

and we conclude that

μN(z1, . . . , zN) ≤ exp

(
N∑

j=1

log�MF(zj ) + C
logN

T

)
≤

N∏

j=1

�MF(zj ) exp(CN logN)

which implies (3.16) after an integration over z2, . . . , zN and the use of (3.49).

3.4 Thermodynamic Limit in the Thermal Regime

We now turn to the proof of (3.17). In contrast to what we did in the preceding section to
prove (3.15) we do not work in two steps, first relating μ

(1)
N to �MF and then �MF to �th.

The reason is that the errors in the energy estimates produced by the use of Lemmas 3.4
and 3.5 are not sufficiently small compared to the difference between �MF and �th proved in
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(3.24). One can however rely on a different strategy, treating the two-body term in (3.9) as
a perturbation of the one-body part. Indeed, since we were able to prove that �MF is close to
�th when m � N2, we already have an indication that the two-body Coulomb term is not so
important in this regime.

Proof of (3.17) It is clearer to work in variables where the one-body potential takes its
minimum when r = 1, with value 0. Scaling distances by a factor (m/N)1/2 it is equivalent5

to minimize the free-energy functional

FN [μ] :=
∫

R2N

HN(Z)μ(Z)dZ + 1

m

∫

R2N

μ(Z) logμ(Z)dZ (3.74)

with the rescaled Coulomb Hamiltonian

HN(Z) :=
N∑

j=1

Wm(zj ) − 2

m

∑

i �=j

log |zi − zj | (3.75)

and

Wm(z) = |z|2 − 2 log |z| − 1. (3.76)

Note that we have taken advantage of the normalization of μ to subtract 1 and have Wm(r) ≥
Wm(1) = 0 for any r ∈ R. We can rewrite the free energy as

FN [μ] = N

∫

R4

(
Wm(x)

2
+ Wm(y)

2
− 2(N − 1)

m
log |x − y|

)
μ(2)(x, y)dxdy

+ 1

m

∫

R2N

μ(Z) logμ(Z)dZ (3.77)

where μ(2) is the two-body density of μ. We write, for some parameter β to be fixed later
on,

Wm(x)

2
+ Wm(y)

2
− 2(N − 1)

m
log |x−y| ≥ (1−β)

( |x|2
2

+ |y|2
2

)
− log |x|− log |y|−1+Γβ

(3.78)
with

Γβ = inf
x,y∈R2

(
β

( |x|2
2

+ |y|2
2

)
− 2(N − 1)

m
log |x − y|

)
. (3.79)

Minimizing

ϕ(x, y) := |x|2 + |y|2 − δ log |x − y|
with respect to y we find that the minimum is attained for |y| = x

2 (1 −√
1 + 2δ/|x|2) and

that

ϕ(x, y) ≥ 3

2
|x|2 − δ

2
− 1

2
|x|

√
|x|2 + 2δ − δ log

( |x| +√|x|2 + 2δ

2

)

5We do not change the notation for the scaled quantities.
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≥ |x|2 − δ log

( |x| +√|x|2 + 2δ

2

)
≥ |x|2 − δ log

(√|x|2 + 2δ
)
.

Minimizing the last expression with respect to x we obtain

ϕ(x, y) ≥ 9

4
δ2 − δ

2
log

(
δ

2

)

from which we deduce, taking δ = 4(N − 1)/mβ ,

Γβ = inf
x,y∈R2

β

2
ϕ(x, y) ≥ β

2

(
36

(N − 1)2

m2β2
− 2

N − 1

mβ
log

(
2
N − 1

mβ

))
.

We can now choose

β = 2
N − 1

m

and deduce

Γβ ≥ 0.

We can thus bound from below the free energy (3.74) as

FN [μ] ≥ F̃N [μ] :=
∫

R2N

H̃N(Z)μ(Z)dZ + 1

m

∫

R2N

μ(Z) logμ(Z)dZ (3.80)

where

H̃N(Z) =
N∑

j=1

(
(1 − β)|zj |2 − 2 log |zj | − 1

)
(3.81)

is now a one-body operator. The minimum F̃N of F̃N over symmetric probability measures
μ is attained at

μ = (
�̃th

)⊗N
(3.82)

with

�̃th(z) = 1

Z̃th
exp

(−m
(
(1 − β)|z|2 − 2 log |z| − 1

))
(3.83)

and

F̃N = −N

m
log

(
Z̃th

)
. (3.84)

Moreover we have for any symmetric probability measure μ

F̃N [μ] ≥ F̃N + 1

m

∫

R2N

μ log
μ

(�̃th)⊗N
(3.85)

≥ F̃N + N

m

∫

R2
μ(1) log

μ(1)

�̃th
, (3.86)
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using the subadditivity of the entropy (see e.g. [27, Proposition 1]) for the second inequality.
The equivalent of formula (3.23) in rescaled coordinates reads

�th(r) = 1

Zth
exp

(
− 1

m

(
r2 − 2 log r − 1

))
, Eth = − 1

m
logZth (3.87)

with Zth a normalization constant (we again keep the same notation for the quantities after
the scaling of distances). In the new coordinates, �th resembles a Gaussian centered on the
minimum of Wm at r = 1 with characteristic length m−1/2. Its maximum is thus of order m1/2

and it decays exponentially fast in the region where |r − 1| � m−1/2. Since β = O(N/m) it
is not difficult to realize, using (3.83) and (3.87), that

logZth = log Z̃th + O

(
N

m

)

and thus it follows from (3.84) and (3.86) that

FN ≥ NEth + N

m

∫

R2
μ(1) log

μ(1)

�̃th
+ O

(
N2m−2

)
. (3.88)

We now use (�th)⊗N as a trial state for FN and obtain

FN ≤ NEth + 2N(N − 1)

m
D
(
�th, �th

)
.

Arguing as in the proof of Theorem 3.1, Step 4, we approximate �th by a delta function
along the circle of radius 1 to obtain

D
(
�th, �th

)=
∫

R2
�thh�th = h�th(1) + O

(
m−1/2

)
.

But, using Newton’s theorem (3.30) and the exponential decay of �th for |r − 1| � m−1/2,

h�th(1) = −2π

∫

r≥1
�th(r)(log r)rdr = O

(
m−1/2

)
,

since the integral is located in a region where log r = O(m−1/2) and �th is normalized. We
thus have the upper bound

FN ≤ NEth + CN2m−3/2, (3.89)

which, combined with (3.88) and the CKP inequality (3.27) gives

∥∥μ(1)
N − �̃th

∥∥
TV

≤ CN1/2m−1/4

and there only remains to note that also

∥∥�th − �̃th
∥∥

TV
≤ CN1/2m−1/4

and scale variables back to deduce the desired result. �
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Proof of (3.18) In the course of the proof above we have established (still in rescaled vari-
ables)

HN(Z) ≥
N∑

j=1

[
(1 − β)|zj |2 − 2 log |zj |

]

and

FN = − 1

m
log ZN = NEth + O

(
N2m−3/2

)

where ZN is the normalization constant of μN . In view of the expression (3.83) of �̃th we
have

1

m
log �̃th(z) = Ẽth − (1 − β)|z|2 + 2 log |z| + 1

and thus

μN(z1, . . . , zN) = 1

ZN

exp
(−mHN(Z)

)≤
N∏

j=1

�̃th(zj ) exp
(
N2m1/2

)
.

After integration over N −1 variables and inspection of the expression for �̃th it follows that

μ
(1)
N (z) ≤ exp

(−cm(r − 1)2
)

when |r − 1| ≥ CNm−3/4 for C large enough. Then (3.18) is obtained by a change of
scales. �

4 Improved Energy Bounds for the LLL Problem

In this section we use the results of Sect. 3 to compute the energy of our trial states. This
allows to improve the upper bounds in Theorem 2.3. More precisely, we prove

Proposition 4.1 (Energy upper bounds) In the limit ω,k → 0, N → ∞ we have

EL ≤ ωN2
(
1 + o(1)

)+ 4

3
kN3

(
1 + o(1)

)
(4.1)

if ω ≥ −2kN ,

EL ≤ −Nω2

4k
+ 1

3
kN3

(
1 + o(1)

)
(4.2)

if ω ≤ −2kN and |ω| � kN7/5 logN , and finally

EL ≤ −Nω2

4k
− 3

2
ωN

(
1 + o(1)

)
(4.3)

if ω ≤ −2kN and |ω| � kN10/3.
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Proof We use the trial states (1.11). Since they all have zero interaction energy, we are left
with estimating (remember the scaling of space variables in (3.1))

E L
[
Ψ qh

m

]=
∫

R2N

N∑

j=1

Vω,k(rj )
∣∣Ψ qh

m (Z)
∣∣2dZ

= N2

(∫

R2

(
ωr2 + kNr4

)
μ

(1)
N (z)

)
dz. (4.4)

Our main tools are (3.15) and (3.17) which essentially say that μ
(1)
N ≈ �el or μ

(1)
N ≈ �th,

depending on the regime. The main terms in the right-hand sides of (4.1) and (4.2) are
obtained by replacing directly μ

(1)
N by �el or �th and our main task is to estimate the error.

We cannot use (3.15) or (3.17) directly however because the norms appearing in the right-
hand sides are certainly not finite for V = ωr2 + kNr4. We therefore first employ (3.16) (or
(3.18)) to restrict the integration domain: We will use two smooth radial cut-offs functions
χin and χout satisfying

χin + χout = 1 (4.5)

and decompose E L[Ψ qh
m ] as

E L
[
Ψ qh

m

]= N2
∫

R2
χinV

N
ω,k(z)�(z)dz + N2

∫

R2
χinV

N
ω,k(z)

(
μ

(1)
N (z) − �(z)

)
dz

+ N2
∫

R2
χoutV

N
ω,k(z)μ

(1)
N (z)dz (4.6)

where � = �el or �th depending on the regime and we denote

V N
ω,k(r) = ωr2 + kNr4. (4.7)

In the electrostatic regime our choice of cut-offs functions will ensure χin = 1 on supp(�el)

and the first term is thus readily computed using the explicit expressions (3.20) and (3.21):

N2
∫

R2
χin

(
ωr2 + kNr4

)
�el(z)dz = ωN2

(
1 + m

N

)
+ kN3

(
4

3
+ 2

m

N
+ m2

N2

)
. (4.8)

Optimizing the above expression with respect to m we find

mopt =
{

0 if ω ≥ −2kN

−N − ω
2k

if ω < −2kN.
(4.9)

Therefore the Laughlin state is favored for ω ≥ −2kN whereas it is better to add a vortex
at the origin for ω < −2kN . The term (4.8) becomes

N2
∫

R2
χin

(
ωr2 + kNr4

)
�el(z)dz = −N

ω2

4k
+ 1

3
kN3 (4.10)

if ω ≥ −2kN , and

N2
∫

R2
χin

(
ωr2 + kNr4

)
�el(z)dz = −N

ω2

4k
+ 1

3
kN3 (4.11)
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if ω > −2kN . In the thermal regime we keep the same expression for our choice of m and
obtain, using (3.23),

N2
∫

R2
χin

(
ωr2 + kNr4

)
�th(z)dz ≤ −N

ω2

4k
− 3

2
ωN

(
1 + o(1)

)
. (4.12)

Note that the main terms above may be recovered from (3.23) by neglecting terms beyond
quadratic in a Taylor expansion of Wm around ropt.

When estimating the remainder terms in (4.6) we distinguish between three regimes. The
“cases” below refer to the different cases in Theorem 2.3.

Cases 1 and 2, mopt ≤ CN . We take � = �el in (4.6). The support of �el is uniformly bounded
in this regime. Using (3.16) we see that for r ≥ R+

m

μ
(1)
N (r) ≤ C exp

(−CN
(
r2 − C logN

))
(4.13)

and thus μ
(1)
N is exponentially small, both as a function of r and N for r ≥ C(logN)1/2. We

choose

χin = 1 in B
(
0,C(logN)1/2

)
, χin = 0 out of B

(
0,2C(logN)1/2

)

and χout accordingly. Then χin ≡ 1 on the support of �el as desired and (4.8) yields the main
terms in the right-hand sides of (4.1) and (4.2). We also assume |∇χin| ≤ C(logN)−1/2. We
then note that

∣∣∇(χinV
N
ω,k

)∣∣≤ C(logN)1/2|ω| + kN(logN)3/2

for r ≤ C(logN)1/2 while
∥∥χin∇V N

ω,k

∥∥
L2 ≤ C(logN)|ω| + kN(logN)2.

Thus, using (3.15) to estimate the second term in (4.6) we obtain that it is bounded above by

C
(
ωN3/2(logN)3/2 + kN5/2(logN)5/2

)

and (4.1) follows, using (4.10) or (4.11) for the main term of (4.6). The third term in (4.6) is
negligible thanks to (4.13).

Case 3, N � mopt � N7/5 logN . We take again � = �el in (4.6). In this case (3.16) gives

μ
(1)
N (r) ≤ C exp

(−CN
(
(r − ropt)

2 − C logN
))

for r ≥ R+
m or r ≤ R−

m and thus μ
(1)
N is exponentially small for |r − ropt| ≥ C(logN)1/2. We

take

χin = 1 for ropt − C(logN)1/2 ≤ r ≤ ropt + C(logN)1/2,

χin = 0 for |r − ropt| ≥ 2C(logN)1/2

and χout = 1 − χin accordingly. As before the main terms of (4.2) come from (4.8) and the
third term in (4.6) can be neglected due to the exponential decay of μ

(1)
N . For |r − ropt| ≤

C(logN)1/2 one can easily realize that
∣∣∇(χinV

N
ω,k

)∣∣≤ C(logN)1/2|ω|,
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whereas
∥∥χin∇V N

ω,k

∥∥
L2 ≤ CN−1/4(logN)3/4|ω|5/4k−1/4.

Using (3.15), one can see that the error due to the second term in (4.6) is bounded by

CN5/4(logN)5/4|ω|5/4k−1/4 + C|ω|N3/2(logN)1/2

and this is negligible in front of kN3 if |ω| � kN7/5 logN , which concludes the proof.

Case 4, mopt � N10/3. Here we take � = �th in (4.6) and notice that (3.18) ensures that μ
(1)
N

is exponentially small when

|r − ropt| � L := max
(
N−1/2,N1/2m−1/4

)
.

We therefore choose

χin(r) =
{

1 if |r − ropt| ≤ L

0 if |r − ropt| ≥ 2L.

With this choice and using (3.18), we can neglect the third term in (4.6) since it will be much
smaller than the two others. The main term is computed using (4.12). For the second term
of (4.6) we use (3.17) to see that

∣∣∣∣N
2
∫

R2
χinV

N
ω,k(z)

(
μ

(1)
N (z) − �(z)

)
dz

∣∣∣∣≤ CN5/2k1/4ω3/4L2

where we approximate V N
ω,k by its second variation around its minimum. The last quantity is

O
(
N7/2k3/4|ω|1/4

)

when |ω|/k ∝ m � N4 (recall the choice of m = mopt in (4.9)) and

O
(
N3/2k1/4ω3/4

)

otherwise. We conclude that the error term is negligible in front of the subleading term
− 3

2ωN in (4.3) when |ω| � kN10/3, which concludes the proof. �

For completeness we reproduce the argument from [47] allowing to see that at least the
order of magnitude of our energy upper bounds is correct. This is rather simple: We consider
the problem of minimizing the potential energy in a sector of given angular momentum. This
makes sense because we are in the lowest Landau level and we can rewrite the potential
energy as in (2.13). Let us denote

E0(L) = inf

{〈
F,

N∑

j=1

hjF

〉

BN

, LNF = LF, 〈F,F 〉BN = 1

}
(4.14)

where

h = (ω + 3k)z∂z + k(z∂z)
2 (4.15)

and hj is the same operator acting on the variable zj .
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We have the following lemma:

Lemma 4.1 (Potential energy at given momentum) For any L ∈ N

E0(L) ≥ (ω + 3k)L + k
L2

N
:= e(L) (4.16)

with equality if L is a multiple of N .

Proof Since LN and
∑N

j=1 L2
j commute, they can be diagonalized simultaneously and we

have the operator inequality

N∑

j=1

L2
j ≥ 1

N

(
N∑

j=1

Lj

)2

,

from which (4.16) follows. The fact that there is equality when L is a multiple of N is proved
by taking the trial state (π L

N
!)−N/2

∏N

j=1 z
L/N

j . �

To see that the lower bounds of Theorem 2.3 follow, simply use this lemma with L = L0,
the momentum of a ground state, as estimated in Theorem 2.1.
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