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Abstract We consider a new class of non Markovian processes with a countable number
of interacting components. At each time unit, each component can take two values, indi-
cating if it has a spike or not at this precise moment. The system evolves as follows. For
each component, the probability of having a spike at the next time unit depends on the entire
time evolution of the system after the last spike time of the component. This class of sys-
tems extends in a non trivial way both the interacting particle systems, which are Markovian
(Spitzer in Adv. Math. 5:246–290, 1970) and the stochastic chains with memory of variable
length which have finite state space (Rissanen in IEEE Trans. Inf. Theory 29(5):656–664,
1983). These features make it suitable to describe the time evolution of biological neural
systems. We construct a stationary version of the process by using a probabilistic tool which
is a Kalikow-type decomposition either in random environment or in space-time. This con-
struction implies uniqueness of the stationary process. Finally we consider the case where
the interactions between components are given by a critical directed Erdös-Rényi-type ran-
dom graph with a large but finite number of components. In this framework we obtain an
explicit upper-bound for the correlation between successive inter-spike intervals which is
compatible with previous empirical findings.

Keywords Biological neural nets · Interacting particle systems · Chains of infinite
memory · Chains of variable length memory · Hawkes process · Kalikow-decomposition
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1 Introduction

A biological neural system has the following characteristics. It is a system with a huge (about
1011) number of interacting components, the neurons. This system evolves in time, and its
time evolution is not described by a Markov process [6]. In particular, the times between
successive spikes of a single neuron are not exponentially distributed (see, for instance, [5]).

This is the motivation for the introduction of the class of models that we consider in the
present paper. To cope with the problem of the large number of components it seems natural
to consider infinite systems with a countable number of components. In this new class of
stochastic systems, each component depends on a variable length portion of the history.
Namely, the spiking probability of a given neuron depends on the accumulated activity of
the system after its last spike time. This implies that the system is not Markovian. The
time evolution of each single neuron looks like a stochastic chain with memory of variable
length, even if the influence from the past is actually of infinite order. This class of systems
represents a non trivial extension of the class of interacting particle systems introduced in
1970 by Spitzer [25]. It is also a non trivial extension of the class of stochastic chains with
memory of variable length introduced in 1983 by Rissanen [24].

The particular type of dependence from the past considered here is motivated both by
empirical as well as theoretical considerations.

From a theoretical point of view, Cessac [6] suggested the same kind of dependence from
the past. In the framework of leaky integrate and fire models, he considers a system with a
finite number of membrane potential processes. The image of this process in which only the
spike times are recorded is a stochastic chain of infinite order where each neuron has to look
back into the past until its last spike time. Cessac’s process is a finite dimensional version of
the model considered here.

Finite systems of point processes in discrete or continuous time aiming to describe bio-
logical neural systems have a long history whose starting points are probably Hawkes [19]
from a probabilistic point of view and Brillinger [5] from a statistical point of view, see
also the interesting paper by Krumin et al. [21] for a review of the statistical aspects. For
non-linear Hawkes processes, but in the frame of a finite number of components, Brémaud
and Massoulié [3] address the problem of existence, uniqueness and stability. Møller and
coauthors propose a perfect simulation algorithm in the linear case, see [22]. In spite of the
great interest in Hawkes processes during the last years, especially in association with mod-
eling problems in finance and biology, all the studies are reduced to the case of systems with
a finite number of components. Here we propose a new approach which enables us to deal
also with infinite systems with a countable number of components, without any assumption
of the type linearity or attractiveness.

This paper is organized as follows. In Sect. 2 we state two theorems proving the existence
and uniqueness of infinite systems of interacting chains with memory of variable length,
under suitable conditions. Our main technical tool is a Kalikow-type decomposition of the
infinite order transition probabilities which is a non trivial extension of previous results of
the authors in the case of Markovian systems, cf. [15]. The decomposition considered here
has two major differences with respect to what has been done before. Firstly this is due
to the non-Markovian nature of the system. Secondly, and most importantly, the structure
of the transition laws leads to the need of either considering a decomposition depending
on a random environment or considering a space-time decomposition. Using the Kalikow-
type decomposition we prove the existence, the uniqueness as well as a property of loss of
memory of the stationary process.

In Sect. 3 we study the correlation between successive inter-spike intervals (ISI). This
aims at explaining empirical results presented in the neuroscientific literature. Gerstner and
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Kistler [16], quoting Goldberg et al. [17], observe that in many experimental setups the
empirical correlation between successive inter-spike intervals is very small “indicating that
a description of spiking as a stationary renewal process is a good approximation”. How-
ever, Nawrot et al. [23] find statistical evidence that neighboring inter-spike intervals are
correlated, having negative correlation. We show that we can account for these apparently
contradictory facts within our model. This requires the introduction of a new setup in which
the synaptic weights define a critical directed Erdös-Rényi random graph with a large but
finite number of components. We obtain in Theorem 3 an explicit upper bound for the cor-
relations involving the number of components of the system, as well as the typical length
of one inter-spike interval. For a system having a large number of components, our result is
compatible with the discussion in [16]. Gerstner and Kistler [16] deduce from this that spik-
ing can be described by a renewal process. However, for systems with a small number of
components, the correlation might as well be quite big, as reported by Nawrot et al. (2007)
who show that neighboring inter-spike intervals are negatively correlated. Therefore, both
features are captured by our model, depending on the scale we are working in.

The proofs of all the results are presented in Sects. 4, 5 and 6.

2 Systems of Interacting Chains with Memory of Variable Length: Existence,
Uniqueness and Loss of Memory

We consider a stochastic chain (Xt )t∈Z taking values in {0,1}I for some countable set of
neurons I , defined on a suitable probability space (Ω, A,P ). For each neuron i at each time
t ∈ Z, Xt(i) = 1 if neuron i has a spike at that time t , and Xt(i) = 0 otherwise. The global
configuration of neurons at time t is denoted Xt = (Xt(i), i ∈ I ). We define the filtration

Ft = σ(Xs, s ∈ Z, s ≤ t), t ∈ Z.

For each neuron i ∈ I and each time t ∈ Z let

Li
t = sup

{
s < t : Xs(i) = 1

}
(2.1)

be the last spike time of neuron i strictly before time t . We introduce a family of “synaptic”
weights Wj→i ∈ R, for j �= i, Wj→j = 0 for all j . Wj→i is the “synaptic weight of neuron j

on neuron i”. We suppose that the synaptic weights have the following property of uniform
summability

sup
i∈I

∑

j

|Wj→i | < ∞. (2.2)

Now we are ready to introduce the dynamics of our process. At each time t , conditionally
on the whole past, sites update independently. This means that for any finite subset J ⊂ I ,
ai ∈ {0,1}, i ∈ J , we have

P
(
Xt(i) = ai, i ∈ J |Ft−1

) =
∏

i∈J

P
(
Xt(i) = ai |Ft−1

)
. (2.3)

Moreover, the probability of having a spike in neuron i at time t is given by

P
(
Xt(i) = 1|Ft−1

) = φi

(
∑

j

Wj→i

t−1∑

s=Li
t

gj (t − s)Xs(j), t − Li
t

)

, (2.4)
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where φi : R × N → [0,1] and gj : N → R+ are measurable functions for all i ∈ I, j ∈ I .
We assume that φi is uniformly Lipschitz continuous, i.e. there exists a positive constant γ

such that for all s, s ′ ∈ R, n ∈ N, i ∈ I ,
∣
∣φi(s, n) − φi

(
s ′, n

)∣∣ ≤ γ
∣
∣s − s ′∣∣. (2.5)

Observe that in the case where the function φi is increasing with respect to the first
coordinate, the contribution of components j is either excitatory or inhibitory, depending
on the sign of Wj→i . This is reminiscent of the situation in biological neural nets in which
neurons can either stimulate or inhibit the expression of other neurons.

It is natural to ask if there exists at least one stationary chain which is consistent with
the above dynamics, and if so, if this process is unique. In what follows we shall construct
a probability measure P on the configuration space Ω = {0,1}I×Z of all space-time con-
figurations of spike trains, equipped with its natural sigma algebra A. On this probability
space, we consider the canonical chain (Xt )t∈Z where for each neuron i and each time t ,
Xt(i)(ω) = ωt(i) is the projection of ω onto the (i, t) coordinate of ω.

For each neuron i, we introduce

V·→i = {j ∈ I, j �= i : Wj→i �= 0},
the set of all neurons that have a direct influence on neuron i. Notice that in our model, V·→i

can be both finite or infinite. We fix a growing sequence (Vi(k))k≥−1 of subsets of I such
that Vi(−1) = ∅, Vi(0) = {i}, Vi(k) ⊂ Vi(k +1), Vi(k) �= Vi(k +1) if Vi(k) �= V·→i ∪{i} and⋃

k Vi(k) = V·→i ∪ {i}.
We consider two types of systems. The first system incorporates spontaneous spike times,

see condition (2.6) below. These spontaneous spikes can be interpreted as external stimulus
or, alternatively, as autonomous activity of the brain. The existence and uniqueness of this
class is granted in our first theorem.

Theorem 1 (Existence and uniqueness in systems with spontaneous spikes) Grant condi-
tions (2.2) and (2.5). Assume that the functions φi and gj satisfy moreover the following
assumptions:

1. There exists δ > 0 such that for all i ∈ I, s ∈ R, n ∈ N,

φi(s, n) ≥ δ. (2.6)

2. We have that

G(1) +
∞∑

n=2

(1 − δ)n−2n2G(n) < ∞, (2.7)

where G(n) = supi

∑n

m=1 gi(m) and where δ is as in condition 1.
3. We have fast decay of the synaptic weights, i.e.

sup
i

∑

k≥1

∣∣Vi(k)
∣∣
( ∑

j /∈Vi (k−1)

|Wj→i |
)

< ∞. (2.8)

Then under these conditions (2.6)–(2.8), there exists a critical parameter δ∗ ∈ ]0,1[ such
that for any δ > δ∗, there exists a unique probability measure P on {0,1}I×Z, under which
the canonical chain satisfies (2.3) and (2.4).

Remark 1 The stochastic chain (Xt )t∈Z introduced in Theorem 1 is a chain having memory
of infinite order (cf. [1, 4, 8, 9, 18, 20]). The setup we consider here extends what has



900 A. Galves, E. Löcherbach

been done in the above cited papers. First of all, the chain we consider takes values in the
infinite state space {0,1}I . Moreover, in Theorem 1 no summability assumption is imposed
on the functions gj . In particular, the choice gj (t) ≡ 1 is possible. This implies that the
specification of the chain is not continuous. More precisely, introducing

p(i,t)(1|x) = φi

(
∑

j

Wj→i

t−1∑

s=Li
t (x)

gj (t − s)xj (j), t − Li
t

)

,

where Li
t (x) = sup{s < t : xs(i) = 1}, we have that

sup
x,y:x=y on Vi (k)×[t−k,t−1]

∣∣p(i,t)(1|x) − p(i,t)(1|y)
∣∣ �→ 0 as k → ∞

in the case gj (t) ≡ 1 for all j , which can be seen by taking configurations x and y such that
Li

t (x) < t − k and Li
t (y) < t − k. A similar type of discontinuity has been considered in [14]

for stochastic chains with memory of variable length taking values in a finite alphabet.

As an illustration of Theorem 1 we give the following example of a system with interac-
tions of infinite range.

Example 1 We give an example of a system satisfying the assumptions of Theorem 1. Take
I = Z

d , gj (s) = 1 for all j, s, and Wi→j = 1
‖j−i‖2d+α

1
for some fixed α > 1, where ‖ · ‖1 is

the L1-norm of Z
d . In this case, if we choose Vi(k) = {j ∈ Z

d = ‖j − i‖1 ≤ k}, we have
|Vi(k)| = (k + 1)d , and condition (2.8) is satisfied, since

∑

k≥1

∣∣Vi(k)
∣∣
( ∑

j /∈Vi (k−1)

|Wj→i |
)

=
∑

k≥1

(k + 1)d

∞∑

l=k

card
{
j : ‖j − i‖1 = l

} 1

l2d+α

≤ C(d)
∑

k≥1

(k + 1)d

∞∑

l=k

ld−1

l2d+α
≤ C(d)

d + α

∑

k≥1

(k + 1)d

(k − 1)d+α
< ∞,

as α > 1.

The next theorem deals with the second type of system. Now we don’t assume a minimal
spiking rate. But additionally to the fast decay of the synaptic weights we also assume a
sufficiently fast decay of the aging factor gj , see condition (2.9) below. This additional as-
sumption implies that the specification of the chain is continuous. This is the main difference
with the setup of Theorem 1.

Theorem 2 (Existence and uniqueness in systems with uniformly summable memory) Sup-
pose that φi(s, n) = φi(s) does not depend on n. Assume conditions (2.2) and (2.5) and
suppose moreover that

sup
i

∑

k≥0

(k + 1) · ∣∣Vi(k)
∣∣
(

∑

j /∈Vi (k−1)

|Wj→i |
∞∑

n=1

gj (n) +
∑

j∈Vi (k−1)

|Wj→i |
∞∑

n=k∨1

gj (n)

)

<
1

γ
,

(2.9)

where γ is given in (2.5).
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Then there exists a unique probability measure P on {0,1}I×Z such that under P , the
canonical chain satisfies (2.3) and (2.4).

Now, for any s < t ∈ Z, let Xt
s(i) = (Xs(i),Xs+1(i), . . . ,Xt (i)) the trajectory of X(i)

between times s and t . As a byproduct of the proof of Theorems 1 and 2 we obtain the
following loss of memory property.

Corollary 1

1. Under the assumptions of either Theorem 1 or Theorem 2, there exists a non increasing
function ϕ : N → R+, such that for any 0 < s < t ∈ N the following holds. For all i ∈ I ,
for all bounded measurable functions f : {0,1}[s,t] → R+,

∣∣E
[
f

(
Xt

s(i)
)∣∣F0

] − E
[
f

(
Xt

s(i)
)]∣∣ ≤ (t − s + 1)‖f ‖∞ ϕ(s). (2.10)

Moreover, ϕ(n) ≤ C 1
n−1 for some fixed constant C.

2. Under the assumptions of Theorem 2, suppose moreover that there exists a constant C >

0 such that

gj (n) ≤ Ce−βn and sup
i

∑

j /∈Vi (n)

|Wi→j | ≤ Ce−βn, (2.11)

for all j ∈ I, n ∈ N, for some β > 0.
Then there exists a critical parameter β∗ such that if β > β∗, (2.10) holds with

ϕ(s) = C�s for some � ∈]0,1[ depending only on β. (2.12)

The proof of Theorem 1 is given in Sect. 4 below. It is based on a conditional Kalikow-
type decomposition of the transition probabilities φi , where we decompose with respect to
all possible interaction neighborhoods of site i. A main ingredient is the construction of an
associated branching process in random environment. The setup of Theorem 2 is conceptu-
ally less difficult, since in this case the transition probabilities are continuous. This follows
from the summability of the aging factors gj . The proof of Theorem 2 relies on a space-time
Kalikow-type decomposition presented in Sect. 5.

Remark 2 The proofs of both Theorem 1 and Theorem 2 imply the existence of a perfect
simulation algorithm of the stochastic chain (Xt )t∈Z. By a perfect simulation algorithm we
mean a simulation which samples in a finite space-time window precisely from the stationary
law P . In the setup of Theorem 2 the simulation can be implemented analogously to what
is presented in Galves et al. [15]. The setup of Theorem 1 requires a conditional approach,
conditionally on the realization of the spontaneous spike times.

3 Correlations Between Inter-Spike Intervals in the Critical Directed Erdös-Rényi
Random Graph

We consider a finite system consisting of a large number of N neurons with random synaptic
weights Wi→j , i �= j . The sequence Wi→j , i �= j , is a sequence of i.i.d. Bernoulli random
variables defined on some probability space (Ω̃, Ã, P̃ ) with parameter p = pN , i.e.

P̃ (Wi→j = 1) = 1 − P̃ (Wi→j = 0) = pN,
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where

pN = λ/N and λ = 1 + ϑ/N for some 0 < ϑ < ∞. (3.13)

If we represent this as a directed graph where the directed link i → j is present if and only
if Wi→j = 1, we obtain what is called a “critical directed Erdös-Rényi random graph”. For a
general reference on random graphs we refer the reader to the classical book by Bollobás [2].

We put Wj→j ≡ 0 for all j . Notice that the synaptic weights Wi→j and Wj→i are distinct
and independent random variables. Conditionally on the choice of the connectivities W =
(Wi→j , i �= j), the dynamics of the chain are then given by

P W
(
Xt(i) = 1

∣∣Ft−1

) = φi

(
∑

j

Wj→i

t−1∑

s=Li
t

gj (t − s)Xs(j)

)

.

Here we suppose that φi is a function only of the accumulated and weighted number of
spikes coming from interacting neurons, but does not depend directly on the time elapsed
since the last spike.

P W denotes the conditional law of the process, conditioned on the choice of W . We
write P for the annealed law where we also average with respect to the random weights, i.e.
P = Ẽ[P W(·)], where Ẽ denotes the expectation with respect to P̃ .

Fix a neuron i and consider its associated sequence of successive spike times

· · · < Si
−n < · · · < Si

0 ≤ 0 < Si
1 < Si

2 < · · · < Si
n < · · · , (3.14)

where

Si
1 = inf

{
t ≥ 1 : Xt(i) = 1

}
, . . . , Si

n = inf
{
t > Si

n−1 : Xt(i) = 1
}
, n ≥ 2,

and

Si
0 = sup

{
t ≤ 0 : Xt(i) = 1

}
, . . . , Si

−n = sup
{
t < Si

−n+1 : Xt(i) = 1
}
, n ≥ 1.

Let us fix W . We are interested in the covariance between successive inter-spike intervals

CovW
(
Si

k+1 − Si
k, S

i
k − Si

k−1

) = EW
[(

Si
k+1 − Si

k

)(
Si

k − Si
k−1

)]

− EW
(
Si

k+1 − Si
k

)
EW

(
Si

k − Si
k−1

)
,

for any k �= 0,1. Since the process is stationary, the above covariance does not depend on
the particular choice of k. The next theorem shows that neighboring inter-spike intervals are
asymptotically uncorrelated as the number of neurons N tends to infinity.

Theorem 3 Assume that (2.5), (2.6) and (2.7) are satisfied. Then there exists a measurable
subset A ∈ Ã, such that on A,

∣∣CovW
(
Si

3 − Si
2, S

i
2 − Si

1

)∣∣ ≤ 3

δ2
N(1 − δ)

√
N,

where δ is the lower bound appearing in condition (2.6). Moreover,

P
(
Ac

) ≤ e2ϑN−1/2.

For large N , if the graph of synaptic weights belongs to the “good” set A, the above
result is compatible with the discussion in [16]. Gerstner and Kistler [16] deduce from this
that spiking can be described by a renewal process. However, for small N or on Ac , the
correlation might as well be quite big, as reported by Nawrot et al. (2007) who show that
neighboring inter-spike intervals are negatively correlated. Therefore, both features are cap-
tured by our model, depending on the scale we are working in.

The proof of the above theorem is given in Sect. 6 below.
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4 Conditional Kalikow-Type Decomposition and Proof of Theorem 1

In order to prove existence and uniqueness of a chain consistent with (2.3) and (2.4), we
introduce a Kalikow-type decomposition of the infinite order transition probabilities. This
type of decomposition was considered in the papers by Ferrari, Maass, Martínez and Ney
[13], Comets, Fernández and Ferrari [7] and Galves et al. [15]. All these papers deal with
the case in which the transition probabilities are continuous. This is not the case here. We
are dealing with a more general case in which the transition probabilities might as well be
discontinuous, see the discussion in Remark 1. This makes our approach new and interesting
by itself. The new ingredient is a construction of a decomposition depending on a random
environment. This random environment is given by the realization of the spontaneous spikes.

More precisely, condition (2.6) allows to introduce a sequence of i.i.d. Bernoulli random
variables (ξt (i), i ∈ I, t ∈ Z) of parameter δ, such that positions and times (i, t) with ξt (i) =
1 are spike times for any realization of the chain. We call these times “spontaneous spike
times”. We work conditionally on the choice of ξt (i), t ∈ Z, i ∈ I . In particular we will
restrict everything to the state space

S ξ = {
x ∈ {0,1}I×Z : xt (i) ≥ ξt (i),∀i ∈ I, t ∈ Z

}

which is the space of all configurations compatible with ξ , i.e. all neural systems x such that
every spike time of ξ is also a spike time of x. We write

Ri
t = sup

{
s < t : ξs(i) = 1

}
(4.15)

for the last spontaneous spike time of neuron i before time t . Moreover, for x ∈ S ξ , we put
Li

t = Li
t (x) = sup{s < t : xs(i) = 1}.

Consider a couple (i, t) with ξt (i) = 0. In order to prove Theorem 1 we need to introduce
the following quantities which depend on the realization of ξ , namely

r
[−1]
(i,t) (1) = inf

x∈Sξ
φi

(
∑

j

Wj→i

t−1∑

s=Li
t (x)

gj (t − s) xs(j), t − Li
t (x)

)

, (4.16)

which is the minimal probability that neuron i spikes at time t , uniformly with respect to all
configurations, and

r
[−1]
(i,t) (0) = inf

x∈Sξ

[

1 − φi

(
∑

j

Wj→i

t−1∑

s=Li
t (x)

gj (t − s) xs(j), t − Li
t (x)

)]

, (4.17)

which is the minimal probability that neuron i does not spike at time t .
Notice that for all x ∈ S ξ , Li

t (x) ≥ Ri
t . Hence in the above formulas, only a finite time

window of the configuration x is used, and uniformly in x ∈ S ξ , this time window is con-
tained in (xs(j),Ri

t ≤ s ≤ t − 1, j ∈ I ). In particular the above quantities are well-defined.
Now fix x ∈ S ξ . For any k ≥ 0, we write for short xt−1

Li
t

(Vi(k)) for the space-time config-

uration

xt−1
Li

t

(
Vi(k)

) = (
xs(j) : Li

t ≤ s ≤ t − 1, j ∈ Vi(k)
)

and put

r
[k]
(i,t)

(
1
∣∣xt−1

Li
t

(
Vi(k)

))

= inf
z∈Sξ :z(Vi (k))=x(Vi (k))

φi

(
∑

j

Wj→i

t−1∑

s=Li
t (x)

gj (t − s) zs(j), t − Li
t (x)

)

, (4.18)
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r
[k]
(i,t)

(
0
∣∣xt−1

Li
t

(
Vi(k)

))

= inf
z∈Sξ :z(Vi (k))=x(Vi (k))

[

1 − φi

(
∑

j

Wj→i

t−1∑

s=Li
t (x)

gj (t − s)zs(j), t − Li
t (x)

)]

. (4.19)

In what follows and whenever there is no danger of ambiguity, we will write for short
x(Vi(k)) and r

[k]
(i,t)(a|x(Vi(k))) or r

[k]
(i,t)(a|x) instead of xt−1

Lt
i

(Vi(k)) and r
[k]
(i,t)(a|xt−1

Li
t

(Vi(k))).

We put

α(i,t)(−1) = λ(i,t)(−1) =
1∑

a=0

r
[−1]
(i,t) (a), (4.20)

α(i,t)(k) = inf
x∈Sξ

(
1∑

a=0

r
[k]
(i,t)

(
a
∣∣x

(
Vi(k)

))
)

, k ≥ 0, (4.21)

and

λ(i,t)(k) = α(i,t)(k) − α(i,t)(k − 1), k ≥ 0. (4.22)

Note that λ(i,t)(k) ∈ [0,1] and that
∑

k≥−1 λ(i,t)(k) = 1 almost surely with respect to the
realization of (ξt (i), i ∈ I, t ∈ Z).

Remark 3 The λ(i,t)(k), k ≥ 0, are random variables that depend only on the realization of
(ξt (i), i ∈ I, t ∈ Z). More precisely, for any i, t and k, λ(i,t)(k) is measurable with respect to
the sigma-algebra σ(ξs(j),Ri

t ≤ s < t, j ∈ I ). We write λ
ξ

(i,t)(k), k ≥ 0, in order to empha-
size the dependence on the external field ξ .

We introduce the short hand notation

p(i,t)(1|x) = φi

(
∑

j

Wj→i

t−1∑

s=Li
t (x)

gj (t − s) xs(j), t − Li
t (x)

)

(4.23)

and

p(i,t)(0|x) = 1 − p(i,t)(1|x).

The proof of Theorem 1 is based on the following proposition.

Proposition 1 Given ξ , for all (i, t) with ξt (i) = 0, there exists a family of conditional
probabilities (p

[k],ξ
(i,t) (a|x))k≥0 satisfying the following properties.

1. For all a, k ≥ 0, S ξ � x �→ p
[k],ξ
(i,t) (a|x) depends only on the variables (xs(j) : Li

t ≤ s ≤
t − 1, j ∈ Vi(k)).

2. For all x ∈ S ξ , k ≥ 0, p
[k],ξ
(i,t) (1|x) ∈ [0,1], p

[k],ξ
(i,t) (0|x) + p

[k],ξ
(i,t) (1|x) = 1.

3. For all a, x, k ≥ 0, p
[k],ξ
(i,t) (a|x) is a σ(ξs(j),Ri

t ≤ s ≤ t − 1, j ∈ I )-measurable random
variable.

4. For all x ∈ S ξ , we have the following convex decomposition.

p(i,t)(a|x) = λ(i,t)(−1)p
[−1],ξ
(i,t) (a) +

∑

k≥0

λ(i,t)(k)p
[k],ξ
(i,t)

(
a
∣∣x

(
Vi(k)

))
, (4.24)

where

p
[−1],ξ
(i,t) (a) = r

[−1]
(i,t) (a)

λ(i,t)(−1)
.
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From now on, we shall omit the subscript ξ whenever there is no danger of ambiguity
and write p

[k]
(i,t) instead of p

[k],ξ
(i,t) .

Remark 4 The decomposition (4.24) of the transition probability p(i,t)(·|x) can be in-
terpreted as follows. In a first step, we choose a random spatial interaction range k ∈
{−1,0,1, . . .} according to the probability distribution {λ(i,t)(k), k ≥ −1}. Once the range
of the spatial interaction is fixed, we then perform a transition according to p

[k]
(i,t) which de-

pends only on the finite space-time configuration xt−1
Li

t

(Vi(k)). A comprehensive introduction

to this technique can be found in the lecture notes of Fernández et al. [10].

Example 2 Suppose that all interactions are excitatory, i.e. Wj→i ≥ 0 for all i �= j . Suppose
further that gi(s) = 1 for all s ∈ N, i ∈ I , and that Φi(s, n) = Φi(s) does not depend on n

and is non-decreasing in s. Then

r
[−1]
(i,t) (1) = Φi

(∑

j

Wj→iξt−1(j)

)
and r

[−1]
(i,t) (0) = 1 − Φi

(∑

j

Wj→i

(
t − Ri

t

))
.

Hence,

λ(i,t)(−1) = 1 + Φi

(∑

j

Wj→iξt−1(j)

)
− Φi

(∑

j

Wj→i

(
t − Ri

t

))
.

Similarly,

r
[k]
(i,t)(1|x) = Φi

(
∑

j /∈Vi (k)

Wj→i

t−1∑

m=Li
t (x)

ξs(j) +
∑

j∈Vi (k)

Wj→i

t−1∑

s=Li
t (x)

xs(j)

)

and

r
[k]
(i,t)(0|x) = 1 − Φi

(
∑

j /∈Vi (k)

Wj→i

(
t − Li

t (x)
) +

∑

j∈Vi (k)

Wj→i

t−1∑

s=Li
t (x)

xs(j)

)

.

Proof of Proposition 1 We have for any N ≥ 1, a ∈ {0,1} and x ∈ S ξ ,

p(i,t)(a|x) = r
[−1]
(i,t) (a) +

(
N∑

k=0

�
[k]
(i,t)

(
a
∣∣x

(
Vi(k)

))
)

+ (
p(i,t)(a|x) − r

[N]
(i,t)(a|x)

)
,

where

�
[k]
(i,t)

(
a
∣∣x

(
Vi(k)

)) = r
[k]
(i,t)

(
a
∣∣x

(
Vi(k)

)) − r
[k−1]
(i,t)

(
a
∣∣x

(
Vi(k − 1)

))
.

Now, due to condition (2.5),

∣∣p(i,t)(a|x) − r
[N]
(i,t)(a|x)

∣∣ ≤ γ

(
t−1∑

s=Ri
t

sup
j

gj (t − s)

)
∑

j /∈Vi (N)

|Wj→i | → 0

as N → ∞ due to (2.2). In the above upper bound we used that

t−1∑

s=Li
t

gj (t − s)
∣∣zs(j) − xs(j)

∣∣ ≤
t−1∑

s=Ri
t

sup
j

gj (t − s) < ∞
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almost surely, which is a consequence of (2.7). Therefore we obtain the following decom-
position.

p(i,t)(a|x) = r
[−1]
(i,t) (a) +

∞∑

k=0

�
[k]
(i,t)

(
a
∣
∣x

(
Vi(k)

))
, a ∈ {0,1}, for all x ∈ S ξ . (4.25)

Now let

p
[−1]
(i,t) (a) = r

[−1]
(i,t) (a)

λ(i,t)(−1)
.

Moreover, for k ≥ 0, put

λ̃(i,t)

(
k, x

(
Vi(k)

)) =
∑

a

�
[k]
(i,t)

(
a
∣∣x

(
Vi(k)

))
, (4.26)

and for any (i, t), k such that λ̃(i,t)(k, x(Vi(k))) > 0, we define

p̃
[k]
(i,t)

(
a
∣∣x

(
Vi(k)

)) = �
[k]
(i,t)(a|x(Vi(k)))

λ̃(i,t)(k, x(Vi(k)))
.

For (i, t), k such that λ̃(i,t)(k, x(Vi(k))) = 0, define p̃
[k]
(i,t)(a|x(Vi(k))) in an arbitrary fixed

way. Hence

p(i,t)(a|x) = λ(i,t)(−1)p
[−1]
(i,t) (a) +

∞∑

k=0

λ̃(i,t)

(
k, x

(
Vi(k)

))
p̃

[k]
(i,t)

(
a
∣∣x

(
Vi(k)

))
. (4.27)

In (4.27) the factors λ̃(i,t)(k, x(Vi(k))), k ≥ 0, still depend on xt−1
Li

t

(Vi(k)). To obtain the

desired decomposition, we must rewrite it as follows.
For any (i, t), take the sequences α(i,t)(k), λ(i,t)(k), k ≥ −1, as defined in (4.21) and

(4.22), respectively. Define the new quantities

α(i,t)

(
k, x

(
Vi(k)

)) =
∑

l≤k

λ̃(i,t)

(
l, x

(
Vi(l)

))

and notice that

α(i,t)

(
k, x

(
Vi(k)

)) =
∑

a

r
[k]
(i,t)

(
a, x

(
Vi(k)

))

is the total mass associated to r
[k]
(i,t)(·, x(Vi(k))). From now on and for the rest of the proof

we shall write for short α(i,t)(k, x) instead of writing α(i,t)(k, x(Vi(k))).
Reading (4.27) again, this means that for any k ≥ 0, we have to use the transition proba-

bility p̃
[k]
(i,t) on the interval ]α(i,t)(k − 1, x),α(i,t)(k, x)].

By definition of α(i,t)(k) in (4.21), α(i,t)(k) is the smallest total mass associated to r
[k]
(i,t),

uniformly with respect to all possible neighborhoods x(Vi(k)). Hence, in order to get the
decomposition (4.24) with weights λ(i,t)(k) not depending on the configuration, we have to
define a partition of the interval [0, α(i,t)(k, x)] according to the values of α(i,t)(k) and we
have to define probabilities p

[k]
(i,t) working on the intervals ]α(i,t)(k − 1), α(i,t)(k)]. This can

be done as follows.
Fix k ≥ 0 and suppose that for some l′ ≤ l ≤ k − 1,

α(i,t)

(
l′ − 1, x

)
< α(i,t)(k − 1) ≤ α(i,t)

(
l′, x

)
< · · · <

< α(i,t)(l, x) < α(i,t)(k) ≤ α(i,t)(l + 1, x),
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and therefore

]
α(i,t)(k − 1), α(i,t)(k)

] = ]
α(i,t)(k − 1), α(i,t)

(
l′, x

)]

∪
(

l⋃

m=l′+1

]
α(i,t)(m − 1, x),α(i,t)(m,x)

]
)

∪ ]
α(i,t)(l, x),α(i,t)(k)

]
.

Hence the probability p
[k]
(i,t) that has to be defined on the interval ]α(i,t)(k−1), α(i,t)(k)] has to

be decomposed according to the above decomposition into sub-intervals. On the first interval
]α(i,t)(k − 1), α(i,t)(l

′, x)], we have to use the original probability p̃
[l′]
(i,t), on each of the inter-

vals ]α(i,t)(m − 1, x),α(i,t)(m,x)], we have to use p̃
[m]
(i,t), and finally on ]α(i,t)(l, x),α(i,t)(k)],

we use p̃
[l+1]
(i,t) .

This yields, for any k ≥ 0, the following definition of the conditional finite range proba-
bility densities.

p
[k]
(i,t)

(
a
∣∣x

(
Vi(k)

)) =
k−1∑

−1=l′≤l

1{α(i,t)(l
′−1,x)<α(i,t)(k−1)≤α(i,t)(l

′,x)}1{α(i,t)(l,x)<α(i,t)(k)≤α(i,t)(l+1,x)}

×
[

α(i,t)(l
′, x) − α(i,t)(k − 1)

λ(i,t)(k)
p̃

[l′]
(i,t)

(
a
∣∣x

(
Vi

(
l′
)))

+
l∑

m=l′+1

λ̃(i,t)(m,x(Vi(m)))

λ(i,t)(k)
p̃

[m]
(i,t)

(
a
∣∣x

(
Vi(m)

))

+ α(i,t)(k) − α(i,t)(l, x)

λ(i,t)(k)
p̃

[l+1]
(i,t)

(
a
∣∣x

(
Vi(l + 1)

))
]

. (4.28)

Note that by construction, the above defined probability p
[k]
(i,t) depends only on the config-

uration x(Vi(l + 1)), hence at most on x(Vi(k)), since l ≤ k − 1. Multiplying the above
formula with λ(i,t)(k) and summing over all k shows that the decomposition (4.27) implies
the desired decomposition (4.24). This finishes our proof. �

Thanks to condition (2.5), the following estimate holds. It will be useful in the sequel.

Lemma 1 We have for all k ≥ 1,

λ
ξ

(i,t)(k) ≤ γ
∑

j /∈Vi (k−1)

|Wj→i |
t−1∑

s=Ri
t

gj (t − s)
(
1 − ξs(j)

)

≤ γ

(
t−1∑

s=Ri
t

sup
j

gj (t − s)

)
∑

j /∈Vi (k−1)

|Wj→i |. (4.29)

We use this estimate in

Proof of Theorem 1 We work conditionally on the realization of the process ξt (i), t ∈ Z,

i ∈ I . Take a couple (i, t), i ∈ I, t ∈ Z, such that ξt (i) = 0. We have to show that it is possible
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to decide in a uniquely determined manner if t will be a spike time or not. In order to achieve
this decision, we have to calculate p(i,t)(·|x), where x is the unknown history of the process.

We will construct a sequence of sets (C(i,t)
n )n, C(i,t)

n ⊂ I×] − ∞, t − 1], which contain
the sets of sites and anterior spike times that have an influence on the appearance of a spike
at time t for neuron i. The choice of these sets is based on the decomposition (4.24).

First, for any couple (j, s) with ξs(j) = 0, we choose, independently from anything else,
an interaction neighborhood V(j,s) = Vj (k), k ≥ −1, with probability λ

ξ

(j,s)(k). Here, we put
Vj (−1) = ∅. A choice k = −1 for a couple (j, s) implies that we can immediately decide to
accept a spike at time s for neuron j with probability

r
[−1]
(j,s)(1) − δ

1 − δ

and to reject it with probability

r
[−1]
(j,s)(0)

1 − δ
.

We suppose that the choice of all V(j,s) is fixed. Then by (4.24), the decision concerning
the couple (i, t) depends on the configuration of the past xt−1

Li
t

(V(i,t)). Since we do not know

Li
t , we use the a priori estimate on Li

t which is given by Ri
t . Thus we consider the worst case

in which we have to evaluate the past up to time Ri
t .

In order to decide about the length t − Li
t , we have to assign values 0 or 1 to all couples

(i, s),Ri
t < s ≤ t . All these couples are influenced by their associated interaction region

V(i,s). So we consider

C
(i,t)

1 =
t⋃

s=Ri
t +1

⋃

j∈V(i,s)\{i}

s−1⋃

u=Ri
t

{
(j, u), ξj (u) = 0

}
. (4.30)

It is clear that if we know the values of all couples belonging to C
(i,t)

1 then we are able
to assign a value to any (i, s),Ri

t < s ≤ t . Therefore, we call C
(i,t)

1 the set of ancestors of
generation 1 of (i, t). Continuing this procedure, any couple (j, s) ∈ C

(i,t)

1 itself has to be
replaced by the set of its ancestors C

(j,s)

1 . We put

C
(i,t)

2 =
( ⋃

(j,s)∈C
(i,t)
1

C
(j,s)

1

)∖
C

(i,t)

1 , (4.31)

where C
(j,s)

1 is defined as in (4.30), and then recursively,

C(i,t)
n =

( ⋃

(j,s)∈C
(i,t)
n−1

C
(j,s)

1

)∖(
C

(i,t)

1 ∪ · · · ∪ C
(i,t)

n−1

)
. (4.32)

We will show below that almost surely there exists a first time n < ∞ such that C(i,t)
n = ∅.

Then necessarily C
(i,t)

n−1 consists only of couples (j, s) which chose an interaction neighbor-
hood of range −1 or which interact only with couples representing spontaneous spiking.
Thus we can decide to accept or to reject a spike for any of them independently of anything
else. Once the values associated to all elements of C

(i,t)

n−1 are known, we can realize all de-

cisions needed in order to attribute values to the elements of C
(i,t)

n−2. In this way, we will be

able to assign values in a recursive way to all ancestor sets up to the first set, C
(i,t)

1 , which
allows us finally to assign a value for neuron i at time t . We call this procedure the forward
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coloring procedure and we call Yt (i) the value of neuron t at time t obtained at the end of
this procedure.

1. We first show that the probability constructed above is the law of Xt(i) under the
unique invariant measure P . Put C(i,t)∞ = ⋃

n≥1 C(i,t)
n and let

T
(i,t)

STOP = inf
{
s : C(i,t)

∞ ⊂ I × [t − s, t − 1]}. (4.33)

Fix some initial space-time configuration η ∈ {0,1}I×−N such that η0(i) = 1 for all i ∈ I .
Let X

η
t be the chain that evolves according to (2.3) and (2.4), conditionally on X0−∞ = η.

Recall that Yt (i) is the value obtained at the end of the above described forward coloring
procedure. Then for any f : {0,1} → R+,

E
(
f

(
X

η
t (i)

)) = E
(
f

(
X

η
t (i)

)
, T

(i,t)

STOP < t
) + E

(
f

(
X

η
t (i)

)
, T

(i,t)

STOP ≥ t
)

= E
(
f

(
Yt (i)

)
, T

(i,t)

STOP < t
) + E

(
f

(
X

η
t (i)

)
, T

(i,t)

STOP ≥ t
)
. (4.34)

But

E
(
f

(
X

η
t (i)

)
, T

(i,t)

STOP ≥ t
) ≤ ‖f ‖∞P

(
T

(i,t)

STOP ≥ t
) → 0 as t → ∞.

Hence we obtain that

lim
t→∞E

(
f

(
X

η
t (i)

)) = E
(
f

(
Yt (i)

))
,

since 1{T (i,t)
STOP<t} → 1 almost surely.

This implies that P is the unique invariant measure of the process.
2. We now show that the above procedure stops after a finite time almost surely. For that

sake we put

N
(i,t)

STOP = min
{
n : C(i,t)

n = ∅}
. (4.35)

Our goal is to show that N
(i,t)

STOP < ∞ almost surely. Notice that this implies that T
(i,t)

STOP < ∞
as well. In order to do so, let

∣∣C(i,t)
n

∣∣, n ≥ 1,

be the cardinal of the set of ancestors after n steps of the above procedure. Then

P
(
N

(i,t)

STOP > n
) ≤ E

(∣∣C(i,t)
n

∣∣). (4.36)

As a consequence, it is sufficient to show that E(|C(i,t)
n |) → 0 as n → ∞. For that sake we

compare (|C(i,t)
n |)n to a branching process in random environment, where the environment

is given by the i.i.d. field ξ .
Recall the definition of G(n) = ∑n

m=1 supi gi(m) and the upper bound (4.29). Thus for
any k ≥ 1,

λ(i,t)(k) ≤ γ

(
t−1∑

s=Ri
t

sup
j

gj (t − s)

)
∑

j /∈Vi (k−1)

|Wj→i | = γG
(
t − Ri

t

) ∑

j /∈Vi (k−1)

|Wj→i |.

Let

λ̄(i,t)(k) = γG
(
t − Ri

t

) ∑

j /∈Vi (k−1)

|Wj→i |. (4.37)

Notice that λ̄(i,t)(k) depends only on the realization of the i.i.d. field ξ through the value of
t − Ri

t .
Since λ(i,t)(k) ≤ λ̄(i,t)(k) for all k ≥ 1, it is possible, by standard branching process

coupling arguments, to construct a sequence (C̄(i,t)
n )n coupled with the original sequence

(C(i,t)
n )n satisfying the following properties.
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1. C̄(i,t)
n is defined through (4.30) and (4.31) by using the family (λ̄(i,t)(k)) instead of

(λ(i,t)(k)).
2. For all n, |C(i,t)

n | ≤ |C̄(i,t)
n |.

Hence it is sufficient to show that E(|C̄(i,t)
n |) tends to 0 as n → ∞. In order to do so, we will

control the reproduction mean depending on the environment ξ . Here, reproduction mean
stands for the mean number of sites belonging to C̄

(j,s)

1 , for any fixed couple (j, s), where
the expectation is taken with respect to the choices of the interaction neighborhoods V̄(i,s),
conditionally on the realization of ξ . More precisely, given C̄(i,t)

n = c, the reproduction mean
of any couple (j, s) belonging to C̄(i,t)

n is given by

Eξ
(∣∣C̄(j,s)

1

∣∣ ∣∣ (j, s) ∈ C̄(i,t)
n = c

)

≤
s∑

s̃=R
j
s +1

∑

k≥1

λ̄(j,s̃)(k)

(
∑

l∈Vj (k),l �=j

s̃−1∑

u=R
j
s

[
1 − ξu(l)

]
1{(l,u)/∈c}

)

,

where Eξ denotes expectation conditionally on ξ .
In what follows we upper bound the above expression. We first use that, by definition

(4.37), for s̃ ≤ s, λ̄(j,s̃)(k) ≤ λ̄(j,s)(k). Therefore,

Eξ
(∣∣C̄(j,s)

1

∣∣ ∣∣ (j, s) ∈ C̄(i,t)
n = c

)

≤ (
s − Rj

s

)∑

k≥1

λ̄(j,s)(k)

(
∑

l∈Vj (k),l �=j

s−1∑

u=R
j
s

[
1 − ξu(l)

]
1{(l,u)/∈c}

)

.

Recalling the explicit form of λ̄(j,s)(k) in (4.37) and using moreover the upper bound

s−1∑

u=R
j
s

[
1 − ξu(l)

]
1{(l,u)/∈c} ≤ s − Rs

j ,

on the event Rs
j < s − 1, we obtain

Eξ
(∣∣C̄(j,s)

1

∣∣ ∣∣ (j, s) ∈ C̄(i,t)
n = c

)

≤ 2γ

(
1{Rj

s <s−1}
(
s − Rj

s

)2
G

(
s − Rj

s

)∑

k≥1

∣∣Vj (k)
∣∣
( ∑

l /∈Vj (k−1)

|Wl→j |
)

+ 1{Rj
s =s−1}G(1)

∑

k≥1

( ∑

l /∈Vj (k−1)

|Wl→j |
) ∑

l∈Vj (k),l �=j

(
1 − ξs−1(l)

)
1{(l,s−1)/∈c}

)

=: m̄c
(j,s). (4.38)

Observe that m̄c
(j,s) depends on ξ , but to avoid too cumbersome notation, we omit the super-

script ξ .
Taking conditional expectation, conditionally with respect to ξ , we get

Eξ
(∣∣C̄(i,t)

n

∣∣ ∣∣ C̄
(i,t)

n−1

) ≤
∑

(j,s)∈C̄
(i,t)
n−1

m̄
C̄

(i,t)
n−1

(j,s) . (4.39)

Therefore, taking expectation with respect to ξ ,

E
(∣∣C̄(i,t)

n

∣∣) ≤
∑

(j,s)

E
(
1

(j,s)∈C̄
(i,t)
n−1

m̄
C̄

(i,t)
n−1

(j,s)

)
. (4.40)
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Now note that the event
{
(j, s) ∈ C̄

(i,t)

n−1

} = {∃(k, s̃) ∈ C̄
(i,t)

n−2 : s̃ > s, k �= j, j ∈ V̄(k,s̃)

}

depends only on Rk
s̃
. Hence, recalling (4.38), the above event is independent of m̄

C̄
(i,t)
n−1

(j,s) which

depends only on s − R
j
s . As a consequence,

E
(
1

(j,s)∈C̄
(i,t)
n−1

m̄
C̄

(i,t)
n−1

(j,s)

) = P
(
(j, s) ∈ C̄

(i,t)

n−1

)
E

(
m̄

C̄
(i,t)
n−1

(j,s)

)
.

But

E
(
m̄

C̄
(i,t)
n−1

(j,s)

) ≤ 2γ

[ ∞∑

n=2

δ(1 − δ)n−1n2G(n)
∑

k≥1

∣∣Vj (k)
∣∣
( ∑

l /∈Vj (k−1)

|Wl→j |
)

+ δG(1)
∑

k≥1

( ∑

l /∈Vj (k−1)

|Wl→j |
)∣∣Vj (k)

∣∣(1 − δ)

]

. (4.41)

We put

Cγ := 2γ sup
j

∑

k≥1

∣∣Vj (k)
∣∣
( ∑

l /∈Vj (k−1)

|Wl→j |
)

(4.42)

and define

E(G,δ) = G(1) +
∞∑

n=2

(1 − δ)n−2n2G(n).

Then

E
[
m̄

C̄
(i,t)
n−1

(j,s)

] ≤ Cγ (1 − δ)E(G, δ) =: e(δ). (4.43)

Note that e(δ) is decreasing as a function of δ and tends to 0 for δ → 1. In particular, if we
put

δ∗ = inf
{
δ ∈]0,1[ : e(δ) ≤ 1

}
, (4.44)

then e(δ) < 1 for all δ ≥ δ∗. Now we may iterate (4.40) and (4.43) and obtain

E
(∣∣C̄(i,t)

n

∣∣) ≤
∑

(j,s)

E(1{(j,s)∈C̄
(i,t)
n−1})e(δ) = E

(∣∣C̄(i,t)

n−1

∣∣)e(δ) ≤ e(δ)n. (4.45)

Since e(δ)n → 0 as n → ∞ for δ ≥ δ∗, this implies our result. �

Remark 5 Note that the value of δ∗ given in (4.44) can be explicitly calculated depending
on the specific structure of the aging functions gj (s). For instance, if gj (s) = 1 for all j, s,
then G(n) = n for all n, and the value of δ∗ follows from standard evaluations of the third
moment of a geometrical distribution.

Remark 6 The above proof uses a non-trivial extension of the so-called Clan of ancestors
method employed by Fernàndez et al. [11, 12]. In these papers the authors study the Clan of
ancestors of a given vertex (or object) in a random system. They prove that this set is almost
surely finite and deduce a perfect simulation algorithm.
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Proof of Corollary 1, part 1 We prove the first part of Corollary 1. We keep the notation of
the proof of Theorem 1. Put C(i,t)∞ = ⋃

n C(i,t)
n . Then the random variable T

(i,t)

STOP defined in
(4.33) can be trivially upper bounded by

T
(i,t)

STOP ≤ ∣
∣C(i,t)

∞
∣
∣, (4.46)

which is the total number of elements appearing in the ancestor process. This is a very rough
upper bound on the number of steps that we have to look back into the past in order to choose
a value for Xi(t).

By construction, the value Xi(t) depends on all choices of interaction regions V(j,s) such
that (j, s) ∈ C(i,t)∞ and on the values of the i.i.d. Bernoulli field ξu for t − T

(i,t)

STOP ≤ u ≤ t .
Moreover, for any (j, s) ∈ C(i,t)∞ , a random decision has to be made whether to associate
the value +1 or 0 to this couple. These decisions can be realized based on a sequence
of i.i.d. uniform random variables (Ut (i), i ∈ I, t ∈ Z), which are uniform on [0,1]. As a
consequence, Xt(i) is measurable with respect to the sigma-algebra

σ
{

V(j,s),Us(j) : (j, s) ∈ C(i,t)
∞ , ξu : t − T

(i,t)

STOP ≤ u ≤ t
}
.

Writing

R = inf
u∈[s,t]

(
u − T

(i,u)

STOP

)
, (4.47)

we deduce that

Xt
s(i) is σ

{
V(j,u),Uu(j), ξu(j) : j ∈ I,R ≤ u ≤ t

}
-measurable. (4.48)

Let A ∈ F0. We write Eξ for conditional expectation, conditionally with respect to ξ . Then
we have

E
[
f

(
Xt

s(i)
)
1A

] = E
[
f

(
Xt

s(i)
)
1A1{R>0}

] + E
[
f

(
Xt

s(i)
)
1A1{R≤0}

]

= E
[
Eξ

[
f

(
Xt

s(i)
)
1A1{R>0}

]] + E
[
Eξ

[
f

(
Xt

s(i)
)
1A1{R≤0}

]]
.

Clearly, f (Xt
s(i))1{R>0} and A are independent, which follows from (4.48). Hence

Eξ
[
f

(
Xt

s(i)
)
1A

] = Eξ
[
f

(
Xt

s(i)
)
1{R>0}

]
P ξ (A) + Eξ

[
f

(
Xt

s(i)
)
1A1{R≤0}

]
.

We take expectation with respect to ξ and use the fact that Eξ [f (Xt
s(i))1{R>0}] is measurable

with respect to σ {ξu : 1 ≤ u ≤ t} and P ξ (A) is measurable with respect to σ {ξu : u ≤ 0}.
Hence by independence

E
[
f

(
Xt

s(i)
)
1A

] = E
[
f

(
Xt

s(i)
)
1{R>0}

]
P (A) + E

[
f

(
Xt

s(i)
)
1A1{R≤0}

]
,

and therefore

E
[
f

(
Xt

s(i)
)
1A

] − E
[
f

(
Xt

s(i)
)]

P (A)

= E
[
f

(
Xt

s(i)
)
1A1{R≤0}

] − E
[
f

(
Xt

s(i)
)
1{R≤0}

]
P (A).

As a consequence,

∣∣E
[
f

(
Xt

s(i)
)
1A

] − E
[
f

(
Xt

s(i)
)]

P (A)
∣∣ ≤ ‖f ‖∞P (A)

[
P (R ≤ 0|A) + P (R ≤ 0)

]

≤ ‖f ‖∞P (A)
[
P (R ≤ 1|A) + P (R ≤ 0)

]

≤ 2‖f ‖∞P (A)P (R ≤ 1).
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Here we have used that {R ≤ 1} is independent of A. Indeed, the event {R ≤ 1} does only
depend on choices of V(j,s) and ξs(j) having time component s ≥ 1. Now we conclude as
follows. By definition of R,

P (R ≤ 1) ≤
∑

u∈[s,t]
P

(
T

(i,u)

STOP ≥ s − 1
)
.

Using (4.46), we obtain

P
(
T

(i,u)

STOP ≥ s − 1
) ≤ P

(∣∣C(i,u)
∞

∣∣ ≥ s − 1
) ≤ E

(∣∣C(i,u)
∞

∣∣) 1

s − 1
≤ 1

1 − e(δ)

1

s − 1
,

since

E
(∣∣C(i,u)

∞
∣∣) ≤

∞∑

n=1

E
(∣∣C(i,u)

n

∣∣) ≤ 1

1 − e(δ)
,

where we have used (4.45). This implies the result. �

5 A Space-Time Kalikow-Type Decomposition and Proof of Theorem 2

The additional condition (2.9) allows to introduce a space-time Kalikow-type decomposition
without the assumption of existence of spontaneous spikes. We will decompose with respect
to increasing space-time neighborhoods Vi(k) × [−k − 1,−1], k ≥ −1, where Vi(−1) = ∅.
Write S = {0,1}I×Z for the state space of the process and introduce, analogously to (4.16)–
(4.19),

r
[−1]
i (1) = inf

x∈S
Φi

(
∑

j

Wj→i

−1∑

s=Li
0(x)

gj (−s)xs(j)

)

, (5.49)

r
[−1]
i (0) = inf

x∈S

(

1 − Φi

(
∑

j

Wj→i

−1∑

s=Li
0(x)

gj (−s)xs(j)

))

, (5.50)

r
[0]
i (1|x) = inf

z∈S:zi (−1)=xi (−1)
Φi

(
∑

j

Wj→i

−1∑

s=Li
0(z)

gj (−s)zs(j)

)

, (5.51)

r
[0]
i (1|x) = inf

z∈S:zi (−1)=xi (−1)

(

1 − Φi

(
∑

j

Wj→i

−1∑

s=Li
0(z)

gj (−s)zs(j)

))

, (5.52)

and then for any k ≥ 1,

r
[k]
i (1|x) = inf

z∈S:z(Vi (k)×[−k−1,−1])=x(Vi (k)×[−k−1,−1])
Φi

(
∑

j

Wj→i

−1∑

s=Li
0(z)

gj (−s)zs(j)

)

,

(5.53)

r
[k]
i (0|x) = inf

z∈S:z(Vi (k)×[−k−1,−1])=x(Vi (k)×[−k−1,−1])

(

1 − Φi

(
∑

j

Wj→i

−1∑

s=Li
0(z)

gj (−s)zs(j)

))

.

(5.54)
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Putting

αi(−1) = λi(−1) = r
[−1]
i (1) + r

[−1]
i (0),

αi(k) = inf
x

(
r

[k]
i (1|x) + r

[k]
i (0|x)

)
, λi(k) = αi(k) − αi(k − 1), k ≥ 0, (5.55)

we obtain the following space-time Kalikow-type decomposition for

p(i,t)(1|x) = Φi

(
∑

j

Wj→i

t−1∑

s=Li
t (x)

gj (t − s)xs(j)

)

.

Proposition 2 Under the conditions (2.2), (2.5) and (2.9), for any i ∈ I , the above defined
quantities λi(k) take values in [0,1] and

∑

k≥−1

λi(k) = 1.

Moreover, there exists a family of conditional probabilities (p
[k]
(i,t)(a|x))k≥0 satisfying the

following properties.

1. For all a, S � x �→ p
[0]
(i,t)(a|x) depends only on the variable xt−1(i).

2. For all a, k ≥ 1, S � x �→ p
[k]
(i,t)(a|x) depends only on the variables (xs(j) : t − k − 1 ≤

s ≤ t − 1, j ∈ Vi(k)).
3. For all x ∈ S , k ≥ 0, p

[k]
(i,t)(1|x) ∈ [0,1], p

[k]
(i,t)(0|x) + p

[k]
(i,t)(1|x) = 1.

4. For all x ∈ S , we have the following convex decomposition

p(i,t)(a|x) = λi(−1)p
[−1]
(i,t) (a) +

∑

k≥0

λi(k)p
[k]
(i,t)(a|x), (5.56)

where

p
[−1]
(i,t) (a) = r

[−1]
i (a)

λi(−1)
.

The proof of this proposition follows the lines of the proof of Proposition 1. Moreover,
the following estimates hold.

λi(0) ≤ γ
∑

j

|Wj→i |
∞∑

n=1

gj (n), (5.57)

and for all k ≥ 1,

λi(k) ≤ γ

(
∑

j /∈Vi (k−1)

|Wj→i |
∞∑

n=1

gj (n) +
∑

j∈Vi (k−1)

|Wj→i |
∞∑

n=k

gj (n)

)

. (5.58)

Proof of Theorem 2 We construct again a sequence of sets (C(i,t)
n )n ⊂ I×]−∞, t −1] which

contain the sets of sites and anterior spike times that have an influence on the appearance of
a spike at time t for neuron i. The choice of these sets is based on the decomposition (5.56).

First, we choose for any couple (j, s), independently from anything else, a space-time
interaction neighborhood O(j,s) ⊂ I × [−∞, s − 1]

O(j,s) =

⎧
⎪⎨

⎪⎩

Vj (k) × [s − k − 1, s − 1] with probability λj (k), k ≥ 1,

{j} × {s − 1} with probability λj (0),

∅ with probability λj (−1).
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Then we put

C
(i,t)

1 = O(i,t), C(i,t)
n =

( ⋃

(j,s)∈C
(i,t)
n−1

O(j,s)

)∖(
C

(i,t)

1 ∪ · · · ∪ C
(i,t)

n−1

)
. (5.59)

The process |C(i,t)
n | can be compared to a classical multi-type branching process with repro-

duction mean

mi = λi(0) +
∑

k≥1

(k + 1)
∣∣Vi(k)

∣∣λi(k).

Now, condition (2.9) together with the estimates (5.57) and (5.58) shows that m := supi mi <

1. As a consequence,

P
(
N

(i,t)

STOP > n
) ≤ E

(∣∣C(i,t)
n

∣∣) ≤ mn → 0 as n → ∞,

and this finishes the proof. �

Proof of Corollary 1 The proof of the first part of corollary 1 is analogous to the proof under
the conditions of Theorem 1. We give the proof of the second part of the corollary. We keep
the notation of the proof of Theorem 2. We define the projection on the time coordinate

T (O(j,s)) := s − k − 1 if O(j,s) = Vj (k) × [s − k − 1, s − 1], k ≥ 0,

T (O(j,s)) := s else.
(5.60)

Define recursively

T
(i,t)

1 = T (O(i,t)), T (i,t)
n = min

{
T (O(j,s)) : (j, s) ∈ C

(i,t)

n−1

}
, n ≥ 1,

and let finally

T
(i,t)

STOP := T
(i,t)

N
(i,t)
STOP−1

.

Then as in the proof of the first part of the corollary,
∣∣E

[
f

(
Xt

s(i)
)
1A

] − E
[
f

(
Xt

s(i)
)]

P (A)
∣∣ ≤ 2‖f ‖∞P (A)P (R ≤ 1),

where

R = inf
u∈[s,t] T

(i,u)

STOP.

We have

P (R ≤ 1) ≤
∑

u∈[s,t]
P

(
T

(i,u)

STOP ≤ 1
)
,

where

P
(
T

(i,u)

STOP ≤ 1
) = P

(
u − T

(i,u)

STOP ≥ u − 1
)
.

In what follows, C will denote a constant that might change from line to line, but that does
not depend on β .

We wish to compare u−T
(u,t)

STOP to the total offspring of a classical Galton-Watson branch-
ing process. In order to do so, notice first that using (5.57) and (5.58), we get for any k ≥ 1,

λi(k) ≤ C
e−β(k−1)

1 − e−β
=: λ̄(k),
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where we have used (2.11). Moreover,

λi(0) ≤ C
e−β

1 − e−β
=: λ̄(0).

It is immediate to see that for β sufficiently large,
∑

k≥0 λ̄(k) < 1, since

∑

k≥0

λ̄(k) = C

1 − e−β

[
e−β + e−β

1 − e−β

]
→ 0

as β → ∞. Therefore we can couple u − T
(i,u)

STOP with the total offspring T of a classical
Galton-Watson process, where each particle has k + 1 offspring, k ≥ 0, with probability
λ̄(k), and offspring 0 with probability 1 − ∑

k≥0 λ̄(k). This coupling can be done such that

u−T
(i,u)

STOP ≤ T . Thus it is sufficient to evaluate the law of the total offspring T . For that sake
let Wn be a random walk starting from 0 at time 0, with step size distribution η, where

η =
{

−1 with probability 1 − ∑
k≥0 λ̄(k),

k with probability λ̄(k), k ≥ 0.

Then T L= T−1 = inf{n : Wn = −1}. Hence for any λ ∈]0, β[, since u ≥ s,

P
(
u − T

(i,u)

STOP ≥ u − 1
) ≤ P (T−1 ≥ u − 1) ≤ P (T−1 ≥ s − 1) = P (T−1 > s − 2)

≤ P
(
eλWs−2 ≥ 1

) ≤ ϕ(λ)s−2,

where

ϕ(λ) = E
(
eλη

) = e−λ

[
1 −

∑

k≥0

λ̄(k)

]
+ Ce−β

1 − e−β
+ C

1 − e−β

eλ−β

1 − eλ−β
. (5.61)

Now, fix λ = 1, then there exists β∗ such that for all β ≥ β∗, ϕ(1) < 1. Putting � = ϕ(1) and
C = �−2 yields the desired result. �

6 Proof of Theorem 3

In order to prove Theorem 3, we introduce the sequence of sets

V 1
i→· = {j : Wi→j = 1}, . . . , V n

i→· =
{
j : ∃k ∈ V n−1

i→· : Wk→j = 1
}
, n ≥ 2.

Note that j ∈ Vi→· if and only if neuron i has a direct influence on the spiking behavior of
neuron j . We put

τ i = inf
{
n : i ∈ V n

i→·
}
.

This is the first time that an information emitted by neuron i can return to neuron i itself.
Recall that λ = 1 + ϑ/N and define μ = N−2

N
λ. We have the following lower bound.

Proposition 3 For any k the following inequality holds.

P̃
(
τ i ≤ k

) ≤ k − 1

N
exp

(
ϑ

k

N

)
.
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Proof Put

Ṽ n
i→· =

{
j �= i : ∃k ∈ Ṽ n−1

i→· : Wk→j = 1
}
, n ≥ 2, Ṽ 1

i→· = V 1
i→·.

The sequence of sets Ṽ n
i→·, n ≥ 1, equals the original sequence V n

i→·, n ≥ 1, except that we
excluded the choice of i itself. On {τ i > k}, clearly

⋃
n≤k−1 V n

i→· = ⋃
n≤k−1 Ṽ n

i→·, and we
can write

P̃
(
τ i > k

) = P̃

(
Wj→i = 0 ∀j ∈

⋃

n≤k−1

Ṽ n
i→·

)
.

Since in the definition of Ṽ n
i→·, no choice W·→i has been made, we can condition with respect

to
⋃

n≤k−1 Ṽ n
i→·, use the fact that for any j ∈ ⋃

n≤k−1 Ṽ n
i→·, the random variable Wj→i is

independent of
⋃

n≤k−1 Ṽ n
i→·, and obtain the following equality

P̃
(
τ i > k

) = Ẽ
[
(1 − pN)|⋃1≤n≤k−1 Ṽ n

i→·|
]
.

We conclude as follows. We can couple the process |Ṽ n
i→·|, n ≥ 2, with a classical Galton-

Watson process Zn,n ≥ 2, starting from Z1 = V 1
i→·, such that |Ṽ n

i→·| ≤ Zn for all n ≥ 2. The
Galton-Watson process has offspring mean μ = (N − 2) λ

N
. Here, the factor N − 2 comes

from the fact that any j has N − 2 choices of choosing arrows Wj→·, since j itself and i are
excluded.

Therefore,

P̃
(
τ i > k

) = Ẽ
[
(1 − pN)|⋃1≤n≤k−1 Ṽ n

i→·|
] ≥ Ẽ

[
(1 − pN)

∑k−1
n=1 Zn

]
.

Write Σk−1 = Z1 + · · · + Zk−1 and let Ẽ(sΣk−1), s ≤ 1, be its moment generating function.
Using the convexity of the moment generating function, we have that

Ẽ
(
sΣk−1

) ≥ 1 + Ẽ(Σk−1)(s − 1).

Using that Ẽ(Z1) = N−1
N

λ and that the offspring mean equals μ, the claim follows from

Ẽ(Σk−1) = N − 1

N
λ
[
1 + μ + · · · + μk−2

] ≤ λ + · · · + λk−1 ≤ (k − 1)λk−1,

since μ ≤ λ and λ ≥ 1. Hence, evaluating the above lower bound in s = 1 − pN , we obtain

P̃
(
τ i > k

) ≥ 1 − pN(k − 1)λk−1,

and therefore,

P̃
(
τ i ≤ k

) ≤ pN(k − 1)λk−1 = k − 1

N
λk,

since pN = λ/N . Using that λ = 1 + ϑ/N , we obtain the assertion. �

In what follows, a−1
−k denotes the finite sequence (a−k, . . . , a−1). In particular, the notation

a−1
−l 10k−1 denotes the sequence given by (a−l , . . . , a−1,1,0, . . . ,0). We write for short

p(W,i)
(
a
∣∣a−1

−k

) = P W
(
Xk(i) = a

∣∣Xk−1
0 (i) = a−1

−k

)

for the transition probability of neuron i, given a fixed choice of synaptic weights W . How-
ever, conditionings will be read from the left to the right. In particular, we write

p(W,i)
(
a
∣∣0k−11a−1

−l

)

= P W
(
Xk(i) = a

∣∣Xk−1(i) = · · · = X1(i) = 0,X0(i) = 1,X−1
−l (i) = a−1

−l

)
.

The following proposition shows that on the event {τ i > k + l}, the two transition probabil-
ities p(W,i)(1|0k−11a−1

−l ) and p(W,i)(1|0k−11) necessarily coincide.
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Proposition 4 For any k ≥ 1, l ≥ 1,
{
p(W,i)

(
1
∣
∣0k−11a−1

−l

) �= p(W,i)
(
1
∣
∣0k−11

)} ⊂ {
τ i ≤ k + l

}
.

Proof Let W be fixed. From now on, since we will work for this fixed choice of W , we will
omit the superscript W and write for short pi(a|a−1

−k ) instead of p(W,i)(a|a−1
−k ). We have

P W
(
Xk(i) = 1,Xk−1

1 (i) = 0k−1,X0(i) = 1,X−1
−l (i) = a−1

−l

)

=
∑

j∈Vi

∑

zk−1
0 (j)∈{0,1}k

P W
(
Xk(i) = 1,Xk−1

1 (i) = 0k−1,X0(i) = 1,

X−1
−l (i) = a−1

−l ,X
k−1
0 (j) = zk−1

0 (j),∀j ∈ Vi

)

=
∑

j∈Vi

∑

zk−1
0 (j)∈{0,1}k

φi

(
∑

j∈Vi

k−1∑

s=0

gj (k − s)zs(j)

)

× P W
(
Xk−1

0 (j) = zk−1
0 (j),∀j ∈ Vi ,X

k−1
−l (i) = a−1

−l 10k−1
)
.

Thus,

pi
(
1
∣∣0k−11a−1

−l

) =
∑

j∈Vi

∑

zk−1
0 (j)∈{0,1}k

φi

(
∑

j∈Vi

k−1∑

s=0

gj (k − s)zs(j)

)

× P W
(
Xk−1

0 (j) = zk−1
0 (j),∀j ∈ Vi

∣∣Xk−1
−l = a−1

−l 10k−1
)
.

The same calculus shows that

pi
(
1
∣∣0k−11

) =
∑

j∈Vi

∑

zk−1
0 (j)∈{0,1}k

φi

(
∑

j∈Vi

k−1∑

s=0

gj (k − s)zs(j)

)

× P W
(
Xk−1

0 (j) = zk−1
0 (j),∀j ∈ Vi

∣∣Xk−1
0 (i) = 10k−1

)
.

This shows that in order to ensure that pi(1|0k−11a−1
−l ) = pi(1|0k−11), it is sufficient to

have

P W
(
Xk−1

0 (j) = zk−1
0 (j),∀j ∈ Vi

∣∣Xk−1
0 (i) = 10k−1

)

= P W
(
Xk−1

0 (j) = zk−1
0 (j),∀j ∈ Vi

∣∣Xk−1
−l (i) = a−1

−l 10k−1
)
, (6.62)

for all possible choices of zk−1
0 (j), j ∈ Vi , which is implied by τ i > k + l. �

Proof of Theorem 3 In this proof, without loss of generality and to simplify the presentation,
we suppose that Ω̃ is the canonical state space of W . We will use the spontaneous spike
times {n ∈ Z : ξn(i) = 1} introduced in the proof of Theorem 1, in Sect. 4 above. We recall
that these are independent Bernoulli random variables with P (ξn(i) = 1) = δ for all i ∈
{1, . . . ,N}, for all n ∈ Z. Write l = sup{n < Si

2 : ξn(i) = 1} and r = inf{n > Si
2 : ξn(i) = 1}.

Put

A = {
τ i > 2k(N)

}
,

where k(N) is such that k(N) → ∞ as N → ∞ and k(N) ≤ N . We will fix the choice of
k(N) later. We have for any realization of W ∈ A,
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EW
[(

Si
3 − Si

2

)(
Si

2 − Si
1

)]

≤ EW
[(

r − Si
2

)(
Si

2 − l
)
1{l<Si

2−k(N)}∪{r>Si
2+k(N)}

]

+ EW
[(

Si
3 − Si

2

)(
Si

2 − Si
1

)
1{l≥Si

2−k(N);r≤Si
2+k(N)}

]
. (6.63)

Using that conditionally on Si
2, r − Si

2 and Si
2 − l are independent and geometrically dis-

tributed, we obtain a first upper bound

EW
[(

r − Si
2

)(
Si

2 − l
)
1{l<Si

2−k(N)}∪{r>Si
2+k(N)}

] ≤ 1

δ2

(
k(N) + 2

)
(1 − δ)k(N). (6.64)

We now consider the second term and use that τ i > 2k(N). We have

EW
[(

Si
3 − Si

2

)(
Si

2 − Si
1

)
1{l≥Si

2−k(N);r≤Si
2+k(N)}

]

=
∑

t

EW
[(

Si
3 − t

)(
t − Si

1

)
1{l≥t−k(N);r≤t+k(N)}1{Si

2=t}
]

=
∑

t

EW
[(

t − Si
1

)
1{l≥t−k(N)}1{Si

2=t}E
W

[(
Si

3 − t
)
1{r≤t+k(N)}

∣∣Gt
t−k(N)

]]
, (6.65)

where

Gt
t−k(N) = σ

{
Xs(i) : t − k(N) ≤ s ≤ t

}
.

Now, since Si
3 ≤ r ,

EW
[(

Si
3 − t

)
1{r≤t+k(N)}

∣∣Gt
t−k(N)

] =
k(N)∑

n=1

n × P W
(
Si

3 − t = n; r ≤ t + k(N)
∣∣Gt

t−k(N)

)

≤
k(N)∑

n=1

n × P W
(
Si

3 − t = n
∣∣Gt

t−k(N)

)
.

Notice that

P W
(
Si

3 − t = n
∣∣Gt

t−k(N)

)

= pi
(
0
∣∣1Xt−1

t−k(N)

)
pi

(
0
∣∣01Xt−1

t−k(N)

) × · · · × pi
(
0
∣∣0n−21Xt−1

t−k(N)

)
pi

(
1
∣∣0n−11Xt−1

t−k(N)

)
.

Now we use Proposition 4. Since we are working on {τ i > 2k(N)}, we have

pi
(
0
∣∣1Xt−1

t−k(N)

) = pi(0|1), . . . , pi
(
1
∣∣0n−11Xt−1

t−k(N)

) = pi
(
1
∣∣0n−11

)
,

for all n ≤ k(N). Therefore,

EW
[(

Si
3 − t

)
1{r≤t+k(N)}

∣∣Gt
t−k(N)

]

≤
k(N)∑

n=1

n × pi(0|1)pi(0|01) × · · · × pi
(
0
∣∣0n−21

)
pi

(
1
∣∣0n−11

)

≤
∞∑

n=1

n × pi(0|1)pi(0|01) × · · · × pi
(
0
∣∣0n−21

)
pi

(
1
∣∣0n−11

)

= EW
(
Si

3 − Si
2

)
. (6.66)

We conclude that on A, using successively (6.63)–(6.66),

EW
[(

Si
3 − Si

2

)(
Si

2 − Si
1

)] ≤ 1

δ2

(
k(N) + 2

)
(1 − δ)k(N) + EW

(
Si

3 − Si
2

)
EW

(
Si

2 − Si
1

)
.
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In a second step, we are seeking for lower bounds. We start with

EW
[(

Si
3 − Si

2

)(
Si

2 − Si
1

)] ≥ EW
[(

Si
3 − Si

2

)(
Si

2 − Si
1

)
1{l≥Si

2−k(N);r≤Si
2+k(N)}

]
. (6.67)

Then on {Si
2 = t},

EW
[(

Si
3 − t

)
1{r≤t+k(N)}

∣
∣Gt

t−k(N)

] =
k(N)∑

n=1

n × P W
(
Si

3 − t = n; r ≤ t + k(N)
∣
∣Gt

t−k(N)

)

≥
(

k(N)∑

n=1

n × P W
(
Si

3 − t = n
∣∣Gt

t−k(N)

)
)

− k(N)2P W
(
r > t + k(N)

∣∣Gt
t−k(N)

)

=
(

k(N)∑

n=1

n × P W
(
Si

3 − t = n
∣∣Gt

t−k(N)

)
)

− k(N)2(1 − δ)k(N).

Now, on {Si
2 = t},

k(N)∑

n=1

n × P W
(
Si

3 − t = n
∣∣Gt

t−k(N)

)

= EW
(
Si

3 − Si
2;Si

3 − Si
2 ≤ k(N)

) = EW
(
Si

3 − Si
2

) − EW
(
Si

3 − Si
2;Si

3 − Si
2 > k(N)

)

≥ EW
(
Si

3 − Si
2

) − EW
(
r − Si

2; r − Si
2 > k(N)

)

≥ EW
(
Si

3 − Si
2

) − 1

δ

(
k(N) + 2

)
(1 − δ)k(N).

Therefore, for any realization W ∈ A,

EW
[(

Si
3 − Si

2

)(
Si

2 − Si
1

)] ≥ EW
(
Si

3 − Si
2

)
EW

(
Si

3 − Si
2

)

−
[

2

δ2

(
k(N) + 2

) + k(N)2

]
(1 − δ)k(N).

Putting things together and supposing that k(N) + 2 ≤ k(N)2, we obtain finally

∣∣EW
[(

Si
3 − Si

2

)(
Si

2 − Si
1

)] − EW
(
Si

3 − Si
2

)
EW

(
Si

3 − Si
2

)∣∣ ≤ 3

δ2
k(N)2(1 − δ)k(N).

It remains to find an upper bound for P(Ac). Clearly, applying Proposition 3, since
k(N) ≤ N , we have

P
(
Ac

) ≤ e2ϑ k(N)

N
.

It is enough to choose k(N) = √
N to conclude the proof. �
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