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Abstract In the social sciences, the debate over the structural foundations of social capi-
tal has long vacillated between two positions on the relative benefits associated with two
types of social structures: closed structures, rich in third-party relationships, and open struc-
tures, rich in structural holes and brokerage opportunities. In this paper, we engage with this
debate by focusing on the measures typically used for formalising the two conceptions of
social capital: clustering and effective size. We show that these two measures are simply two
sides of the same coin, as they can be expressed one in terms of the other through a simple
functional relation. Building on this relation, we then attempt to reconcile closed and open
structures by proposing a new measure, Simmelian brokerage, that captures opportunities of
brokerage between otherwise disconnected cohesive groups of contacts. Implications of our
findings for research on social capital and complex networks are discussed.

Keywords Social networks · Social capital · Social cohesion · Structural holes ·
Clustering · Effective size · Simmelian brokerage

1 Introduction

A fundamental idea in the social sciences is that social capital originates from social rela-
tions. As a result, social structure has long been seen as playing a crucial role in sustaining

V. Latora · V. Nicosia
School of Mathematical Sciences, Queen Mary University of London, E1 4NS London, UK

V. Latora
e-mail: latora@maths.qmul.ac.uk

V. Nicosia
e-mail: vnicosia@maths.qmul.ac.uk

P. Panzarasa (�)
School of Business and Management, Queen Mary University of London, E1 4NS London, UK
e-mail: p.panzarasa@qmul.ac.uk

mailto:latora@maths.qmul.ac.uk
mailto:vnicosia@maths.qmul.ac.uk
mailto:p.panzarasa@qmul.ac.uk


746 V. Latora et al.

or hindering a wide range of performance-related outcomes, both at the individual and col-
lective levels [26, 27, 40–42]. However, while social scientists tend to agree on the salience
of social structure, there is still controversy over which type of social structure matters as
a source of social capital. Over the years, scholars have typically advocated two opposite
types of structure: the “closed” and “open” structures. On the one hand, proponents of the
benefits of closed structures draw on the idea that social cohesion fosters trust [12, 15, 53,
63] and a sense of belonging [14], sustains cooperative behaviour [14, 33] and the enforce-
ment of social norms [14, 24, 27], and facilitates the creation of a common culture [45]. On
the other, advocates of the benefits of open structures emphasise the value that actors can
extract from being located near structural holes separating non-redundant contacts, and thus
from acting as brokers between otherwise disconnected others [7, 10, 11, 42, 60].

This paper aims to draw on the interplay between these two alternative conceptions of
social capital, and engage with the ongoing debate over the relative benefits associated with
closed and open structures. The relation between these two types of social structure will be
explored through a comparative analysis of the measures with which these structures have
traditionally been operationalised and formalised: the clustering coefficient and the effective
size of an actor’s local neighbourhood. In particular, we will show that it is possible to
derive a simple mathematical relation between the clustering coefficient and the effective
network size of a node. The existence of this relation between the two measures, which have
originally and independently been introduced with the purpose of formalising two different
concepts, supports the idea that social cohesion and structural holes are no more than the
two sides of the same coin. Both measures can indeed be expressed in terms of number of
links and number of triangles incident upon a node.

The question as to whether social capital stems from open or closed structures will prob-
ably always remain a matter of debate. There are cases where one is more interested in the
benefits coming from closed structures [24], and other cases where, conversely, it is more
convenient to exploit the existence of open structures [60]. However, our work highlights
that, to characterise the local structural properties of a node, it is equally informative to
measure the clustering coefficient or the effective size of the node’s local neighbourhood.
Drawing on this, we will then use the relation between clustering and effective size to de-
velop a novel measure for a generative mechanism of social capital that lies at the interface
between closed and open structures: Simmelian brokerage. Being sensitive to variations in
the position of links across local networks of the same density, this measure can capture op-
portunities of brokerage between otherwise disconnected groups of densely interconnected
nodes [19, 34–36, 61, 67]. For this reason, Simmelian brokerage can be seen as suitable for
formalising structures that lie at the interface between the closed and open ones [10, 61, 67]:
it captures the extent to which a node’s local network is characterised, on the one hand, by
a combination of structural cleavages between distinct groups of contacts, and on the other
by a closed cohesive structure within the boundaries of each group of contacts.

The paper is organised as follows. In Sect. 2 we introduce the concept of social capital,
and offer a general overview of the two main theoretical conceptions of its structural foun-
dations. In Sect. 3 we review the definitions of clustering coefficient and network effective
size. In Sect. 4 we show that the two measures are linked through a simple mathematical
relation, based on which, in Sect. 5, we introduce our new measure of Simmelian brokerage.
Finally, in Sect. 6 we extend the relation between clustering and effective size to the case
of weighted graphs, and sketch out a definition of weighted Simmelian brokerage. The last
section will summarise and discuss our main findings.
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2 Structural Foundations of Social Capital

The premise that seems to underpin most perspectives on social capital is the idea that invest-
ments in social relations yield expected returns in the marketplace, including the community,
the economic, financial, political, and labour markets [40, 41]. As argued by Coleman, social
capital can be characterised by two distinct properties: it “inheres in the structure of relations
between actors and among actors”, and “like other forms of capital, [it] is productive, mak-
ing possible the achievement of certain ends that in its absence would not be possible” [14,
p. S98].

Social scientists have long agreed on the salience of social structure as a source of social
capital [26, 27, 40–42]. For instance, social structure has been seen as playing a pivotal role
in sustaining individuals’ and organisations’ efforts to create value [24, 33, 44, 54], generate
and transfer new knowledge [13, 28, 53, 61, 62], and enhance creativity [1, 6, 20, 46, 50, 59,
64]. As suggested by a number of scholars [27, 40], three main explanations can be offered as
to why social structure affects the outcomes of purposive actions. First, social structure can
facilitate or hinder the flow of information, and in so doing it also impacts on its quality [28,
53, 62, 64]. Second, social structure can be seen as a source of reward and punishment due to
the effects that social relations have on the internalisation and enforcement of social norms,
including those against free-riding [25, 33]. Third, social structure nurtures and promotes
the attainment of actors’ trust, reputation, social credentials, status, identity and recognition
through processes of third-party referrals and reinforcement of interactions [40, 41, 63].

Despite the convergence on the explanatory relevance of social structure, however, there
is still controversy and debate over the type of social structure that matters as a source of
social capital [2, 4, 10, 23, 40, 41, 54]. Theoretical conceptions of the structural foundations
of social capital vacillate between two positions that vary in their understandings of the
benefits associated with two opposite types of social structure: closed and open structures.
Arguments in favour of each of these structures have been inspired by distinct rich tradi-
tions in sociological theory. Both arguments, however, are conceptually rooted in Simmel’s
seminal theoretical contributions on the expansion of a dyadic relationship into a three-
party relationship (“Verbindung zu dreien”), and the sociological significance of the third
element [58]. Simmel argued that the introduction of a third party fundamentally changes
the social dynamics of a dyadic tie: “The appearance of the third party indicates transition,
conciliation, and abandonment of absolute contrast (although, on occasion, it introduces
contrast)” [58, p. 145]. Simmel’s emphasis here is on the two alternative functional roles
the third party can play in the triad: the “non-partisan” or mediator with the tertius iungens
(or “the third who joins”) orientation on the one hand [46], and the broker with the tertius
gaudens (or “the third who enjoys”) orientation on the other [7].

2.1 Closed Structures and Social Cohesion

Proponents of the benefits of closed structures typically build on Simmel’s [58] tertius iun-
gens logic and Coleman’s [14, 15] conception of social capital predicated on the mechanism
of social cohesion [22]. Over the years, the Simmelian triad has provided the theoretical
backdrop against which scholars have investigated the relational hypothesis that actors sep-
arated by one intermediary are more likely to become connected with each other than actors
that do not share any common acquaintance [17, 18, 29, 30, 43, 68, 69]. At the macro level
of a social system, the tendency of actors to forge links locally within groups is conducive
toward the creation of cohesive social structures, organised into well-defined tightly knit
communities that are densely connected within but not across boundaries [21, 37].
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One of the most influential theories of social capital, advocated by Coleman [14], is pred-
icated precisely on the benefits that actors accrue from being socially embedded within cohe-
sive social structures, rich in third-party relationships. Among the closure-based sources of
social capital are normative control and deviance avoidance [10, 27, 40, 41]. More generally,
network closure enables the emergence and enforcement of social norms by encouraging the
internalisation of standards of acceptable behaviour and facilitating the detection and pun-
ishment of defective behaviour [33, 63]. In addition, it has been documented that being part
of a close-knit group engenders a sense of belonging [14], fosters trust [12, 15, 53, 63], fa-
cilitates the exchange of fine-grained, complex, tacit, and proprietary information [28, 63],
enables the creation of a common culture and the emergence of a shared identity [45], and
helps sustain a high level of cooperation [14, 33].

Despite the benefits associated with social cohesion, the tendency of individuals to cluster
into densely connected communities also bears a two-fold cost: local redundancy and social
pressure. On the one hand, the more an actor’s contacts are connected with each other, the
less likely they are to take the actor closer to diverse sources of knowledge and resources
that the actor is not already able to access [26]. Paucity of connections with new and non-
redundant social circles may create isolation and eventually degrade social capital. This
is the central argument of Burt’s [7] seminal contribution on the benefits associated with
occupying brokerage positions between otherwise disconnected individuals or groups in a
network. On the other hand, above and beyond the redundancy of knowledge and resources,
a cohesive structure can still exert a negative influence on the connected actors as a result of
the social pressure favouring convergent thinking and group consensus. As dense third-party
relationships engender reciprocal behaviour and sustain high degrees of similarity among
the actors, they are conducive toward the maintenance of the status quo rather than the
exploration of novel paths leading to divergent solutions [20, 59].

2.2 Open Structures and Brokerage

Both types of costs—redundancy and social pressure—associated with social cohesion have
inspired an alternative conception of social capital, typically distilled into the proposition
that there are benefits actors can extract from participating in open structures that are rich in
cleavages and opportunities of brokerage [7, 10, 11, 42, 60]. At the heart of this conception
of social capital lies Simmel’s [58] characterisation of the role of tertius gaudens in a triad.
While the non-partisan tertius iungens aims “to save the group unity from the danger of
splitting up” [58, p. 154], the tertius gaudens wishes to create or intensify discontinuities in
the social structure by forging or preserving unique ties to disconnected others.

The idea that social capital can originate from brokerage opportunities associated with
structural gaps has been explored most thoroughly by Burt, who has perhaps contributed
more than any other sociologist in recent decades to examine the structural features and
performance implications of brokerage, especially in organisational domains [7, 9–11]. Burt
defines a structural hole as the “separation between non-redundant contacts”, “a relationship
of non-redundancy between two contacts”, “a buffer” that enables the two contacts to “pro-
vide network benefits that are in some degree additive rather than overlapping” [7, p. 18].
Burt further identifies two sources of the social capital that an actor can mobilise by acting
as the broker between contacts at the opposite sides of the hole: information benefits and
control benefits. On the one hand, information benefits originate from the fact that, in open
structures rich in structural holes, connections tend to be weak [26] and are likely to link
people with different ideas, interests and perspectives [9]. By gaining exposure to a greater
variance and novelty of information, actors embedded in brokered structures will be creative
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and successful in their endeavours [9, 20, 59]. On the other, control benefits are related to
the third party’s ability to gain an advantage by negotiating his or her relationships with
disconnected others and turning their “forces combined against him into action against one
another” [58, p. 162]. Preserving and fostering disunion between parties thus enable the ac-
tor standing near a structural hole to extract social capital buried in the hole, by playing the
disconnected parties’ demands and preferences against one another.

2.3 The Trade-off Between Closed and Open Structures

A number of empirical studies have attempted to reconcile the two positions on social cap-
ital, and provide an integrative account of social cohesion and brokerage [2, 20, 50, 55, 61,
67]. Even though the routes pursued to develop a unified conception of social capital vary
both theoretically and methodologically, scholars seem to converge on the idea that the ben-
efits originating from social structure are contingent on a number of social, structural, and
environmental conditions [2, 20, 50, 55], and that a suitable combination of the two types of
structure can outperform each individual type in isolation [54, 61, 67].

A substantial body of the literature has examined the trade-off between social cohesion
and brokerage by focusing on the interplay between social structure and the attributes of the
interacting individuals, and suggesting that the benefits of either type of structure—closed or
open—are contingent upon such attributes [50, 54, 55]. In this vein, for example, Fleming et
al. [20] have empirically examined the mitigating effects exerted by individuals’ attributes
on the benefits associated with brokerage. Their study suggests that, while brokerage be-
tween otherwise disconnected collaborators makes all individuals more likely to create new
ideas, at the same time there are marginal contingent positive effects of social cohesion on
generative creativity when individuals and their collaborators bring broad experience, have
worked for multiple organisations, and have connections with external contacts. Similarly,
Perry-Smith [50] has offered evidence suggesting that connections to contacts with hetero-
geneous background mediate the relationship between weak ties and creativity, and that
there are interaction effects between centrality and number of outside ties upon creativity.

Another related line of investigation has suggested that an appropriate combination of
cohesion and brokerage opportunities can provide individuals with the necessary redundant
relationships as well as access to non-redundant information that facilitate task execution
and enhance performance [10, 51, 54]. In this vein, there have recently been attempts to
address and resolve the trade-off between closed and open structures by advocating a con-
ception of social capital that is contingent on the microstructural context in which bridging
ties are embedded. From this perspective, Tortoriello and Krackhardt [61] have argued that
brokerage is most beneficial when the bridging tie is a Simmelian one, namely a tie in which
the parties involved are reciprocally and strongly connected to each other as well as recip-
rocally and strongly connected to at least one common third party [34, p. 24]. Because the
advantages traditionally associated with open structures have been found to be contingent
upon the Simmelian nature of the bridging ties, this study has provided empirical evidence
in favour of an integrative account of social capital, according to which individuals can ex-
tract benefits not simply from structural holes or a cohesive neighbourhood in isolation, but
from a combination of both structural configurations.

More recent work has proposed a refined contingent conception of social capital by re-
casting the trade-off between closed and open structures in terms of the trade-off between
“channel bandwidth” (i.e., tie strength) and “network diversity” (i.e., richness in structural
holes) [2]. The main argument is that, while structural gaps remain sources of diverse in-
formation, the total amount of useful novel information tends nonetheless to be positively
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affected also by how strongly and frequently individuals interact with one another. Strong re-
lationships, characterised by frequent social interactions, typically found in cohesive closed
structures [7, 26], are likely to sustain the flow of a large volume of rich non-redundant
information that, it is claimed, “tends to be more detailed, cover more topics, and address
more complex, interdependent concepts” [2, p. 94] than the information flowing in a net-
work rich in weak ties with less frequent interactions. However, because the strength of ties
tends to contract as the social structure becomes richer in cleavages and brokerage opportu-
nities, and thus more diverse [7, 26], then a trade-off exists between network diversity and tie
strength as they produce counterbalancing effects on the access to novel information. This
trade-off is resolved by regarding the relative benefits of network diversity and tie strength
as contingent on the social settings and information environments in which individuals in-
teract. In particular, evidence has suggested that tie strength (i.e., closed structures) trumps
network diversity (i.e., open structures) as the topic space becomes broader, information is
frequently updated, and the overlap between the information possessed by an individual’s
contacts becomes larger [2].

In this paper, we draw on these recent studies on social capital, and contribute to the
ongoing debate in a two-fold way. First, we formalise the trade-off between closed and open
structures by proposing a functional relation between the measures with which these two
types of structure have traditionally been operationalised. Unlike other studies [e.g., 2, 20,
61], we do not carry out an empirical investigation to test the relative advantages of differ-
ent structural configurations. By contrast, we offer a rigorous and quantitative framework
for a better understanding of the trade-off between two concepts—cohesion and structural
holes—that have heretofore been compared to each other primarily, if not exclusively, on
intuitive grounds.

Our second contribution to the debate builds on the proposed formalisation of the
relationship between cohesion and structural holes to offer a new measure—Simmelian
brokerage—for detecting the degree to which an individual’s structural position lies at the
interface between a closed and an open structure. This measure is inspired by, and is in
qualitative agreement with, other studies that have suggested the idea that social capital can
originate simultaneously from both social cohesion and structural holes [54, 61, 67]. How-
ever, it differs from previous formalisations in two ways. First, unlike other studies [67], we
do not use clique percolation methods [49] to uncover an overlapping community structure
and construct a group-level measure of group intersection and multiple membership. Sec-
ond, unlike other scholars, we do no rely upon actor-level attributes (e.g., tenure) [54] or
exogenously defined cross-boundary relationships [61] to detect network heterogeneity and
structural gaps in an individual’s local neighbourhood. By contrast, the novelty of our mea-
sure lies precisely in the fact that it is defined at the node level and detects directly, based
on the node’s local neighbourhood, the extent to which the node belongs to multiple groups
that are both tightly knit and disconnected from each other. In this sense, Simmelian broker-
age dovetails with the idea that multiple group membership enables a node to extract social
capital from its underlying structure by blending social cohesion with structural holes.

3 Measuring Social Cohesion and Structural Holes

If social cohesion and structural holes have long represented two distinct conceptual pillars,
each underlying one of the two opposing conceptions of social capital, they have also been
formalised through two distinct, and independently developed, measures: respectively, the
clustering coefficient and the effective size of a node’s local network. While clustering has
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Fig. 1 (Colour online) The clustering coefficient of a node, as defined in Ref. [69], measures the cohesiveness
of the node’s neighbourhood. Despite the different configurations of links, the clustering coefficient of node i,
measured as the fraction of links among i’s neighbours over the total possible number of such links, is equal
to Ci = 1/2 in both graphs. Conversely, the local efficiency of node i in graph (a) is larger than in graph (b)

typically been used for measuring the extent to which a node is socially embedded within
a closed cohesive structure [17, 29, 43, 69], effective size is a measure for detecting the
non-redundancy of a node’s contacts, and therefore the degree to which the node’s local
neighbourhood is rich in structural holes [7]. The remaining of this section is organised into
two parts. Section 3.1 will review the definition of node clustering coefficient, and discuss
an alternative measure for cohesion, node local efficiency. Section 3.2 will be devoted to the
formalisation of effective size.

3.1 Clustering Coefficient and Local Efficiency

Let us consider an unweighted undirected graph G(V,L) with N = |V | nodes and K = |L|
links, and let us focus on one of its nodes, node i, with i ∈ {1,2, . . . ,N}. In order to measure
the local cohesion of node i, we define the subgraph Gi induced in G by the set Ni of the
neighbours of i. The node clustering coefficient Ci of node i can then be defined as [68, 69]:

Ci =
{

K[Gi ]
ki (ki−1)/2 for ki ≥ 2

0 for ki = 0,1
(1)

where K[Gi] is the number of links in Gi . The node clustering coefficient Ci indicates the
probability that two neighbours of node i are connected by a link, and is properly normalised
by definition such that 0 ≤ Ci ≤ 1. In fact, the value of Ci in Eq. (1) is the ratio between
the actual number of links K[Gi] in the subgraph induced by the first neighbours of i and
their maximum possible number, that is

(
ki

2

) = ki(ki − 1)/2. Notice that K[Gi] is also equal
to the actual number of triangles containing node i, while ki(ki − 1)/2 is the number of
open triads centred on i, which corresponds to the maximum possible number of triangles
containing a node i with ki links. Therefore, the node clustering coefficient Ci in Eq. (1) can
alternatively be seen as the proportion of triads centred in i that close into triangles.

As an example, let us consider the two graphs Ga and Gb shown in Fig. 1. In both graphs,
node i, coloured in yellow, has degree ki = 4, so that the sets N a

i and N b
i of the neighbours

of i contain four nodes each. The four neighbours of i, labelled as nodes 1, 2, 3, 4, are shown
as red circles, while the links connecting these nodes to i are shown as dashed lines. The
subgraph Ga

i induced in Ga by the set N a
i of the neighbours of i has four nodes and three

links shown as solid black lines. Similarly, the subgraph Gb
i induced in Gb by the set N b

i

contains four nodes and three links. Therefore, the clustering coefficient of node i is equal
to 1/2 in both cases. In fact, the four nodes of the induced graphs can be connected to each
other through at most six links. In the figure, only three of these potential links are present.
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Hence, Ci = 3/6 = 1/2. Notice that, in general, the subgraph Gi of the neighbours of node
i can be unconnected. For instance, this happens for the case of graph (b) in Fig. 1, where
node 4 is isolated in subgraph Gb

i . However, this does not affect the mathematical definition
of the clustering coefficient Ci . What is instead problematic is a node i which is itself an
isolate in the graph, or has only one link. In this case, the ratio 2K[Gi]/(ki(ki − 1)) is not
defined. The usual convention, in this case, is to set Ci = 0 when the degree of i is either
zero or one, as reported in Eq. (1).

An important feature of the clustering coefficient of node i, as defined in Eq. (1), is that
it only depends on the number of links in the subgraph Gi , and not on which pairs of nodes
are actually connected through such links in Gi . Notice, for instance, that both Ga

i and Gb
i

in Fig. 1 have three links, but while Ga
i is a line of four nodes, Gb

i consists of a triangle and
an isolated node. For this reason, here we discuss an alternative measure for the cohesion of
the neighbourhood of a node, the node local efficiency, that enables the two cases shown in
Fig. 1 to be clearly differentiated.

In an unweighted undirected graph G(V,L), the node local efficiency of node i is defined
as the efficiency of the subgraph Gi [38, 39], where the efficiency of a graph is the average
of the inverse of the distances between the nodes of the graph. Therefore, the node local
efficiency, Ei , of node i can be written as:

Ei = E[Gi] = 1

ki(ki − 1)

∑
�∈Ni

∑
m∈Ni
m�=�

ε�m = 1

ki(ki − 1)

∑
�∈Ni

∑
m∈Ni
m�=�

1

d�m

(2)

where E[Gi] stands for the efficiency of graph Gi , while ε�m measures the reachability
between node � and node m, and is set equal to the inverse of the distance d�m between
the two nodes. Notice that distances between nodes are evaluated on the graph Gi , and not
on graph G. Moreover, the local efficiency is properly normalised by definition, such that
0 ≤ Ei ≤ 1. Therefore, it takes values in the same range as the clustering coefficient.

By making use of Eq. (2), it is possible to distinguish between the roles that node i

plays in the two graphs Ga and Gb in Fig. 1. If we calculate the distances between the four
neighbours of i in Ga

i , we obtain: d12 = d23 = d34 = 1, d13 = d24 = 2 and d14 = 3. Hence,
we have ε12 = ε23 = ε34 = 1, ε13 = ε24 = 1/2, and ε14 = 1/3, so that the local efficiency
of node i in graph (a) of Fig. 1 is Ea

i = 13/18. Conversely, if we consider Gb
i , we obtain:

d12 = d23 = d13 = 1, d14 = d24 = d34 = ∞. Thus, we have: ε12 = ε23 = ε13 = 1, ε14 = ε24 =
ε34 = 0, and in this case the local efficiency of node i is Eb

i = 1/2, which is smaller than Ea
i .

Thus, even if node i has the same clustering coefficient in the two graphs, its local efficiency
is different in the two cases.

The mathematical definition of efficiency we have adopted implies that the efficiency
of a graph with a fixed number of nodes becomes larger as the number of links increases.
And for graphs with the same number of nodes and the same number of links, the efficiency
depends on where the links are actually located in each graph. In particular, the efficiency
of a chain of three links connecting four nodes is higher than the efficiency of a triangle
combined with an isolated node. The reason for this is that, in the latter case, the presence of
an isolated node affects the overall reachability among nodes in the system: notwithstanding
the presence of a triad of connected nodes, the isolated node is not reachable from the other
ones.

3.2 Effective Size

The original formalisation of the idea of structural holes was proposed by Burt for weighted
graphs [7]. Therefore, here we will first begin our analysis of measures for open structures
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with the most general case of a directed weighted graph G(V,L,W). We will then restrict
our focus to the particular case of undirected unweighted graphs, and return to the general
case of weighted graphs in Sect. 6.

Let us indicate as wij ≥ 0 the (i, j) entry of the weighted asymmetric matrix that de-
scribes the directed weighted graph G(V,L,W). As argued by Granovetter [26], the weight
of a link between any nodes i and j has the following meaning: a high (low) value of wij in-
dicates a large (small) amount of time, emotional intensity, intimacy, and reciprocal services
that characterise the link connecting node i to node j . Among the various measures intro-
duced by Burt to detect and quantify the presence of structural holes, a key role is played by
the effective size of a node’s local network.

The effective size of node i’s network indicates the extent to which each of the first
neighbours of i is redundant with respect to the other neighbours, and can be expressed
in terms of the two following matrices: the transition matrix P and the marginal strength
matrix M . The entry pi� of matrix P measures the proportion of i’s network time and energy
invested in the relationship with node �, and is defined as [7]:

pi� = wi� + w�i∑
m(wim + wmi)

(3)

where wi� + w�i is the sum of the weights of the two links connecting i to �, while∑
m(wim + wmi) is the total strength of node i. This is the sum of the out-strength,

sout
i = ∑

m wim, and the in-strength, s in
i = ∑

m wmi , of i, i.e., the sum of the weights of all
the incoming and outgoing links incident upon i. Notice that by definition 0 ≤ pi� ≤ 1 ∀i, �,
with pi� = 0 if there is neither a link from i to �, nor a link from � to i. Also, the transition
matrix P is row-stochastic:

∑
� pi� = 1. The entry mj� of the second matrix, the marginal

strength matrix M , is defined as:

mj� = wj� + w�j

maxm(wjm + wmj )
(4)

Again, 0 ≤ mj� ≤ 1 ∀j, �, with mj� = 0 if there is neither a link from j to �, nor from � to j .
Notice that the two matrices P and M defined above are non-symmetric.

According to the definition given by Burt, the effective size Si of node i’s network
reads [5, 7]:

Si =
∑

j∈Ni

[
1 −

∑
�

pi�mj�

]
(5)

where Ni is the set of neighbours of i. Excluding the case where i is an isolate, for which
Si ≡ 0 by definition, in general 1 ≤ Si ≤ ki ∀i, that is the effective size of node i’s network
ranges from its smallest value equal to 1, when node i belongs to a clique, to a maximum
value equal to the node degree ki , when there are no links (j, �) connecting any two neigh-
bours j and � within i’s network, i.e. when i is the centre of a star graph. In general, the
more redundant the neighbours of i are, the smaller the value of Si is, and vice versa.

The expressions above largely simplify in the case in which the graph is undirected and/or
unweighted. In fact, when the graph is undirected, we have: wi� = w�i ∀i, �. In this case, the
entries of the transition matrix P and of the marginal strength matrix M read, respectively:

pi� = wi�∑
m wim

= wi�

sout
i

(6)

and

mj� = wj�

maxm wjm

(7)
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Fig. 2 (Colour online) The effective size of a node’s network, as defined in Ref. [7], measures the lack of
redundancy of the node’s contacts. The neighbourhood of node i in the first graph is less redundant than the
one in the second graph. Consequently, the effective size, S a

i
= 23/5 = 4.6, of node i in graph Ga is larger

than the effective size, S b
i

= 17/5 = 3.4, of node i in graph Gb

Furthermore, if the graph is also unweighted, we have: wi� = ai� ∀i, �, where ai� is equal to
1 if there is a link between i and �, and to zero otherwise. This implies that maxm wjm =
maxm ajm = 1 for any node j that is not an isolated node. Consequently, the entries of the
transition matrix P and of the marginal strength matrix M reduce to:

pi� = ai�∑
m aim

= ai�

ki

(8)

and

mj� = aj� (9)

In this case, P is the transition probability of a random walk on the graph [16], while the
marginal strength matrix M coincides with the adjacency matrix A.

Let us now consider the following example to illustrate the meaning of Eq. (5). Figure 2
reports two undirected unweighted graphs, Ga and Gb , having the same number of nodes,
N = 8, and the same number of links, K = 13. In both graphs, node i is coloured in yellow
and has ki = 5 links to its neighbours, shown as dashed lines. The links connecting the
neighbours of i are indicated by solid black lines. By visual inspection it can easily be
noticed that the neighbourhood of i in graph Gb contains more redundant links than in Ga .
Indeed, if we evaluate the effective size of node i in graph Ga , we find that the contribution
of three out of the five neighbours in i’s network towards the summation in Eq. (5) is equal
to 1. This is because each of these three nodes in N a

i has no links to the other neighbours
of i, and therefore is non-redundant. The contribution of each of the other two remaining
neighbours in i’s network towards the summation in Eq. (5) is equal to 1 − 1/ki . We finally
have: S a

i = 1 + 1 + 1 + (1 − 1/5)+ (1 − 1/5) = 3 + 8/5 = 23/5, which is a number larger
than 3, but smaller than the actual degree ki = 5 of the node. If we calculate the effective
size of node i in graph Gb , we obtain: S b

i = (1 − 1/5) + (1 − 2/5) + (1 − 2/5) + (1 −
2/5) + (1 − 1/5) = 17/5. Because of the higher redundancy of the nodes in N b

i , this value
is smaller than the effective size of node i’s network in graph Ga .

4 A Simple Relation Between Clustering and Effective Size

The two examples outlined in the previous section already point to the existence of a re-
lation between the clustering coefficient and the effective size of a node’s network in an
unweighted graph. In fact, the values of Ci and Si both depend on the number of triangles
containing node i. The larger the number of triangles, i.e. of closed structures involving
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node i, the larger the clustering coefficient Ci . Conversely, the smaller the number of trian-
gles, the larger the number of open structures that can be exploited by i, and thus the larger
the effective size of node i’s network. Therefore, we expect an inverse relation between Ci

and Si : the larger the clustering coefficient of a node, the smaller the effective size of the
node’s network. In this section, we show that there is indeed an exact and simple relation
between the two measures. Based on this relation, it can then be argued that it is not nec-
essary to operationalise two distinct concepts (cohesion and structural holes) and use two
different measures (clustering and effective size) to investigate two distinct sources of social
capital, when one source can be measured simply in terms of the other. More specifically,
either measure, together with the degree of the node, is sufficient to quantify both the local
cohesion and the structural holes characterising the node’s local network.

We first notice that the definition of node clustering coefficient given in Eq. (1) can be
expressed in terms of the adjacency matrix of the graph. In fact, the number of links K[Gi]
in graph Gi can be easily calculated from the adjacency matrix by observing that (A3)ij =∑

�,m ai�a�mamj is equal to the number of walks of length 3 connecting node i to node j . In
particular, by setting i = j , the quantity

∑
�,m ai�a�mami denotes the number of closed walks

of length 3 from node i to itself. This is twice the number of triangles containing node i.
The generic triangle containing node i and the two nodes � and m is made of the two links
connected to node i, namely (i, �) and (m, i), and of the link (�,m) that belongs to Gi . Since
the link (�,m) appears twice, namely in the closed walk (i, �,m, i) and in the closed walk
(i,m, �, i), the number of links K[Gi] is given by:

K[Gi] = 1

2

∑
j,m

aij ajmami (10)

Notice that this is the numerator of Eq. (1), so that we can express the local clustering
coefficient of node i as:

Ci =
{∑

j,� aij aj�a�i

ki (ki−1)
for ki ≥ 2

0 for ki = 0,1
(11)

Let us now consider the effective size of node i’s network. When the graph is undirected
and unweighted, the entries of the transition matrix P and of the marginal strength matrix
M read, respectively, as in Eqs. (8) and (9). Consequently, the effective size Si of node i’s
network can be written as:

Si =
∑

j

aij

[
1 −

∑
�

pi�mj�

]
= ki −

∑
j

aij

∑
�

pi�mj� = ki −
∑

j

∑
�

aij

ai�

ki

aj�

= ki − 1

ki

∑
j

∑
�

aij aj�a�i (12)

If we plug the expression for the clustering coefficient of node i in Eq. (11) into Eq. (12),
we obtain:

Si = ki − (ki − 1)Ci (13)

This is an exact relation that connects three measures at the node level: effective size,
clustering, and degree. For instance, we can use the relation to obtain the effective size
of a node’s network by measuring the clustering coefficient of the node. Since for the
two graphs in Fig. 2 we have Ca

i = 1/10 and Cb
i = 4/10, by using Eq. (13) we obtain:

S a
i = 5 − 4/10 = 23/5 and S b

i = 5 − 16/10 = 17/5, in perfect agreement with the val-
ues obtained by using Definition 5. More generally, Eq. (13) provides a formalisation of the
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fact that structural holes and social cohesion are indeed the two faces of the same coin. The
presence of structural holes, measured by the effective size of a node’s network, depends
only on the degree of the node and on the social cohesion of the node’s local network, as
measured by the node clustering coefficient. Conversely, the clustering coefficient of a node
is uniquely determined by the degree of the node and by the effective size of its network.

By definition, the effective size of a node’s network can take values between zero (if the
node is an isolate) and the degree of the node, while the clustering coefficient varies from
zero to one. To make the two quantities comparable, we can normalise the definition of
effective size. To this end, we can define the normalised effective size of node i’s network,
S ′

i , dividing the effective size Si by its maximum possible value ki , namely: S ′
i = Si/ki .

If the node is an isolate, we set S ′
i = 0. When both measures are normalised in [0,1], their

relation reads:

S ′
i = 1 − ki − 1

ki

Ci (14)

which, for nodes with large degree, is well approximated by:

S ′
i 
 1 − Ci (15)

This equation indicates that the clustering coefficient and the normalised effective size are
indeed two complementary measures that can be defined one in terms of the other. As a re-
sult, this relation cautions against using both measures simultaneously for detecting sources
of social capital. For instance, the inclusion of both clustering and effective size as covari-
ates in a multivariate regression model would inevitably entail problems of multicollinearity
due to the linear relation found between the two measures.

Drawing on this relation, we can express in terms of effective size many of the results
obtained for the clustering coefficient in real networks. In particular, it has been found that
in many networks the clustering coefficient of a node scales with the degree of the node as
k−ω , where 0 ≤ ω ≤ 1 [52, 66]. This means that high-degree nodes tend to have a relatively
smaller clustering coefficient than low-degree nodes. Consequently, in such networks effec-
tive size will increase with k, so that higher-degree nodes will exhibit a higher effective size
than lower-degree nodes. The reason for this is precisely the mirror image of the argument
typically proposed to explain the inverse relation between clustering and degree: any two
neighbours of a large-degree node are more likely not to be directly connected with each
other than any two neighbours of a low-degree node. Moreover, it is possible to use any
model of random networks with a tunable degree-dependent clustering coefficient [31, 52,
57, 65] to construct a random network with a fixed distribution of effective size. In turn,
such random network can be used as a null model to assess the statistical significance of the
correlation, measured at the node level, between effective size on the one hand, and other
structural properties or performance-related outcomes, on the other.

5 Reconciling Social Cohesion and Structural Holes: Simmelian Brokerage

As discussed in Sect. 3.1, local efficiency is a generalisation of the node clustering coeffi-
cient, in that it measures the extent to which the neighbours of node i would reach each other
if i were removed from the network. Unlike the clustering coefficient, local efficiency allows
us to distinguish between cases where the subgraphs Gi have the same number of nodes and
the same number of links, but are topologically different, as was the case of the two ex-
amples in Fig. 1. In this section, we show that local efficiency can be employed effectively
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to develop a new measure for brokerage that lies at the interface between clustering and
effective size. Like clustering and effective size, this measure will be sensitive to structural
gaps in a node’s local network. However, unlike clustering and effective size, it will also be
sensitive to variations in the position of links across local networks of the same density. For
this reason, the measure is capable of capturing brokerage opportunities among otherwise
disconnected socially cohesive groups of nodes.

We begin by observing that, if the local efficiency of node i is small, then i plays an
important role in enabling and facilitating reachability among its neighbours. In this case,
i acts as a broker among its neighbours, since the removal of i would disconnect many pairs
of nodes in i’s neighbourhood, or would inevitably deteriorate the ability of these nodes
to reach each other. Conversely, if the local efficiency of i is large, then the nodes in i’s
neighbourhood would still be able to reach each other even without the intermediary role
of i, and as a result they would barely be affected by the removal of i. In this case, i plays a
negligible brokerage role. More generally, the higher the local efficiency of a node, the fewer
the opportunities a node has to act as a broker, and vice versa. Based on this observation,
on the relation in Eq. (13), and on the fact that the clustering coefficient and the normalised
effective size range in the same interval [0,1], here we introduce the following measure for
local brokerage Bi of node i:

Bi = ki − (ki − 1)Ei (16)

In qualitative agreement with Krackhardt’s [34–36] idea of Simmelian ties as ties em-
bedded in cliques, we propose to call this measure Simmelian brokerage. Our choice is
motivated by the fact that the measure is indeed sensitive to the extent to which a node acts
as a broker between Simmelian ties or, alternatively, between otherwise disconnected groups
of densely connected nodes. This is the case of a node that is a member of different cliques,
and thus acts as the intermediary between two or more disconnected sets of Simmelian ties,
rich in third-party relationships [8, 19, 61, 67]. The definition of Simmelian brokerage is
similar to that of effective size, with the only difference that the clustering coefficient Ci of
node i is replaced by the node local efficiency Ei . According to Eq. (16), when the degree
of a node is fixed, an increase in the value of local efficiency corresponds to a decrease in
the value of Simmelian brokerage, and vice versa.

To shed light on the relation between effective size and Simmelian brokerage, we now
discuss a number of examples of brokerage opportunities in unweighted undirected graphs.
Figure 3 shows six graphs, each with N = 9 nodes, but with a different number and config-
uration of links. A first inspection of the figure makes it immediately clear that the central
node i, indicated in yellow, has a different brokerage role in each of the six graphs. Graph
(a) is a clique, i.e. a complete graph in which each node has a link to each of the other
nodes. This structure is characterised by high redundancy—indeed the maximum possible
redundancy among all the graphs with the same number of nodes—due to the presence of
the maximum possible number of links in the graph. In this case, the local efficiency of
node i is equal to Ea

1 = 1.0, and for Simmelian brokerage we obtain the smallest possible
value, Ba

i = 8 − 7 × 1.0 = 1.0. Such a small value is consistent with the relatively neg-
ligible role that i has in facilitating reachability among its neighbours: if i were removed
from the graph, not only would its neighbourhood remain connected, but each of its con-
tacts would still have a direct connection with each other. For the overall network, node i is
thus a redundant contact.

Graph (b) is a wheel graph, where the neighbours of node i are arranged in a cycle. As
in the case of a clique, here the neighbourhood of node i remains connected even when i is
removed from the graph, so that i can be considered somehow redundant. However, while
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Fig. 3 (Colour online) The extent to which a node acts as a Simmelian broker depends on the number
and configuration of links in its neighbourhood. The six graphs correspond to six values of Bi , in increasing
order: (a) 1.0, (b) 4.08, (c) 5.83, (d) 6.46, (e) 7.0, (f) 8.0. When the neighbourhood of i is a clique (graph (a)),
the Simmelian brokerage of i is negligible, and i is practically superfluous. As soon as the neighbourhood
becomes sparser and more structural holes appear, node i acquires higher values of Simmelian brokerage. In
graphs (d) and (e), node i has the same clustering coefficient (and thus the same effective size), but the value
of Simmelian brokerage of i is higher in (e) than in (d) because in (e) i intermediates among four cohesive
groups of nodes, whereas in (d) i intermediates between one group of four loosely connected nodes and three
otherwise isolated nodes. Opportunities of brokerage are maximised in the limiting case of a star graph in
which node i intermediates among eight otherwise disconnected contacts (graph (f))

some pairs of nodes in the induced graph have distance equal to 1, the majority of pairs of
nodes are at distance 2, 3 or 4, so that the corresponding local efficiency is Eb

i 
 0.559 and
node i’s Simmelian brokerage is equal to Bb

i 
 4.083. The relatively higher value of i’s
Simmelian brokerage in graph (b) than in graph (a) reflects the more central role played by i

in (b) than in (a) in facilitating reachability among its neighbours. This is also reinforced by
the fact that, when i is removed from the graph, the average distance among its neighbours
increases from 1.0 (in graph (a)) to ∼ 2.286 (in graph (b)).

From a visual inspection, we would also expect the Simmelian brokerage of node i to
increase from graph (b) to graph (c) due to an increase in structural gaps between distinct
groups of nodes. In graph (c), node i does not only intermediate between already connected
nodes, but it brokers between different groups of nodes that would otherwise remain discon-
nected. In this case, the local efficiency of i is Ec

i 
 0.309 and, as expected, the correspond-
ing Simmelian brokerage of i is higher than in graph (b), and is equal to Bc

i 
 5.83.
Graphs (d) and (e) have the same number of links K = 4, but with a different config-

uration. Interestingly, the effective size of node i’s network in the two graphs is the same
(Si = 7.0), since in both graphs the clustering coefficient of i is equal to Ci = 1/7. How-
ever, a removal of i causes a more significant damage in graph (e) than in graph (d), since
the intermediary role of i is more crucial in (e) than in (d). Moreover, in graph (e) node i

is affiliated with four distinct cohesive groups of connected contacts, whereas in graph (d)
node i intermediates between three isolated contacts and one loosely connected group. In
this sense, in graph (e) node i spans more structural holes between Simmelian ties than in
graph (d). Our measure of Simmelian brokerage does indeed capture this difference. In fact,
if we removed i from graph (d), then 10 out of 28 pairs among i’s neighbours (namely all
pairs involving the five nodes in the group) would still remain reachable. In this case, the
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value of Simmelian brokerage of i is Bd
i 
 6.46. Conversely, the removal of i in (e) would

produce a more serious damage to the network, since only 4 pairs of neighbours of i out
of 28 would remain reachable. In this case, the value of Simmelian brokerage is equal to
Be

i = 7.0.
Finally, graph (f) is a star, so that by removing node i no pair of its neighbours would

remain reachable any longer. In this limiting case, the value of local efficiency of node i is
equal to zero, and the one of Simmelian brokerage, as well as of effective size, is equal to
the node degree, namely Bf

i = 8.0. In general, if two nodes have the same local efficiency,
the one having the higher degree has a higher Simmelian brokerage. This is due to the fact
that the removal of a high-degree node could potentially leave a higher number of pairs of
nodes disconnected, and could therefore cause a more substantial damage to the network
than the removal of a node characterised by a relatively low degree.

6 Weighted Graphs: Effective Strength and Weighted Simmelian Brokerage

In this section, we briefly discuss how the measures of effective size and Simmelian broker-
age can be intuitively extended to the case of weighted graphs. First, we notice that, in the
more general case of undirected weighted graphs, the importance of node i can be measured
through its total strength si = ∑

j wij , in addition to the degree ki . Consequently, it is rea-
sonable to extend the measure of effective size to weighed graphs by defining the effective
strength of a node as follows:

S w
i =

∑
j

wij

[
1 −

∑
�

pi�mj�

]
= si −

∑
j

∑
�

wijpi�mj� (17)

Like effective size for unweighted graphs, effective strength measures the extent to which
the neighbourhood of a node in a weighted graph is redundant. However, unlike effective
size, it properly takes into account the weights of links, and thus captures variations in the
investment (e.g., time, energy) that a node i makes in each of its neighbours. Since the
quantity in square brackets in Eq. (17) is multiplied by wij , then a neighbour j of node i’s
for which wij is relatively small has little impact on the effective strength of i. Conversely,
if wij is relatively large, then node j can substantially influence the effective strength of i.
It is easy to verify that, if the graph is unweighted and undirected, the effective strength in
Eq. (17) reduces to the effective size, as defined in Eq. (5).

In principle, starting from Eq. (17), it should be possible to derive an exact relation be-
tween the effective strength and the weighted clustering coefficient of a node, as we did in
Sect. 4 for the unweighted case, and to extend to weighted graphs the measure of Simmelian
brokerage proposed in Eq. (16). However, while the definition of clustering coefficient in
unweighted graphs reported in Eq. (1) is widely accepted and undisputed, there exist more
than one manner to define the clustering coefficient of a node in a weighted graph [48]. In-
deed, different measures for the weighted clustering coefficient have been proposed in the
literature. Among those, the following four are the most popular ones:

Cw
i = CB

i = 1

si(ki − 1)

∑
j,�

wij + wi�

2
aij aj�a�i (Barrat et al. [3])

Cw
i = CO

i = 2
∑

j,�(wijwj�w�i)
1/3

ki(ki − 1)
(Onnela et al. [47])
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Cw
i = CZ

i =
∑

j �=i

∑
j �=�,��=i (wijwj�w�i)

(
∑

j �=i wij )2 − ∑
j �=i w

2
ij

(Zhang and Horvath [70])

Cw
i = CH

i =
∑

j,� wijwj�w�i

max(w)
∑

j,� wijw�i

(Holme et al. [32])

Notice that all these measures are essentially based on the same idea: the clustering of node i

is measured by means of the sum of the weights of the closed triads incident on i. Neverthe-
less, each measure differs from the others in the choice of the weight assigned to each triad
and in the normalisation introduced to guarantee that Cw

i takes values in [0,1]. A discussion
of the different definitions of the weighted clustering coefficient is beyond the scope of the
present paper (the authors of Ref. [56] have carried out a thorough analysis of these mea-
sures and a comparison of their properties). In a similar way as in the case of unweighted
graphs, for which the relation between effective size, clustering and degree of a node is
given by Eq. (14), for each of the four definitions of weighted clustering it is possible to find
a corresponding functional relation to obtain the effective strength of a node if one knows
the value of its weighted clustering coefficient. In general, if we assume that this functional
relation is mediated not only by the degree ki of node i but also by the node strength si , we
can write:

S w
i = F

(
ki, si ,C

w
i

)
(18)

where the form of F(ki, si ,C
w
i ) depends only on the chosen definition of clustering coef-

ficient. Following the same logic described in Sect. 5, we notice that each version of the
weighted clustering coefficient induces a different definition of weighted Simmelian broker-
age Bw

i . As we did for the case of unweighted graphs, where the Simmelian brokerage of a
node was obtained by substituting Ei for Ci in Eq. (13), we define the weighted Simmelian
brokerage of node i induced by a given definition of weighted clustering as follows:

Bw
i = F

(
ki, si,E

w
i

)
(19)

where Ew
i is the local efficiency of node i in the weighted graph, which is measured consid-

ering the weighted distances dw
j� instead of the topological distances dj�. In other words, for

a given formulation of weighted clustering, the Simmelian brokerage of a node is obtained
by replacing the weighted clustering coefficient Cw

i with the local efficiency Ew
i in the func-

tion F(ki, si,C
w
i ) that relates effective strength to the weighted clustering coefficient.

7 Conclusions

Graphs are an invaluable mathematical tool for examining the topology and evolution of
social structures, and graph measures have contributed to the operationalisation and formal-
isation of fundamental sociological concepts as well as to the development of social theories.
Among these measures, clustering and effective size have played a pivotal role in the debate
that, over the last few decades, has been concerned with the types of social structures that
matter as sources of social capital [2, 4, 10, 20, 23, 40, 41, 54, 61]. In this paper, our con-
tribution to this debate began by reviewing the two measures, clustering and effective size,
typically associated with two opposing types of social structure, the closed and open struc-
ture respectively. We then clarified the relationship between these two measures, and found
that they are indeed connected through a simple mathematical relation. While so far the two
measures have been related to each other primarily at a conceptual level and on intuitive
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grounds [7], in this paper we provided a formal framework in which one measure can be
expressed in terms of the other.

The study of formal relations between different graph measures can help unveil the inti-
mate connections between already existing, and apparently unrelated, sociological concepts
and, at times, even lead to the development of new concepts and measures. This indeed de-
scribes the trajectory that brought us from a more thorough understanding of the relation
between closed and open structures to the proposal of a new measure that captures a topo-
logical configuration at the interface between the two types of structure. The idea was to
identify brokerage positions in which a node can intermediate between otherwise discon-
nected cohesive groups of contacts [67]. In such cases, the node’s local network can be seen
as both open and closed: open in that it is rich in structural holes separating distinct groups
of contacts; and closed in that it is at the same time rich in third-party relationships within
each of the groups with which the node is affiliated.

In qualitative agreement with the organisational literature on Simmelian ties [19, 34–36,
61], we proposed to call Simmelian brokerage the new measure for detecting such structural
positions. Simmelian brokerage helps differentiate between brokerage positions of nodes
with the same degree and the same local clustering coefficient, but with a different configu-
ration of links in their local neighbourhoods. In those cases, effective size would also remain
unchanged as, all else being equal, it is not sensitive to variations in the positions of links.
However, brokerage opportunities are likely to differ when, simply by reshuffling the same
number of links across a node’s local neighbourhood, there is a variation in the number of
socially cohesive groups with which the node is affiliated. Simmelian brokerage, unlike ef-
fective size, is sensitive precisely to these variations in group affiliation that result from a
change in the position of links.

Our findings can nourish the theoretical debate over the relative salience of closed and
open structures for social capital, and will inform further research on the generative mecha-
nisms of social capital. On the one hand, empirical tests of the relative benefits of closed and
open structures will now find in our proposed relation between clustering and effective size
a sound argument safeguarding against problems of multicollinearity, typically arising as a
result of the simultaneous inclusion of both measures as explanatory variables in multivari-
ate regression models. On the other, future research on the relative benefits of cohesive and
brokered networks will benefit from the application of Simmelian brokerage to a number of
empirical domains. In this sense, our study will help reconcile the apparently opposing re-
sults that various strands of literature have uncovered on the structural foundations of social
capital [1, 2, 20, 23, 33, 42, 53].

Simmelian brokerage, as a new topological measure of network structure, can also spur a
wealth of research broadly concerned with the topology and dynamics of complex networks.
For the sake of simplicity, in this paper we have restricted our focus primarily to the case
of unweighted networks. However, as was sketched out in Sect. 6, the relation between
clustering coefficient and effective size can easily be generalised to the case of weighted
graphs, which will in turn enable Simmelian brokerage to be also extended to weighted
graphs.

More generally, the main implication of our study for research on complex networked
systems lies in the change of perspective entailed by our emphasis on structural cleavages,
as opposed to ties, that we borrowed from the burgeoning network literature in the social
sciences. In this sense, our study may suggest a number of possible and previously neglected
ways in which, simply by deflecting attention from the presence to the absence of a tie, new
insights can be gained on the organisation, functioning and dynamics of a variety of systems.
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