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Abstract In melt-blowing very thin liquid fiber jets are spun due to high-velocity air
streams. In literature there is a clear, unsolved discrepancy between the measured and com-
puted jet attenuation (thinning). In this paper we will verify numerically that the turbulent
velocity fluctuations causing a random aerodynamic drag on the fiber jets—that has been
neglected so far—are the crucial effect to close this gap. For this purpose, we model the ve-
locity fluctuations as vector Gaussian random fields on top of a k–ε turbulence description
and develop an efficient sampling procedure. Taking advantage of the special covariance
structure the effort of the sampling is linear in the discretization and makes the realization
possible. Numerical results are discussed for a simplified melt-blowing model consisting of
a system of random ordinary differential equations.

Keywords Turbulence modeling · Gaussian random velocity fields · Sampling procedure ·
Random ordinary differential equations · Melt-blowing simulations · Fiber spinning

1 Introduction

Melt-blowing is a process for manufacturing very thin thermoplastic fibers, whose com-
mercial importance steadily increases. It dates back to Wente’s work in the 1950s at the
Naval Research Laboratory in the USA [49]. For an overview on the technology we refer
to [29, 37]. In a melt-blowing process, a molten stream of polymer is extruded from the
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spinneret into a forwarding high-velocity air stream. The aerodynamic force rapidly atten-
uates the polymer jet from a diameter d0 of approximately 500 micrometers at the nozzle
down to final diameters d that can be as small as 0.5 micrometers. The speeds are very
high. Since air and polymer are nearly of the same temperature, the gas prevents polymer
solidification at distances close to the die. So fibers are produced that are orders of mag-
nitude smaller than the fibers of a conventional melt-spinning process where the stretching
is caused by a mechanical force due to a take-up wheel. The elongation in melt-blowing
is e = A0/A = d2

0/d2 ∼ O(106), that means a reduction of 103 in diameter d and of 106 in
cross-sectional area A. Melt-blown fibers make excellent filters. They have a high insulating
value, moreover they show high cover, surface area and potentially high strength per unit
weight.

The optimization of the fabric and the manufacturing process requires the understanding
of the fiber structure development in melt-blowing [9]. To gain insight in fiber jet attenua-
tion (thinning) and cooling several on-line measurements have been performed during the
last years (see e.g. [52, 55] and for measurements on jet diameter and temperature [8, 48],
jet velocity components [51], frequency and amplitude of jet vibrations [11, 44], nonwoven
webs [25] etc.). But, until now there is a clear, unsolved discrepancy between experiments
and mathematical models/simulations. The numerical results presented in the literature co-
incide quite well with the measurements under conditions of a conventional melt-spinning
process with moderate elongation e ∼ O(102), but absolutely underestimate the jet attenua-
tion in orders of magnitude for industrial melt-blowing processes, [48, 52, 56]. The reason
might lie in the fact that the underlying mathematical models have been originally devel-
oped for melt-spinning processes, dealing with mass, momentum and energy balances for a
steady (longitudinal) spinning threadline, cf. first publications [19, 34] in the 1960s or for an
overview [57]. Up to now the studies have been extended to viscous and viscoelastic fluids
with inclusion of heat transfer, inertial and air drag effects and with regard of jet dynamics,
vibrations and bending instabilities. It is an area of active research as recent articles show,
see for example [14, 31–33, 39, 44, 45, 53, 54] and references within. However, in the used
steady considerations, the jet cross-sectional area A and the speed v are related according to
v0A0 = vA for an incompressible fluid where the index 0 indicates the quantities at the noz-
zle, such that the computed elongation is obviously restricted by the velocity u of the acting
air stream, i.e. e = v/v0 < ‖u‖∞/v0. This also holds true for advanced melt-blowing simula-
tions with a turbulence model for the high-velocity air stream when only the mean flow field
informations are taken into account [56]. The computed elongation is hence e ∼ O(104)—in
contrast to the measured e ∼ O(106). Latest experiments [44, 52] indicate the relevance of
the turbulent fluctuations for the jet thinning.

This paper aims at the numerical verification of the crucial effect of the turbulent velocity
fluctuations for the fiber jet attenuation (Fig. 1). Apart from the derivation of a proper jet
description, this task requires the stochastic and computational modeling of global (inhomo-
geneous, anisotropic) turbulent fluctuations. For this purpose, we establish a new globaliza-
tion strategy based on Kolmogorov’s theory for local homogeneous and isotropic turbulence
fields and develop an efficient sampling procedure. The turbulent fluctuations of the high-
velocity air stream turn out to be qualitatively very important, their impact might close the
gap between measurements and previous simulations that has been observed and studied
for a long time. Since direct numerical simulations (DNS) are computationally not possible,
we use a stochastic k–ε turbulence description for the high-velocity air stream, on top we
model the local turbulent fluctuations as Gaussian random fields in space and time accord-
ing to [30, 32]. Their covariance/correlation functions satisfy Kolmogorov’s 5/3-law for the
energy spectrum and the requirements of the k–ε turbulence model. Based on a scaling ar-
gument we propose a globalization strategy to realize the global velocity fluctuations. They
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Fig. 1 Simulation of turbulent
spinning in a melt-blowing
process. Vertically downwards
directed high-velocity air stream
with immersed spun fiber jets
(white curves) whose random
motion is caused by the turbulent
fluctuations. The color scale
visualizes the vertical component
of the mean flow velocity. For
details see Sect. 4

have a special structure, for which we develop an accurate and fast sampling approach that
makes the application possible. Under the conditions of an industrial melt-blowing process
we demonstrate the relevance of the turbulent fluctuations and the resulting random aerody-
namic drag force in a one-way-coupling between the air stream and the fiber jet. Thereby, we
formulate an isothermal inviscid model for the fiber jet dynamics that consists of a system
of ordinary differential equations (ODE) for jet position, velocity and elongation. Already
for this very simplified ODE-model with randomness we obtain a jet thinning behavior that
is qualitatively appropriate in magnitude. The results are very promising and raise hope that
the application of the random aerodynamic drag to more sophisticated Cosserat models for
the jet dynamics [2, 4, 40, 41] that also include inner stresses and temperature dependencies
(systems of partial differential equations (PDE)) will finally answer the open questions of
the fiber structure development in melt-blowing in future. Recent work deals with the ro-
bust numerical treatment of the PDE-models [5, 7]. Of particular importance is thereby the
establishment of a fast and accurate adaptive mesh refinement that is necessary in order to
cope with the expected huge elongations.

The paper is structured as follows. After a short survey in turbulence modeling, the re-
construction of the turbulent velocity fluctuations as Gaussian random fields taken from [30]
is presented in Sect. 2. In Sect. 3 we establish a globalization strategy and develop a suit-
able, very efficient sampling procedure that makes use of the special covariance structure.
In Sect. 4 we derive a simplified model for melt-blowing to which we apply the resulting
random aerodynamic drag force. Comparing the results with regard and neglect of the tur-
bulent fluctuations clearly shows the importance of the fluctuations for a proper description
of the manufacturing process.

2 Turbulence Modeling

All the physics of a turbulent flow is contained in the non-stationary Navier-Stokes equations
(NSE). Turbulence can be considered as continuum phenomenon, since even the smallest
scales occurring in a turbulent flow are ordinarily far larger than any molecular scales. Thus,
solving NSE by means of DNS gives the exact velocity field needed for the determination
of the aerodynamic force causing the jet stretching. However, DNS presupposes the resolu-
tion of all vortices ranging from the large energy-bearing ones of length lT to the smallest,
viscously determined Kolmogorov vortices of size η with lT/η = Re3/4 [50]. Hence, the
number of grid points that are required for the refinement of a three-dimensional domain is
proportional to Re9/4. Despite of recent high speed computations, DNS is thus still restricted
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to simple, small Reynolds number flow. In large eddy simulations (LES) the computational
effort is reduced. By applying a low-pass filter on NSE, only the vortices of large scales
are resolved directly, whereas the small vortices are taken into account by a stochastic ap-
proximation of their effect on the larger ones. This procedure works well for fluid-structure
interactions with structures of moderate size, e.g. flow around the wing of an aircraft. How-
ever, in view of our thin fiber jets we need correlation information and characteristics of
such small scales so that LES is not applicable. Therefore, we use stochastic turbulence
models. These models suffer from their deficient description of boundary layers at walls
and/or obstacles. But since we restrict to a one-way-coupling by neglecting the effect of the
few slender jets on the air flow, the flow information that we need for the air drag model
comes from the simulation of a turbulent flow in a machine geometry without any immersed
fiber jets. So the vortex structure develops in the inner flow domain, unperturbed by any
obstacles. And no inaccurate boundary layer approximations falsify the numerical results.
The stochastic turbulence models—also known as statistical turbulence models [15, 50]—
prescribe the instantaneous space- and time-dependent velocity field u : R

3 × R
+
0 → R

3 as
sum of a mean (deterministic) ū and a fluctuating (stochastic) part u′

u = ū + u′.

So, the velocity field is considered as an R
3-valued random field u = (u(x, t))(x,t)∈R3×R

+
0

, i.e.,
the velocity at the point (x, t) in space and time is assumed to be a realization (sample) of
the R

3-valued random variable (random vector) u(x, t). On the average over all realizations
u equals ū, i.e., E(u) = ū or, equivalently E(u′) = 0, where E denotes the expectation. The
mean velocity ū is determined by the Reynolds-averaged Navier-Stokes equations (RANS)
where the effect of the fluctuations is contained as source in terms of the Reynolds stress
tensor T = −E(u′ ⊗u′) in the momentum balance. The fluctuations u′ = (u′(x, t))(x,t)∈R3×R

+
0

are not modeled directly themselves as centered random field, instead the stochastic turbu-
lence models restrict on modeling the symmetric Reynolds stress tensor. Therefore addi-
tional statistical quantities are introduced. In the k–ε model, one of the prime turbulence
models going back to Launder and Sharma [24], these quantities are the turbulent kinetic
energy k : R

3 × R
+
0 → R

+ and the dissipation rate ε : R
3 × R

+
0 → R

+. They characterize
the fluctuations

k = 1

2
E

(
u′ · u′), ε = νE

(∇u′ : ∇u′) (2.1)

with flow viscosity ν and yield the Reynolds stress tensor T = Cμk2/ε(∇ū+∇ūT )−2k/3I

with unit tensor I and constant Cμ in accordance with the Boussinesq assumption that
proceeds from the analogy between viscous and turbulent stresses. In general, the purely
deterministic PDE-models for the turbulence description consist of RANS and transport
equations for the additional statistical quantities. They are closed by means of numerous
assumptions and fitted parameters (closure relations).

Notation 1 (Tensor calculus) A tensor can be associated with a multi-dimensional array
with regard to the chosen basis, e.g. a tensor of 2nd, 1st or 0th order is represented by a
matrix, vector or scalar, respectively. Throughout the paper we use large and small bold-
faced letters for matrix- and vector-valued quantities, respectively. Scalar-valued quantities
are typeset in normal-faced letters. Elementary operations include tensor and dot products,
such as a ⊗ b = C with Cij = aibj as well as a · b = ∑

i aibi and A : B = ∑
i,j Aij Bij (scalar

products of vectors and matrices).
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On top of a k–ε formulation we developed a turbulence reconstruction strategy for u′ in
[30]. This strategy is based on a Global-from-Local-Assumption according to that the local
velocity fluctuations (fine-scale structure) are modeled as homogeneous, isotropic Gaussian
random fields that are superposed to form the large-scale structure of the global turbulence.
This assumption is motivated by Kolmogorov’s local isotropy hypothesis [16]: certain the-
oretical considerations concerning the energy transfer through the eddy-size spectrum from
the larger to the smaller eddies lead to the conclusion that the fine structure of anisotropic
turbulent flows is almost isotropic.

Assumption 2 (Global-from-local-assumption [30]) Let the k–ε turbulence model be given.
Let (Ω, A,P) be a probability space. Let u′

loc,p = (u′
loc,p(x, t))(x,t)∈R3×R

+
0

be a family of cen-
tered Gaussian random fields on (Ω, A,P) that correspond to spatially and temporally ho-
mogeneous, isotropic, and incompressible flow fluctuations with respect to the local turbu-
lence information (k, ε, ν, ū) at the point p = (y, τ ) ∈ R

3 × R
+
0 . Their tensor-valued covari-

ance/correlation functions are denoted by Kloc,p : (R3 × R
+
0 )2 → R

3×3.
Then we assume that the actual global fluctuation field u′ can be constructed as

u′(x, t) = 〈
u′

loc,p(x, t)
〉
M(x,t)

, (2.2)

with M(x, t) = {p = (y, τ ) ∈ R
3 × R

+
0 | ‖x − y − ū(x, t)(t − τ)‖2 ≤ lT ∧ |t − τ | ≤ tT},

|M(x, t)| = ∫
M(x,t) dp, and turbulent large-scale length lT and time tT. The brackets 〈·〉 stand

for a Gaussian average with respect to the parameter p, i.e., u′ is a Gaussian random field
that is uniquely prescribed by the following mean and covariance function

E
(
u′(x, t)

) = 1

|M(x, t)|
∫

M(x,t)
E

(
u′

loc,p(x, t)
)

dp = 0,

E
(
u′(x, t) ⊗ u′(x1, t1)

) = 1√|M(x, t)||M(x1, t1)|
∫

M(x,t)∩M(x1,t1)

Kloc,p(x, t,x1, t1)dp

= K(x, t,x1, t1).

Remark 3 A random field is Gaussian if all its finite-dimensional joint distributions are
Gaussian (normal distributed). The distribution of a Gaussian random field is completely
specified by its mean and covariance function. By Assumption 2 the modeling of the turbu-
lent fluctuations u′ is reduced to the modeling of u′

loc,p focusing on an appropriate description
of the covariance function Kloc,p. The covariance function contains the information about
the spatial and temporal correlations in the turbulent flow. Note that the global reconstruc-
tion (2.2) of [30] is very elegant, but practically to demanding to apply as we will see in
Sect. 3.3. Therefore, we will establish a new globalization strategy that replaces (2.2) and
enables a fast and accurate sampling of the global velocity fluctuations on basis of the local
fields u′

loc,p, see (3.11) and (3.12) in Sect. 3.3.

The local centered Gaussian velocity fluctuation fields u′
loc,p and hence their covariance/

correlations Kloc,p depend parametrically on the flow situation (k, ε, ν, ū) at the point p that
is provided by the k–ε model. Thus, we make u′

loc,p dimensionless using the typical turbulent
length k3/2/ε and time k/ε corresponding to p,

u′
loc(x, t) = k1/2u′

loc

(
ε

k3/2
x,

ε

k
t; ε

k2
ν

)
, x = k3/2

ε
x, t = k

ε
t, ν = k2

ε
ζ. (2.3)
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The dimensionless viscosity ζ enters the model of the velocity fluctuations via the consis-
tency with the k–ε description, see Model 5. To facilitate the readability we suppress the
parameter-dependence (index p) here in (2.3) and also in the following.

Notation 4 (Dimensional vs dimensionless quantity) We typeset dimensional quantities in
Roman style (e.g. t, x, u′, K) and the corresponding dimensionless quantities in Italic style
(e.g. t , x, u′, K) throughout the paper.

In the forthcoming explanations we focus on the dimensionless quantities. The develop-
ment of the local tensor-valued covariance/correlations K loc can be reduced to the modeling
of two scalar-valued functions, the energy spectrum E and the decay of the temporal correla-
tions ϕ. (For the detailed derivation of the original model with frozen turbulence pattern we
refer to [30], extensions on the temporal correlations are studied and incorporated in [32].
For more informations about turbulence and its evolution see [16, 18, 28, 32] and references
within.) In a homogeneous turbulent flow, the correlations are invariant with regard to spa-
tial and temporal translations and hence depend only on the differences of the arguments.
The evolution of the correlations are modeled by an advection-driven vortex structure that
is naturally decaying over time (alleviated frozen turbulence). Taylor’s hypothesis of frozen
turbulence pattern [46], i.e. fluctuations arise due to so-called turbulence pattern that are
transported by the mean flow without changing their structure, is based on the observation
that the rate of decay of the mean properties is rather slow with respect to the time scale of
the fluctuating fine-scale structures. The superposition with a natural temporal decay is es-
sential for describing suspensions of particles or filaments in turbulent flows, since otherwise
small light objects tending to move with the mean flow field would experience permanently
the same non-varying fluctuations. So, K loc is prescribed by the initial correlation tensor
γ : R

3 → R
3×3 and the temporal decay function ϕ : R

+
0 → R,

K loc(x + x1, t + t1,x1, t1) = γ (x − ūt)ϕ(t) (2.4)

with mean flow velocity ū. It is also made dimensionless with respect to the typical turbulent
length and time in consistency to (2.3). In case of incompressible isotropic turbulence, γ is
represented by a single scalar-valued smooth function. In terms of the spectral density being
its Fourier transform Fγ , this function is known as energy spectrum E : R

+
0 → R

+
0 that has

been well-studied theoretically and experimentally in the last century,

Fγ (κ) = 1

(2π)3

∫

R3
exp(−iκ · x)γ (x)dx = 1

4π

E(‖κ‖)
‖κ‖2

(
I − 1

‖κ‖2
κ ⊗ κ

)
(2.5)

with unit tensor I and Euclidean norm ‖.‖. Kolmogorov’s universal equilibrium theory was
thereby trend setting. Based on dimensional analysis he derived not only the characteristic
ranges but also the typical behavior of the spectrum which agrees with later coming physical
concepts and experiments, cf. Kolmogorov’s 5/3-law and his hypothesis of local isotropy
[16]. Gathering the existing knowledge about E, an appropriate model has to satisfy Kol-
mogorov’s 5/3-law as well as the requirements of the k–ε turbulence model, i.e.

∫ ∞

0
E(κ)dκ = 1,

∫ ∞

0
κ2E(κ)dκ = 1

2ζ
,

∫ ∞

0

(
ln(1 + κ)

)α
κ2E(κ)dκ < ∞ for some α > 3.

The first two relations correspond to the definitions of the kinetic turbulent energy k and
dissipation rate ε in (2.1). For ε to make sense, the third relation ensures that the fluctuation
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field is almost surely sample differentiable in space. (The n-times sample differentiability of
a Gaussian field results from certain integral properties of its spectral (density) function, for
details see [22].) The conditions on E allow for a family of functions that can be adapted to
experiments. The parametric ζ -dependence comes from non-dimensionalizing (2.1) and is
handed over to the correlation tensor and u′

loc, cf. (2.3).

Model 5 (Energy spectrum [30, 32]) The energy spectrum is modeled as E ∈ C 2(R+
0 )

E(κ; ζ ) = CK

⎧
⎪⎪⎨

⎪⎪⎩

κ
−5/3
1

∑6
j=4 aj (

κ
κ1

)j κ < κ1

κ−5/3 κ1 ≤ κ ≤ κ2

κ
−5/3
2

∑9
j=7 bj (

κ
κ2

)−j κ2 < κ

(2.6)

where the ζ -dependent transition wave numbers κ1 and κ2 are implicitly given by
∫ ∞

0
E(κ; ζ )dκ = 1,

∫ ∞

0
κ2E(κ; ζ )dκ = 1

2ζ
.

The regularity parameters are a4 = 230/9, a5 = −391/9, a6 = 170/9, b7 = 209/9, b8 =
−352/9, b9 = 152/9, and the Kolmogorov constant is CK = 1/2.

The integral conditions for κ1 and κ2 in ζ (2.6) can be reformulated as nonlinear system

â1κ
−2/3
1 − b̂1κ

−2/3
2 = C−1

K , −â2κ
4/3
1 + b̂2κ

4/3
2 = (2CKζ)−1,

â1 = 3

2
+

6∑

j=4

aj

j + 1
, â2 = 3

4
−

6∑

j=4

aj

j + 3
, (2.7)

b̂1 = 3

2
−

9∑

j=7

bj

j − 1
, b̂2 = 3

4
+

9∑

j=7

bj

j − 3
.

The condition 0 < κ1 < κ2 < ∞ is equivalent to 0 < ζ < ζcrit = (2C3
K(b̂2 − â2)(b̂1 −

â1)
2)−1 ≈ 3.86. The bounds on ζ (where we have κ1 = κ2 = (CK(â1 − b̂1))

3/2 for ζ = ζcrit

and κ1 = (CKâ1)
3/2, κ2 = ∞ for ζ = 0) are no practically relevant restrictions, since the

general turbulence theory assumes the ratio of fine-scale and large-scale length to satisfy
ζ = εν/k2 � 1.

The temporal correlation function ϕ satisfies ϕ(0) = 1 which implies that the integral of
its Fourier transform Fϕ is normalized. We use an exponential decay with respect to the tur-
bulent large-scale time with tT = 0.212, see e.g. [26, 38] and references within. Note that it
is a one-time-scale-model which has the feature that the temporal derivative of the Gaussian
random field is unbounded. However, this simplification has no effect on the application.

Model 6 (Temporal correlations) The natural decay of the temporal correlations is modeled
as ϕ ∈ C∞(R+

0 )

ϕ(t) = exp

(−t2

2t2
T

)
, Fϕ(ω) = tT√

2π
exp

(−t2
Tω2

2

)
, tT = 0.212. (2.8)

Remark 7 The correlated global random field u′ (2.2) can be asymptotically reduced to
Gaussian white noise with flow-dependent amplitude. For certain applications this simpli-
fication is qualitatively and quantitatively justified and implies an enormous reduction of
computational time and memory (see [30] for a theoretical localization strategy and the
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strict asymptotic derivation as well as [32] for the application and experimental validation
in a production process of nonwoven materials).

3 Sampling of Gaussian Random Fields

In this section we deal with the reconstruction and simulation of the local centered Gaus-
sian random velocity fields u′

loc. In view of the prescribed data there exist various recon-
struction/sampling procedures in literature, e.g. Karhunen-Loeve expansion, Cholesky de-
composition, circulant embedding for a given covariance function [10] or spectral, Fourier,
Fourier-wavelet methods for a given spectral function [13, 17, 23]; for an overview see [6,
21] and references within. We propose a technique that takes advantage of the special struc-
ture of the given data and turns out to be exact in the covariance and very efficient as we will
comment on. In addition, we establish a globalization strategy based on a scaling argument
to realize the global velocity field. This strategy in combination with the sampling procedure
makes the handling of practically relevant problems possible from a computational point of
view. Note that in the following we assume the existence of all occurring random fields and
stochastic processes as we construct them later on.

3.1 Construction of u′
loc

Considering the covariance function (2.4) of the local velocity field, we separate the spatial
and temporal arguments by introducing a new Gaussian random field η = (η(x, t))(x,t)∈R4

η(x, t) = u′
loc(x + ūt, t)

from which u′
loc can be easily regained. Its covariance satisfies

E
(
η(x + x1, t + t1) ⊗ η(x1, t1)

) = γ (x)ϕ(t). (3.9)

Let the vector random field ξ = (ξ(x))x∈R3 and the scalar stochastic process ψ = (ψ(t))t∈R

be centered and stochastically independent with covariance functions

E
(
ξ(x + x1) ⊗ ξ(x1)

) = γ (x), E
(
ψ(t + t1)ψ(t1)

) = ϕ(t).

Defining a random field η̃ by

η̃(x, t) = ξ(x)ψ(t),

η̃ and η possess the same covariance function (3.9). As we are interested in a Gaussian field,
we consider

η̃N(x, t) = 1√
N

N∑

l=1

η̃(l)
(x, t), N ∈ N, (3.10)

in which η̃(l), l = 1, . . . ,N are independent copies of η̃. The central limit theorem ensures
then the convergence in distribution

η̃N(x, t)
d−→ N

(
0,γ (0)ϕ(0)

) = N
(

0,
2

3
I

)
, N → ∞

for every (x, t) ∈ R
4 as N tends to infinity. Due to the multi-dimensional central limit

theorem, for any choice of n ∈ N and (x1, t1), . . . , (xn, tn) ∈ R
4, the joint distribution of
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η̃N(x1, t1), . . . , η̃N(xn, tn) converges in distribution to a normal distribution on R
3n. We

conclude that η̃N is a centered random field with covariance (3.9), which is approximately
Gaussian if N is large. So in order to construct η respectively η̃N we focus on the sampling
of ξ and ψ . Thereby, we keep in mind the almost sure differentiability of the realizations of
our constructed fields and processes.

3.1.1 Spatial Field ξ

In this subsection we exploit the special structure of the spectral density of the spatial field
given by Sξ = Fγ in (2.5). Let w = (w(t))t∈R be a centered, homogeneous and R

3-valued
stochastic process with spectral function Sw(κ) = E(|κ|)/2 I , i.e., its components are un-
correlated processes with the same spectral function sw(κ) = E(|κ|)/2. Moreover, let z be
a uniformly distributed random vector on the unit sphere S2 = {x ∈ R

3 : ‖x‖ = 1}. Then,
under the assumption that w and z are independent, the random field that is defined by

ξ(x) = (I − z ⊗ z) · w(x · z)
has the spectral density Sξ given by (2.5) and hence the desired covariance γ , [12, 27].
Since the components of w are independent, it is sufficient to focus on the sampling of one
component w in order to construct the whole field ξ . Following [23], this can be done in
the subsequent manner: As E(κ) ≥ 0 for all κ ≥ 0 and

∫
R

sw(κ)dκ = ∫ ∞
0 E(κ)dκ = 1, the

function sw is a continuous probability density on R. Choosing a random variable R with
this probability density and two standard normally distributed random variables X and Y

that are all stochastically independent, the complex-valued process (w̃(t))t∈R

w̃(t) = Z exp(iRt), Z = X + iY,

has the spectral function 2sw as a simple calculation with the conjugate-complex w̃ shows

E
(
w̃(t + t1)w̃(t1)

) = E
(
exp(iRt)

)
E(ZZ) = 2

∫

R

exp(iκt)sw(κ)dκ.

By taking its real or imaginary part we obtain a real-valued process with the desired spectral
function sw . The so constructed process w (w = Re(w̃) or w = Im(w̃)) has obviously almost
surely differentiable realizations and hence the same holds for ξ .

3.1.2 Time Process ψ

The sampling of the time process ψ can be performed analogously to w. We introduce
the new process ψ̃(t) = ψ(tTt) having the covariance E(ψ̃(t + t1)ψ̃(t)) = ϕ(tTt), cf. (2.8).
Consequently, its spectral function is

sψ̃ (ω) = 1

tT
Fϕ

(
ω

tT

)
= 1√

2π
exp

(
−ω2

2

)
.

As sψ̃ is the probability density of the standard normal distribution, we take three indepen-

dent, standard normally distributed random variables R, X, Y and set ψ̃(t) = Z exp(iRt)

with Z = X + iY . Then, the process ψ = Re(ψ̃(·/tT)) or ψ = Im(ψ̃(·/tT)) has the desired
covariance function ϕ and almost surely differentiable realizations.

The reconstruction strategy for ξ uses the isotropic form of the spectral density and traces
the construction of a random field back to the sampling of a scalar-valued stochastic process
which involves an enormous reduction of complexity and effort. For the sampling of the
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scalar-valued process w with respect to the spectral density, various (approximate) Fourier
methods could be applied. However, our approach of introducing the complex-valued sur-
rogate process via three random variables is not only exact but also efficient. The sampling
and evaluation can be performed flexibly regarding the needs. In contrast to the a priori fixed
discretization in the Fourier methods, this adaptivity yields advantages concerning memory
and computation costs for the forthcoming simulations of the jets dynamics. The same holds
true for the time process ψ . Here, one could certainly think of direct methods on top of the
covariance, but their performance suffers from an a priori discretization and high effort (for
example the effort for a Cholesky decomposition is O(n3), n number of grid points). Our
effort is linear in the discretization. For every u′

loc we have to generate 9N standard nor-
mally and 3N sw-distributed variables as well as N uniformly distributed vectors on S2.
Thereby, the realization of the sw-distributed variables is the most expensive part. These
variables depend on the considered flow situation as sw(κ; ζ ) = E(|κ|; ζ )/2 with ζ = εν/k2

at point p.

Remark 8 As for the stochastic simulation (cf. Algorithm 9), a random vector z that is
uniformly distributed on the unit sphere S2 can be sampled by help of three independent
standard normally distributed scalars X1, X2, X3 according to z = (X1,X2,X3)/R with

R =
√

X2
1 + X2

2 + X2
3 (scaling method). For the generation of an sw-distributed variable

we use the classical acceptance-rejection method by von Neumann [36], taking the gamma
distribution as reference density. For details on the techniques see e.g. [20, 35].

Algorithm 9 (Sampling procedure)

Output: approximate sample from u′
loc at (x, t)

Input: flow data at point p: k, ε, ν, ū and dimensionless turbulent large-scale time tT, eval-
uation point (x, t)

A.1 Determine the dimensionless local flow parameters: ζ = εν/k2 and ū = ū/
√

k
A.2 Set random field parameter N and generate random numbers, l = 1, . . . ,N :

� z(l)

N samples according to the uniform distribution on the sphere S2 by scaling method
� R

(l)
ξ,j , j = 1,2,3

3N samples according to the density sw by von Neumann’s method (obtain
sw(κ; ζ ) = E(|κ|; ζ )/2 by solving the nonlinear system (2.7))

� X
(l)
ξ,j , Y

(l)
ξ,j , j = 1,2,3 as well as R

(l)
ψ , X

(l)
ψ , Y

(l)
ψ

9N samples according to the standard normal distribution

B.1 Compute approximate samples, l = 1, . . . ,N :

� spatial field:

w
(l)
j

(
x · z(l)

) = Re
((

X
(l)
ξ,j + iY

(l)
ξ,j

)
exp

(
iR

(l)
ξ,jx · z(l)

))
, j = 1,2,3

ξ (l)(x) = (
I − z(l) ⊗ z(l)

) · (w(l)

1 ,w
(l)

2 ,w
(l)

3

)(
x · z(l)

)

� time process:

ψ(l)(t) = Re
((

X
(l)
ψ + iY

(l)
ψ

)
exp

(
iR

(l)
ψ t/tT

))

B.2 Approximate

u′
loc(x, t; ζ ) ≈ 1√

N

N∑

l=1

ξ (l)(x − ūt)ψ(l)(t)
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Table 1 Rejection frequencies of Royston’s test

N\d 1 2 3 4 5 6

10 0.357 0.416 0.439 0.461 0.497 0.518

30 0.108 0.15 0.184 0.187 0.19 0.182

50 0.098 0.102 0.12 0.143 0.183 0.126

70 0.069 0.079 0.072 0.087 0.117 0.124

100 0.082 0.076 0.096 0.091 0.085 0.108

150 0.094 0.099 0.093 0.101 0.109 0.125

Algorithm 9 consists of two parts, A—the initialization with the generation of random
numbers and B—the computation and evaluation. Hence, to evaluate the same sample at a
different collection of points (xi, ti ), only part B need to be executed while the initialization
with the random numbers of part A should be stored.

3.2 Simulation of u′
loc and Tests on Multivariate Normality

Simulating the local velocity fluctuations, the finite-dimensional distributions of η̃N are
close to a multivariate normal distribution for large N according to the central limit
theorem. For the assessment of the multivariate normality on a fixed set of points
{(x1, t1), . . . , (xd , td )} ⊂ R

3 × R
+
0 we apply the statistical test by Royston [42, 43] which

we evaluate by help of the respective MATLAB routine [47]. Table 1 shows the rejection
frequencies at the significance level 0.05 for different values of the variate size d and the
random field parameter N . We use here 1000 Monte Carlo replications and a sample size of
50. The rejection frequency among the 1000 replications turns out to be a robust quantity
that is widely independent of the variate size d , moreover it stays approximately the same
for N ≥ 50. Hence, we use N = 50 in (3.10) for the forthcoming simulations. The observed
rejection frequency of 10 % is acceptable for us since the Gaussian distribution is a sec-
ondary property. Our main interest is the accurate construction of the covariance structure.
Figure 2 illustrates the numerical result of a realization of u′

loc for a typical flow situation
with ζ = 0.

3.3 Globalization Strategy—Realization of the Global Velocity Fluctuations

According to the Global-from-Local-Assumption (Assumption 2), the global velocity fluc-
tuations u′(x, t) can be obtained from the Gaussian average over the local information of the
fields u′

loc,p that belong to the neighborhood p ∈ M(x, t) of relevant space and time corre-
lations (2.2). This construction satisfies the requirements of the k–ε turbulence model (2.1)
in an integral sense, [30]. It becomes already very memory-demanding and time-consuming
for a discretization with |M(x, t)| ≥ 5 which is obviously rather coarse in R

4. In view of a
turbulent spinning process it is not applicable.

Thus, we propose the following globalization strategy

u′(x, t) = k1/2(p)u′
loc,p

(
ε

k3/2
(p)x,

ε

k
(p)t; εν

k2
(p)

)∣∣
∣∣
p=(x,t)

(3.11)

using the space- and time-dependent flow fields for kinetic turbulent energy, dissipation rate
and viscosity known from the k–ε-simulation. Considering the family of local isotropic,
homogeneous fluctuation fields u′

loc,p, the global velocity fluctuation equals here pointwise
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Fig. 2 Realization of a
component of u′

loc with ζ = 0,
plotted over two-dimensional
space at certain times

the respective local fluctuation. By the globalization the local properties of isotropy and ho-
mogeneity vanish, and u′ represents the actual turbulence structure. Moreover, the global
velocity fluctuation field of (3.11) fulfills the condition (2.1) on the kinetic turbulent energy
exactly, i.e. E(u′(x, t) · u′(x, t)) = 2k(x, t) for all (x, t) ∈ R

3 × R
+
0 . The condition on the dis-

sipation rate containing the spatial derivatives is valid up to an error of order O(ζ0) where the
constant ζ0 = ε0ν0/k2

0 � 1 represents the typical ratio of turbulent fine-scale and large-scale
length. The parameter ζ0 can be also interpreted as the reciprocal of the turbulent Reynolds
number. The error estimate is based on the assumption that changes in the behavior of k and
ε mainly appear on the large scale and not on the fine scale. This motivates an asymptotic
consideration with the multi-scale ansatz k(x, t) = k0 +k1(ζ0x, t) (and analogously for ε, ν),
yielding the result. (See Remark 14 for the validity of the assumption in the melt-blowing
process.)

Since the whole field ζ(x, t) = εν/k2(x, t) is negligibly small in turbulent flows (see e.g.
Fig. 5 for a turbulent air stream in a melt-blowing process), (3.11) might be further simplified
to

u′(x, t) = k1/2(p)u′
loc,p

(
ε

k3/2
(p)x,

ε

k
(p) t;0

)∣∣
∣∣
p=(x,t)

. (3.12)
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Considering an asymptotic expansion in ζ0, (3.12) and (3.11) obviously agree in leading
order. By this slight modification, the sampling of the global velocity fluctuations u′ in (3.12)
can be performed with respect to a parameter-free energy spectrum E(·; ζ = 0) (where κ2 =
∞ in (2.6)). This avoids the expensive solving of different nonlinear systems (2.7) and the
multiple application of von Neumann’s method for all the required u′

loc,p (see Algorithm 9,
Step A.2). So, in total we only need a single set of random parameters (3N sw-distributed
variables with sw(κ;0) = E(|κ|;0)/2, κ ∈ R as well as 9N ∼ N (0,1) and N uniformly
distributed vectors on S2). This involves an enormous decrease of computational costs and
makes the globalization strategy applicable to practically relevant problems as we will show.
Note that its realization is straightforward based on the developed sampling procedure in
Algorithm 9.

4 Application to a Turbulent Spinning Process

The characteristics of a turbulent spinning process like melt-blowing are the huge jet elonga-
tions (jet thinning) that are obtained by the stretching due to turbulent air flows. Up to now,
the numerical simulations available in the literature, e.g. [48, 52, 56], cannot predict the
large elongations measured in the experiments e ∼ O(106). We suppose that the reason lies
in the steady considerations of the turbulent flow field and the neglect of the fluctuations.
In [44] perturbations (bending instability) on a jet were imposed by turbulent pulsations,
leading to stretching and thinning. In the following we investigate the jet dynamics due to
an aerodynamic drag force taking into account the turbulent velocity fluctuations. Thereby,
we use a simplified isothermal inviscid model consisting of a system of ordinary differential
equations for jet position, velocity and elongation.

4.1 Simplified ODE-Model

In [30, 32] we developed a model framework for the dynamics of a long slender object (fiber)
in a turbulent flow in terms of a random aerodynamic drag force in a one-way-coupling. The
dimensionless drag force f depends on the relative velocity between air flow and object w

as well as on the object’s tangent τ , ‖τ‖ = 1, i.e.

f(τ ,w, ν, ρ,d) = ρν2

d
f

(
τ ,

d

ν
w

)
, w = ν

d
w (4.13)

where the dimensional quantities f, w are scaled by help of the typical mass ρd3, length d
and time d2/ν that are induced by object (d diameter) and flow (ρ density, ν kinematic vis-
cosity). The drag can be particularly represented in terms of normal and tangential resistance
functions rn, rτ ,

f (τ ,w) = wnrn(wn)n + wτrτ (wn)τ ,

wτ = w · τ , wn =
√

w2 − w2
τ , n = w − wττ

wn

.

Model 10 (Resistance coefficients for drag [32]) The normal and tangential resistance co-
efficients are modeled as rn, rτ ∈ C 1(R+

0 )
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rn(wn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑3
j=0 qn,jw

j
n wn ≤ w0

4π/S (1 − S2−S/2+5/16
32S

w2
n) w0 ≤ wn < w1

exp(
∑3

j=0 pn,j lnj wn)wn w1 ≤ wn < w2

2
√

wn + 0.5wn w2 ≤ wn

rτ (wn) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑3
j=0 qτ,jw

j
n wn ≤ w0

4π/(2S − 1) (1 − 2S2−2S+1
16(2S−1)

w2
n) w0 < wn < w1

exp(
∑3

j=0 pτ,j lnj wn)wn w1 ≤ wn < w2

γ
√

wn w2 ≤ wn

They are composed of Oseen theory, Taylor heuristic as well as numerical simulations and
matched to Stokes expansions of higher order r�

n , r�
τ for wn � 1, i.e. r�

n = (4π ln(4/δ) −
π)/ln2(4/δ) and r�

τ = (2π ln(4/δ) + π/2)/ln2(4/δ) with regularization δ < 3.5 · 10−2. The
transition points are w0 = 2 (exp(2.0022) − 4π/r�

n), w1 = 0.1, w2 = 100, moreover γ =
2 and S(wn) = 2.0022 − lnwn. The regularity parameters are qi,0 = r∗

i , qi,1 = 0, qi,2 =
(3ri(w0) − w0r

′
i (w0) − 3r�

i )/w
2
0 , qi,3 = (−2ri(w0) + w0r

′
i (w0) + 2r�

i )/w
3
0 for i = n, τ as

well as pn,0 = 1.6911, pn,1 = −6.7222 · 10−1, pn,2 = 3.3287 · 10−2, pn,3 = 3.5015 · 10−3

and pτ,0 = 1.1552, pτ,1 = −6.8479 · 10−1, pτ,2 = 1.4884 · 10−2, pτ,3 = 7.4966 · 10−4.

Remark 11 Model 10 was derived for a steady flow around a cylinder and validated exper-
imentally. It holds true for all incident flow directions and over a wide range of Reynolds
numbers—even in the turbulent regime when time-averaged quantities are considered. By
evaluating tangent τ and relative velocity w locally it was extended to handle dynamic situ-
ations (analogously to Stokes drag extensions for moving particles in flows). Its application
to simulating melt-spinning processes yields satisfactory results, see e.g. [3]. In turbulent
spinning processes the air flow velocity fluctuates over time and space. Since the fibers fol-
low the flow field, the relative velocity is of moderate size but still varying. In view of the
underlying original assumptions this should be kept in mind when dealing with the drag
model. In the following we use δ = 10−3.

The jet dynamics might be described by Cosserat models (strings or rods) with inner
viscous/viscoelastic stresses, temperature dependencies and outer forces due to gravity and
aerodynamics, see e.g. [1, 2, 4]. However, the expected huge elongations pose severe chal-
lenges on robustness and adaptive discretization strategies for the numerical treatment of the
complex partial differential equations that might be topic of future research. Therefore, to
study the impact of the random drag force and to get first qualitative estimates for the jet
attenuation (thinning) in highly turbulent processes, we deal here with a simplified model
for the fiber jet dynamics that consists of a system of first order ODEs in time for jet position
r, velocity v and elongation e. Proceeding from an isothermal Cosserat consideration with a
parameterized, time-dependent jet curve r in Lagrangian formulation (with material param-
eter σ , time t) and neglecting inner stresses, we obtain for a jet extruding from a spinning
nozzle

∂tr = v, �A0∂tv = ef
(

∂σ r
e

,u(r, t) − v, ν(r, t), ρ(r, t),
d0√
e

)
, e = ‖∂σ r‖

r(−v0t, t) = r0, ∂σ r(−v0t, t) = τ 0, ‖τ 0‖ = 1

with nozzle position r0, diameter d0 (A0 = πd2
0/4), exit speed v0 in direction τ0 as well

as jet density �. The aerodynamic drag force f depends on the space- and time-dependent
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air flow quantities (velocity u, density ρ and kinematic viscosity ν). Certainly, gravitational
forces could be included, but they play a negligibly small role in the considered process.
In the drag force we approximate the jet tangent (containing the spatial derivative) by the
direction of the jet velocity τ = ∂σ r/e = v/‖v‖ and motivate an evolution equation for the
elongation e from the steady situation where e = ‖v‖/v0 (cf. Sect. 1). Differentiation yields
then ∂te = τ · ∂tv/v0, containing stretching and compressing. However, instead of being
compressed the instationary jet tends to evade and to move according to the flow field where
it is stretched. Hence, we propose ∂te = ‖∂tv‖/v0. Using (4.13), the simplified model reads

d

dt
r = v, r(0) = r0

d

dt
v = e3/2a(r, t)f

(
v

‖v‖ ,
1√
e

u(r, t) − v
b(r, t)

)
, v(0) = v0τ0 (4.14)

d

dt
e = 1

v0
e3/2a(r, t)

∥∥
∥∥f

(
v

‖v‖ ,
1√
e

u(r, t) − v
b(r, t)

)∥∥
∥∥, e(0) = 1

with the scalar-valued functions a and b containing the constant jet as well as space- and
time-dependent flow quantities

a(r, t) = 4

π

(ρν2)(r, t)

�d3
0

, b(r, t) = ν(r, t)

d0
.

The model (4.14) describes the path and behavior of a single jet point whose motion is
exclusively driven by a turbulent air flow. Thereby, the constructed Gaussian velocity field
u = ū + u′ carries the randomness into the dynamic system via the dimensionless drag
force f . Note that the simplified model is free of any rheology, but it contains the effect of
the flow fluctuations which turns out to be of main relevance for the jet thinning. Material
properties and nozzle conditions influence marginally.

Remark 12 The system of random ordinary equations (4.14) has a unique solution due to
the regularity of the right-hand-side. However, further analytical investigations of the model
are difficult due to the nonlinearity of the drag force and the term ‖f ‖.

Remark 13 (Numerical treatment) For the forthcoming numerical investigations of the ran-
dom ordinary differential system (4.14) the k–ε-simulations of the underlying turbulent flow
field are performed with the software ANSYS Fluent. The fiber jet dynamics is computed in
MATLAB using the standard ODE-solver ode45.m. The routine is an implementation of an
explicit Runge-Kutta method of fourth (or respectively, fifth) order with adaptive time step
control. The random normally and uniformly distributed numbers that are required for the
sampling of the turbulent velocity fluctuations u′ are generated with the MATLAB-functions
randn() and rand().

4.2 Numerical Results

We investigate the dynamics and behavior of a fiber jet in a flow situation that is usual for
melt-blowing, [29, 37]. Temperature effects are neglected for simplicity. The air stream is
directed vertically downwards and enters the domain of interest via a thin slot die, cf. Fig. 3.
Since the mean quantities of the turbulent air stream are time-independent and homogeneous
in direction of the slot (x-direction), we perform stationary k–ε-simulations for a represen-
tative two-dimensional cut showing the y–z-plane. In the set-up the mean flow is symmetric
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Fig. 3 Sketch of flow domain with immersed fiber jets. A two-dimensional cut (y–z-plane, marked by dashed
line) is representative due to the given homogeneity in x-direction. For details on possible geometries see e.g.
[29, 37]

Fig. 4 k–ε-simulation of the representative 2d flow domain. Top: components of mean velocity ū in y- and
z-direction. Bottom: turbulent kinetic energy k and dissipation rate ε in logarithmic plots

with respect to the z-axis (y = 0). Figure 4 shows the respective flow fields for the mean ve-
locity components, kinetic turbulent energy and dissipation rate; in addition ρ ≈ 1 [kg/m3]
and ν = 1.5 · 10−5 [m2/s] is constant. A distinct free air jet develops that is supersonic at the
inlet slot (here: ‖ū‖ ≈ 400 [m/s], k ≈ 103 [m2/s2], ε ≈ 108 [m2/s3]) and becomes subsonic
within some centimeters away. So, the occurring typical turbulent length and time scales lie
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Fig. 5 Turbulent scales corresponding to Fig. 4 in logarithmic plots. Top: turbulent large-scale length
lT = k3/2/ε and time tT = k/ε. Bottom: ratio of fine and large scales ζ = εν/k2

in a wide range, i.e., lT = k3/2/ε ∈ (10−4,10−2) [m] and tT = k/ε ∈ (10−5,10−3) [s]. But,
ζ ≈ 10−4 in the whole free air stream, as visualized in Fig. 5. At the boundaries of the
flow domain we observe side effects coming from the geometry (e.g. in the lower corners).
However, these play no role for the dynamics of the fiber jet. Consequently, the simplified
globalization strategy (asymptotic limit ζ = 0 (3.12)) for the sampling of u′ is acceptable
and applied.

Remark 14 The agreement of our proposed globalization strategy and the k–ε-simulation in
view of the dissipation rate approximation depends on the change of the mean turbulence
quantities that should be slow compared to the decay of the correlations, i.e. lT‖∇q‖/q < 1
for any turbulent quantity q (q = k, ε, lT, . . .). This holds true in the free air stream, but
definitely not at its boundaries where sharp gradients are formed. However, the fibers stay in
the area of the free stream—even close at the nozzle. Figure 6 shows the change of lT being
the pithiest quantity along a fiber trajectory.

The immersed fiber jet to be spun in (negative) z-direction is initialized at the slot die
(spinning nozzle) with v0 = 10−2 [m/s], d0 = 4 · 10−4 [m] and � = 7 · 102 [kg/m3] and
simulated for the time interval [0,T), T = 10−3 [s]. The fiber jet moves exclusively in the
distinct region of the free air stream, Fig. 7. Thereby, its motion is determined strongly
by the mean flow pulling the fiber jet straight downwards, on the one hand. On the other
hand the flow fluctuations cause a slight bouncing. The fiber velocity follows and finally
adjusts to the flow velocity, as we can see in Fig. 8. In the temporal evolution the fiber point
starts from the nozzle where the impact of the turbulence is at the strongest. The velocity
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Fig. 6 Change of turbulent
large-scale length ‖∇lT‖ along a
jet trajectory r(t) (cf. Remark 14)

Fig. 7 Fiber dynamics driven by turbulent aerodynamic drag force. Left: random trajectory r. Right: projec-
tion of several trajectories into y–z-plane (white curves). They are located in the distinct free air stream where
ζ ≈ 10−4 � 1

fluctuations act here on tiny length and time scales causing a quick acceleration and a very
strong stretching of the jet. When the fiber point is some centimeters away from the nozzle
after 0.2–0.3 milliseconds, the turbulence attenuates and the turbulent scales become larger
(Figs. 5 and 10). In particular, tT and the jet’s reaction time coincide which can be concluded
from the velocity curves that match. Also the elongation stagnates.

Figure 9 shows the probability density function of the elongation at three depicted heights
r3 = −0.033,−0.066,−0.1 [m]. It is estimated by help of Monte Carlo simulations with
5000 samples. We clearly observe the essential effect of the turbulent velocity fluctuations
and our random aerodynamic drag force model on the jet thinning (especially in the first
centimeters/tenths of milliseconds). The computed elongation rises up to a mean of 2 · 105

at T (here: r3 ≈ −0.14 [m]). In comparison, the numerical result neglecting the fluctuations
(i.e. use of u = ū in (4.14)) is approximately 104 which perfectly corresponds to the theo-
retical considerations on stationary turbulence stating that e = ‖v‖/v0 with v ≈ ū holds, see
Fig. 9. The reason for this difference lies in the nonlinearity of the drag force (4.13) so that
the fluctuations produce a disproportionate extension. The fact that Zeng et al. [56] have
obtained the same (low) magnitude of elongation e ∼ O(104) for a viscoelastic spring-beam
jet model in a mean turbulent flow field (where u = ū is considered) clearly stresses that the
turbulent fluctuations are the major dominant effect for the large jet attenuation; material
models (rheology) and inner stresses in contrast seem to be of minor relevance. Moreover, it
is worth to mention, that our ODE-model—as simple as it is—already predicts qualitatively
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Fig. 8 Temporal evolution of fiber v (blue) and air flow velocity u = ū + u′ (red) experienced by the
random trajectory of Fig. 7 (left); component-wise visualization. The plot top-right is a zoom in the v1,
u1-components (x-direction). In addition, the fiber velocity due to the mean air flow velocity ū—neglecting
the fluctuations and considering u = ū in (4.14)—is illustrated (v̄, green line) (Color figure online)

appropriately all jet thinning stages observed in the experiments. However, proper quanti-
tative estimates can be only expected according to the measurements [8] when temperature
dependencies (e.g. temperature-dependent viscosity) are included.

Summing up, our numerical results are very promising. They raise hope that our proposed
approach with the random aerodynamic drag force is capable of predicting the large elon-
gations that are measured in industrial melt-blowing processes, presupposing an appropriate
Cosserat model for the viscous, non-isothermal fiber jet. In addition, the computational ef-
fort seems to be manageable since the asymptotic globalization strategy for the sampling of
the turbulent velocity fluctuations is linear in time and space discretization.

Remark 15 Some concluding remarks on computational aspects:

• The adaptive time step control of the ODE-solver (cf. Remark 13) ensures the correct
resolution of the turbulent scales since the chosen step size �t is always clearly smaller
than tT and lT/vrel, vrel = ‖ū − v‖, cf. Fig. 10. This implies the smooth numerical ap-
proximation of the jet quantities, see e.g. the visualization of the velocity components in
Fig. 8.

• The simulation of a fiber trajectory on [0,T), T = 10−3 [s] takes a CPU-time of approxi-
mately 200 seconds on a 2.7 GHz Intel Core i5 processor.

• The computational effort of the sampling routine for the turbulent velocity fluctuations u′
splits into initialization and continuous run. Whereas the costs for the initial generation
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Fig. 9 Elongation. Top left: (sample) fiber elongation e over time with regard and neglect of turbulent veloc-
ity fluctuations, i.e. u = ū+u′ (blue) vs. u = ū (green) in correspondence to Fig. 8. Other plots (a)–(c): prob-
ability density of e at depicted heights r3 = −0.033,−0.066,−0.1 [m] (z-direction) estimated with Monte
Carlo simulation (Color figure online)

of the set of random numbers are independent of the discretization and negligibly small
(0.1 CPU-seconds for N = 50), the costs for the continuous run are linear in the time
discretization and add up to approximately 88 % of the total costs for solving the random
ODE system (4.14). On the first glance this seems to be incredibly much but the reason
lies in the necessary processing of the underlying flow data (e.g. sorting, interpolation of
flow data are required). So far, no further attention has been paid to the data processing
that is done with standard MATLAB routines. But its performance will be optimized in
future which promises a drastical speed-up.

5 Conclusion and Outlook

In a melt-blowing process liquid fiber jets are spun due to turbulent air streams causing very
high jet attenuation and final diameters of size smaller than a micrometer. So far, the un-
derstanding and design of the process suffered from a discrepancy between measurements
and simulations; the computed final jet diameters were too thick by several orders of mag-
nitude. This gap might be closed by considering the impact of the turbulent velocity fluctu-
ations on the jets dynamic as we have demonstrated numerically in this paper. In correspon-
dence to turbulence theory and on top of a k–ε formulation we have modeled the turbulent
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Fig. 10 Adaptive time step
choice �t for (4.14) in
comparison to turbulent time
scales tT = k/ε and
lT/vrel = k3/2/(εvrel) with
vrel = ‖ū − v‖ experienced at the
jet position r(t) of Fig. 7

velocity fluctuations as Gaussian random fields. Taking advantage of the special covari-
ance/correlation structure we have proposed a fast and accurate sampling strategy whose
effort is linear in the discretization and that makes the realization possible. The numerical
results are very convincing as they show already a qualitatively appropriate jet thinning in
magnitude for a quite simple isothermal ODE-model for the jet dynamics.

In future we intend to apply the developed random aerodynamic drag force to more so-
phisticated Cosserat models including also inner stresses and temperature dependencies in
order to get quantitative estimates for melt-blowing. But this requires the robust numerical
treatment of the PDE-models [2, 5, 7]. Especially, the handling of the expected huge elon-
gations pose severe challenges on an efficient adaptive mesh refinement which is topic of
recent research.
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