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Abstract We discuss microscopic mechanisms of complex network growth, with the spe-
cial emphasis of how these mechanisms can be evaluated from the measurements on real
networks. As an example we consider the network of citations to scientific papers. Contrary
to common belief that its growth is determined by the linear preferential attachment, our mi-
croscopic measurements show that it is driven by the nonlinear autocatalytic growth. This
invalidates the scale-free hypothesis for the citation network. The nonlinearity is responsible
for a dramatic dynamical phase transition: while the citation lifetime of majority of papers
is 6–10 years, the highly-cited papers have practically infinite lifetime.

Keywords Power-law distribution · Citations · Preferential attachment · Complex
networks · Autocatalytic growth

1 General Introduction

A lot of empirical evidence for the power-law degree distribution in natural networks has
been amassed during last decade. This led to the conjecture that these networks are scale-
free. It is widely believed that the growth of the scale-free networks is driven by the cumu-
lative advantage mechanism [1] which is commonly known as the preferential attachment
[2, 3]. This mechanism assumes that �k, the number of links acquired by a node during a
short time interval �t is determined by the number of already acquired links k,

�k = A(k + k0). (1)

Here, k is the node degree, k0 is the “initial attractivity” and A is the attachment rate (aging
function) which is time-dependent. Equation (1) yields the power-law degree distribution,
P (k) ∝ 1/kγ , which is generally considered as a fingerprint of a scale-free network. The
linear preferential attachment (Eq. (1)) is believed to be one of the most important micro-
scopic mechanisms that generates the scale-free complex networks which are so ubiquitous
in nature.
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This statement is often reversed and the power-law degree distribution in a growing net-
work is considered as an evidence for the linear preferential attachment. The parameter k0

is estimated from the exponent of the degree distribution [2]:

γ = 2 + k0

m
, (2)

where m is the mean degree. This approach meets several difficulties. First of all it yields
unrealistically high k0 ≈ m. Second and most important- the validity of the power-law ap-
proximation for degree distribution in complex networks has been contested. Indeed, since
the node degree is a discrete and non-negative number, the scale-free power-law function
cannot provide a good fit for the nodes with small degree. At best, it can fit only the fat tail
of the distribution. However, several recent studies showed that the degree distribution in
complex networks can deviate from the power-law dependence even in the fat tail [4–8].

Krapivsky and Redner [9] showed that the deviation necessarily occurs if the attachment
kernel is nonlinear,

�k = A(k + k0)
α. (3)

In particular, for sublinear attachment kernel, α < 1, the network is characterized by the
stretched exponential degree distribution; while for the superlinear kernel, α > 1, the net-
work organizes into a “winner takes all” configuration [9, 10]. While for linear attachment
kernel the network achieves stationary degree distribution, for the nonlinear case the degree
distribution is nonstationary. In the sequel we call the dynamics governed by Eq. (3) as the
“nonlinear autocatalytic growth” [11, 12] and reserve the term “preferential attachment” for
Eq. (1) that generates the power-law degree distribution.

Although the deviation of α from unity can be small it affects dramatically the network
structure. To what extent the growth mechanism of real networks deviates from the linear
preferential attachment (Eq. (1)) is an important question. Recent experimental studies [4,
13–24] that measured microscopic growth of complex networks, came up with the conclu-
sion that α is close to unity, in such a way that the growth mechanism is nearly linear (see
Table 1). However, to which extent α deviates from unity remained an open question until
now. The above studies could hardly measure this deviation due to time-dependence of α,
finite precision limited by the size of their databases and, most important—due to uncer-
tainty arising from the use of different methodologies. In particular, Ref. [24] applied four
different methods to measure attachment kernel in the network of the US patent-to-patent
citations and found different exponents ranging from 1.12 to 1.38.

The goal of this study is the high precision measurement of the microscopic growth rate
of a complex network and the determination of the attachment exponent α. Following the
accepted practice [4, 13, 15, 18], as an object of our research we chose one of the best-
documented complex networks: citations to scientific papers. Here, the papers are nodes
and citations to these papers are links. We performed high-statistics and time-resolved study
of the citation dynamics of a very large and homogeneous set of papers. In what follows we
compare two methods of measuring the microscopic growth rate of this network: averaging
(histogram) and cumulation. We found that the former method is quite reliable and yields
superlinear attachment kernel, α ≈ 1.25, while the latter method is prone to quantization er-
rors. We came to conclusion that the microscopic growth mechanism of the citation network
follows nonlinear autocatalytic growth (Eq. (3)).

We elaborate on a dramatic consequence of nonlinearity: if one considers a citations dy-
namics governed by the superlinear attachment kernel, one is led to conclusion that this net-
work contains a subset of the papers that will be cited forever. Thus we witness a dynamical
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Table 1 Testing preferential attachment in real networks

Network Ref. Attachment exponent α Method

Citations of scientific
papers

Jeong et al. [13] 0.95 cumulation

Eom & Fortunato [15] 1 cumulation

Redner [4] 0.9–1.05 running average

Wang et al. [18] 1 running average

Golosovsky & Solomon [29] 1–1.25 (grows with time) histogram

Citations of US
patents

Csardi et al. [17] 1.2 histogram

Sheridan et al. [24] 1.23–1.27 Metropolis-Hastings

Valverde et al. [16] 1–1.25 (grows with time) cumulation

Scientific
collaboration

Jeong et al. [13] 0.8 cumulation

Tomassini & Luthi [19] 0.76 cumulation

Newman [20] 1 histogram

Movie actors Jeong et al. [13] 1 cumulation

Eom et al. [14] 1 cumulation

Wikipedia Capocci et al. [21] 0.76 histogram

Google Jeong et al. [13] 1.05 cumulation

Internet Eom et al. [14] 1 cumulation

Internet dictionary Herdagdelen et al. [22] 1 histogram

Protein networks Eisenberg & Levanon [23] 1 cumulation

phase transition in which citation lifetime of a paper diverges to infinity. Our measurements
provide experimental evidence for such runaway papers that have practically infinite citation
lifetime.

2 Methodology

To assess the microscopic growth mechanism of the citation network we focused on one
discipline—Physics. We considered a cohort of papers published in the same year Tpubl and
measured the number of citations garnered by each paper in every subsequent year Tcit .
To this end we used the Thomson-Reuters ISI Web of Science, chose 82 leading Physics
journals, excluded review articles, comments, editorial, etc., and analyzed citation history
of 40,195 original research papers published in these journals in Tpubl = 1984 (this covers
∼ 95 % of the Physics papers published in this year). The cumulative citation distributions
for this data set were demonstrated elsewhere [8]. Figure 1 shows some aggregate charac-
teristics of this set: the mean number of citations and the fraction of uncited papers.

In what follows we focus on two variables: (a) ki,t —the cumulative number of citations,
i.e. the total number of citations accumulated by a paper i in the period between Tpubl and
Tcit; and (b) �ki,t+�t —the number of additional citations gained by the same paper in a
short time window between Tcit and Tcit + �t . Here, �t = 1 year and t = Tpubl − Tcit + 1 (if
Tpubl = Tcit then t = 1, in such a way that ki,1 measures the number of citations during the
year when the paper was published). Figure 2 shows �ki,t+1 versus ki,t . (Specifically, ki,6 is
the number of citations garnered by a paper i from 1984 to 1989 while �ki,7 is the number of
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Fig. 1 Time dependence of the
fraction of uncited papers P0 and
of the mean number of citations
m for 40195 Physics papers
published in 1984. t is the
number of years after
publication, whereas the
publication year corresponds to
t = 1. The continuous lines are
guide to the eye. While the
number of uncited papers
saturates after 15 years, the mean
number of citations does not
saturate even after 25 years

Fig. 2 The scatter plot of the
number of additional citations
�ki,7, garnered by each paper i

during seventh year after
publication. The horizontal axis
shows ki,6—the total number of
citations garnered by the same
paper during six previous years.
The solid line displays
approximation by Eq. (4) with
α = 1.13, k0 = 1,A = 0.065

citations garnered by the same paper in 1990.) While the trend of increasing �ki,t+1 versus
ki,t is clearly visible, the fluctuations are so strong that Fig. 2 does not provide an obvious
proof of the validity of Eq. (1).

This is not unexpected since the actual number of newly acquired citations is a stochastic
variable. We define λi(t) = �ki,t /�t which is the average citation rate over the ensemble
of the nodes with the same ki,t . The autocatalytic growth model actually claims that λi =
A(ki + k0)

α , in such a way that

�ki,t = A(ki + k0)
α�t + σdW(t) (4)
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Fig. 3 Mean number of
additional citations, λ(k) = �ki ,
as a function of the number of
previous citations k(t); t is the
number of years after publication.
To include uncited papers (k = 0)
the horizontal axis displays k + 1
instead of k. Each set of points
corresponds to a certain citing
year. The straight dashed line
shows linear approximation
�k ∝ (k + k0) where k0 = 1. The
data deviate upwards from this
linear dependence, especially at
t = 15–24. The continuous lines
show better, superlinear fits,
λ = A(k + k0)α where A,α and
k0 are fitting parameters. The
superlinear dependences fit the
highly-cited papers (k > 100) and
uncited papers (k = 0) as well

where σdW(t) is a random variable with zero mean and σ 2 variance (for brevity we replace
thereon t +1 by t ). In contrast to �ki,t which is a discrete variable, λi(t) is a continuous one.
To verify whether the noisy data, such as those shown in Fig. 2, are generated by the growth
law suggested by Eq. (4), there have been developed two methods: averaging (histogram)
and cumulation. We processed our data using both these methods and obtained conflicting
results. In what follows we compare these two methods and develop a control tool to check
their internal consistency.

3 Comparison Between Different Methods to Measure the Microscopic Growth Law
of Citation Network

3.1 Histogram (Averaging) Method

To infer the microscopic growth law from the noisy data such as those shown in Fig. 2, one
bins the data, finds the mean λ = �ki for each bin, and compares the resulting histogram to
the prediction of Eq. (4). This approach was first used by Newman [20] to verify the linear
preferential attachment hypothesis in real networks. References [17, 21, 22] followed this
approach as well, while Refs. [4, 18] used a very similar moving average procedure.

To process our data in such a way we chose a certain citing year Tcit , grouped all papers
into ∼ 40 logarithmically-spaced bins, each bin containing the papers with close k(t), found
the mean number of citations λ for each bin and plotted it versus k. Figure 3 shows such λ(k)

dependences. In particular, the black circles indicate the results of the averaging procedure
applied to the data of Fig. 2. The λ(k) dependences are fairly well fitted by Eq. (4).

Figure 4 shows time dependence of the fitting parameters α, k0,A. The exponent α grad-
ually increases with time from α = 1 to α = 1.28, indicating linear attachment kernel for
“young” papers and superlinear attachment kernel for “old” papers. The initial attractive-
ness k0 ≈ 1.1 is almost time-independent and is surprisingly close to ad hoc assumption of
de Solla Price [1]. The time dependence of the attachment rate A can be approximated by
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Fig. 4 Time dependence of the
parameters of Eq. (4).
(a) Exponent α. The continuous
line is a guide to the eye.
(b) Initial attractivity k0. (c) Rate
constant A. The blue squares in
(b) and (c) show the estimates of
k0 and A based on Eqs. (6), (7)
and Fig. 3, correspondingly. The
consistency of k0 and A obtain
ed by two methods [circles vs
squares] validates the superlinear
preferential attachment, α > 1

the empirical power-law dependence, A = 3.3/(t + 0.3)2. A similar power-law dependence
can be inferred from the US patent citation data of Ref. [17].

3.2 Cumulation Method

Jeong, Neda, and Barabasi [13] were the first to measure the growth rate of evolving net-
works used the cumulation method which quickly became the most popular tool to assess
the preferential attachment in real networks [14–16, 19, 23, 24]. This method consists in
calculation of the kernel κ(k) = ∫ k

0 �k′dk′ where k′ is the total number of citations garnered
by a paper by year Tcit and �k′ is the number of citations accrued by this paper during time
window between Tcit and Tcit + �t where �t is usually 1 year. The integration is performed
over all papers that garnered k′ ≤ k citations by year Tcit. The key assumption behind this
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Fig. 5 Integrated number of
additional citations
κ(k) = ∫ k

0 �k′dk′ , as a function
of the number of previous
citations k; t is the number of
years after publication. We used
the same raw data as those shown
in Fig. 2 and applied trapezoidal
numerical integration routine
implemented by MATLAB. The
dashed line shows quadratic
dependence κ ∝ k2 as expected
for the linear preferential
attachment. The data at high k

follow this dependence as if they
were generated by the linear
preferential attachment, α ≈ 1.
The continuous lines show fit
given by Eq. (5) with α = 1 and
A and k0 as fitting parameters

scheme is that the fluctuations in �k are averaged out and the resulting integral is the same
as if Eq. (4) were integrated directly over k at fixed t i.e.,

κ(k) = A

α + 1

[
(k + k0)

α+1 − kα+1
0

]
. (5)

We applied this cumulation method to our data. Figure 5 shows the results. The fluc-
tuations have been dramatically reduced, as expected. Equation (5) fits well the data for
high k, while for low k the fit is less satisfactory. Figure 6 shows the fitting parameters. We
found that the deviation of the exponent α from unity is within the experimental uncertainty,
�α = ±0.05. Therefore, to find A and k0 we set α = 1 in our fitting procedure.

Figure 6 shows that the fitting parameters found in such a way are notably different
from those found by the averaging method (Fig. 4). Most important—the exponent α is
close to unity while that found from the averaging method is higher than unity. The initial
attractivity k0 is high and increases with time, while that found from the averaging method is
close to unity and almost time-independent. The attachment rate A exceeds that found from
the averaging method, especially at long times. The discrepancy between the two methods
calls for some control tool. In what follows we develop such tool and use it to decide which
method: averaging or cumulation is more reliable.

3.3 Control Tool

We consider here an additional tool to estimate the microscopic growth parameters of a
growing network. We have developed this indirect method to check the internal consistency
of the histogram and cumulation methods. This control method is based on two assumptions:
(i) the microscopic growth law given by Eq. (4) is valid for all papers including uncited ones,
and (ii) the exponent α is known. Then, the microscopic parameters A and k0 (see Eq. (4))
may be estimated from the dynamics of the macroscopic parameters: the mean number of
citations m, and the fraction of uncited papers P0.

The mean, m = ki(t), is the average number of citations garnered by a paper during the
period between Tpubl and Tpubl + t . The averaging here is performed over all papers. Differ-
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Fig. 6 Time dependence of the
parameters of Eq. (4) as found
using numerical integration
(Eq. (5)). (a) Exponent α.
(b) Initial attractivity k0. (c) The
rate constant A. The blue squares
in (b) and (c) show,
correspondingly, the estimates of
k0 and A based on Eqs. (6), (7)
and the data of Fig. 3. The results
obtained by two methods [circles
vs squares] strongly differ. This
casts doubt on the validity of the
cumulation method as applied to
citations and especially on its
claim of the linear preferential
attachment, α = 1

entiation with respect to time yields the average number of additional citations garnered by
a paper between t and t + �t , namely, dm

dt
�t = �ki . We average Eq. (4) over all papers and

for �t = 1 we find dm
dt

= A(k + k0)α ≈ A(m + k0)
α (the last approximation holds because

α is close to unity). This yields the rate constant

A ≈ dm

dt

1

(m + k0)α
. (6)

For k = 0 Eq. (4) reduces to λ0 = Akα
0 where λ0 is the average citation rate of previously

uncited papers. The latter can be recast through the fraction of uncited papers P0 as follows,
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λ0 ≈ 1
P0

dP0
dt

.1 Equation (6) yields then

k0 ≈
(

1

AP0

dP0

dt

) 1
α

. (7)

We solve Eqs. (6), (7) for known α and find A and k0. We expect that the parameters A and
k0 obtained by this control method are consistent with those found directly.

For the histogram (averaging) method, the A and k0 found from Eqs. (6), (7) are in-
deed consistent with those found by the direct procedure (Fig. 4). The difference in k0 is
within the measurement uncertainty, while a small difference in A can be traced to the
Jensen’s inequality, xα > xα for α > 1. However, for the cumulation procedure, the A and
k0 found from Eqs. (6), (7) are inconsistent with those found directly (Fig. 5): A is sub-
stantially lower and k0 is also much smaller than those found directly. This inconsistency
calls for a deeper consideration of the validity of the cumulation method as applied to cita-
tions.

While the cumulation method works well for noisy continuous data with Gaussian fluc-
tuations, its applicability to citations is problematic. Since the additional citations �k are
discrete and non-negative, their fluctuations around the mean are non-symmetrical and
their magnitude is on the order of the mean (see Fig. 2). It appears that the standard nu-
merical integration procedure as implemented in MATLAB does not work well for dis-
crete, wildly fluctuating data that have non-symmetrical distribution around the mean. The
straightforward application of the numerical integration procedure (cumulation) for quan-
tifying dynamics of growing networks is thus ineffective. This method shall be specially
tailored for the discrete variables with the non-Gaussian and strongly skewed fluctuation
spectrum.

4 The Effect of the Exponential Growth of Publications on Citation Dynamics

Most theoretical studies consider networks that grow linearly in time. In fact, they define a
“network time” in such a way that new nodes are added to network at constant rate. It should
be noted that citation networks grow exponentially with time. In what follows we define the
network time for the citation network and recast our results in terms of the network time.

Figure 7 shows the annual growth of the number of original research papers and reviews
in 82 leading Physical journals as covered by the ISI Thomson-Reuters Web of Science
(excluding editorials, conference proceedings, etc.). The network growth is close to expo-
nential, hence the difference between the physical time and network time is essential.

We define the “network year �t∗ in such a way that the number of papers published
during this time interval is equal to the number of papers published in 1984. (This is ap-
proximately equivalent to time rescaling, t∗ = e0.032t −1

0.032 where t is the physical time.) To
determine microscopic parameters of the citation dynamics we use Eq. (4) where �t = 1

1Consider a cohort of papers published in the same year. After a couple of years, when the general interest
to this cohort already decayed, the annual number of citations gained by previously uncited papers is either
0 or 1. Therefore, the mean annual number of additional citations gained by previously uncited papers is
�ki ≈ �N0/N0 where N0 is the number of uncited papers and �N0 = N0(t) − N0(t + 1) is the number of
uncited papers that got their first citation during recent year t + 1. If the total number of papers in the dataset
is N , then �ki ≈ �P0/P0 where P0 = N0/N is the fraction of uncited papers.
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Fig. 7 The annual number of
published Physics research
papers (not including conference
proceedings). The solid line
shows exponential approximation
corresponding to 1.3 % annual
growth

year is replaced by �t∗. The data shown in Fig. 3 are unaffected by this transformation
although now they refer to network time which is different from physical time. The param-
eters α and k0 remain the same. The new rate constant A∗ is determined from the slope of
the dependences shown in Fig. 3 divided by �t∗ instead of �t .

Figure 8 shows some citation parameters in this time frame. The saturation exhibited by
m and α is clearly visible. This should be compared to Figs. 1, 4a where the growth of m

and α is more close to logarithmical. The attachment rate A∗(t∗) turns out to be almost the
same as the A(t) dependence. This coincidence may be occasional.

We conclude that the microscopic parameters of the growing citation network obtained
by the averaging (histogram) method are most reliable. The results indicate that the growth
of the citation network follows Eq. (4) with time-dependent exponent α which gradually
increases from 1 to 1.28. By the way, the studies of US patent-to-patent citations by the
histogram method yielded similar values α ∼ 1.2–1.27 [16, 17, 24]. We conclude that the
citation network undergoes the nonlinear autocatalytic growth with the superlinear attach-
ment kernel. Although the nonlinearity is weak, it leads to far-reaching consequences which
we analyze below.

5 Divergence of the Citation Lifetime—Dynamical Phase Transition Towards
Immortality

In what follows we analyze the consequences of the nonlinear growth mechanism of the
citation network. In particular, we demonstrate that the nonlinearity is responsible for the
enormous spread of citation lifetimes of scientific papers. To show this we consider citation
dynamics of individual papers and distinguish between the initial period of t0 = 2–3 years
when a paper makes an immediate impact and the subsequent period when the citation dy-
namics of this paper to some extent is built on its initial success. The time dependence of the
total citation count of a paper during this later period can be crudely estimated by integrat-
ing Eq. (4) with respect to time as if k were a continuous variable. In what follows we focus
only on the papers with k � 1 (moderately- and highly-cited papers), in such a way that the
term k0 in Eq. (4) can be neglected. We also neglect for a moment the stochastic component
of k. Assuming time-independent α we integrate Eq. (4) and find

k(t) = k̃0

(1 − δk̃0
δ ∫ t

t0
Adt)1/δ

. (8)
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Fig. 8 Microscopic parameters
of the citation dynamics versus
network time t∗. The latter is
defined in such a way that the
citation network grows linearly
with t∗. (a) m, the mean number
of citations. (b) α, exponent of
the attachment kernel. (c) A∗, the
rate constant. The continuous line
shows empirical approximation
A∗ = 3.8/(t∗ + 0.5)2

Here, k̃0 = k(t0) stands for the number of citations garnered by a paper during initial period
t0 (it shouldn’t be mixed with k0 that appears in Eq. (4)), and δ = α − 1. For δ 	 1 Eq. (8)
reduces to a more transparent form

k(t) = k̃0e
k̃0

δ ∫ t
t0

Adt
. (9)

The analysis of this equation we start from the case δ = 0 that corresponds to the linear

growth. In this case the k(t) dependence can be factorized, k(t) = k̃0e
∫ t
t0

Adt , where the k̃0 sets

the scale and the factor e
∫ t
t0

Adt sets the time dependence of the citation count. Therefore, if
the growth mechanism were linear then the citation dynamics of all papers would follow the

universal dependence e
∫ t
t0

Adt which is independent of k̃0. This is in contrast to the nonlinear
growth mechanism, δ 
= 0, for which Eq. (9) can not be factorized. In this case both the scale
and the time dependence of the total citation count depend on k̃0.

To provide the experimental evidence for such behavior we consider “citation age” 〈t〉—
a nonparametric measure of the paper longevity introduced by Redner [4]. It is nothing else
but the mean age of the papers that cite a given paper i,

〈ti〉 =
∫ t

0 tidki

ki(t)
(10)
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Fig. 9 Citation age 〈t〉 (Eq. (10)) and citation lifetime τ (Eq. (11)) versus k(t = 25)—the number of citations
garnered by a paper after 25 years. The data were binned and each data point represents the average over one
bin. Note divergence of τ at the threshold of k(t) ≈ 600. The inset shows citation rate β which changes its
sign and becomes positive for k(t) > 600. The growth of 〈t〉 and τ with k is a signature of the nonlinear
autocatalytic process

where t is the number of years after publication. In the extreme case when the citations grow
linearly in time, 〈ti〉 = t/2. Citation age exceeding t/2 indicates accelerating growth while
citation age below t/2 indicates some kind of saturation. Figure 9 shows that 〈t〉 increases
with the number of citations as expected for the nonlinear growth mechanism, and eventually
achieves the critical value of t/2 = 12.5 years. This means that there is appreciable number
of papers whose citation dynamics didn’t come to saturation and they are actively cited even
25 years after publication!

Another way to illustrate such exceptional behavior is to approximate Eq. (8) by the
exponential dependence

k(t) = K

β

[
1 − e−β(t−�)

]
(11)

where K is some scale factor, � is the (small) delay between the publication of the paper
and the onset of citations, and β characterizes the citation rate. The latter is negative when
k(t) accelerates with time and positive when k(t) comes to saturation. In this latter case
τ = 1/β has the meaning of citation lifetime which is related to citation age (Eq. (10)) as
follows: for the exponential dynamics and in the long-time limit τ + � ≈ 〈t〉.
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We measured k(t) for all papers in our dataset, approximated it using Eq. (11) and found
microscopic parameters β and �. Since these microscopic parameters strongly fluctuate, we
binned all dataset into 40 logarithmically-spaced bins and considered the average over the
papers in each bin. The results are shown in Fig. 9. The citation rate changes sign and be-
comes positive for highly-cited papers, indicating acceleration. This change of sign occurs
at the same threshold where citation age becomes equal to t/2 (Eq. (10)). The citation life-
time is τ ∼ 5–6 years for low-cited papers, for moderately- and highly-cited papers citation
lifetime increases and even diverges, as it is predicted by Eq. (8).

The divergence of the citation lifetime is a direct consequence of the nonlinear autocat-
alytic growth and it demonstrates the tendency of citation network to develop a few hubs that
attract the majority of citations. In the cumulative citation distribution these hubs appear as
“runaways” [8]. These most highly-cited papers have all chances to achieve infinite citation
lifetime. This observation extends the well-known adage “the rich get richer” to “the rich
live longer”.

6 Discussion

6.1 Why Is the Growth Mechanism of Citation Networks so Close to Linear?

When viewed from the perspective of network dynamics, the preferential attachment mecha-
nism does not favor any particular value of the attachment exponent. Therefore, the ubiquity
of linear or nearly linear preferential attachment seems enigmatic. However, if we consider
network dynamics from the perspective of a single node, the ubiquity of nearly linear pref-
erential attachment appears naturally.

Indeed, in the context of citations, the linear preferential attachment means that citation
dynamics of the papers published in the same year has the same functional dependence and
differs only in scale (we totally neglect here the stochastic character of the citation process).
The difference between citation numbers of these papers is due to initial conditions, namely
the number of citations that the papers garnered during first 2–3 years after publication. This
is related to the number of readers which is determined by the journal’s circulation. Since
the majority of readers are graduate students who tend to copy once prepared reference list
in all their publications, the citation lifetime of a paper that some Ph.D. student came across,
is the duration of his Ph.D. stay, namely 3–5 years. Therefore, the initial impact of a paper
on research groups that undertook to cite it, usually continues for 1–2 generations of the
Ph.D. students, namely for 6–10 years (see Fig. 9).

If the above scenario were true for all papers, then the growth of the citation network
would follow linear preferential attachment and the citation lifetime of all papers would be
more or less the same. Figure 9 shows that while the citation lifetime of the vast majority
of papers is indeed 6–10 years, there are quite a few papers that have much longer lifetime.
We believe that these are the papers that induce “chain” reaction or cascade. Namely, the
researchers can pick up such paper not by reading the journal where it was published but
through the impact of this paper on other research groups. In this case the paper starts it cita-
tion career in a new research group and its citation lifetime increases by another 6–10 years.
Such process of spreading the ideas is similar to epidemiological process [25, 26] and to
the copying mechanism [27, 28]. It seems that the papers whose impact propagates through
the cascade process are responsible for the nonlinear growth of the citation network. The
fraction of such papers in the whole pool of papers determines the degree of deviation of
the attachment exponent from unity. The fact that this deviation is small, indicates that only
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a small fraction of papers ignites the chain reaction or cascade. Our measurements [29] in-
dicate that these are the papers that garnered at least ∼ 50–70 citations at some moment in
their citation career.

This cascade mechanism is specific for the citation network and it does not necessarily
occurs in other networks. Therefore, the growth mechanism of the complex networks other
than citation network (Table 1) can still follow linear preferential attachment.

7 Conclusions

The dynamics of citation network is driven by the nonlinear autocatalytic growth with the
attachment exponent α ∼ 1.2–1.3. The small but appreciable deviation of the growth pro-
cess from linearity leads to a dramatic dynamical phase transition: papers that exceed at
some stage a certain number of citations become practically immortal: their citation lifetime
diverges. In the language of epidemiology these papers become endemic.
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