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Abstract In this paper we focus on the beneficial role of random strategies in social sciences
by means of simple mathematical and computational models. We briefly review recent re-
sults obtained by two of us in previous contributions for the case of the Peter principle and
the efficiency of a Parliament. Then, we develop a new application of random strategies to
the case of financial trading and discuss in detail our findings about forecasts of markets
dynamics.
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1 Introduction

In science and in physics in particular, noise and randomness are usually restricted to be
as low as possible in order to avoid any influence on the phenomena under examination.
Actually, this is not often possible and one has to live with noise, but, on the other hand,
random noise is not always so annoying as one might think intuitively. In fact there are
many examples where randomness has been proven to be extremely useful and beneficial.
The use of random numbers in science is very well known and Monte Carlo methods are
very much used since long time [1], but also in real physical experiments random noise
has been proven to be very useful and crucial to explain or help the dynamics: stochastic
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resonance is probably one of the most famous and well studied examples of this [2, 3].
Of course there are many other cases which support this claim, like noise-induced stabi-
lization [4], noise-improved efficiency in communication networks [5], noise-induced phase
transitions [6], etc. On the other hand, in the last years, there has been an increasing interest
in social phenomena by the physics community [7–12]. Models to study collective behaviors
in socio-economical systems, elections mechanisms, consensus formation, management of
organizations, spreading of ideas in social networks or herding effects in financial markets,
have been proposed and studied with success, providing rigorous and quantitative ways to
investigate and help understanding common dynamical laws behind social phenomena. In
this respect, it also seems to grow the feeling that the power of traditional optimization ap-
proaches for solving complex social or economical problems is overestimated, while, on the
other hand, it is usually underestimated the role of chance and fluctuations in these fields
[13–19].

It is just in this spirit that we started a few years ago to investigate the possible use of
randomness in mathematical and computational models devised to analyze social phenom-
ena. The first application we studied was related to the problems raised by the so-called
Peter Principle [20–22]. By means of agent based simulations, we demonstrated that ran-
dom promotion strategies could stop the diffusion of incompetence in hierarchical groups,
obtaining also an increase in the global efficiency of the organization under study. Excited
by the success of these first studies, we have recently investigated a way to improve the
efficiency of an institution like the Parliament by means of random selection of part of its
members [23]. We present a rapid overview of the main results obtained for these two ap-
plications in Sect. 2. But the central topic we want to address in this paper concerns the
financial market dynamics.

The very peculiar characteristic of economic and financial systems is that their dynamics
depends on their past: economic decisions taken today rely on past expectations, whereas
natural laws remain unchanged, no matter what humans think. Thus, economic systems can
be considered as feedback-influenced systems, since agents’ expectations will influence the
entire future dynamics. Such an argument inspired the contribution of many authors who
tried to build a mechanism of beliefs formation. We can roughly say that two main reference
models of expectations have been widely established within economic theory: the adaptive
expectations model and the rational expectation model. We will not proceed in the formal
description of such approaches, but we can fruitfully report the main difference between
them. The adaptive expectations model (named after Arrow and Nerlove [24]), has been
developed in contributions by Friedman [25, 26], Phelps [27], and Cagan [28] and assumes
that the value of a variable is a somehow weighted average of its past values. Whereas,
the rational expectations approach (whose birth dates back to contributions by Muth [29],
Lucas [30], and Sargent-Wallace [31]), assumes that agents know exactly the entire model
describing the economic system and, since they are endowed by perfect information, their
forecast for any variable coincides with the objective prediction provided by theory.

As one can easily understand, the possibility to make predictions is absolutely central
in economic theory. In financial markets, this problem is even more urgent, since the ex-
tremely high volatility and the strong instability that everyday can be observed on those
markets. This leads to articulated theories of trading that try to forecast market dynamics in
order to realize profits from intermediation. There is not unanimity of opinions, in economic
literature, about the actual possibility of traders to predict financial values. The so-called Ef-
ficient Market Hypothesis, which refers to the rational expectation models, consider the role
of rationality of agents as the main and most important part of market dynamics, whereas an
adaptive approach is oriented in building forecasts from past dynamics.
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Financial crises showed that mechanisms and trading strategies are not immune from
failures. Their periodic success is not free of charge: catastrophic events burns enormous
values in dollars. Are we sure that elaborated strategies fit the unpredictable dynamics of
markets? Are analysts aware that without having complete information, with non perfect
markets, no rational mechanism can be invoked in financial transactions? In order to reply
to these questions a simple simulation will be done. It will perform a comparative analysis
of performances between trading strategies: two very famous and reliable technical strate-
gies (namely momentum and RSI-divergence [32, 33]) that traders adopt everyday for their
operations in real markets, versus a random strategy. Rational expectations theorists would
immediately bet that the random strategy will easily loose the competition, but this is not the
case, as we discuss in Sect. 3, where we present new detailed numerical results. Conclusions
are drawn in Sect. 4.

2 Improving the Efficiency of Social Groups or Organizations by Means of Random
Strategies

2.1 The Case of the Peter Principle

The Peter principle was enunciated by the Canadian psychologist Lawrence J. Peter in a fa-
mous book of the 60s [20] based on some sensible assumptions on the transfer of skills from
one level of a hierarchical organization to the next one. The principle states that “in a hierar-
chical organization each member rises the hierarchy, as a result of meritocratic promotions,
up to when he/she reaches its minimum level of competence”. Even if it sounds paradoxi-
cal, according to Peter such a perverse effect surely occurs whenever promoted people do
change their task passing from the previous to the next level: in this way, incompetence
will inevitably spread at the top of the organization, endangering its proper functioning. In
Refs. [21, 22] it has been demonstrated by means of numerical simulations, that the principle
is true under certain conditions and that one can overcome its effects by adopting random
promotions. In the following we explain the details of the models used and the main results
obtained.

The first model studied in Ref. [21], considered a schematic pyramidal organization with
160 positions divided into six levels. Each level had a different number of members with
a different responsibility according to the hierarchical position. The members of the orga-
nization were characterized by their age, in the interval 18–60 years, and their degree of
competence in the range 1–10. As initial conditions we selected ages and competences fol-
lowing normal distributions. At each time step of one year, if members reach an age over
the retirement threshold (fixed at 60 years) or have a competence lower than the dismissal
threshold (fixed at 4) they leave the organization and someone from the level immediately
below (or from outside for the initial bottom level) has to be selected for promotion. Four
different competing strategies of promotions were taken into account: promotion of the best
worker, promotion of the worst, promotion of a random worker and promotion in an alter-
nate way of the best and of the worst. Two different mechanisms of competence transmission
were also considered:

(1) Common Sense (CS)—if the features required from one level to the upper are enough
stable, the new competence at the upper level is correlated with the previous one and the
agent maintains his competence with a small error;

(2) Peter Hypothesis (PH)—if the features required from one level to the upper can change
considerably, the new competence at the upper level is not correlated with the previous
one, so the new competence is again randomly assigned for each promotion.
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The global efficiency E was defined by summing the competences of the members level
by level, multiplied by the level-dependent factor of responsibility, ranging from 0 to 1 and
linearly increasing on climbing the hierarchy. If Ci is the total competence of level i-th, the

global efficiency can be written as E(%) =
∑6

i=1 Ciri

Max(E)·N · 100, where Max(E) = ∑6
i=1(10 · ni) ·

ri/N , and ni is the number of agents of level i-th.
The main results found after averaging over many different realizations of the initial

conditions, confirmed the risk of incompetence spreading when the Peter Hypothesis holds.
In particular it was found that promoting the best members is a winning strategy only if
the CS hypothesis holds, otherwise is a loosing one. On the contrary, if the PH holds, the
best strategy becomes that one of even promoting the worst member. On the other hand, if
one does not know which of the two hypothesis holds, then adopting a random promotion
strategy, or alternating the promotion of the best and the worst candidates, results to be
always a winning choice.

Although the paper was quite successful and appreciated also for its simplicity,1 its para-
doxical results needed a confirmation within a more realistic model. To this end in a second
model [22] it was adopted a schematic modular organization, i.e. a hierarchical tree network
with K = 5 levels, where each agent (node) at levels k = 1,2,3,4 (excluding the bottom
level with k = 5) has exactly L first subordinates (i.e. first neighbors at level k + 1), which
will fill that position when it will become empty. This means that, at variance with the pyra-
midal schematic model of our first paper, in this case promoted agents could follow the
links to ascend through levels. On the other hand, neglecting the links and promoting agents
from the entire level k to the next level k − 1, one could recover the pyramidal model as a
particular case.

In the inset of Fig. 1 we show an example of such a hierarchical tree network, with
K = 5 levels and L = 5, for a total of N = 781 agents. The responsibility value is 0.2
for the bottom level and increases linearly, like in the previous model, with step 0.2 for
each level up to the top one, whose responsibility value is 1. Another improvement of the
second model was the time units adopted, which becomes one month instead of one year.
Moreover, instead of studying the improvements with respect to an arbitrary initial state for
the organization (with an arbitrary value of the initial global efficiency, as done in [20]),
we evaluated a relative global efficiency Er(%), calculated with respect to a fixed transient
during which a meritocratic strategy (i.e. the promotion of the best workers coupled with the
Peter hypothesis) was always applied. We introduced also a new “mixed” strategy, where a
different increasing percentage of random promotions with respect to meritocratic strategy
is considered. Finally, we either considered promotions of a member from a level to the next
one following the links (neighbors mode) or without considering the links of the hierarchical
tree (global mode), in order to reduce the new model to that one considered in Ref. [21].

In Fig. 1 we report, as an example, the relative efficiency as function of time for the
neighbors mode. A period of 240 months (20 years) was considered and an average over 30
different realizations of the initial conditions was performed in order to diminish the effect
of fluctuations. Our aim was to investigate the effects of the introduction of an increasing
percentage of random promotions (from 25 % to 100 %) within an otherwise meritocratic
strategy, under the Peter hypothesis of competence transmission. The plot clearly shows
how even a moderate amount of randomness increases the efficiency of the organization in a

1The paper was quoted by several blogs and specialized newspapers, among which the MIT blog the New
York Times and the Financial Times, and it was also awarded the IG Nobel prize 2010 for “Management”.
See also [34].
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Fig. 1 The dynamical evolution of the model efficiency gain during the first 20 years. One can observe an
immediate increase of the efficiency since the beginning of the adoption of a random strategy with respect
to a meritocratic one with the Peter hypothesis, see text for further details. The topology of the modular
hierarchical organization considered is also shown in the top left part of the figure

rapid and substantial way. This second model thus confirms the results of the previous one,
even for larger organizations and different topologies: random strategies provide a good
advantage, in terms of efficiency, with respect to a full “naively” meritocratic system of
promotions and, at the same time, diminish the risk of the rising of incompetence to the top
of the organization. One can refer to Ref. [22] for more details.

2.2 The Case of the Parliament

Stimulated by the results about the Peter principle, we started to ask if random strategies
could be useful also in the selection of members of political institutions. In this section we
discuss a recent application of random strategies for improving the efficiency of a proto-
typical Parliament and present the main results obtained by two of us in Ref. [23]. Inspired
by the so called ‘Cipolla’s diagram’ [35], we realized a virtual model of one chamber of
a Parliament by characterizing its members through their attitude to promote personal and
general interest through legislative proposals. In this way we represented individual legisla-
tors as points in the two dimensional Cipolla’s diagram, where on the x-axis is reported the
personal gain and on the y-axis the social gain (considered as the final outcome of trading
relations produced by the laws). Both the x and y coordinates of each legislator are real
numbers included in the interval [−1,1]. In our simulations we considered a Parliament
with N members and two parties or coalitions, P1 (the majority one) and P2 (the minority
one), with a different percentage of members. All the points representing the members of a
party will lie inside a circle, with a center whose position on the Cipolla’s diagram is fixed
by the average collective behavior of all its members, and with a given radius r that fixes
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the extent to which the Party tolerates dissent within it (the larger this radius, the greater the
degree of tolerance within the party; for this reason this circle was called circle of tolerance
of the party).

In [23] we found that the efficiency of the Parliament, defined as the product of the
percentage of the accepted proposals times their overall social welfare, can be influenced
by the introduction of a given number Nind of not elected but randomly selected legislators,
called ‘independent’ since we assume that they remain free from the influence of any party.
These independent legislators will be represented as free points on the Cipolla diagram. The
dynamics of our model is very simple. During a legislature L each legislator, independent
or belonging to a party, can perform only two actions:

(i) he/she can propose one or more acts of Parliament, with a given personal and social
advantage depending on his/her position on the diagram.

(ii) he/she has to vote for or against a given proposal, depending on his/her acceptance
window, i.e. a rectangular subset of the Cipolla diagram into which a proposed act has to
fall in order to be accepted by the voter (whose position fixes the lower left corner of the
window). The main point is that, while each free legislator has his/her own acceptance
window, so that his/her vote is independent from the others vote, all the legislators
belonging to a party always vote by using the same acceptance window, whose lower
left corner corresponds to the center of the circle of tolerance of their party. Furthermore,
following the party discipline, any member of a party accepts all the proposals coming
from any another member of the same party (see [23] for further details). Once all the
N members of Parliament voted for or against a certain proposal, the latter will be
accepted only if receives at least N

2 + 1 favorable votes. At this point we can calculate
the efficiency Eff (L) of the Parliament during a legislature L by simply multiplying the
percentage of accepted proposals Nacc(L) times the overall social gain Y (L) they ensure
(notice that Eff (L) will be therefore expressed by a real number included in the interval
[−100,100]). In this respect, we investigated how the three quantities Nacc(L), Y (L)

and Eff (L) change as function of the number Nind of independent legislators introduced
in the Parliament.

In Fig. 2 we present some of the main results of [23], obtained by simulating a Parliament
with N = 500 members and two parties P1 and P2 with—respectively—60 % and 40 % of
legislators. Notice that these latter values represent the percentages of seats assigned to both
the majority and minority parties in a given legislature after having reserved the Nind seats
to the independent legislators, therefore are values that decrease by increasing Nind .

In panels (a) and (b) we plot, respectively, the percentage of accepted proposals and the
correspondent social gain as function of the number of independent legislators, averaged
over a set of NL = 100 legislatures, each one with a total number of 1000 proposals but with
a different random distribution of legislators and parties on the Cipolla’s diagram. We also
repeated all the simulations for two different values of the radius r of both the parties (0.1
and 0.4). It clearly appears that, in average, the introduction of an increasing number of in-
dependent legislators causes a decrease in the percentage of accepted acts (since reduces the
weight of the party discipline in accepting each proposal) but, simultaneously, also produces
an increase of the average social gain of the same accepted acts (since only the proposals
ensuring a higher social gain succeed in being accepted by the majority of the Parliament
in presence of independent legislators). In both the curves two different threshold values of
Nind , corresponding to a change in the slope, can be recognized and can be easily explained
looking to panel (c), where the size of the two parties P1 and P2 are reported as function
of Nind (this point was not discussed in [23] so it still needs a clarification). It results that
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Fig. 2 Simulation results for a Parliament with N = 500 members, two parties P1 and P2 and Nind indepen-
dent (randomly selected) legislators. Panel (a): Average percentage of accepted proposals vs Nind ; Panel (b):
Average overall social gain vs Nind ; Panel (c): Size of the three Parliament components (P1, P2 and Nind)
vs Nind ; Panel (d): Global efficiency vs Nind . All the numerical points represent averages over 100 different
legislatures. See text

(for our choice of parameters) the party P1 looses the absolute majority in the Parliament for
Nind > 84, therefore only over this first threshold Nacc and Y (L) start to significantly change.
The second threshold, on the other hand, takes place when the independent component be-
comes, in turn, the absolute majority of legislators, thus accelerating—respectively—the
decreasing and increasing trends of Nacc and Y (L). In any case, despite of these explana-
tion, it remains absolutely not trivial to predict the exact shape of these non linear curves,
and this will reflect on the difficulty of a-priori determining the resulting efficiency.

Finally, in panel (d), we plot the product of the two previous quantities, therefore obtain-
ing (a-posteriori) the global efficiency of the Parliament (averaged over the 100 legislatures).
It is worthwhile to notice here that:

(i) for any value of Nind the global efficiency shows an increment with respect to the two
extreme cases Nind = 0 (only parties) and Nind = N (only independent members and no
parties); this means that, in analogy with the results shown in the previous subsection,
even a small degree of randomness added to the system is able to increase its perfor-
mance;

(ii) the combination of the two previous curves gives rise to a pronounced peak in efficiency
in correspondence of a critical value N∗

ind = 140 of independent legislators, which does
not change with the radius r but only depends on the relative size of the two parties.
In [23] we discovered that it is possible to write down an analytical formula, called
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efficiency golden rule, able to exactly predict the value N∗
ind as function of the total

number of legislators N and the size p (in percentage) of the majority party P1. The
formula is the following: N∗

ind = 2N−4N ·(p/100)+4
1−4·(p/100)

. It allows us to imagine a new electoral
system where, after ordinary elections for determining the relative sizes of the majority
and minority parties, one could use our ‘golden rule’ to find out the optimal number of
independent legislators, chosen at random among all the citizens willing to candidate
(out of the parties system), able to maximize the Parliament efficiency.

In conclusion, in this section we have shown a couple of applications of numerical sim-
ulations to management and politics, with the aim to convince the reader that some degree
of randomness could play a constructive role in improving the efficiency of our institutions.
In the following section we will give further support to this hypothesis presenting a new
application of random strategies to financial markets.

3 Financial Markets, Randomness and Trading Strategies: The Case Study of FTSE
UK All-Share Index

In 2001 a valued British psychologist, Richard Wiseman, performed an eccentric experiment
in order to test the predictive power of the trading strategies in the financial markets [36].
He gave the same virtual amount of money (5000 pounds) to three very different people, a
London’s financial trader, an astrologer and a four years old child named Tia, asking them to
invest the money in the UK stock market (the trader following his algorithms, the astrologer
following the stars’ movements, and Tia completely at random). At the end of a very tur-
bulent year for the world financial markets, the result of the competition was completely
unexpected: if, on one hand, the trader and the astrologer had lost respectively 46.2 % and
6.2 %, on the other hand, with the help of her random strategy, Tia had even earned 5.8 %!
Other similar experiments, with similar results, were performed by substituting the child
with a chimpanzee [36] or by selecting securities by darts [37]. However, as far as we know,
no one has yet tried to test the effectiveness of random strategies in finance through com-
puter simulations. This is exactly what we will do in this section, by using the FTSE UK
All-Share index series of the last 14 years as case study.

In panel (a) of Fig. 3 we plot the behavior of the FTSE UK All-Share index I (t) from
January, 1st 1998 to August, 3rd 2012, for a total of TUK = 3714 days, while in the panel (b)
we report the correspondent ‘returns series’, calculated as the ratio [I (t + 1) − I (t)]/I (t)

(as usually defined in the econophysics literature, see e.g. [15], p. 38). From the latter it
immediately appears, by imagining to divide the time series into three trading windows of
equal size (of around 1200 days each), that the index behavior alternates a first intermittent
period with a more regular one, ending again with a last intermittent interval. A finer res-
olution would reveal a further, self-similar, alternation of intermittent and regular behavior
over smaller time scales, a well known feature (which also resembles turbulence phenom-
ena) characterizing financial markets [13–15]. As previously anticipated, our goal is to test
the performance of three different trading strategies (each hypothetically corresponding to
one trader) in simply predicting, day by day, the upward (‘bullish’) or downward (‘bearish’)
movement of the index I (t +1) at a given day with respect to the closing value I (t) one day
before: if the prediction is correct, the trader wins, otherwise he/she looses. In this respect
we are only interested, here, in evaluating the percentage of wins or losses guaranteed by
each strategy and at different time scales, assuming that—at every time step—the traders
perfectly know the past history of the FTSE UK All-Share index but do not possess any
other information and cannot neither exert nor receive any influence to or from the market.
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Fig. 3 Panel (a): Behavior of the FTSE UK All-Share index from January, 1st 1998 to August, 3rd 2012
(14 years, 3714 days). Panel (b): Returns series for the FTSE UK All-Share index in the same period

The reader must be aware that we want to evaluate the individual investor’s ex-ante pre-
dictive capacity without assuming perfect arbitrage in the context of a theoretical general
equilibrium approach to financial markets. This is particularly important in order to avoid
misleading interpretations that could consider the previously described set of information
given to our traders as the weak form of Efficient Markets Hypothesis paradigm. The dif-
ference is both theoretical and methodological: after Fama [38] we define efficiency in fi-
nancial markets according to the existence of perfect arbitrage. This implies that if markets
were inefficient, there would exist the possibility of unexploited profits and traders would
immediately operate to obtain highest remunerations. Jensen [39] confirms such an implica-
tion exactly combining the informative set available and the existence of trading: only when
it is impossible to make further profits, given an informative set, financial markets are effi-
cient. This is the rationale behind the distinction made by Fama [38] among three degrees
of efficiency: namely “weak”, “semi-strong”, and “strong”, according with the complete-
ness of the informative set. Thus, it is theoretically consequent that, if the Efficient Markets
Hypothesis held, the financial markets would result complete, efficient and perfectly com-
petitive. This implies that, in presence of complete information, randomness should play no
role, since the Efficient Market Hypothesis would generate a perfect trading strategy, able
to predict exactly the market values, embedding all the information about short and long
positions worldwide. On the other hand, the lack of complete information makes efficiency
impossible to be reached. In this case, randomness could be a beneficial tool to face the
lack of information. We test here precisely this hypothesis: if a trader presumed the lack
of complete information through all the market (i.e. the unpredictability of stock prices dy-
namics [40–47]), an ex-ante random trading strategy would perform, on average, as good as
well-known trading strategies.

The three strategies we will adopt in the present study are the following:

(1) Random (RND) Strategy This strategy is the simplest one, since the correspondent trader
makes his/her ‘bullish’ or ‘bearish’ prediction at the time t completely at random (with
uniform distribution), like Tia in the Wiseman’s experiment. The other two strategies, on
the contrary, are based on two indicators that are very well known by financial traders.

(2) Momentum-based (MOM) Strategy This strategy is based on the so called ‘momentum’
M(t) indicator, i.e. the difference between the value I (t) and the value I (t − τM), being
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Fig. 4 Simulations results: the FTSE UK All-Share series is divided into an increasing number of trad-
ing-windows of equal size, in order to simulate different time scales. In the first row the volatility of the
index, calculated inside each window, is shown for comparison. In the other rows, the percentages of wins for
the three strategies, averaged over 10 different runs inside each window, are reported. A 50 % dashed line is
also plotted as reference. See text

τM a given trading interval (expressed in days). Then if M(t) = I (t) − I (t − τM) > 0,
the trader predicts an increment of the closing index for the next day (i.e. it predicts
that I (t + 1) − I (t) > 0) and vice-versa. In the following simulations we will consider
τM = 7 days, since this is one of the most used time lag for the momentum indicator.

(3) RSI-based Strategy This latter strategy is based on a more complex indicator called
‘RSI’ (Relative Strength Index) [32]. It is considered a measure of the stock’s recent
trading strength and its definition is: RSI(t) = 100 − 100/[1 + RS(t)], where RS(t, τRSI)

is the ratio between the sum of the positive returns and the sum of the negative returns
occurred during the last τRSI days before t . Once calculated the RSI index for all the
days included in a given time-window of length TRSI immediately preceding the time t ,
the trader which follows the RSI strategy makes his/her prediction on the basis of a
possible reversal of the market trend, revealed by the so called ‘divergence’ between the
original FTSE UK All-Share series and the new RSI one (see [32] for more details). In
our simplified model, the presence of such a divergence translates into a change in the
prediction of the I (t + 1) − I (t) sign, depending on the ‘bullish’ or ‘bearish’ trend of
the previous TRSI days. In the following simulations we will choose τRSI = TRSI = 14
days, since—again—this value is one of the mostly used in RSI-based actual trading
strategies [33].

In Fig. 4 we report a first comparison of the simulations results for our three strate-
gies, applied to the FTSE UK All-Share series. In particular, we test the performance of the
strategies by dividing the whole series into a sequence of Nw trading windows of equal size
Tw = TUK/Nw (in days) and evaluating the number of wins for each strategy inside each
window while the traders move along the series day by day, from t = 0 to t = TUK . This
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Fig. 5 Panel (a): Percentages of
wins for the three strategies
(magnified on the y-axis in order
to better appreciate the
comparison) averaged over all
the windows in each one of 10
different subdivisions of the
FTSE UK All-Share series, with
an increasing number of windows
(reported on the x-axis).
Panel (b): The correspondent
total standard deviations for the
same configurations of windows
and for the three strategies. See
text

procedure, varying Nw , allows us to explore the behavior of the various strategies at several
time scales (ranging, approximatively, from 6 months to 5 years). In the first row of Fig. 4 we
plot the volatility of the FTSE UK All-Share index, calculated for 4 increasing values of Nw:
from left to right, we consider 3, 9, 18 and 30 windows with size Tw equal to, respectively,
1237, 412, 206 and 123 days. In the three rows below we plot, in correspondence of the
same 4 windows configurations, the values of the percentage of wins for the three strategies
within each window, averaged over 10 different runs (in this first set of simulations such
an average is meaningful only for the random strategy, since the other two strategies are
completely deterministic, once fixed their characteristic parameters and the trading series).

Differences between the Random strategy (RND, second row) and the two standard trad-
ing strategies (MOM and RSI, third and fourth row) are evident. Actually, at any time scale
(but in particular for large values of Nw), the RND appears much less fluctuating (i.e. less
risky) than the others. Furthermore, MOM and RSI performances seem to behave slightly
worse than the RND one at the beginning and at the end of the whole FTSE UK All-Share
series, i.e. when the market behavior is more intermittent—as shown by the correspondent
higher volatility.

In Fig. 5 we can better appreciate this quite surprising result by observing, in panel (a),
the percentage of wins for the three strategies averaged over all the windows in each one of
several configurations with different Nw (ranging from 3 to 30 with step 3) and, in panel (b),
the correspondent standard deviations. From the first histogram it appears that the average
gains of the three strategies are comparable and restricted in a narrow band just below the
50 % of wins, with a slight advantage of the RND one (which, however, could depend on the
trading series chosen for the analysis). At the same time, the second histogram confirms the
higher stability of the random strategy over the other ones. The fact that none of the three
strategies overcomes the threshold of 50 % could seem paradoxical, but we stress that this is
true only averaging over the whole FTSE UK All-Share series, whereas, of course, they can
exceed that threshold within single trading windows, as also visible in Fig. 4. These findings
seem to suggest that—as also observed by Taleb [18, 19]—the success of a trading strategy
at a small time scale would probably depend much more on luck than on the real effective-
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Fig. 6 Volatility and average percentage of wins (inside each window and over 10 runs) for the three traders,
as in Fig. 4, but with an increasing quantity of randomness mixed with the MOM and the RSI strategies.
Panel (a): PRND = 20 %; Panel (b): PRND = 50 %; Panel (c): PRND = 70 %. See text

ness of the adopted algorithm, since on a large time scale its performance is comparable
with (or, as in this case, even worse than) a random one.

At this point, following the results surveyed in the previous section, one may suspect
that the introduction of some randomness into the standard, otherwise deterministic, trading
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Fig. 6 (Continued)

strategies (MOM and RSI), could play a beneficial role. In the next figures we actually show
that this is indeed the case.

In Fig. 6 we present plots similar to those in Fig. 4, but with an increasing percentage
PRND of random predictions mixed with the two standard trading strategies, i.e. 20 % in
panel (a), 50 % in panel (b), 70 % in panel (c), respectively. It immediately appears that
the introduction of even a relatively small quantity of ‘noise’ (i.e. of random choices) in
the MOM and RSI strategies improves their performance, in terms of both enhancing the
average number of wins per window and stabilizing its fluctuations (i.e. reducing the trading
risk) in each configuration (different columns). In this case, of course, the average over 10
runs performed inside each window (as in Fig. 6) makes sense for all the three strategies
(notice that we repeat here all the calculations also for the RND strategy, thus reinforcing
the previous results). We summarize these results in Fig. 7, where we report a synthesis of
both the averages and the standard deviations calculated over all the trading windows for
the same configurations shown in Fig. 6. It is evident that already for PRND = 50 % the
average gain of the MOM and RSI strategies becomes comparable with RND strategy (left
column), as well as the corresponding fluctuations (right column). This further supports the
analogy with the results found for the social systems presented in the first section, where
the beneficial role of randomness could be appreciated even in moderate doses: actually, the
same seems to happen also in financial trading, at least for the two standard strategies we
considered in this paper.

The rationale behind the advantages to adopt some kind of random strategy for trading
in financial markets, as suggested some years ago by the experiments of Wiseman and now
corroborated by the results of our simulations, is twofold. On one hand, the intrinsic turbu-
lent nature of financial markets makes any long term prediction about their behavior very
difficult with the instruments of standard financial analysis, whose mathematical models
are often based on unrealistic assumptions [13]. Such assumptions usually lead the traders
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Fig. 7 Average percentage of wins (left column) with the correspondent standard deviations (right column)
calculated over all the windows for the same configurations shown in Fig. 6 and for the same three values of
PRND

to underestimate both the risks they face and the role of chance in the possible success of
their strategies, at least until the next big market crash suddenly comes to reset their capital
[18, 19]. In this respect, the effectiveness of random strategies could be probably related
to their stronger agreement with the turbulent and erratic essence of the financial markets.
On the other hand, last but not least, random strategies are also very cheap to implement:
following them, everyone can invest in the stock market by himself/herself, reducing the
efforts to gather expensive information and without resorting to costly financial consultants
or to complicate trading rules.

4 Conclusions

In this paper we have explored the beneficial role of random strategies in social and finan-
cial systems. We presented a short review of recent results obtained in the managerial and
political fields and then we focused our attention on financial markets. In particular, we
numerically simulated the performance of three trading strategies (one completely random
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and two chosen among the most popular ones adopted by traders) applied to the FTSE UK
All-Share index series, chosen here as a case study, in order to compare their predictive
capability. Our results clearly indicate that (i) the standard strategies, with their algorithms
based on the past history of the index, do not perform better than the purely random one,
which, on the other hand, is also much less risky, and (ii) that the introduction of some de-
gree of randomness in the same strategies significantly improves their performance. This
means that random strategies offer also in the financial field a better and costless alternative
to the traditionally adopted strategies, minimizing both risk and volatility. Of course one
should investigate these findings on different stock price index series and consider a broader
set of strategies in order to test the robustness and generality of these results. A study in this
direction is in progress [48].
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