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Abstract We study Glauber dynamics for the mean-field (Curie-Weiss) Potts model with
q > 3 states and show that it undergoes a critical slowdown at an inverse-temperature S;(q)
strictly lower than the critical B.(g) for uniqueness of the thermodynamic limit. The dynam-
ical critical B(g) is the spinodal point marking the onset of metastability.

We prove that when 8 < B;(¢q) the mixing time is asymptotically C (8, ¢)nlogn and the
dynamics exhibits the cutoff phenomena, a sharp transition in mixing, with a window of
order n. At B = f;(g) the dynamics no longer exhibits cutoff and its mixing obeys a power-
law of order n*/3. For 8 > fB,(g) the mixing time is exponentially large in n. Furthermore,
as B 1 B, with n, the mixing time interpolates smoothly from subcritical to critical behavior,
with the latter reached at a scaling window of O (n=2/3) around ;. These results form the
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first complete analysis of mixing around the critical dynamical temperature—including the
critical power law—for a model with a first order phase transition.

Keywords Mixing time - Metastability - Mean field - Potts model - Curie Weiss - Glauber
dynamics - Critical slowdown - Cutoff - Spinodal point

1 Introduction and Results

We study the dynamics of the Potts model on the complete graph (mean-field) known as the
Curie-Weiss Potts model. For n > 1, > 0, the Curie-Weiss Potts distribution is a probabil-
ity measure on X, = Q" where Q ={1,...,q}and V ={1, ..., n}, defined by

(@) = Z5hexp {(B/m) Y Lowstn ]
u,veV

where 0 € X, and Zg, is the normalizing constant. When g = 2 this is the classic Ising
model while in this paper we will focus on the case ¢ > 3 for an integer ¢ (for an extension
to non-integer ¢ via the random cluster model, see e.g. [23]). We use the standard notation
B:(g) for the (explicitly known) threshold value between the ordered and the disordered
phases (see [16]).

Throughout the paper (o;),>0 will denote the discrete time Glauber dynamics for this
model, namely, starting from oy, at each step we choose a vertex u € V uniformly and set

() = o,(v) ifv#u,
Tt = k with probability u, (o (1) = k|o (w) = o,(w) Yw #u) if v=1u.

We denote by P, the transition kernel for this Markov process and by P, the underlying
probability measure. We will measure the distance between the distribution of the chain at
time ¢ and its stationary distribution 4, via the total-variation norm. Accordingly,

d*(n) = |Poy(01 € ) — ptu |y and  d(n) = max d;° (n).

00EZy

For € € (0, 1), the e-mixing time is the number of steps until the total-variation distance to
stationarity is at most € in the worst case, i.e.:

haxe) (n) = inf{z: d,(n) <€}
and by convention we set ty;x (1) := twix(1/4)(n). If for any fixed € € (0, 1)
we (1) £ tyixe) (M) — taxa—o (1) = o(twixys (1)) as n — oo,

we say that the family of Markov chains exhibits the cutoff phenomenon, which describes a
sharp drop in the total variation distance from close to 1 to close to O (in an interval of time
of smaller order than #y;x(n) denoted as the cutoff window). Observe that cutoff occurs if
and only if fyxs) (1) / tvixe) (n) — 1 as n — oo for any fixed §, € € (0, 1).

1.1 Results

We show that the dynamics for the Curie-Weiss Potts model undergoes a critical slowdown
at an inverse-temperature S;(g) > 0. This threshold is given by

Bs(q) =sup{p=0: (1+(q — 1)e2’~"lq—_—"11)“ —x#0forallx e (l/g, D}. (L1
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Fig. 1 Rapid mixing with cutoff
in the subcritical regime of

B < Bs(q) for g = 3. Blue curve
marks the magnetization vector
of the Glauber dynamics along
time (Color figure online)

Unlike mean-field Ising, for which B,(2) = B.(2) = 1, the dynamical transition for ¢ > 3

occurs at a strictly higher temperature than the static phase transition, i.e., 8;(q) < B.(q).
Our first result addresses the regime B < B,(g), where rapid mixing occurs within

O (nlogn) steps and the dynamics exhibits cutoff with a window of size O (n) (see Fig. 1).

Theorem 1 Let g > 3 be an integer. If B < Bs(q) then the Glauber dynamics for the q-state
Curie-Weiss Potts model exhibits cutoff at mixing time

tuix(n) = a; (B, g)nlogn (1.2)
with cutoff window w(n) = O.(n) where o, (8, q) = [2(1 —28/9)]™".

We proceed to analyze the order of the mixing time as 8(n) — B;(q) as n — 0o,

B(n) = ps(q) —&n) (1.3)

where &£(n) — 0 as n — oco. The asymptotics of the mixing time will, of course, depend on
how fast & decays, but it turns out that cutoff is observed only iff the decay is slow enough.
This is captured in the following theorem.

Theorem 2 Let g > 3 be an integer. With B(n) given as in Eq. (1.3) we have:

(1) If lim,_, o n*3&(n) = 0o then the Glauber dynamics has cutoff with mixing time and
cutoff window given by

hax(n) = 0‘1(/3(’1), q)n logn + aa(g)n//§(n),
we(n) = O (I’l + v n/g(n)5/2)7

where o, (q) is a positive constant and a, is the constant defined in Theorem 1.
(2) If0 <liminf,_ o n*?&(n) <limsup, . n*3&(n) < oo then the dynamics does not ex-
hibit cutoff and has mixing time

hax(ey (n) = O (n*7). (1.5)

1.4)

Part (2) of Theorem 2 in particular applies at criticality 8 = B,(g) where the mixing time
is of order n*3 with a scaling window of order n~%/ (in contrast, the mixing time for the
critical Ising model is of order n*/? with a window of /1 ).

Finally, above S;(¢g) the mixing time is exponentially large in n, as depicted in Fig. 2.

Theorem 3 Let g > 3 be an integer, and fix B > B,(q). For every 0 < € < 1 there exist
Cy, Cy > 0 such that for all n,

haixe) (1) = Cexp(Can).

@ Springer



Glauber Dynamics for the Mean-Field Potts Model 435

Fig. 2 Slow mixing without cutoff in the supercritical regime B > B; for ¢ = 3. On left B; < B < B¢ and on
right B > B¢. Curve color marks time from blue to red (Color figure online)

Fig. 3 Minimal drift towards

1/q of a single coordinate of S; 0.02
as a function of its value for the
Curie-Weiss Potts model with

g = 3 and different values of S.
Two lowest curves correspond to
B < Bs, green middle curve has
B = Bs (with points marking its
two local extrema), second from -0.01
top curve has Bg < B < B and

top curve has 8 = B, (Color —0.02
figure online)

0.01

0.9 1.0

-0.03

Combined these results give a complete analysis of the mixing time of Glauber dynamics
for the Curie-Weiss Potts model.

The slowdown in the mixing of the dynamics occurring as soon as 8 > B;(q) (be it
power-law at B,(q) or exponential mixing above this point) is due to the existence of
states from which the Markov chain takes a long time to escape. However, in the range
B €1Bs(q), B-(q)) the subset of initial configurations from which mixing is slow is expo-
nentially small in probability. One can then ask instead about the mixing time from typical
starting locations, known as essential mixing. Define the mixing time started from a subset

of initial configurations S,L C X, via d,)T "(n) =max,s, d] (n) as well as

MIX(G)(n)_mf{t dz”(n)<e} and wz”(n)—tMIX(e)(n) MIX(I _o().

With these definitions we have the following result, showing that the subcritical mixing time
behavior from Theorem 1 extends all the way to 8 < B.(g) once one excludes a subset of
initial configurations with a total mass that is exponentially small in 7.

Theorem 4 Let g > 3 be an integer and let B < B.(q). There exist constants Ci,C, > 0
and subsets X, C X, such that the Glauber dynamics has cutoff with mixing time and cutoff
window given by

) =i (B, nlogn;  w(n)=0.(n),

where p, (X, \ S,,) < C1e~" and o, is the constant in Theorem 1.
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1.2 Related Work

Through several decades of work by mathematicians, physicists and computer scientists a
general picture of how the mixing time varies with the temperature has been developed. It
is believed that in a wide class of models and geometries the mixing time undergoes the
following “critical slowdown”. For some critical inverse-temperature 8; and a geometric
parameter L(n), where n is the size of the system, we should have:

e High temperature (0 < 8 < B,): mixing time of order n logn with cutoff.
e Critical temperature (8 = B;): mixing time of order nL (n)* for some fixed z > 0.
e Low temperature (8 > B,): mixing time of order exp(tzL(n)) for some fixed 75 > 0.

For a more comprehensive description of critical slowdown see [19, 30, 33]. It should be
noted that to demonstrate the above phenomenon in full, one needs to derive precise esti-
mates on the mixing time up to the critical temperature, which can be quite challenging.

Perhaps the most studied model in this context is Ising. For the complete graph, a com-
prehensive treatment is given in [17, 18, 28], where critical slowdown (as described above)
around the uniqueness threshold B, is established in full. In this setting, finer statements
about the asymptotics of the mixing time can be made. For instance, in [17] the case where
B approaches f. with the size of the system is analyzed (in Theorem 2 here we consider
this case as well). The same picture, yet with the notable exclusion of a cutoff proof at high
temperatures, is also known on the d-regular tree where [3] established the high and low
temperature regimes and recently [19] proved polynomial mixing at criticality.

From a mathematical physics point of view, the most interesting underlying graph to
consider is the lattice Z¢. For d = 2 the full critical slowdown is now known: for a box with
n vertices the mixing time is O(nlogn) throughout the high temperature regime [34, 35]
whereas it is exp((ts + o(1))n) throughout the low temperature regime [13, 14, 39] with
74 being the surface tension. The d = 2 picture was very recently completed by two of the
authors establishing cutoff in the high temperature regime [32] and polynomial mixing at
the critical temperature [30]. For a more comprehensive survey of recent literature for Ising
on the lattice see [30].

Turning back to the Potts model, understanding the kinetic picture here is of interest,
not just as an extension of the results for Ising, but as an example of a model with a first
order phase transition. Unlike in Ising, the free energy in the Potts model on various graphs
and values of g undergoes a first order phase transition as the temperature is varied. This
is certainly true for all ¢ > 3 in the mean-field approximation, i.e. on the complete graph
as treated here, but also known to be the case on Z? for d > 2 and q > Q(d) for some
Q(d) < oo [23] (although most values of Q(d) are not known rigorously, it was shown that
Q(2)=4[2] and Q(d) < 3 for all d large enough [6]).

A first order phase transition has direct implications on the dynamics of the system. For
one, the coexistence of phases at criticality, implies slow mixing. This is because getting
from one phase to another requires passing through a large free energy barrier, i.e. states
which are exponentially unlikely. Indeed, in [10, 11] the mixing time for Potts on a box with
n vertices in Z¢ for any fixed d > 2 and sufficiently large g is shown to be exponential in
the surface area of the box for any 8 larger or (notably) equal to the uniqueness threshold
Bc(d, g). This should be compared with the aforementioned polynomial mixing of Glauber
dynamics for Ising at criticality. In fact, coexistence of the ordered and disordered phases
also accounts for the slow mixing of the Swendsen-Wang dynamics at the critical tempera-
ture. This is shown in [10, 11] for Z¢ under a similar range of d and ¢ and in [22] for the
complete graph. Other dynamics also exhibit slow mixing at criticality [4].
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First order phase transitions are expected to lead to metastability type phenomena on the
lattice in some instances. There has been extensive work on this topic (see [5, 12] and the
references therein) yet the picture remains incomplete. It is expected that the transition to
equilibrium will be carried through a nucleation process, which has an O(1) lifetime and
therefore does not affect the order of the mixing time in contrast to the mean-field case. This
is affirmed, for instance, in Ising where O (nlogn) mixing time is known for low enough
temperatures under an (arbitrarily small) non-zero external field, despite the first order phase
transition (in the field) around 0. For related works see e.g. [7, 8, 15, 36, 37] as well as [33]
and the references there.

Similarly, the Potts model on the lattice should feature rapid mixing of O(nlogn)
throughout the sub-critical regime 8 < B.(d, g) due to the vanishing surface-area-to-volume
ratio. Thus, contrary to the critical slowdown picture predicted for Ising, whenever there is a
first order phase transition it should be accompanied by a sharp transition from fast mixing
at B < B. to an exponentially slow mixing at 8. in lieu of a critical power law. However,
fast mixing of the Potts model on Z¢ for 8 < f. is not rigorously known except at very
high temperatures (where it follows from standard arguments [33]). For sufficiently high
temperatures, cutoff was very recently shown in [31].

On the complete graph however, metastability is apparent. In the absence of geometry,
the order parameter sufficiently characterizes the state of the system and thus the dynamics
and its stationary distribution are described effectively by the free energy of the system as
a function of the order parameter. While coexistence of phases implies that at criticality the
free energy is minimized at more than one value of the order parameter (corresponding to
each phase), continuity entails that some of these global minima will turn into local minima
just below or above criticality. These local minimizers correspond exactly to the metastable
states and the value (or curve) of the thermodynamic parameter (e.g. temperature) beyond
which these local minima cease to appear is called spinodal.

Consider the model at hand, namely Potts on the complete graph (for general background
on the Potts model, see e.g. [9, 21, 23]). The order parameter here, analogous to the magneti-
zation in the Ising model, is the vector of proportions of each color s € S = {x e RL: | x|, =
1}. It is well known that there exists f.(q), below which the Potts distribution p, is sup-
ported almost entirely on configurations with roughly equal (about 1/¢) proportions of each
color and above which w,, is supported almost entirely on configurations where one of the ¢
colors is dominant. In the former case we say that in equilibrium the system is in the disor-
dered phase, while in the latter case we say that in equilibrium the system is in one of the g
ordered phases, corresponding to the g-colors.

Up to relabeling of the vertices configurations are essentially described by the proportions
vector s and as such, on a logarithmic scale, the Potts distribution can be read from the graph
of the free energy as a function of s. As depicted in Fig. 4 (showing g = 3, the situation
is qualitatively the same for all ¢ > 2), when B < B, the free energy has a single global
minimum at the center, corresponding to the disordered phase, while for 8 > . there are ¢
“on-axis” global minima, corresponding to the ¢ ordered phases obtainable from one another
through a permutation of the coordinates. At ., coexistence of the ordered and disordered
phases is evident in the presence of g + 1 global minima of the free energy. For more details
see, e.g., [16].

Below S, but sufficiently close to it, the free energy, globally minimized only at the cen-
ter, has ¢ local minima in place of the g global minima which corresponded to the ordered
phases at criticality. Once B is too small, these local minima disappear. The threshold value
for the appearance of these local minima is the spinodal inverse temperature B (there is a
similar behavior above 8. marked by a second spinodal temperature fBs, as illustrated by
Fig. 4, but we do not address this regime in the paper).
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f < Be B> fe

B € (Be, Bs)
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) 000,
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Fig. 4 The free energy as a function of the proportions vector s for the Potts model on the complete
graph with ¢ = 3 and large n. The simplex S = {s € Ri: [Isll; = 1} is mapped into the XY plane via

(sl,sz,ss) = (sl,sz, 1—s! —sz)

Once the system starts from an initial configuration whose proportions vector is close
to a local minimizer, the system will spend a time which is exponential in #n near this min-
imizer before escaping to the global minimizer and reaching equilibrium. This is because
away from a local minimizer, energy increases locally exponentially (in n), i.e. there is an
energy barrier of an exponential order to cross. Thus, as n — oo the system will spend an
unbounded amount of time at a non-equilibrium state, which will be seemingly stable. In
terms of the mixing time of the dynamics, as the definition involves the worst case initial
configuration, metastable states will result in exponentially slow mixing.

Our result is a rigorous affirmation of this picture. Although the definition of g, in (1.1)
seems different than the one given above for the spinodal inverse temperature, it can be
shown, in fact, that this is indeed the threshold value of g for the emergence of local minima
below B.. Theorem 3 then asserts that above B, mixing is exponentially slow while Theo-
rem 1 shows that below S, mixing is still fast. The set of configurations whose exclusion
in Theorem 4 leads to fast mixing all the way up to (but below) B, are precisely the ones
from which the process will get stuck in a metastable state. Indeed as the free energy of
such initial configurations is higher than that of configurations near the globally minimizing
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0.2 04 0.6 0.8 1.0 0.48 0.49 0.50 0.51 0.52 0.53

5 < 60(2)7 /8 = 186(2)7 /6 > 5c(2) 5 < 60(2)7 B = /86(2)7 /8 > 60(2)

Fig. 5 The free energy as a function of the magnetization m for the Ising model on the complete graph for
large n. No phase coexistence at 8. and the global maximizers for 8 > f. are seen to emerge continuously
fromm =0.5

stable state, such configurations will have a probability which is exponentially small in the
size of the system.

Furthermore, the transition from fast to slow mixing passes through polynomial mixing
which occurs at 8; and in its vicinity (Theorem 2). This in fact establishes that the aforemen-
tioned critical slowdown phenomenon occurs here as well, albeit at the spinodal rather than
the uniqueness threshold. We predict that this should be the case for the dynamical behavior
on other mean-field geometries such as an Erdds-Rényi random graph or a random regular
graph.

For a (non-rigorous) treatment of metastability and its effect on the rate of convergence
to equilibrium in other mean-field models with a first order phase transition, see for exam-
ple [24, 25]. A rigorous analysis of such a system (the Blume-Capel model), below and
above criticality, was recently carried out in [26]. It is illuminating to contrast the graph of
the free energy as a function of the proportions vector in the Potts model to that of the free
energy as a function of the magnetization in Curie-Weiss Ising, given in Fig. 5. The second
order phase transition and lack of phase coexistence at the critical temperature, implies the
absence of a local minima at any value below or above B.. As a consequence there is no
spinodal temperature and mixing is fast throughout the whole range 8 < f..

1.3 Proof Ideas

As discussed before, up to a permutation of the vertices, configurations can be described
by their proportions vector. Formally, for a configuration o € X,, we denote by S(o) the

g-dimensional vector (S' (o), ..., S9(c)), where
1
Sk (o‘) = ; Z ]l(a(v):k)'
veV

Note that S(0') € S where S = {x € R%: ||x||; = 1}. Now it is not difficult to see that S, =
S(oy) is itself a Markov process with state space S and stationary distribution 7, = 11, 0 S7!,
the distribution of S(o) under w,. We shall refer to this process as the proportions chain.
Figures 1 and 2 show a realization of the proportion chains superimposed on the free energy
graph plotted upside down for better visibility. 3 different values of 8, corresponding to 3
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different regimes are exhibited. The color of the curve, representing time, shows the tem-
poral evolution of the proportion chain. Notice how local minima (shown as local maxima)
“trap” the chain for a long time.

As a projection of the chain, S; mixes at least as fast as o,. Moreover, when starting in one
of the ¢ configurations where all sites have the same color, a symmetry argument reveals
that the mixing time of S; is equal to that of o,. One therefore must control the effect of
starting from an initial state which is not monochrome. Using a coupling argument we show
that the difference in the mixing times is of the same order as the cutoff window for S; and
can thus be absorbed into our error estimates. It will then suffice to analyze the proportions
chain, which is of a lesser complexity than the original process. In particular the state space
of S, has a fixed ¢ — 1 dimension, independently of n, and its transition probabilities can be
easily calculated.

Next, we show that when 8 < B.(q) most of the mass of the stationary distribution 7,
is concentrated on balanced states whose distance from the “equi-proportionality” vector
(1/q,...,1/q)is O(1/+/n). A simple coupling argument then shows that the Markov chain
is mixed soon after arriving at such a state. Thus the main effort in the proof becomes finding
sharp estimates on the time is takes for S; to reach a balanced state from a worst-case initial
configuration, in different regimes of .

It turns out that these hitting times are determined by the function Dg(x), which is de-
fined as (up to a multiplication by 1/#n) the drift of one coordinate of S; when that coordinate
has value x in the worst case, i.e. the minimum drift towards 1/¢, where the minimum is
taken over all possible values for the remaining coordinates. An explicit formula for Dg(x)
can be obtained (3.2). Its graph is plotted in Fig. 3 for x € [1/q, 1] and different values
of B. For 8 < B, this drift is strictly negative in (1/g, 1] and thus each coordinate quickly
(in O(nlogn) time) gets to within 1/./n of 1/g. On the other hand, the function Dg(x) is
monotone increasing in B and therefore for sufficiently large g, it will no longer be nega-
tive throughout (1/¢, 1]—there will be an interval in (1/¢, 1] where it is positive. Such an
interval will take an exponential amount of time to traverse and this will lead to an expo-
nential mixing time. The smallest 8 for which this happens is, by definition, §;. This 8, in
turn coincides with the inverse temperature at which local minima begin to appear in the
free energy as a function of s. In fact, to show exponentially slow mixing, we use standard
conductance arguments, which in face of local minima in the free energy give exponential
mixing quite automatically.

The most delicate analysis is in the critical regime where S is near or equal to S;. In this
case the x-axis is tangential to the graph of Dg(x) at its peak (the green curve in Fig. 3) and
the challenge is in finding the asymptotics of the passage time through the tangential point
on the x-axis (left green dot in the figure). As the drift there is 0, locally around this point, a
coordinate of S; behaves as a random walk and Doob’s decomposition of a suitably chosen
function of the coordinate yields the right passage time estimates.

1.4 Organization

Section 2 sets notation and contains some useful facts on the Curie-Weiss Potts model, as
well as tools (and a few non-standard variations on them) needed in the analysis of mixing
time. In Sect. 3 we derive basic properties of the proportions chain that will be repeatedly
used in the remainder of the proof. In Sect. 4 we analyze the case 8 < B,;(¢) and prove
Theorem 1 while Sect. 5 treats the case § > f;(¢g) and establishes Theorem 3. The near
critical regime is analyzed in Sect. 6, which includes the proof of Theorem 2. The final
section, Sect. 7, gives the proof of Theorem 4.
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2 Preliminaries
2.1 Notation

We let [a, b] denote the set {a, ..., b} for a, b € Z. We use the same notation for vector and
scalar valued variables. For an m-dimensional vector s, we denote by s* its k-th component
and for I = (i1, ..., i) C[1,m], s’ = (s", ..., s'*). Matrix-valued variables will appear in
bold. We let W™* denote the (1, k) element of W and let W” denote is its m-th row.

We write e; for the unit vector in the i-th direction and €= (1/¢, 1/q, ..., 1/q) € RY for
the equiproportionality vector. For s € R?, we denote § =5 — .

Most of our vectors will live on the simplex S = {x € R?: ||x||; = 1} or even S, =
SN %Zq . Occasionally we would like to further limit this set and for p > 0 we define

8’ ={seS: [Sllw < p}, sg:smlzq, X =85"(s?)
n
St ={seS: s* <1/q+pVke[l, ql}, S{j+:Sp+ﬂqu, it =571(80).
n

Note that S** € SW~V? and similar relations hold for S, and X,,.

Vectors in S will often be viewed also as distributions on [1, g]. A coupling of v,V € S is
the joint distribution of two random variables X, X , defined on the same probability space
and marginally distributed according to v, V. If P* is the underlying probability measure
then we always have ||[v — V|lty < P*(X # f). We shall call this coupling a best coupling if
it satisfies |v — ¥|lty = P*(X # X). Such a coupling always exists.

In the course of the proofs, we introduce various couplings of two copies of the Glauber
dynamics (o;);. For the second copy we shall use the notation &; and §, = S(5;). Couplings
will be identified by their underlying probability measure, for which we will use the symbol
P with a superscript that changes from coupling to coupling, e.g. PEC. A subscript will
indicate initial state or states, e.g. Pfofgo. The expectation and variance, E[-] and Var(-)
resp., will be decorated in the same way as the underlying measure with respect to which
they are defined. The o-algebra 7, will always include all the randomness up-to time ¢.
For example, with a single chain (o;); this is the o -algebra generated by {o,: s <}, for a
coupling of two chains (o;);, (0;);, it is the one generated by {oy, 7;: s <1}, etc.

2.2 Large Deviations Results for the Curie-Weiss Potts Distribution

In this subsection we recall several results concerning the concentration of the proportions
vector measures 7,. See, e.g., [16, 20] for proofs of these results.

It is a consequence of Sanov’s Theorem together with an application of Varadhan’s
Lemma that the sequence (17,),>; satisfies a large deviation principle (LDP) on S with rate
function

q
Ipq(s) =" s log(qs") — BlislI} - C. @.1)

k=1

where C is chosen so that minscs Ig 4(s) = 0. The minimizing set eg , = {s: Iz ,(s) = 0}
which is the support of the weak limit pg , of (77,),> is then

{e} if B < B.(q)
Epq = {67 Tlgﬂuq’ ngﬂf-q’ T quﬁ(-,q} if 13 = IBc(Q) ) (2-2)
{(T'56.4. T5p.4, ..., T955 4} if B> Be(q)
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where
(g —Dlog(g — 1)
Blg)=———— (2.3)
q—2
and
1—35l 1—35l
v [ B.q B.q
s,g,q—(sﬂ.q, P e, . ) 2.4)

The function 8 +— Eé p is continuous and increasing on [B.(g), o0) and T¥: S — S inter-
changes the 1-st and k-th coordinates. Furthermore, the value of 5 , for all 8, ¢ is known in
implicit form and in particular for § = B.(g), we have

5 —<1—l ! ! ) (2.5)
pelara = ¢ qg—1""q@-D) '

This is true for all ¢ > 3. For g =2, (2.1), (2.2), (2.4), (2.5) still hold, but the critical inverse-
temperature is now

Be(2)=1. (2.6)

It is here that a fundamental difference between ¢ =2 and ¢ > 2 can be observed. If
g =2 then $g,2)2 =€, in which case B+ pg is continuous for all 8 > 0. On the other
hand, if ¢ > 3 we have $g.(;)., # € and B — pg, is discontinuous at B.(g). Thus, as it is
recorded in the Physics literature, the system exhibits a first order phase transition if g > 3,
but only a second order phase transition if ¢ = 2.

2.3 Hitting Time Estimates for General Supermartingales

We will require some standard hitting time estimates for supermartingales and related pro-
cesses.

Lemma 2.1 For xy € R, let (X,);>0 be a discrete time process, adapted to (F;);>o which
satisfies

(1) 3 =0:E [ X, 41 — X/ |F] <=8 0on{X, >0} forallt >0.

2) 3IR>0:|X;31 — X,| <R, Vt>0.

(3) Xo = xo,

where Py, is the underlying probability measure. Let v, = inf{r: X, < x} and 1} =
inf{t: X, > x}. The following holds.

(1) If 8§ > O then for any t; > 0:

_ (8t — xo)*
]P)Jc()(t() > t]) < exp{—W . (27)
(2) If xo <0, then for any x; >0 and t, > 0,
(x1 — R)?
P, (T; <n)< Zexp[—w . (2.8)
3) Ifx9<0,8 >0, then for any x; > 0 and t; > 0:
(x; — R)&?
Py (ry <13) <13 exp{—lng ) (2.9)
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Proof Starting with (1), if xo < 0, there is nothing to prove. Otherwise, let Z, be a su-
permartingale independent of X,, which starts from 0, has drift —§ and steps which are
bounded by R. Set Y; = X,M(; + Z(’*TD* and write Y; = M; + A, as its Doob Decompo-
sition, with M, a martingale, A, a predictable processes and Ay = xy. Clearly A, < xo — 8¢
and [M;;; — M,| < 2R, P,-a.s. The Hoeffding-Azuma inequality implies:

Py (ty > 1) <Py (Y;, > 0)
<Py My, > 811 — x0)
(81 — xo)*
< -
as desired.
Now set ¥, = X, .+ and observe that (Y;),>¢ satisfies conditions 1-3, and consequently

AT
it is enough to prove (2.8), with P, (Y}, > x;) as the LHS. Therefore, for all ¢, let W, =
EolYiy1 —YiF]land Z,1 =Y,y — Y, — W,1y. Then clearly, W, Z, are F;-measurable,
Wiy <0 on {Y, > 0} and E, [Z,1|F;] = 0. This is a Doob-type decomposition. Now,
define M, for all ¢ inductively as follows.

My =0; M1 =M, +sign(M,)Z;+
and set N, = |M,|. We claim the following:
(1) (M,);en is an (F;),>0-adapted martingale.
(2) No=0; N[Jr] =|N; + Z,+1|, Vt.
3) Y, <N +R.

The first two assertions follow straightforwardly from the construction. The third one, can
be proven by induction, since it clearly holds for t = 0 and assuming Y,_; < N,_; + R, if
Y,_1 >0, then
Vi=Y 1+ —-Y)
<Ni-1+R+Z <N +R,
and if Y,_; <0, then
Y <R<N;,+R.
Finally, by the Hoeffding-Azuma inequality applied to M, we have

Py, (Yy, >x1) < IF’,CO(|M,2| > x| — R)
(x; — R)?
<2 - .
eXp( 8[21?2

This shows (2.8).
For part (3), let 7, (s) =inf{r > s : X, <0} and Y,(s), M,(s) and A,(s) defined as in the
proof of part (1) only with 7, (s) replacing 7, . Then,

Po(th<t) < Y Pu(X, <R.X,>x.X, >0Vs <t <s5)

0<s)<sp<13

< Y0 Py(Yols) = x1, Y (1) <R)

0<s)<sy<t3

< Y Py(My(s1) — My (s1) = 8(s2 — 1) + (x1 — R)7)

0<s)<s3<t3
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(SZXI—R
stgexp{— R }

8R?
where the last inequality follows from Hoeffding-Azuma inequality and since the summands
are non zero only when 0 <s; <s, <t3 and (s, —s;)R > x; — R. O

Lemma 2.2 Let (X;):;cn be a process adapted to (F;).en and satisfying the following con-
ditions for some a > 26 > 0:

1) X — X, €{—1,0,1}.
(3) E[th - X/|-7:t] = —4.
(3) Var(X,41|F;) > a.

@) Xo=>0.

Let tf =inf{t: X, >r}. Then
P(r," <t) > Crexp{—Ca(r/1+ V1)) + O(t7'/?) (2.10)

where Cy, C, are positive constants which depends only on a.

Proof 1t is easy to verify that conditions 1-3 imply

1 8
P(X,y1 # X(|F) = a; P(Xi1 — X =-1F, X;p1 #X) < 3 + 2 (2.11)
Now, let Ty = 0 and Tk inf{t > Ty : X, # X}, Yi = Xq, for k> 1. Also, let Ny =
Ty — Ti—yand Z; =Y, — Y. From (2 11), it is not hard to see | that we can couple (Ny)g,

(Z) with two i.1.d. sequences (Nk)k,(Zk)k such that Nk > Ng, Zk < Z; as. and
+1 wp.1/2—-6/2a

N ~ Geom(a); Zk =
-1 wp.1/246/2a.

Consequently, with Y= Dok Z, and T, = D om<k N,, we have:
P(t;f <t) =PYup =1 Tup <1)
> ]P’(?m/z >r)— IP’(fm/z >1)

(r + 81)
=

>C exp:—Cz + 0(171/2) + exp{—Cst},

where the last inequality follows by the local CLT for ?k, which is a nearest neighbor random
walk whose steps have mean —4/a and variance 1 — (8 /a)? and also by Cramer’s theorem
for T;. All constants depend only on a. O

Finally, we will also make use of the following result from [29]:

Lemma 2.3 [29, Proposition 17.20] Let (Z,);>0 be a non-negative supermartingale adapted
to (G,)1>0 and N a stopping time. Suppose that:

(1) Zo = zo.

) 1Zi1 — Z,| < B.

(3) Jo > 0 such that Var(Z,,1|G,) > 0% on the event {N > t}.
Ifu > 4B%/(30?), then:

4z

oJu’

Py(N >u) <
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2.4 Variance Lemma

The following is a straightforward extension of [28, Lemma 2.6] to vector valued Markov
processes. We include a proof here for completeness.

Lemma 2.4 Let (Z,) be a Markov chain taking values in R? and with transition matrix P.

Write P, I, for its probability measure and expectation respectively, when Zy = zy. Sup-

pose that there is some 0 < n < 1 such that for all pairs of starting states (zo, 2p),
IE.Z: — Bz, Zill2 < n'llzo — Zoll2- (2.12)
Then v, = sup, Var, (Z,) =sup, . || Z, — E;, Z,|[3 satisfies:

v < vyminfr, (1—7?) 7'} (2.13)

Proof Let Z, and Z; be independent copies of the chain with the same starting state zo. By
the assumption (2.12), we obtain that

”EZO[ZI | Zy =z21] - E [Zz* | Z} = ZT] Hz = HE21 [Zi] - EZT [Zr*—l] Hz <! ”Zl -2 Hz

Hence, we see that

1
Varzo (]EZ()[Zt | Zl]) = EEZ()
2(t—1)
< U—E
-2

(Ez1Z11-Ez 2,5

2 2(t—1
ol 21— Z1])5 <Py
Combined with the total variance formula, it follows that

v, < sup{E,, [Var, (Z, | Z))] + Vary (E,[Z, | Z11)} < v—t + 77 vy,
20

which then gives that v, = Zﬁzl(vi —vi_1) < Zle n*=Dy,, implying the desired upper

bound immediately. |
2.5 Bottleneck Ratio

Let P be an irreducible, aperiodic transition kernel for a Markov chain on S with stationary
measure . The bottleneck ratio of aset A C S is:

erA,y¢Aﬂ(x)P(x’ )’) < ﬂ(apA)
D xen ) = wA) ]

where 0pA = {x € A: P(x,y) > 0 for some y ¢ A}. The bottleneck ratio of the chain is

D (A) =

®,= min P(A). (2.14)
Am(A)<}

The following result, due to [1, 27, 38] in several similar forms (see, e.g., [29, Theorem 7.3])
relates the bottleneck ratio with the mixing time of the chain.

Theorem 2.5 If @, is the bottleneck ratio defined in (2.14) then tyix(i/4) > 4;* .
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3 Drift Analysis for the Proportions Chain

In this section we prove various results concerning the drift of the process S;. We analyze
both the one coordinate process S! and the distance-to-equiproportionality ||S; — €| In the
course of this analysis, we also define two couplings which will be of independent use later
on and prove a uniform bound on the variance of ;.

3.1 The Drift of One Proportion Coordinate

From symmetry, it is enough to analyze the drift of S!. For 8 > 0, define g5 : S — S as

k
eZﬂs

gp(s) = (gp(s). ... g5(®): gp(s) = W'

We can express the drift of S! as follows:

E[SL, — S'F]= %[ s! +Zg5(5, ek>Sk:|
1
= L[Sl + b + o)
= Ldy(5) +0(n™?) (3.1)
with
dp(s) £ —s' + g4 (s). 3.2)

The function dg : S — R thus describes (up to a constant factor of n~! and an error term)
the drift of the first coordinate given the current proportions vector. It turns out the rapid
mixing hinges on whether dg(s) is strictly negative whenever s' > 1/q (and for any values
for the remaining coordinates of s). Accordingly we define Dg : [0, 1] — R as

Dy(x) 2 maxdy(s) = dy x, ==, 122 (3.3)
x) = max dg(s) = X, AU .
e U1 g
2
= x4 exp(2fx) (3.4)

exp(2Bx) + (¢ — D exp(2B =)
and check when Dg(x) is strictly negative for all x € (1/g, 1]. We will see in Proposition 3.1
below that this happens if and only if 8 < B,(g), where B,(q) > 0 is defined in (1.1).
For B > 0, define s*(8) and s*(B) as:
(ay A d
s*(B) =supys ell/q,1): %Dﬁ(s) =0

s*(B) = inf{s € (1/¢,1): Dp(s) = 0},

with the inf or sup being 1, if the respective sets are empty. We may now state:

Proposition 3.1 For all g > 3 the following holds:

(1) We have that Dg(s) is increasing in B if's € [1/q, 1] and for all B > 0, that Dg(1/q) =0
and that Dg(1) < 0.
(2) That s*(B) > 5 ifB <q/2.
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(3) The following statements are equivalent if B < q/2:
(@ s*(B)=1.
(b) Dg(s) has no roots in (1/q,1].

(c) Dg(s*(B)) <O.
(4) All the statements in part (3) hold if and only if B < B;(q).

Proof We start by proving part (1). It is clear that
1

+ 1—gs
1+ (g —Dexp28=7)

Dﬂ(S) =—S

)

and hence is strictly increasing in 8 if 1/q < s < 1. Furthermore, we have that

e2B/4 1 1

1
Dg(1 = —— = —— _:07
pUID ==+ G e =g g

as well as
1
—— <.
1+(q—De?
For part (2), taking the derivative of Dg(s) with respect to s evaluated at 1/g, one obtains
%Dﬁ(s)h:l/q =—1+4+ % which is negative if 8 < ¢q/2. Together with Dg(1/g) = 0, this
completes the proof.

For part (3), we first show that there exists at most two points in [1/g, 1] such that
%Dﬁ (s) = 0. To see this, we compute the first derivative and obtain that

Dg(1)=—1+

298 exp(2B %) Ly 2B,

= — e ),
[1+ (g — DexpB2)P i ((g — Do)

L D) = —1+
2L Dals) = —
ds F

where h(x) = Obviously, there are at most two zeros for —1 + %h(x) and since

X
(14x)2"
(g — Dexp(2p8 lq__"f) is a strictly monotone in s, we conclude that there are at most two
points such that %Dﬂ (s) vanishes.

Notice also that j—sDﬂ(l/q) < 0 provided that 8 < ¢/2 and hence Dg(1/g + &) <O for
all £ <&y, where & is a sufficiently small positive number. We are now ready to derive
the equivalence stated in the proposition. Observing that Dg(s) is a smooth function and
Dg(1) < 0, we deduce that (3a) = (3b) = (3¢). It remains to prove that (3c) = (3a).
Suppose now that (3c) holds and there exists so € (1/g, 1] such that Dg(so) > 0. Recalling
that Dg(1/q +&) <0 and Dg(1) < 0, we deduce the following:

e If 5o < s*, we will then have at least two zeros in (1/g, s*) for %Dﬂ (s).
o If 5o > 5%, we will then have at least one zero in (s*, 1) for [%D,g (s).

We see that the first case contradicts with the fact that there can be at most two zeros for
j—s Dg(s) and the second case contradicts our definition of s*. Altogether, we established that
(3c) = (3a).

As for the last part, continuity and part (1) imply that (1.1) is equivalent to

By =sup{B = 0: Dg(s) <Oforalls e (1/q,1]}.

Since Dg(s) is increasing in B for all s € [1/q, 1], it follows that for all B < B,(gq), we
indeed have Dg(s) < O for all s € (1/g, 1]. On the other hand, by the continuity of the
function Dg(s) and our definition of B, we know that there exists sy € (1/g, 1] such that
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Dg, (sy) = 0. Now, using the result of part (1) we conclude that Dg(sy) > 0 for any g > B,
completing the proof. O

In the following proposition we discuss the relation between S,(g) and B.(q).
Proposition 3.2 For g > 3 we have that 0 < B,(q) < B.(q) < g while B;(2) = B.(2) = 1.

Proof As recalled in Sect. 2.2,

(g —Dlog(g — 1)

Bec(2)=1 and B.(q)= — . g=3.

In the ¢ = 2 case, it is easy to verify that :—SD/;(S) < 0 for all s € [%, 1]1if B <1 and
£ Dg(3) > 0if B> 1. Since in addition Dg(3) =0, Ds(1) <0, we obtain B,(2) = 1.
For g > 3 we have f.(q) < g /2 and therefore

-1 -1 1
Dy, 1 :_q + - =0
q q -4’7
14 (g — Dexp (28 - )

and
J 26.gexp (26,
ED/%(S) - =-1+ ( 1)—1 )
=TT (1+(q—1)eXP(2/3ch’))
_2(g=Dloglg =D ~4q(g-2)
q(q —2) )

Now if ¢(q) = 2(g — 1) log(g — 1) — g (q — 2) then ¢(2) = ¢'(2) =0 and ¢"(s) = —2+ -%;
which is negative when g > 2. It follows that ¢(q) is negative when ¢ > 2 and hence for
q=3,

d D 0
75 8. (5) e <O0.
q
So for small enough € > 0 and s € (" L €, ) we have that Dg. (s) > 0 and hence
sup, Dg_(s) > 0. By the smoothness of D,g (s) this 1mp11es that there exists 8 < B, such that
sup, Dg(s) > 0 which establishes that 8, < .. O

We will make repeated use of the following proposition throughout the paper.

Proposition 3.3

(1) Assume B < q/2. Forall 0 < py < p small enough, there exists y > 0 and C, ¢ > 0 such
that for all n with t =e”" we have

Py, (30 <s <1: 0, ¢ Z/*) < Ce™ (3.5)
N
forall oy € o

(2) Assume B < q/2. For all ro > 0, y > 0 there exists C,c > 0 such that for all n and
r>r0withz=yn,p0=%andp=ﬁ we have

2

Poy(I0<s<t: 0, ¢ Z[F) < Ce™ (3.6)

forall o6y € T
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(3) Assume B < Bs(q). For all p > 0O there exists y > 0 and C, ¢ > 0, such that for all n,
with t = yn we have

Poy (0 ¢ Z0F) < Ce™™ 3.7

forall og € X,,.

Proof Consider the process (S! — s3: ¢ > 0) until the first time it is to the right of 1/q + p.
If n is large enough and, in case (1), if p is small enough, Proposition 3.1 part (1) and
Eq. (3.1) imply that this process satisfies the conditions of Lemma 2.1. Parts (1) and (2)
of the proposition then follow from parts (3) and (2) of the lemma and summing over all
coordinates.

As for part (2), consider this time (S,1 —1/qg 4+ p/2: t > 0). Since B < B,(q), it follows
from Proposition 3.1 (parts (1) and (3)) that this process also satisfies the conditions of
Lemma 2.1, with § > C'n™!, for some positive constant C’. Now set y =2/C’ and apply
part (1) of the lemma to conclude that except with probability exponentially small in n,
S} < 1/q + p/2 for some t < yn. Once this happens, by Lemma 2.1 part (3), as in the proof
of (3.5), we have S; < 1/q + p again except with probability tending exponentially fast to

n —

zero with n. It remains to use union bound to complete the proof. |
3.2 Bounded Dynamics

The bounded dynamics is a process that evolves like oy, only that S(o;) is forced to stay
close to @ by rejecting transitions which violate this condition. Formally, fix p > 0 and let
(01):=0 be a Markov chain on X?*, which evolves as follows. Start from some oy € X/
and at step ¢ + 1:

e Draw &, according to P,(o;, -), where P, is the original transition kernel.
o If 5,1 € XP* set 0,41 = 5,41 and otherwise set 0,41 = 0.

We shall denote by IP? the underlying probability measure.

The unbounded and p-bounded dynamics admit a natural coupling, under which the
two processes start from the same configuration and evolve together until time 7 = inf{r >
0: S, ¢ SP*}, where S, is the unbounded process. This leads to the following two immediate
observations which will be useful later.

(1) For any integer ¢ and bounded function f : (X,)"*! > R:

|E £ (010.0) = E” f (010.)| <20l fllocP(x < 1). (3.8)
(2) In particular for any set A C (X,)"*!:
|P(o0,1) € A) — PP (00, € A)| <2P(x <1). (3.9)

3.3 Synchronized Coupling

The synchronized coupling is a (Markov) coupling of two p-bounded dynamics in which the
two chains “synchronize” their steps as much as possible. Formally, define (0;)/0, (07):>0
on the same probability space such that starting from oy, 0y, at time ¢ + 1:

(1) Choose colors 1,1, Zfrl according to an optimal coupling of S, §, _
(2) Choose colors J; 11, J;+1, according to an optimal coupling of gg(S; — rfle]HI ), 88(S —
n~ley ).
t+1
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(3) Change a uniformly chosen vertex of color /,1; in o, to have color J,; in 0,4, but only
if 0,41 € ZPT.

(4) Change a umformly chosen vertex of color I,H in o, to have color J[H in &1, but only
if 5,41 € XPT.

We shall write IPGO 5, for the underlying measure and omit p if it is large enough for the

dynamics not to be bounded.
The following shows that this coupling contracts the | - ||; distance of the proportions

vector.

Lemma 3.4 There exists C(B, q) > 0 such that for any p > 0, uniformly in oy, 6y € X" as
n— 0o

~ Co\’ N
By IS = Sl = <p+7p> Is0 =Sl (3.10)
where
1-28
p=pnpg)=1- T/q 3.11)

Proof For s,5 € S, by a Taylor expansion of gg around s, then another expansion for Vgg
around € one has:

lgs(s) —gs®]|, = —||s =5l (1+ O(lls —@lli + 115 —2ll1)).
where we use the easily verified:

. { —2Bghgk k.

8 = . (3.12)
P 2Bl + 288 k=

_Now under the bounded dynamics, 7, # T4 implies that S/*' > 5" and §/"*' >
S/ while Ji1y # J41 implies that (S, — n~'e;, )+ > (S, — n~'ey_ )"+ and (5, —
n~'ej )1 > (S, —n~'ey, )+ It follows by the definition of the coupling that

~ ~ 2
1St = Searly =18 = Sellv = =1Ly 27,0 = T 270

Recalling that for s € S, ||s|lTv = % |Is]l; and that under the best coupling of distributions s,
s the probability of disagreement is ||s — 5]|/Tv, we have:

~ 2 1 1
SC ~ ~ _
Eo 2181 = Silli < llso —Soll + ,—l(—EHSo =50l + 3 [l gs(s0) — s G) |, + O(n ‘))

~ 1-2 0]
< ||sO—so||1<1 -~ M + O(n*z))-

The result follows by iteration. ]
3.4 Uniform Variance Bound

Lemma 3.5 Assume < q /2. There exists po = po(B, q) such that if p < py
Var ($)=0(n""), (3.13)
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uniformly in o9 € X°* and t > 0, and there exists yy > 0 such that
Var,, (S) =0(n""), (3.14)

. . +
uniformly in oy € X" and t < e"".

Proof Equation (3.13) will follow directly from Lemma 2.4 applied to S; under the p-

bounded dynamics. Indeed, Lemma 3.4 gives a stronger version of Condition 2.12 with
_2
n=p+p0m?).Now,if B < q/2 and p is small enough, we have n < 1 — : 5. for large

enough n. Then (3.13) follows from (2.13) since Varﬁ:0 Si=0m?).
For (3.14), find p’ < p and use (3.5) and (3.8) to conclude that for all oy € E,{”* and
t <e?" for some y =y (p, p'):

Varg, (8;) = Var? (S,) + oln™)y=0(n""). g

Corollary 3.6 For B < B.(q), we have Var,, (S) = om™.

Proof Fix p < pg, where pg is given in Lemma 3.5 and notice that the bounded dynamics
is reversible with respect to the Potts measure u, restricted to X#*. Therefore the bounded
dynamics has u?(-) = pu,(-loc € XF*%) as its stationary measure. From the large deviation
analysis in Sect. 2.2 it is straightforward to conclude that if < B.(q)

/’Ln(S ¢ $p+) = e_Cn’

for some C > 0 and n large enough, depending on p and S. Therefore, we have ||u, —
whlltv < e~C". Since w,, w! live on a compact space, this gives Var,, (S) < Varﬂﬁ S) +
e~ Since IP’(’;O (0, € +) converges to u” as t — oo for any fixed oy € ¥/, Lemma 3.5 can
be extended to oy chosen from p?. This completes the proof. |

3.5 The Drift of the Distance to Equiproportionality

Here we show that :S"\, has drift towards 0. Write S;;; = S; 4+ &1 where we have that for
i,j=1,...,q,

— l e ) — il _ l N i i -1
P&+ = n(e_, e))=Sgs| S ne, _Stgﬂ(St)+0(n )
Then,

E[l1S+1 — 8131 S ] =E[IS; =8+ &411315]
— IS, - e||2+1E[||s,+1|| 15]+2(E s,ms,] s,)

=1I5.13 + ( —h(S))+ = Z ||S,||2+0( ?)

Zk 1 2ﬂSk l -
= ||§,||§(1 - %) + (2h<s,> - §>n' + (2 2h(S))n 72+ 0 (n7?),

where h(s) = Y1, g5 (s)s*. Notice that since gf (s) = g5 (s —€) we have that i(s) = 1/q +
h(s) and its gradient and Hessian are:

1 48
Dih(0)=— and Dyh(0)=—P,
q q
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where P is a projection matrix onto (€)*. Therefore, we may write

1 28 3
h(s) =—4+ — + 0 .
() 57115 (”S |2)

This gives
—~ _~ 2(1-28/9) _ - _
E[ISi+1131F] = ||S[||§<1 - %) +n ' O(IIS13) + 0 (n~?)
=1S12p> +n O (IS:13) + 0 (n7?), (3.15)
where p is defined in (3.11).

3.6 Contraction for the Distance to Equiproportionality

Fix B < ¢/2 and p < py where py is given in Lemma 3.5. For what follows, assume that
op € ZPT and 1 < e’ where ¥, is also given. Then, taking expectation in Eq. (3.15), we
get:

Eoo ISi4112 = p*Eoy 15,13 + (Eo 1S 13) O (n71) + O (n72). (3.16)
Now by Taylor expansion of s ||s||§ around ]E(,O:S‘\, in view of (3.14),

Eoo IS/ 113 = 1Eoy S/ 13 + Eop(Di | - 3By $), Si — By Si) + O (Eoy IS, — Eoy S 13)

= B Si 13+ O (n ") = (Eng IS5+ O (n™"))* + O(n™")
= (EnIS/13)" + 0(n).
Then
Eoo [1504113] = p*Eoy IS 13 + (B 15, 13) 20 (n™1) + 0 (n72). (3.17)

This will in turn imply:

Proposition 3.7 Fix 8 < q/2. There exist po = po(B,q) > 0and C = C(B, q) > 0 such that
if p < po there exists y (p) > 0 such that:

EolISi13 = p* (IISol13 + Cp*) + O (n "), (3.18)
uniformly in oy € X°T and t <e” P where p = p(n, B, q) is defined in (3.11).
Proof Set A, = Eq, ||§, ||§. It follows from (3.17) and (3.5) that for any p < p < pg, where py

is given in Lemma 3.5, there exists y = y(p, p) > 0 such that uniformly in oy € X" and
t<e'":

it < (PP +00( "))+ 0(n2) =1 (p+p0(n7"))* + 0(n7?).

We now use the following fact, which can be easily verified. If (A,);>0 is a sequence
satisfying:

Aiy1 = pr; +ar' +b,
for some p #r, p# 1, a and b, then:

T (1-p). (3.19)
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Apply this (with a = 0) and use the monotonicity in A, of the right hand side above (at least
if n is large enough), to conclude:

1
0 —2
i—Grzomnr )
<c(p+p0(n ) +0(n).
Plugging this a priori bound back into (3.17) we see that:
hip1 = PP +ﬁ3(p —i—ﬁO(n_l))S[O(n_l) + 0(n_2).

Using (3.19) again and choose p small enough to obtain

h < ho(p+50(n™")" +

2t = —1y\)3t
p —(p+p0(n )) -3 -1 1 -2
A =hop? + Oo(n)+ O(n
SR sy O TR0t
= (ot O)p* + 0(n)
as desired. O
4 Mixing in the Subcritical Regime
In this section we prove Theorem 1. Recall that «; = o1 (8, q) = m and set
t*(n) = aynlogn; t;f‘(n)=oz1nlogn+yn. 4.1

4.1 Proof of Lower Bound in Theorem 1

Proof The analysis in this subsection pertains to all 8 < B.(g). Fix 0 < p, < p; < po, where
0o is given in Proposition 3.7 and let oy € X, be such that p, < ||Spll» < p1. Then if t <
t;1(n) and p; is small enough, Proposition 3.7 implies

2 2651 (n)
co P3(, 1=2Bla\" .
B iS22 2 (1- 122 o) 2 L

for sufficiently large —y depending on p, and large enough n. Combined with the uniform
variance bound given in Lemma 3.5, it follows that for large enough n

e—(1-28/9)y/2

Jn
Applying Chebyshev’s inequality and using Lemma 3.5 again, we conclude that uniformly
inall r > 0,7 <t (n) and 0g € 7"\ X"

Eoq IS¢ 112 =

< r Var(r (TS'\,) —(1=2 2 -2
PUO(IIStllz < ﬁ) < (e,(,,zﬂ/q)f/z v O((e"=2Plv2—1)™7).  (4.2)
NG Vn
In particular, this implies
. . -~ r
yg@mllﬂiﬂpp"o <||Sz;‘l(n)”2 < ﬁ) =0. 4.3)

On the other hand, E,,, S; ='e and from Corollary 3.6 it follows that Var,, S; = omn™Y
for B < B.(q). Therefore another application of Chebyshev’s inequality yields that

—~ ol
M(IIS:IIz < %) >1- 20 (4.4)

r
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for all ¢+ > 0. Altogether, we have that for any r > 0,

lim liminfd > 1 o)
A timinfdi () 2 1= =5=
and it remains to send r — o0. O

In the remainder of the section we prove the upper bound on the mixing time when
B < Bs(q). The proof is based on upper bounding the coalescence time of two coupled dy-
namics, one starting from any configuration in X, and the other starting from the stationary
distribution w,,. This coupling will be done in several stages with different couplings from
one stage to the next. In what follows, (0;),>0 and ()¢ will denote the two coupled pro-
cesses.

4.2 O(n~'?) from Coalescence

We now show that with arbitrarily high probability, S, gets O (n~'/?)-close to € in O (nlogn)
steps, if initially its distance is at most p, where p is small enough. More precisely,

Lemma 4.1 Fix § < q/2. Then forall r > 0:

Pao(Stotl(n) ¢ Sﬁ) = 0(}’_1),
uniformly in oy € 20 ywhere po = po(B, q) is defined in Proposition 3.7 and t*! (n) is
defined in (4.1).

Proof This follows immediately from Proposition 3.7 and a first moment argument:

Po, (Sf"l m & S‘%) =< Pao(“s/g\t“l wll2 > rrf%)

- Bo 1Sie1nll2_ Eo [ e wlIN'? 0 1
rn~12 rn=1/2 O\ )

43 On~") from Coalescence

To get the correct order of the mixing time it is not sufficient to simply use the drift to couple
the chains as the drift is very weak when S, is close to €. As such, in this section we define
a different coupling of the dynamics which will bring o; and &, to distance O(n~") apart
in linear time. This will be achieved one coordinate after the other. We begin by giving a
general definition of, what we call, a semi-independent coupling and then use it to define the
coupling of the dynamics.

Let v, V be two positive distributions on £2,, = [1,m] and fix a non-empty A C £2,,,
where m is some positive integer. We shall write v|, for the conditional distribution given A,
ie. v|a(x) =v(x)/v(A), for x € A. The A-semi-independent coupling of v,V is a coupling
of two random variables X and X with underlying measure IP*, constructed according to the
following procedure:

(1) Choose U € [0, 1] uniformly.
(2) If U < min{v(A), V(A)}, draw X and X using a best coupling of (v|4, V]4).
(3) Otherwise, independently:
(a) Draw X according to v|4 if U < v(A) and according to v|c if U > v(A).
(b) Draw X according to V|, if U < V(A) and according to V| if U > V(A).
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Clearly a £2,,-semi-independent coupling is a best coupling and for A = @, we define @-
semi-independent coupling to be the standard independent coupling. The following propo-
sition states a few properties of this coupling, which will be useful for the sequel.

Proposition 4.2 The following holds for the A-semi-independent coupling of (v, V):

1 X, X are distributed Jaccording to v, V respectively.

@) Pl X =x)AX =x) < 35,4 v () =Tl ~

B)Vx A, PX=x, X #x)>v(@)V(A\ {x}) and Vx ¢ A, P*(X =x, X # x) >
VE)V(A\ {x D).

Proof Part one of the lemma is immediate. Part (2) follows from a straightforward calcula-
tion:

]P’*(U{X =x}A(X =x}> <P*(U < v(A) AT(A))P*(X # X|U < v(A) AT(A))

X€A

+P*(v(A) AT(A) <U < v(A) VT(A))

< (v /\V(A))l |(V1A() = Pla())] + [v(A) = T(A)|
2

xeA

< §Z|v(x)—v<x>|.

xeA

As for part (3), we have:

P({X = x}\ (X =x}) = P*(U > v(A) V F(A))lae () (1 = Fe (1))
> v(0)T(A\ {x})
and similarly for ]P*()N( =x, X #x). |

We are now ready to define the coupling of o;, &, for this section. Fix g, 55 € X, and
Yis---» Yg—1 > 0. The coordinate-wise coupling with parameters yi, ..., y,— and starting
configurations oy, o is defined as follows.

(1) Set T® =0, k= 1.
(2) Aslongask <g —1:
(a) Aslongas [SF — S¥| > %:
(i) Draw I,,1, ZH, using a {1, . — 1}-semi-independent coupling of S, §,
(i) Draw Jiits J,H, usmg a{l,. — 1}-semi-independent coupling of gg(S; —
Lo, 855, — Lej ).
(iii) Change a umformly chosen vertex of color 7, in o, to have color J;; in 0,4 .
(iv) Change a uniformly chosen vertex of color Z+ | in &, to have color .7;+1 ino,,;.
(v) Sett =1+ 1.
(b) When [S¥ — S| < % set T® =7 — T* "V and k =k + 1.
(3) Set TCC =Y0_1T®,
We shall use ]P’CC to denote the probability measure for this coupling and Pcc(m) for the
same coupling, only with k = m instead of k = 1 in step (1), i.e. starting from the m -th stage.

Notice that, in principle, the stopping condition at stage k, may never get satisfied, in which
case we stay at that stage forever and T® = T¢€ = co.
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For u, r > 0, define

HE = {(0,5) €eX, x X, ||s“’kJ — LA H1 < %, max([|s — €ll, 5 =€) < L},

Jn

where above (s,5) = (S(¢), S(3)). Finally, set H, , 2 H{ ,. The following lemma will be
the main ingredient in an inductive proof for an upper bound on 7¢¢:

Lemma 4.3 Fix B < q/2. Let k € [1, q — 1]. For all uj_q1,ri_1,€ > 0, there exist

Vi, Uk, Tk, Vi > 0, such that if (09, 6p) € Huk . then
PN (T® < yin, (o7w. Grw) €HE, ) =1 —€. (4.5)

Proof Recall the expression for the drift of one coordinate (3.1). Near €, this becomes by
Taylor expansion for any i € [1, g]:

. 1 28\~ ~
CC(k) i i i -
By [Sia1 =S, m]:;[—(l— y )S,+0(||Stn%)}+0(n %)
andif W, =§, — §, then

~ 1 2
ECSOTwh, | ¥W|&JJ=;{—Q, f)wh+om&—em+n&—enﬁ

+0(%). 4.6)

Now, for some r; > 0 to be chosen later, let 7® = inf{t: ||S, A = i}. Then,
from (4.6) it follows that there exists y, > 0 such that W |W" () Ao | 1S @ supermartin-

gale. Clearly |Wf+l —W < 2 Also, from Proposition 4.2, if t < 7® A T®:

]PCC(k)( t+1?éW |]:t)_ CCSk)(IH_]:k, JH—I#kv Z-Fl#kl]:l‘)

70,00 90,90
~ 1
s (afs )
g—1 _1

= q3 (n 2),
which implies that Egocé];)[(W[H -W, )2|}',] > q‘2 2 4+ O(n>'?). On the other hand, in
view of (4.6), IESUC;?[WI b W |F1= O(n~%?). Combining the two bounds, we infer that
there exists C > 0, which doesn’t depend on ry, or y;, such that on {r < T® A T®)}

VarS’® (W, 17,) = Cn 2, (4.7)

for n sufficiently large. We now apply Lemma 2.3 with Z, = Wf, Zo= zikﬁ;l and N=1® A
T®  This gives for y; > 0:

Cri_y
VY

whence we may choose y; = 4 (rx—1, €) independently of ry, y; but sufficiently large, such
that

’

CCk
]P’a0 éo)(T(k) AT® > ykn) <

CC (k)
]pﬂo 90

(T(k) AT® > )/kn) < 4.8)

€
3
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This gives an upper bound on T®, since by Proposition 3.3 part (2) we may choose r; large
enough such that:
]P’CC(k)( ® < ykn) <

00,00

(4.9)

Wl ™

It remains to ensure that we do not increase the distances in the first k — 1 coordinates,
by too much. Proposition 4.2 implies that for any #:

CC(k [lk 11, —=1,k=1]
Posy Wit #W, " 1F)
< > B (Uen = DAT 0 = D) U (1 = DA =1D)IF)

I<k—1

3 — ~
=3 D (Wil +lghs —ghGo)) + o)

I<k—1
=W o).
It follows that
e —[1k—1] e -
Eoga [IWeit 117 ] < W + || |, +ri0()
< [w 1, (1 + %) +r20(n™?).
Taking expectation of both sides and using the assumption on ||W([)1’k_1] |l1, we have
— — C\™*" Up—
B W 1, <, (14 52) T = e teen,
Hence by Markov’s inequality, there exists u; > 0 such that
ikt — Yk €
po (1w, > 252 ) <,
Combined with (4.8) and (4.9), the proof is complete. D

Corollary 4.4 Fix B <q/2. For any €,r > 0, there exist y,u,r' > 0and yi, ..., y,-1 >0
such that for oy, 0 € E,,ﬁ

]P)CC

00,00

(TCC < yn, (opcc,orec) € 'Hu,,./) >1—e.
Proof Starting from ry = uoy = r and applying Lemma 4.3 inductively, we obtain for some
k> Uks Ty Vikell,g—11:

PSS, (TN < yin, (orw. Grw) €My, , Vhell,g—1]) =1 —e.

It remains to set y = > /_| v, ' =r,_j and u = 2u, ;. O
4.4 Coalescence of Proportions Vector Chains
The next lemma completes the coupling of the proportions chains.
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Lemma 4.5 Fix 8 < q/2. For all r,u, e > 0 there exists y > 0 such that if oy, € X,
satisfy (09, 09) € Hy,, and t > yn, then

P5C, (S, =8)>1—¢,

00,00

where under ]P’UCGO, the processes (0,);=0, (31),=0 evolve according to the synchronized cou-

pling, as defined in Sect. 3.3.

Proof 1f p is small enough, it follows from Lemma 3.4 that
~ 1—-28/q\"u
SCp
(70 UOHSt Sillt < (1 I e

Combined w~ith Proposition 3.3 part (1), this implies that there exists ¥ = y (u) such that
|S; — Sl < 5 for t > yn. Then by Markov’s inequality:

m)mJ
~ 1
PSC5 (S #5) Pifm,<||s, —5Sih > ;> <e. O
4.5 Basket-Wise Proportions Coalescence

The next coupling will allow us to turn a well-mixed proportions chains into a well-mixed
configurations chain. Let 8 = (IS’m)i=1 be a partition of [1, n]. We shall refer to 5, as a
basket and call B a A-partition if |B,,| > An for all m. Given o € X, let S(o) denote a
g X q matrix whose (m, k) entry is equal to the proportion in o of color k in basket m,
namely

S"* (o) = BL Lio (v)=k}-
| |v€Bm

Sisanelement of S£ []?_, S and we define S* =[]?_, S” and S** =[]?_, S**. We also
let Bing,m 1 = Upg<mem, B and as before use S; as a shorthand for S(o;). The following is
an analogue of Lemma 4.1 for the basket proportions matrix.

Lemma 4.6 Let B be a A-partition for some A > 0. If either of the following holds:

(1) og € Z° and t“1(n) <t < e’ where py, y(py) are given in Proposition 3.7 and
t“1(n) lS defined in (4.1).

2) Sy € Sf and t < yon for some ry, vy > 0,

then
B.o(S, #5%) = 0(r).

where the O (r2) term is as r — oo, uniformly in n.

In order to prove Lemma 4.6, we use the following proposition to bound the second moment
of the basket proportions matrix.

Proposition 4.7 If B is a A-partition for . > 0 and m, k € [1, q], then

2 1
[(S:rﬁ Stk+1) | -7:1] = <1 - ;)(S:"k - S,k)z + 0<;> (4.10)
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Proof Let Ay = |Bn|/n > A > 0 and set Q" =S~ — Sk. Then:

E[(Q5})" - (Q) 1 7]

1\* 1
= ((Qi”’k + ;) - (QZ”’k)Z) + pz((Q?"" - ;) (@) )
+p (( mk_i_i_ l>2 ka >+p << mk+ 1)2_(Qm,k)2>
} ! Aon R 4 n !
2 1
=-Q* ((m —p)+ (1 - —)(pz p4)> (—2) (4.11)
n n

where (denoting by V,; the chosen vertex at step ¢ + 1):

P1= P(Vrﬂ & By, 01(Vit1) =k, 0141 (Vig1) # k|]-",)
= (S = 208"*) (1 - g5(S)) + O(n™"),
P2= P(VI—H & B, 01 (Vi) #k, 0141 (Vi) = k|ﬁ)
=(1-58'—ro+ 28" )gs(S)+0(n™"),
p3s =P(Vig1 € By, 01(Vi1) =k, 0141 (Vigr) # kI F) = 1S (1 — g,lé(Sz)) +0(n™"),
pa=P(Viy1 € By, 01(Vis1) # k. 0101(Visr) =k|F) = ho(1 = §"*)gh(S) + O (n™").
Plugging these into (4.11), we obtain

m, 2\ e 1
[(Sz+/; r+1) | ft] = <1 - ;)(S, k- S,k)z + O(n—2>
as required. O

Proof of Lemma 4.6 Taking expectation in (4.10) and applying (3.19) one gets:

2 t
Eo[S)F — 1] < (1 - ;> Eo[Sy = SE]* + 0(n7").

In both cases (note that (8, ) > for all B < q/2), it implies E,, [S;" k_ SFEP=0m™").
Summing over all m and k and us1ng Markov’s inequality we get

e (Sl -1, i) =0t ),
m=q

Now, by Proposition 3.7 Case (1) and Proposition 3.3 Case (2) we also have that
Poy (IS —€ll2 > r/(2v/n)) = O(r 7).

Combining the two, we complete the proof. ]

Suppose now that you have two initial configurations oy, Gy, such that sy =7p. The fol-
lowing is a coupling under which eventually (with probability 1) also S, = S,. Equality is
achieved one basket at a time, indexed below by m and once the proportions in a basket
are equated they remain so. We shall call this coupling Basket-wise Coupling and denote by
IP2C the underlying probability measure.

(1) Setr=0,m=1.
(2) Aslongasm <gq:
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(a) Aslongas S} # §;":
(i) Choose “old” color I, according to distribution S, = §,.
(ii) Choose “new” color J;;; according to distribution gg(S; — %ell )= gﬁ(gt —

%elﬂrl )-

(iii)) Choose a vertex V;;; uniformly among all vertices in [1, n] having color I,

under o;.

(iv) Choose \7,+|:

(A) If Viyy € By, for my < m, choose \7,+1 uniformly among all vertices in B,,,
having color I, under o,.

(B) Otherwise, if ;""" 8" and 8"+ £ 8"+ choose Vi, uniformly
among all vertices in Bj,, ) having color /1| under 0.

(C) Otherwise, let vy, v, ... be an enumeration of the vertices in Bj,, 4) having
color I,,; under o, ordered first by the index of the basket they belong to
and then by their index in V and let Uy, 7, ... be the same for o;. Then set
‘7,+1 =7; where i is such that V11 = v;.

(V) Set o141 (Vig1) =041 (Vig)) = Jiprand r =1 + 1.
(b) Setm=m + 1.

The following lemma gives an upper bound for the time of basket-wise proportions coa-
lescence.

Lemma4.8 Fix 8 <q/2. Forany A > 0,r > 0, € > 0, there exists y =y (A, r, €), such that
for any A-partition and any oy, 6o such that Sy = §0 and Sy, §0 €SV,

PEC Sy =S, = 1—e. (4.12)
Proof From the definition of the coupling, once the proportions of basket m have coalesced
they will remain equal forever. It suffices, therefore, to analyze the coalescence time of each
basket separately. Note also that the coupling preserves the equality S, = S, forall > 0.

Define W, =S, — S,, W™ = |W™"||; and let T =0 and ™ = min{t > ™~V : W" =
0} for m € [1, q]. Also set

= inf{t: S; ¢S or S, ¢ Sp}

for p > 0 sufficiently small and t{™ = t™ A t,. We claim that for all m, (W"),>¢ is a
supermartingale between 7™~ and ™ as long as T, is not reached. In order to see this,
fix m, t and assume {t" D <t < ™ | 1, > t}. Then at step (2(a)iv), according to the
coupling, there are 3 cases:

(A) Clearly S}’ | =S}" and St = S"’ and Ihence VE/, =W , ,

(B) Notice that in this case, we have W,""*'W; /"' > 0 and W;""*'W;{"*' > 0. There-

fore,
EBC [W;ﬁ-l any_—[]

00,90

|EBC [ :'ﬂm |}—t]| _ |Wm Y/ | + |EBC [ w" Jig1 |}—t]| _ |Wm /s |

00,00 50,00 t+1
I N
— W n W,

=0.
— mo, I mo, I 41
ZmoZm St " |Bm() | ZmOZm St " |BVH() |
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©) If Vo, ‘7,+1 € B, or Viuy, \7,+1 ¢ B,,, then W/, = W/", otherwise from the construc-
tion we must have:

1
|W:m1r+l| —_ |W:’1YIH>1| —_| |s
as Well as
m m, 1
| f+“llrl| | Jrl|<|8|

Summing these two, we obtain a non-positive drift for W;".
Observe that as long as T, is not reached, both Var®C (W |7;) under Case (B) and the
probability that this case happens are bounded below uniformly in n and ¢. This gives a

uniform lower bound on the variance Var? C( "+ 11F). Furthermore, if for some ¢, we have

» !

S, S, € Sﬁ then in view of Lemma 4.6 after y'n time, we have S,.,/,, S,+y 2 € SV with
probability 1 — O((r”)~2). Therefore, using Lemma 2.3 we may find y,, ..., Y4—1 such that
inductively, conditioned on 7~V <y, _;n with probability at least 1 — ¢/(2¢) we have
£ < y,,n. This in turn implies that 7\/"" < yn with probability at least 1 — €/2, where
y £ Yg-1. .

It remains to bound 7, below with high probability. Let B/ = |, {IS;"/ — 1/q| > p}
and

v =|{e S] —1/q] = p/2. 1 <1t <yn}.

Using Lemma 4.6 we obtain that
, 1
]Egocao[ym’j] =yn0O (I_l) =0).

Then as B™/ implies that Y/ > ”;p ,

BC m,j
BC m,j BC mj < n)‘p Effo Go[Y ] -1
P2, (B™)) <P ao(Y > )_ iy = =0(n").

Summing over all m, j and arguing the same for S, we obtain
]P’Uocao(r* <yn)= O(n_l).

Finally by a union bound we have IP’BC (t(‘i <yn)>1-5+40(n"") as desired. O
4.6 The Overall Coupling

We now describe precisely how the previous couplings are combined together to create the
overall coupling. This coupling will be the main tool in proving the upper bound. Formally,
let y1,¥3, Y4, ¥5 and yy, ..., y,—1 be positive numbers and oy € X),. The overall coupling
with parameters yi,...,¥s, y1,..., yq—1 and initial configuration oy is a coupling of two
chains (o0;);, (7;), under measure IP’%C. The initial configuration for (o,), is oy, while &y is
chosen according to 1,,. Then, the two processes evolve as follows.

(1) Run o; and &, independently until time t" (n) = y;n.
(1A) Partition the vertex set [1,n] into baskets B = (By,...,B,) such that B, =
{v: o,y (V) =k} for k € [1, q].
(2) Run o; and &, independently (again) until time t® (n) =t 4 t*1 (n) time where %! (n)
is defined in (4.1).
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(3) Run o, and &, according to the coordinate-wise coupling with parameters yi, ..., y,—1
until time t® (n) =t® (n) + y3n (unless stopped before).

(4) Run o, and &, according to the synchronized coupling until time t® (n) = t® (n) + y4n
time.

(5) Run o; and &, according to the basket-wise coupling for t® (n) = t® (n) + ysn time
with the baskets above.

4.7 Proof of Upper Bound in Theorem 1

We will now use the overall coupling with appropriate parameters to establish the upper
bound of the mixing time. Recall that 8 < B,(¢). Fix € > 0, pick p > 0 small enough and let
oy be any initial configuration. By Proposition 3.3 part (3), we can choose y; large enough
such that

POC(Simm €S8°) = 1 —e. (4.13)

Assuming that this event indeed occurred, %5 is a (é — p)-partition and provided that p is
small enough, the conditions in Lemma 4.1 are sati sﬁed From the latter we conclude that for

some r > 0, with probability at least 1 —¢, S, €S Vi . On the other hand, as in (4.4) with

probability at least 1 —2¢ we also have Ky {@Qm €S 7 if r is large enough. Then Corollary 4.4
and Lemma 4.5 ensure that there exist yi, ..., y,—1 and y3, y4, such that S,@ ) = St(4>(n)

with probability at least 1 — 3e. From Lemma 4.6 we have that S,@),), §,(4) ) € SVA with
probability at least 1 — 4e for some r’ > 0. Then, by Lemma 4.8 we may choose ys such
that S,e) () = S;5)(,y With probability at least 1 — Se.

Now, by symmetry, for any 7 > 1" (n) the distribution of o;, given F,),, is invariant
under permutations of the vertices in each basket of 5 and the same is clearly true for w,,.
Therefore we conclude that

oc
P2 (019 ) € 1 Fi0ys Sy € S7) = |y
oc -
= |P2C (i) € 1 Fi0(ay> Sit01ny € S”) — pn 08
oc 3
< IP’GO (S,<5)(n) # 8,6 ()| Fr0 my» Sty € Sp) < Se.

L
TV

Then from Jensen’s inequality we obtain
“ Pao (Ut(5)(n) € ) — Mn ”TV
< ECC[|PE (0,651 € 1 Fs1) =t || Sr1y € ST+ PO (S, 57
<5€+€=6¢. (4.14)

Now 1 (n) =21 (n) (as defined in (4.1)) with y = y; + y3+ y4 + y5 and since oy is arbitrary
and € can be made arbitrarily small, by choosing y large enough, this establishes the upper
bound for the cutoff.

5 Mixing in the Supercritical Regime

5.1 Proof of Theorem 3

We first give the proof for the case B, < 8 < B.. Recall (Sect. 2.2) that 8.(g) = (" 1) log(q —
1) for ¢ > 3 and B.(2) = 1. We claim that for g > 3

Be(@)(1—1/q) < Be(qg = D). (GRY;
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It can be checked for ¢ = 3 and for ¢ > 4, it suffices to prove that f(x) :=
is decreasing in x on [3, 0o). We compute the derivative and obtain that

ron 1 x2—2x+2
f(X)——x(x_2)< a2 10g(x—1)—1>,

x(\: 2) log(x )

which is negative for x > 3.

Now fix § > 0 and notice that if s' € [1/g, 1 — §], conditional on {S' =s'}, (S'/(1 —
s'): 2 <i <gq) is distributed as the proportions vector for the (g — 1)-states Curie-Weiss
Potts model on (1 — s')n vertices with B/ = (1 —s" ) < (1 = 1/¢)B < (1 — 1/q)B.(q) <
B:(g — 1). Therefore, for all §; > 0

ol
St—

n (32 <i < g such that

281|51=s1)—>0 (5.2)

as n — oo uniformly in s' € [1/g, 1 — §]. Also uniformly in s € S,, recall that:
1
E[S), — S IS =s]= —dy(s) + 0(n™?),

where dg(s) = —st+ gé (s). It now follows from the uniform continuity of dg(s) and (5.2)
that uniformly in s' € [1/g,1 — 8],

1
Eun[stlﬂ - Srl | Stl =s1] = ;(Dﬁ(sl) +0(1))’

sl _ .l
where Dg(s') = dg(s', q i lq,sl ).

Now if 8 > B,(q), from Proposition 3.1, there exists §,, such that Dg (s") is uniformly
positive in a §,-neighborhood of s*(8). All together we infer that there exists € > 0 such
that uniformly in s' € (s*(8) — 8, s*(B) + 8,) for all n large enough:

E,.,[S' =S 1S =s']>
and also
1
PM(SH_I—SI J ‘Sl—s1>—Pﬂn(St+1_s1+ 41 ‘Sl —>:0(1),

for j € —1,0, 1 where the last inequality follows from the concentration of the conditioned
measure as well as the continuity of the probability to stay put. These two formulas together
imply that

I I
P,, (S;+1 =si+=|si= ) > AP, <s[+l =5l | Sl =51+ n)

for some fixed constant A > 1 for all s' € (s*(8) — 82, s*(B) + 8,) when n is sufficiently
large. Since (S;),>0 is a reversible Markov chain, with u, its stationary measure,

P, (Sl (=5 + ,1175,1 =Sll> =P, (S,IJrl st S =5+ %)7
and therefore, for all s! € (s*(B8) — 82, s*(B) + &)
Mn(S1 =s'+ %) > (S' =),
and hence

1 (S"=5%(B) + &) = A" 11, (' = 5*(B) — &) (5.3)
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Now select the set A ={S; > s*(8) — 8,}. By (5.3), % < A™%" where

dp,A={x € A: P,(x,y) >0 forsome y¢ A}

and P, is the transition kernel of the Glauber dynamics. Since 8 < B.(¢g) and s*(8) — 6, >
1/q we also have u,(A) = o(1) as n — o0o. Therefore Cheeger’s inequality (Theorem 2.5)
immediately implies an exponential lower bound on the mixing time.

The case B > B.(g) is simpler. As the large deviations analysis in Sect. 2.2 shows, we
may find A = {||S — 55 4ll> < 8}, where 3g 4 is defined in (2.4) and 6 > O is small enough
such that limsup,_, .,n~'log u,(dp, A) < 0 and liminf,_,,,n~'log u,(A) = 0. Since sym-
metry implies u,(A) < 1/q (if § is sufficiently small), exponential mixing time follows
immediately from another application of Cheeger’s inequality (Theorem 2.5).

6 Mixing Near Criticality

We now assume B(n) = B,(g) — &(n), with £(n) — 0 as n — oo. Once B (n) approaches B
with n, we no longer have a uniform negative upper bound on the drift to the right of 1/g for
each coordinate. Instead, near s*(8), the drift will be of order &(n), possibly even positive
and hence it will take longer than linear time to get close to € and this may have an effect on
the order of the mixing time and cutoff window. Accordingly, in addition to the coalescence
time analysis near €, one has to obtain sharp asymptotics for the passage time near s*(B).
This is achieved using several propositions which we state in Sect. 6.1. Their proofs will be
deferred until the end of the section in favor of first showing how they are used along with
the previous coalescence analysis to find the mixing time near criticality which gives the
proof of Theorem 2.

Both the analysis and the results in Theorem 2 are qualitatively different, depending
on whether &£(n) decays faster or slower than some threshold rate. Accordingly, we shall
distinguish between two regimes and write:

g£e[CR] if lim n*?£(n) =00, £(n) =o(1)

£ € [NCR] if 0 <liminfn?3&(n) <limsupn®’£(n) < oo ©.D
n—oQ

n— o0
([CR] stands for Cutoff Regime and [NCR] stands for No-Cutoff Regime). For a > 0, define
also

T n n1/2 .
(54 () = T e + v (s V) if§ € [CR]

6.2
e’nt/3 if & € [NCR]. ©2)

Both (6.1) and (6.2) will be used for sequences other than £ as well. We shall also employ
the following notation for hitting times. Given a real-valued process (X,),>o and a number
x € R we shall write

tr=inf{r: X, >x} and 1 =inf{t: X, <x}

X

for the right and left hitting time of X at x. Notice that this notation does not carry an
indication for the process for which ;" is a hitting time and in case this is not clear from the
context, it will be mentioned explicitly.
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6.1 Drift Analysis Near s*(8)
The following proposition states several properties of the function Dg near s*(8).

Proposition 6.1 For all g > 3 the following holds:

(1) The point s*(B) is the unique s € (é, 1] such that Dg (s) = 0.
(2) For k=0,1,..., the functions D} (p) = %Dﬁ (s*(B)) are C*® in a neighborhood of

Bs. Furthermore:

o %D(’;(ﬂs)>0.
e Di(B,) <O.

(3) Forall p > 0, there exists § > 0 such that:

sup{Dﬂ(s): s € <é + 0, 1j|, s—s*(ﬂ)| > p, |8 — Bsl <5} <O0. (6.3)

The next lemma gives sharp asymptotics for the passage time near O for a process with
certain drift assumptions near O (given by (6.4) below). The one coordinate process will fall
into this category if we analyze it near s*(8).

Formally, let ((Z,)7., ; n = 0) be a sequence of discrete time processes. For all n, sup-
pose that (Z;);>0 = (Z; i~ 1s adapted to (F;)}., satisfies n|Z,1, — Z,| € {—1,0, 1} with
probability 1, and -

1
ElZ1 — Z|F )= ;({(’l) +aZ; +bZ) + 0L Z] + Z})) (6.4)

where a > 0, b € R and ¢ (n) is a sequence satisfying {(n) — 0 as n — co. We allow both
¢ € [CR] and ¢ € [NCR], but in the latter case, we assume in addition the existence of d > 0
such that for all n

Var[n(Z1 — Z)IF] 2 d. 65)

Write P, for the probability measure under which this process is defined and starts from zg.

Lemma 6.2 Fix p > O sufficiently small. Then for 7o = —p there exist functions L*, U* :
(=00, 00) — [0, 1] satisfying lim,_, oo L*(y) =lim,, .o, U*(y) = 0 such that for all y,

limsupP,, (1';r > (n) <U*(y). (6.6)
limsupP () <t5%(n)) < L*(y), (6.7)
n—o0

where t;’ is a hitting time for Z. Moreover, if { € [INCR] we can chose U* such that for all
y we have

U(y) < 1. (6.8)

Remark 6.3 The upper (lower) bound in the lemma still holds if (Z,),>¢ satisfies (6.4) with
> (<) in place of the equality sign or if in place of zo = —p we have zo > —p (20 < —p).
Since (Z;);>0 has 0, i% steps this can be shown by a simple coupling argument.
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The next proposition shows that the drift of one coordinate stays close to its upper bound
Dg(+) for sufficiently long time. More precisely, for op € X, 1 > 0,8 > 0, y € [0, 1] let

Kn(@0,1,3,8) =Pay( max _ Dy(8}) = nEq[Sh, = S} F] > 8), (69)

0<6<min{z, r}._}

where 7. is a hitting time for S!. Then,

Proposition 6.4 Suppose that B < q/2 and set oy = 1. Then for any y > é:
(1) Ift(n) = o(n?) and s m)n*t (n)~! — oo then lim,_, o K, (09, t(n), vy, 8(n)) =0.
(2) Ift(n) = yn*?> then for all § > 0 we have

lim limsup K, (00, t(n),y, 8n72/3) =0.

y=>0 poo0o

6.2 Proof of Theorem 2
6.2.1 Upper Bound on Mixing Time
Fix p > 0 small enough and let oy € X, be given. By Proposition 6.1 part (1), we can find
8 > 0 so that

sup{Dg(s): |B—Bsl <8, 1/q+p/2<s<1,|s—s*|>p/2} <-8, (6.10)
where we use s* in place of s*(f). Then by Lemma 2.1 part (1), we have that,

Poy (Tieipy > (2/8)n) = 0(1)

where this and all hitting times below are of S,l. Define now Z, = s* — SI'H,
(s*+p)

(3.1), (3.3) Proposition 6.1 and applying Taylor’s expansion for Dg(s) around s* and then
again for Dj(B) around B, we infer that there exist a > 0, & # 0, b € R such that

. Using

1
El[Ziy1 — Z/|Fi] > ;(an) +aZ?+bZ} + 0(c()Z2 + Z})),

where ¢ (n) = a&(n) + O(£(n)>+n~") and also (6.5) holds (if needed), since the probability
of choosing any new color at time # + 1 is bounded above and below, uniformly in » and ;.
Hence by Lemma 6.2 and Remark 6.3, for all y

Py, (t(:,_p) = Torap) > t}f"’(n)) <U*(y)+o(l).
Now, using the relation between ¢(n) and &(n), it is not difficult to verify that tﬁ’“ (n) <

tf’,“’(n) for all y’, where a’ = wa and y = F(y’) for some F such that y — oo if y’ — oo.

From Lemma 2.1 part (3), applied to the process (S[‘H, —(s*—p): t >0),it follows
(s*—p)
that with 1 — o(1) probability SIIH_ stays to the left of s* — p/2 for all ¢ < n?. Then we
(s*—p)

may apply Lemma 2.1 part (1) to the process (Sz1+ _ —{/q+p/2): t =0) to conclude
(s*—p)

Poy (Tt~ Tirmp) > 2/8)n) = 0(1).

Finally another application of Lemma 2.1 part (3) gives S IIH_ <1/q+pforallt <n?
(g~ 1+0/2)
with 1 — o(1) probability. For the [CR] case, we use union bqound (over all coordinates):
P, (SIEV{,,M) ¢ S"T) <qU*(y) +o(D). (6.11)
y/
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For the [NCR] case, define TV = Tty A0d t® =inf{t > t*D: Sk < g~ 4 p/2} for

k > 1. Then, by inductive conditioning we obtain
Poy(r® <£5°(m): k=1,....9) = (1= U*())" +o(1).

Since also Stkﬂ(k> <1/q+pforallk e[l,q],t <n?with 1 — o(1) probability, we arrive to

Pgo(sti.’a/(n) ¢S <1—(1-U1)" +o(l). (6.12)

We now re-employ the overall coupling in Sect. 4.6, but in view of (6.11) and (6.12) we
change step (1) and instead of running the two chains for y;n time, we run them for ¢tV (n) =

tf}“/ (n). As (6.11), (6.12) show, we can choose y’ large enough such that P{%C(Sﬁﬂ/( ) ¢
y

871) < € for n sufficiently large. The remaining steps in the coupling are left unchanged
and we choose the same parameter values, as in the proof of Theorem 1.

Using the analysis of the modified step (1) given by (6.11) and (6.12), together with the
analysis in Sect. 4.7 of the remaining steps—which carries over (uniformly in § near B;(q)),
since it only required 8 < B.(g), we recover (4.14), namely

”Pt’o (075 (ny € *) — Mn ”TV < 6e.
The time is now given by
1) =121 () + 157 (),

for some y > 0. Since oy is arbitrary and € can be made arbitrarily small, by having y,
y’ large enough, this completes the proof for the upper bound in (1.4) and (1.5) with o, =

w//aa.
6.2.2 No Cutoff in NCR Case

Using the modified overall coupling as introduced above, we obtain from (4.14), (6.12) and
(6.8) for any y’ and sufficiently large y
||]P>U() (0[(5)(n) S ') — Mn ||TV < 1- €,
for all oy, large enough n and some € > 0. Then, since in the [NCR] case
5 o ’a/ E’ar
1) =" (n) + 1" () <15 (),

this shows that there is no cut-off.
6.2.3 Lower Bound on Mixing Time.

Fix p > 0 small enough and start with oy = 1—the all ‘1’ configuration. Define:
57) n~'&(m)~12A(n) if § € [CR],
n)—
8in~%3 if £ € [NCR],
where A(n) is a sequence tending to oo sufficiently slowly and 6; > 0. Set
N =inf{t: Dg(S!) —nE[S},, — S} | F] > s(m)}
and define the process ¥, which is equal to S! up to time N, but after this time evolves
like a birth-and-death processes with &1/ increments and drift —n~! D,g(S,l). Then (Z, &
s* — Y, t > 0) satisfies

E(Z1 — Zi|F < = () +aZ? +bZ3 + 0(c(n) 22 + Z})),

S| -
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with a, b, a as in the upper bound case, but with ¢(n) = a&(n) + 8(n) + O(En)> +n~")
and condition (6.5) holds (if needed) as before. Then, using Lemma 6.2 and Remark 6.3,
we have for n large enough Py (7,7 < 5%(n)) < 2L*(y), where 7, is a hitting time for Z
and y € R. As before, it is not difficult to verify that if A(n) is increasing slowly enough,
t59(n) = 1" (n), where y = F(y') satisfies y — —oo if y’ — —oc.
Now define T = inf{s: S, € S} and ' as ‘L';r, only with S/ in place of ¥;. Then
Poo (T < tﬁ’,a (n)) < I[”(,O(zrp+ < tﬁ;a (m) +Poy (N <7’ A ti;a (n))
<2L* () + Ku(00. 25" (). 5 = p. 8(n))

where K, is defined in (6.9). Then, if p is sufficiently small, we can use (4.2) for E starting
from time 7 to obtain for all » > 0 and y":

r
<||Sta1(n)+t ( )||2 < ﬁ)

]P)C'O (T < t (I’l)) + ]P)C'O <||Stdl (n)-%—ts « (n )”

T (n))
<2L*(y) + K, (ao, “(n), s* —p, 5(n))+0(( —Cyy" ) 2).

Using Proposition 6.4 for the middle term, the last inequality gives (4.3) with tj,‘, (n) +

ti}a’ (n) in place of ¢! (n). The remaining of the proof is identical to the subcritical case and
this shows the lower bound for both parts of Theorem 2 with o, =7 //aa.

6.3 Proofs for Sect. 6.1

Proof of Proposition 6.1 First observe that for all 8, Dﬁ(é) =0 and for all s > é,

L sy =4 ( + 1 ) 0
—_— S)=—\|—¢§ > U.
dp " ap 14 (g — De 6D

Now since Dg(s) is smooth as a function of s and 8 and dy(s) = —s + ql it follows that
Bs > 0. We have that

_M(S_L)
2Bge T 1
28 1 ’
(14(g— De a1072)y2

dD() 1+
— s) =—
ds P

’ (6.13)
& 4P D1 - (g — e T
— Dg(s) =
ds? -4 6- D3
(= D(1+ (g — e 1074))3
and so
d » & 482(q —2)
—D =—14— —D =— >0, 6.14
DO =T @O L Ty T ©19
q q

which implies that d;2(s) > 0 when s € (é, ql + ¢€) for some small €. This implies that
Bs < q/2. It follows that

d
—DﬂS(S) <0,

ds

1
s=y
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and so Dg(s) <O when 8 € [Bs, Bs +€]and s € (ql, é + ¢€) for some small €. It follows by

compactness then that for some é + € <s*(Bs) <1 that Dg (s*(8,)) = 0. By the definition
of B, and since Dg(s) is smooth we have that

d d’
— Dy, (s) =0, — Dy, (s) <0. (6.15)
ds s=5*(Bs) ds s=5*(Bs)
The equation % Dg, (s) =0 is equivalent to
2Bsq (¢
2pge” 10D = (14 (g — De D),

A . 7 Y . .
which is a quadratic equation in e ¢-! “~4) and hence has at most 2 solutions which we

denote sy, s, with 51 < s,. Since %Dm (0) < 0 then Dg, (s1) <0 and so s*(B,) = s5,. In
particular this implies that s*(B;) is the unique s € (5, 1] such that Dg (s) = 0. Also it
follows that < 4 Dp, (s) > O for s € (s1, s*(B;)) and that there exists s’ e (s1, s*(By)) such that

Dﬂ? (s = 0 Since by Eq. (6.13) there is at most one s such that D/gY (s) =0 it follows
that

dZ

75 < 0.

s=s*(Bs)

——Dg,(5)

Hence by the Inverse Function Theorem s*(8) is a smooth function of 8 when § is in a
small neighborhood of ;. Then we have that

d . .._d .
%Do(ﬁs)—@D,s(s (,Bs))‘ﬂ_ ( (ﬂ)‘ > Dm(s)é_s*(ﬂj)
d
= (('35))‘;3—/33-
>0,

since £ Dy (5)|s—s*(s,) = O which completes the proof of the second part.
ds 7 PBs (Bs)
We now turn to prove the third part. As we have observed Dg (s) is a smooth function
satisfying
2

d
=0, and ——Dg(s)

752 <0.

s=5*(Bs)

d
Dﬂs (S*(lgr)) =0, aDﬁ“ (s)

s=5%(Bs)
Therefore, we deduce that for any p > 0, there exists §; > 0 such that

1
Dpg, (s) < =28, forallse{s: |s—s*(ﬂ5)‘z,0/2,s€(——l—p,l“. (6.16)
q

Since %Dﬂs (8)]s=s*(gy <0 for all p > 0, there exists 8, > 0 such that
|s*(B) = s*(B)| < p/2 forall |8 — | <&,
Combined with (6.16), it follows that
Dg (s) < —28;, forall [s—s*(B)|=p and |B— Bl <5 (6.17)

Now that Dg(s) can be viewed as a continuous function of (8, s) and by compactness,
there exists 83 > 0 such that |Dg(s) — Dg (s)| < for all s € [1/g, 1] and |8 — B,| < 83.
Combined with (6.17), it completes the proof by taking § = §; A 8, A §3. O
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Proof of Lemma 6.2 We do not lose anything by assuming that

ElZ 41 — Z:|Fi] = f(Z);

1 (6.18)
ﬂ@z;@mumf+bf+aﬂmwwm@)

for some a > 0, b, ¢ with py = 2p and that once Z, exits [—pg, + 0] it is stopped. Indeed,
having f vanish outside of [—py, +po], does not change the asymptotics of the passing time.
Clearly, this is the case for z > 4py. For z < —py, it follows from

P_, (1: ~

T < tlf*"(n)) =o(1), (6.19)
for all y, which is a consequence of Lemma 2.1 part (3) since the drift of Z, is at least < on
[—po, —p] for some positive ¢ uniformly in n (if p is small enough).

As for replacing the error term in (6.4) by ¢Z?#, as the proof below shows, the functions
U*, L* in the lemma restricted to condition (6.18) can be chosen to be continuous in a in a
small interval [ay — €, agp + €] and the limits (6.6), (6.7) hold uniformly in a in this interval.
This together with Remark 6.3 implies the existence of U*, L* under which (6.6), (6.7) hold
in the general case (6.4) with ¢5¢*?¢®) (). Now, it is not difficult to see that the latter

is bounded above and below by tfi’c (n) for some C > 0 and hence (6.6), (6.7) hold with

té*“ (n). Similar considerations apply for (6.8).
Set

:
np(z)zfo f(x)dx and Y, =W (Z,) —¥(Zy) —t.

The motivation behind the above definitions comes from a continuous time deterministic
analog of (6.18) in the form of an ODE

20 = f(z(0) (6.20)
for which z(t) = W ~!(¢t — 1,) is a solution (roughly speaking Y; measures how far behind or
ahead “in schedule” Z, is, judging from its position).

Start with the [CR] case and set

¢ I3 T n ¢ n1/2
) =1"(n) = —= ——; wt(n)= ———vVn
’ Va T 54 (n)
In the deterministic setting the time it takes for z(¢) to pass from z(0) = —p to p is
e ndx
V(p)—¥(—p)= =1"(n) + O(n)

_p () +ax? + bx3 + cx*

if p is small enough. This will be shown in Proposition 6.5 below. Thus, bounding the
passage time r; around 7% (n) can be achieved by bounding |Y, iagyl.

Accordingly, let Y; = M, 4+ A; be the Doob-decomposition of Y;, with M, a zero-mean
martingale and A, the predictable process. The next proposition will allow us to bound Y;.
The proof of this proposition will be deferred to the end of this section.

Proposition 6.5 If p is small enough and ¢ € [CR] then

(1) W(p) = W(=p) =1"(n) + O(n).
(@) EMZ, =0 m?).

) Aga, = o(w® (n)) with probability 1.
Y
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Now using the monotonicity of ¥ in [—pg, +po] we have
P_, (t; = tf’“(n)) = P*p(ztﬁ”(n) <p)
< P—/’(Yz,i'“(n) <t5%n) — z)‘f*“ (n) + O(n))
o < —yw'(n) + 0 (n) + o(w’ (n)))
- ( O ! () )2
"\ +o)wim) )’

where the last inequality is a second moment bound. This shows (6.6). For the lower bound,
if —y is large enough, we may write

S ]P)_p (Mtf/'.a

P_,(t) <t59m) =P_,(3t <t;*(n): Z, = p)
<P_,(IF< t}f“’ (n): Y, = 15%(n) — 15 (n) + 0(n))
< ]P_p(EIt < t}f‘“(n) ‘M, > —ywt(n) + 0n) + o(wf(n)))
0 w*(n))
T (=y+O0M)wi(n)
where the last inequality follows from Doob’s inequality. This shows (6.7)

Next, we address the [NCR] case. We can no longer use the means analysis (6.20)
throughout the entire passage interval [—p, p] as Z, is not concentrated around its mean
near 0. Accordingly, we analyze the passage time in each of the following segments sepa-
rately:

(o, =rn P [=rn™ P rn™ P [+ 40],

for some r > 0 to be chosen later.
We start with the upper bound. For the sequel, let w = rn
follow if we show the following:

~1/3_ The upper bound will

(1) Segment [—p, —w]. For any y,
lim limsupP_, (%, > 15 (n)) =0. (6.21)

= psoo "
(2) Segment [+w, +p]. For any y,
lim limsupP,, (" > £5“(n)) = 0. (6.22)

=0 psoo
(3) Segment [—w, +w]. For any r > 0, there exists u : R — [0, 1) such that
limsupP_, (z,f > 15“(n)) <u(y) <1, (6.23)
n—o0

for all y. Furthermore, u(y) — 0 as y — oo.

All are hitting times for Z. Indeed, by first choosing large enough r and then choosing large
enough y both (6.6) and (6.8) will follow by multiplication. We proceed to prove each of
the above statements.

Segments [—p, —w], [+w, +p]. Here we can use the means analysis as in the [CR] case.
As before, we do not change the asymptotics of the passage time through these intervals, if

we assume that f(z) in (6.18) satisfies:

1 2 3., 4
f@)= ;({(n) +az" +bz" +cz )1[—ﬂos—w0]U[+wo,+ﬂo](Z)
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where a, b, ¢, py are as before, wy = w/2 and once Z, exits [—pg, —wo] U [+wq, +00] it is
stopped. Indeed this follows from the same reasoning and in addition since for any y

4 - ¢.a —
lim P, (7, <;(n)) =0,
uniformly in n (large enough) as it follows from Lemma 2.1 part (2) since the drift of Z; is
non-negative on [wy, w].

We use the same definitions for Y;, M, and A, as above. In place of Proposition 6.5 we
have

Proposition 6.6 Assume ¢ € [NCR]. There exists k(r) satisfying k(r) — 0 as r — 0o such
that for any p small enough, r large enough, n large enough and all t:

(1) W (—w) =¥ (—p),¥(p) — ¥ W) <k@r)n*?.
2) ]EMt2 < k@r)tn*?3.
3) |A;| < k(r)t with probability 1.

The proof is again deferred. Now, as before
P_, (rfw > t}f’“(n)) < P—P(Zrﬁ""(n) < —w)
<Py (Yag, < ¥(=w) =¥ (=p) —1;"(n))
<P, (Mt;ﬂ(n) < k(r)n*? +k(r)e’n*? — eyn4/3)
Y
- k(r)e”
T (1= k@)’ —k(r))?

where the last inequality is Chebyshev. This goes to zero as r — oo for any y. This shows
(6.21). Similarly,

(6.24)

P, (1';' > lﬁa(”)) = ]P)w(zrﬁ’”(n) <P
5 k(r)e?
= (1= k(r))er —k(r))?

and this shows (6.22).

Segment [—w, w]. Here we still assume (6.18), but instead of absorbing Z; at the boundaries,
we shall now suppose that Z, evolves like a symmetric random walk with 4-n~" steps, once
it exits [—po, +00].

We first show that u can be chosen to vanish at infinity. Consider the process U, = Uy —
(Z, — Zy + 8n=>131), for 8 > 0 with U, to be chosen later and set N = inf{t: U, < 0}.
Then, by the definition of the [NCR] regime for n large enough U,,y is a non-negative
supermartingale satisfying the requirements of Lemma 2.3 and hence

]P)fu) (TJ > lﬁ’a (n)) = wa (Zt <w Vl S t]f‘a (n))
< P_w(Ut > U() + Z() — (w 4+ 861/”—1/3) vt < [}f’a(l’l))
=P_,(N >1;(n))
< 4w +8e?n~'? +w)

T Jdnler/2p2/3
~1/3

<C@r+1e7?

where we choose Uy = w + de¥'n — Zy and 6§ = e 7. The last expression can be made
arbitrarily small by taking y large enough, uniformly in » if it is sufficiently large.
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To show that u can satisfy u(y) < 1 for all y, we have to show that Z can cross from
—w to w in t)f’“ (n)-time for arbitrarily small y. If p is small and n is large, then X, =
n(Z, — (—w)) satisfies the conditions in Lemma 2.2 with § = ¢{(n)~ and a = d. Therefore

P_y(r) > 15%(n) = P_,y(3r <15“(n): X, = 2rn*?)
> Cyexp{—Cy(2re™7/? +e’”/2§(n)_n2/3)2} +0(n?")

which is positive for all y, once n is large enough. This proves (6.23) and concludes the
proof of the upper bound.

To show the lower bound in the [NCR] case, set V, = Z, — 8n~>3t + w and choose
8,r > 0 such that V, A has non-positive drift whenever V, A = 0. Then,

P, (rp+ < t}f'"(n)) <P_,(3r< t(‘”(n) (Zi = w)
<P_,(3r <t5%(n): V0 =2w—de"n"'?)
=P_,(3r <tf*(): V. = (2r — 8" )n" %)
and part (2) of Lemma 2.1 shows that the last expression goes to 0 as ¥ — —oo uniformly
in n (large enough). This proves (6.7) and completes the [NCR] case. O

It remains to prove Propositions 6.4-6.6.

Proof of Proposition 6.4 Let t* = mm{ty , t(n), min;>, min{t > 0: St" > 5}}. Fix some 2 <
i < j<gq and set

Y, =5 -]
Let Uiy =Y, — Yy — Eq [Y; — Y, | Fi—1] and then since |Y; — Y;_| < % we have that
|U;| < %. Define the process Z; by Zy =0 and

Z; — Z;y :=sign(Z; 1) sign(Y,_)U;

where
. 1 x=0,
siga(x) = { -1 x<0.
With this definition Z; is clearly a martingale and since |Z; — Z;_;| < < =, then an =< %
and so by Doob’s maximal inequality,
E,, [0 max |z,|] <2, 22, < % (6.25)

Now when 7 < t* we have that S/, S/ < é and so
i_ 1 J_1 . ;
[0 — 2P| <2p]s) — ]|,
By Jensen’s inequality > 7_, zﬂ(sr 7
Es, [Sign(Y,_l)(Y, =Y ]:r—l]
A ] eBSi=D _ 28I =D) A .
=E, |sign(S'" , —S’ ,)— . — (s, -5/
0|: g ( t—1 t—l)n< ZZ:ICZ’S(SF%) ( -1 t—l))]
2 .
_1- ’3 |si — 87| <o. (6.26)

> g so
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Now when |Y,_;| > % we have that |Y;| —|Y;—| = sign(¥,—;)(Y; — Y,_;) and we always have
|Zi| = | Zi1| = sign(Z,-)(Z, — Z,—1) = sign(Yi—1) U,y
with equality when sign(Z,) = sign(Z,_;). Hence it follows that when |Y,_;| > % andr < 7%,
Y| = Y| = sign(Y,—)(Y; — Y1)
= sign(Yr—)U;—
<I1Zi] = Zi|

where the first inequality follows from Eq. (6.26). It follows by induction that | Z,| > |Y;| — %
for all + < t*. In particular we have by Eq. (6.25) that

Si— sg'|]2 = 0<tr(z—’;)) =o(1). 6.27)

By Markov’s inequality with probability tending to 1 we have that |S%, — S{*| = o(1) for
every pair 2 <i, j < g. Now by construction Srl* >y — % so with high probability we have

IEOO[ max max
2<i<j<qO0<t<t*

_ 1
that §7. < é - )qT{f +o(l) < é which implies that with high probability t* = min{z (n), r),‘}.
Now, by Taylor series expansions,

1-s!

q .
0< (Zezﬁ*) —(q - e’
i=2
! , 1-! , 1-5M\*
§Z<2ﬂS, —28 o >+ZO<<2,3S, —28 1 ) )

q
i=2 i=2

= 0(( max ISf—Sfl)z)’
2<i<j<q

where the first inequality is by Jensen, and we have used the fact that Y 7 , S’ =1 — S'. It
therefore follows that with high probability for all 0 < ¢ < max{¢(n), ry’} that

nEo[S! = S\ | Fii] = c

= Dy(S! ) - 0(( max |$/ — S,f\)2>

2=5i<j=q

and hence that

max Dg (Stl_l) —nlEy, [Stl -, | Fit] < 0(( max max

O<t<t* 2<i<j<qO0<t<t*

. S \2
s=sl))

which combined with Eq. (6.27) and Markov’s inequality completes the result. ]

Proof of Proposition 6.5 Starting with part (1),

Y(p) —¥(—p)

" ndx +/”( n B n )d
), tm) +ax? _p\¢(m) +ax?  ¢(n)+ax?+bx3+cx? x
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2n _if pa ) f"( bx? 4+ cx* ( (bx> + cx*)? ))
= — d
Ja;(n) o (J;(n) LT Cm e O\ G ra )
T Prext (bx? + ext)?
= Va e TOMH 0( / (‘ T >">

=15n)+ 0n) + O<n/p dx) =1"(n) + O(n).
o

To prove part (2), we use the law of total variance:

Var M, =VarE[M,|F,_] + EVar[M,|F,_]
=VarM,_ + EVar[Y,|F,_]
<VarM, ; + max |W (z)| EVarlZ, — Z;-1|F-1]

lz=2p

n? 1
<VarM
arM, | +——— (n) n2
Hence by induction
EM%2, =VarM e ) _ 0 (wf(n)?)
e = 0 =y T '

As for part (3),
At+| - At :]E[Yt+| - Yt|-7:t]
—E[¥(Zi1) — ¥ (Z)IF] -
=E|W'(Z)(Zir1 = 20+ O (max | ¥/ @) (Zis — 27)I17,| -
lz|=2p

=V (Z)E[Zis) — Z/|Fi] + 0<‘I‘H%X |W1/(Z)‘n-2) 1
z|=2pg

_ " -2\ _ 1
= 0(‘111‘1§az)§7|l1/ (z)|n ) = 0<7n§3/2(n))’

where the last inequality follows from

n|2az + 3bz% + 4cz’|
(&) +az? +bz3 + cz*)?

d2
—Y(7)| =
‘ = (Z)‘

_ nCilz| _ ( n )
T M +Cz? T\ )

if p is small enough. Then again by induction, we conclude that

“( )

Proof of Proposition 6.6 If r is large enough and p is small, we have f(z) > n~'(a/2)z?
for all wy < |z| < po, where as before wy = w/2 and py = 2p. This immediately gives part
(1) with k(r) = Cr~ 1.

The proof for parts (2), (3) are similar to the ones in Proposition 6.5. This time the bounds
on the derivatives become

2 _ —_
max |lI/’(z)| < Cr~*n'9s3; max ’lI/"(z)| <Cr73n?
wo/2<|z|<2pg wg/2<|z|<2pg
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Proceeding by induction as before, we obtain (3), (2) with k(r) = Cr~* and k(r) = Cr—3
respectively. |

7 Essential Mixing

Proof of Theorem 4 As the reader can verify, most statements in Sects. 3 and 4 hold when
B < B.(g) and even B < ¢/2 (the restrictions on B are indicated before each statement
there). The only time S < Bs(q) < B.(gq) is required is in step (1) of the overall coupling,
where the condition ensures that the drift of each single coordinate S is negative in all
(1/g, 1], which, in turn, implies that for any initial configuration, after t = O (n) time, o; €
X?, which is a necessary starting point for the couplings that follow.

Now, if 8 > B,(q), but still 8 < B.(g), we may replace this step, with the requirement
that oy is initially chosen from 5, = 2. The analysis of the overall coupling will remain
the same, with the coalescence time being even smaller (but just by a linear term, which

can be absorbed in the cutoff-window term). Thus, the restricted mixing time tl\jI‘TFX(s y () will

be upper bounded as before. In addition, the lower bound in Sect. 4.1 will also hold for
Zn
[MIX(e) )
It remains to show that X, \ X, has an exponentially decreasing probability under w,,.
This follows immediately from the large deviations analysis in Sect. 2.2. If 8 < B.(g), the
rate function I , is strictly positive away from € and in particular there exist C; > 0, C, > 0,

such that

(n), since as initial configuration, we may take any og € dp, X, (p) for p > 0.

U (Za\ Z) = 7,(S, \ 81) < Cre™ ",

This concludes the proof of the theorem. ]
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