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Abstract The goal of this paper is to review some of the main ideas that emerged from
the attempts to confirm mathematically the predictions of the celebrated Parisi ansatz in
the Sherrington-Kirkpatrick model. We try to focus on the big picture while sketching the
proofs of only a few selected results, but an interested reader can find most of the missing
details in Panchenko (The Sherrington-Kirkpatrick Model, Manuscript, 2012) and Talagrand
(Mean-Field Models for Spin Glasses, Springer, Berlin, 2011).
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1 Introduction

The Sherrington-Kirkpatrick Model In 1975, Sherrington and Kirkpatrick [37] introduced
a mean field model for a spin glass—a disordered magnetic alloy that exhibits unusual mag-
netic behavior. Given a configuration of N Ising spins,

σ = (σ1, . . . , σN) ∈ ΣN = {−1,+1}N,

the Hamiltonian of the model is given by

HN(σ) = 1√
N

N∑

i,j=1

gijσiσj , (1)

where (gij ) are i.i.d. standard Gaussian random variables, collectively called the disorder
of the model. The fact that the distribution of HN(σ) is invariant under the permutations
of the coordinates of σ is called the symmetry between sites, which is what one usually
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understands by a mean field model. The Hamiltonian (1) is a Gaussian process with the
covariance

EHN
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that depends on the spin configurations σ 1, σ 2 only through their normalized scalar product

R1,2 = 1

N
σ 1 · σ 2 = 1

N

N∑

i=1

σ 1
i σ 2

i , (3)

called the overlap of σ 1 and σ 2. Since the distribution of a Gaussian process is determined
by its covariance, it is not surprising that the overlaps play a central role in the analysis of
the model. One can also consider a generalization of the Sherrington-Kirkpatrick model, the
so-called mixed p-spin model, which corresponds to the Hamiltonian

HN(σ) =
∑

p≥1

βpHN,p(σ ) (4)

given by a linear combination of pure p-spin Hamiltonians

HN,p(σ ) = 1

N(p−1)/2

N∑

i1,...,ip=1

gi1...ip σi1 · · ·σip , (5)

where the random variables (gi1...ip ) are standard Gaussian, independent for all p ≥ 1 and
all (i1, . . . , ip). Similarly to (2), it is easy to check that the covariance is, again, a function
of the overlap,

EHN

(
σ 1

)
HN

(
σ 2

) = Nξ(R1,2), where ξ(x) =
∑

p≥1

β2
pxp. (6)

One usually assumes that the coefficients (βp) decrease fast enough to ensure that the pro-
cess is well defined when the sum in (4) includes infinitely many terms. The model may also
include the external field term h(σ1 + · · · + σN) with the external field parameter h ∈ R. For
simplicity of notation, we will assume that h = 0, but all the results hold in the presence of
the external field with some minor modifications. One of the main problems in these models
is to understand the behavior of the ground state energy minσ∈ΣN

HN(σ) in the thermody-
namic limit N → ∞. In a standard way this problem can be reduced to the computation of
the limit of the free energy

FN = 1

N
E logZN, where ZN =

∑

σ∈ΣN

exp
(−βHN(σ)

)
, (7)

for each inverse temperature parameter β = 1/T > 0, and a formula for this limit was pro-
posed by Sherrington and Kirkpatrick in [37] based on the so-called replica formalism. At
the same time, they observed that their replica symmetric solution exhibits “unphysical be-
havior” at low temperature, which means that it can only be correct at high temperature.
Several years later, Parisi proposed in [32, 33], another, replica symmetry breaking, solution
within replica theory, now called the Parisi ansatz, which was consistent at any temperature
T > 0 and, moreover, was in excellent agreement with computer simulations. The Parisi
formula for the free energy is given by the following variational principle.
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The Parisi Formula A basic parameter, called the functional order parameter, is a distribu-
tion function ζ on [0,1],

ζ
({qp}) = ζp − ζp−1 for p = 0, . . . , r, (8)

corresponding to the choice of r ≥ 1,

0 = ζ−1 < ζ0 < · · · < ζr−1 < ζr = 1 (9)

and

0 = q0 < q1 < · · · < qr−1 < qr = 1. (10)

Notice that ζ carries some weight on r − 1 points inside the interval (0,1) and on the points
0 and 1. In general, one can remove the atoms q0 = 0 and qr = 1 and allow ζ0 = 0 and
ζr−1 = 1, but these cases can be recovered by continuity, so it will be convenient to assume
that the inequalities in (9) are strict. Next, we consider i.i.d. standard Gaussian random
variables (ηp)0≤p≤r and define

Xr = log chβ

(
η0ξ

′(0)1/2 +
∑

1≤p≤r

ηp

(
ξ ′(qp) − ξ ′(qp−1)

)1/2
)

. (11)

Recursively over 0 ≤ l ≤ r − 1, we define

Xl = 1

ζl

log El exp ζlXl+1, (12)

where El denotes the expectation with respect to ηl+1 only. Notice that X0 is a function
of η0. Finally, we let θ(x) = xξ ′(x) − ξ(x) and define the so-called Parisi functional by

P(ζ ) = log 2 + EX0 − 1

2

∑

0≤p≤r−1

ζp

(
θ(qp+1) − θ(qp)

)
. (13)

The Parisi solution predicted that the limit of the free energy is equal to

lim
N→∞

FN = inf
ζ

P(ζ ), (14)

where the infimum is taken over all distribution functions ζ as above or, in other words,
over all r ≥ 1 and sequences (9) and (10). The replica method by which the formula (14)
was discovered did not give a definite interpretation of the f.o.p. ζ or the functional (13), but
a more clear picture emerged in the physics literature (a classical reference is [22]) during
the subsequent interpretation of the Parisi ansatz in terms of some physical properties of the
Gibbs measure of the model,

GN(σ) = exp(−βHN(σ))

ZN

, (15)

where the normalizing factor ZN defined in (7) is called the partition function. To describe
this picture, let us first explain a modern mathematical framework that is used to encode
relevant information about the model in the thermodynamic limit.

Asymptotic Gibbs’ Measures Notice that, due to the special covariance structure (6), the
distribution of the Gaussian Hamiltonian (4) is invariant under orthogonal transformations
of the set of spin configurations ΣN , which means that, given any orthogonal transformation
U on R

N , we have the equality in distribution
(
HN

(
U(σ)

))
σ∈ΣN

d= (
HN(σ)

)
σ∈ΣN

.
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As a result, we are just as interested in the measure GN ◦ U−1 on the set U(ΣN) as in
the original Gibbs measure GN . To encode the information about GN up to orthogonal
transformations, let us consider an i.i.d. sequence (σ l)l≥1 of replicas sampled from GN and
consider the normalized Gram matrix of their overlaps

RN = (
RN

l,l′
)
l,l′≥1

= 1

N

(
σ l · σ l′)

l,l′≥1
. (16)

It is easy to see that, given RN , one can reconstruct the Gibbs measure GN up to orthog-
onal transformations, because, every time we observe an entry Rl,l′ equal to 1, it means
that the replicas l and l′ are equal. This way we can group equal replicas and then use
the law of large numbers to estimate their Gibbs weights from the frequencies of their ap-
pearance in the sample. Since the Gram matrix describes relative position of points in the
Euclidean space up to orthogonal transformations, the overlap matrix RN can be used to
encode the information about the Gibbs measure GN up to orthogonal transformations. For
this reason (and some other reasons that will be mentioned below), the Gibbs measure in the
Sherrington-Kirkpatrick and mixed p-spin models is often identified with the distribution of
the overlap matrix RN . Since the overlaps are bounded in absolute value by 1, this allows us
to pass to the infinite-volume limit and consider a set of all possible limiting distributions of
RN over subsequences. An infinite array R with any such limiting distribution inherits two
basic properties of RN . First, it is non-negative definite and, second, it satisfies a “replica
symmetry” property

(Rπ(l),π(l′))l,l′≥1
d= (Rl,l′)l,l′≥1, (17)

for any permutation π of finitely many indices, where the equality is in distribution. Such
arrays are called Gram-de Finetti arrays and the Dovbysh-Sudakov representation [15] (see
also [24]) guarantees the existence of a random measure G on the unit ball of a separable
Hilbert space H such that

(Rl,l′)l 
=l′
d= (

σ l · σ l′)
l 
=l′ , (18)

where (σ l) is an i.i.d. sequence of replicas sampled from the measure G. We will call such
measure G an asymptotic Gibbs measure and think of it as a limit of the Gibbs measures GN

over some subsequence, where the convergence is defined by way of the overlap arrays, as
above. The reason why the diagonal elements are not included in (18) is because in (16) they
were equal to 1 by construction, while the asymptotic Gibbs measure is not necessarily con-
centrated on the unit sphere. This mathematical definition of an asymptotic Gibbs measure
via the Dovbysh-Sudakov representation was first given by Arguin and Aizenman in [3].
We will now describe (reinterpret) various predictions of the Parisi ansatz in the language of
these asymptotic Gibbs measures.

Order Parameter and Pure States First of all, in the work of Parisi, [34], the functional
order parameter ζ in (8) was identified with the distribution of the overlap R1,2 under the
average (asymptotic) Gibbs measure,

ζ(A) = EG⊗2
((

σ 1, σ 2
) : R1,2 = σ 1 · σ 2 ∈ A

)
, (19)

and the infimum in the Parisi formula (14) is taken over all possible candidates for this
distribution in the thermodynamic limit. The fact that the infimum in (14) is taken over
discrete distributions ζ is not critical, since the definition of the Parisi functional P(ζ ) can
be extended to all distributions on [0,1] by continuity. Another important idea introduced in
[34] was the decomposition of the Gibbs measure into pure states. This simply means that
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an asymptotic Gibbs measure G is concentrated on countably many points (hl)l≥1 in the
Hilbert space H , and these are precisely the pure states. It was also suggested in [34] that
it is reasonable to assume that all the pure states have equal norm, so the asymptotic Gibbs
measure G is concentrated on some non-random sphere, G(‖h‖ = c) = 1. This implies, for
example, that the largest value the overlap can take is R1,2 = c2 when the replicas σ 1 = σ 2 =
hl for some l ≥ 1 and, since this can happen with positive probability, the distribution of the
overlap has an atom at the largest point of its support, ζ({c2}) > 0. We will see below that,
due to some stability properties of the Gibbs measure, the pure state picture is correct if the
distribution of the overlap has an atom at the largest point c2 of its support, otherwise, the
measure G is non-atomic, but is still concentrated on the sphere ‖h‖ = c.

Ultrametricity Perhaps, the most famous feature of the Parisi solution of the SK model
in [32, 33], was the choice of an ultrametric parametrization of the replica matrix in the
replica method, and in the work of Mézard, Parisi, Sourlas, Toulouse and Virasoro [20, 21],
this was interpreted as the ultrametricity of the support of the asymptotic Gibbs measure G

in H , which means that the distances between any three points in the support satisfy the
strong triangle, or ultrametric, inequality

∥∥σ 2 − σ 3
∥∥ ≤ max

(∥∥σ 1 − σ 2
∥∥,

∥∥σ 1 − σ 3
∥∥)

. (20)

When the Gibbs measure is concentrated on the sphere ‖h‖ = c, we can express the distance
in terms of the overlap, ‖σ 1 −σ 2‖2 = 2(c2 −R1,2), and, therefore, the ultrametricity can also
be expressed in terms of the overlaps,

R2,3 ≥ min(R1,2,R1,3). (21)

One can think about ultrametricity as clustering of the support of G, because the ultrametric
inequality (20) implies that the relation defined by the condition

σ 1 ∼d σ 2 ⇐⇒ 2
∥∥σ 1 − σ 2

∥∥ ≤ d (22)

is an equivalence relation on the support of G for any d ≥ 0. As we increase d , smaller clus-
ters will collapse into bigger clusters and the whole process can be visualized by a branch-
ing tree. For a given diameter d ≥ 0, one can consider the equivalence clusters and study
the joint distribution of their Gibbs weights. In the case when d = 0, which corresponds to
the weights of the pure states (G({hl}))l≥1, this distribution was characterized in [20] using
the replica method, but the same computation works for any d ≥ 0. More generally, one can
consider several cluster sizes d1 < · · · < dr and for each pure state hl consider the weights
of the clusters it belongs to,

G
(‖σ − hl‖ ≤ d1

)
, . . . ,G

(‖σ − hl‖ ≤ dr

)
.

Again, using the replica method within the Parisi ansatz, one can study the joint distribu-
tion of all these weights for all pure states, but the computation gets very complicated and
not particularly illuminating. On the other hand, the problem of understanding the distri-
bution of the cluster weights is very important, since this gives, in some sense, a complete
description of the asymptotic Gibbs measure G. Fortunately, a much more explicit and use-
ful description of the asymptotic Gibbs measures arose from the study of some related toy
models.

Derrida’s Random Energy Models In the early eighties, Derrida proposed two simplified
models of spin glasses: the random energy model (REM) in [10, 11], and the generalized
random energy model (GREM) in [12, 13]. The Hamiltonian of the REM is given by a



The Sherrington-Kirkpatrick Model: An Overview 367

Fig. 1 The leaves α ∈ N
r index the pure states. The rightmost path is an example of p(α) in (24) for one

leaf α. The figure corresponds to what is called “r-step replica symmetry breaking” in the Parisi ansatz

vector (HN(σ))σ∈ΣN
of independent Gaussian random variables with variance N , which is a

rather classical object. The GREM combines several random energy models in a hierarchical
way with the ultrametric structure built into the model from the beginning. Even though
these simplified models do not shed light on the Parisi ansatz in the SK model directly,
the behavior of the Gibbs measures in these models was predicted to be, in some sense,
identical to that of the SK model. For example, Derrida and Toulouse showed in [14] that
the Gibbs weights in the REM have the same distribution in the thermodynamic limit as
the Gibbs weights of the pure states in the SK model, described in [20], and de Dominicis
and Hilhorst [9] demonstrated a similar connection between the distribution of the cluster
weights in the GREM and the cluster weights in the SK model. Motivated by this connection
with the SK model, in a seminal paper [36], Ruelle gave an alternative, much more explicit
and illuminating, description of the Gibbs measure of the GREM in the infinite-volume limit
in terms of a certain family of Poisson processes, as follows.

The Ruelle Probability Cascades The points and weights of these measures will be in-
dexed by N

r for some fixed r ≥ 1. It will be very convenient to think of N
r as the set of

leaves of a rooted tree (see Fig. 1) with the vertex set

A = N
0 ∪ N ∪ N

2 ∪ · · · ∪ N
r , (23)

where N
0 = {∅}, ∅ is the root of the tree and each vertex α = (n1, . . . , np) ∈ N

p for p ≤ r −1
has children

αn := (n1, . . . , np, n) ∈ N
p+1

for all n ∈ N. Therefore, each vertex α is connected to the root ∅ by the path

∅ → n1 → (n1, n2) → ·· · → (n1, . . . , np) = α.

We will denote all the vertices in this path by (the root is not included)

p(α) = {
n1, (n1, n2), . . . , (n1, . . . , np)

}
. (24)

The identification of the index set N
r with the leaves of this infinitary tree is very important,

because, even though the points in the support of the random measure will be indexed by
α ∈ N

r , the construction itself will involve random variables indexed by vertices of the entire
tree. For each vertex α ∈ A , let us denote by |α| its distance from the root of the tree ∅, or,
equivalently, the number of coordinates in α, i.e. α ∈ N

|α|. If we recall the parameters (9)
then, for each α ∈ A \ N

r , let Πα be a Poisson process on (0,∞) with the mean measure

ζ|α|x−1−ζ|α| dx (25)
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and let us generate these processes independently for all such α. Let us recall that each
Poisson process Πα can be generated by partitioning (0,∞) = ⋃

m≥1 Sm into disjoint sets
S1 = [1,∞) and Sm = [1/m,1/(m − 1)) for m ≥ 2 and then on each set Sm generating
independently a Poisson number of points with the mean

∫

Sm

ζ|α|x−1−ζ|α| dx

from the probability distribution on Sm proportional to (25). Let us mention that, for techni-
cal reasons, it is important that the parameters ζ|α| in this construction are strictly between
0 and 1, which is why we assumed that the inequalities in (9) are strict. One can arrange all
the points in Πα in the decreasing order,

uα1 > uα2 > · · · > uαn > · · · , (26)

and enumerate them using the children (αn)n≥1 of the vertex α. In other words, parent
vertices α ∈ A \ N

r enumerate independent Poisson processes Πα and child vertices αn ∈
A \ N

0 enumerate individual points uαn. Given a vertex α ∈ A \ N
0 and the path p(α)

in (24), we define

wα =
∏

β∈p(α)

uβ. (27)

Finally, for the leaf vertices α ∈ N
r we define

vα = wα∑
β∈Nr wβ

. (28)

One can show that the denominator is finite with probability one, so this sequence is well
defined. Now, let eα for α ∈ A \ N

0 be some sequence of orthonormal vectors in H . Given
this sequence, we consider a set of points hα ∈ H indexed by α ∈ N

r ,

hα =
∑

β∈p(α)

eβ(q|β| − q|β|−1)
1/2, (29)

where the parameters (qp)0≤p≤r were introduced in (10). In other words, as we walk along
the path p(α) to the leaf α ∈ N

r , at each step β we add a vector in the new orthogonal
direction eβ of length

√
q|β| − q|β|−1. We define a random measure G on the Hilbert space

H by

G(hα) = vα for α ∈ N
r . (30)

The measure G is called the Ruelle probability cascades (RPC) associated to the parameters
(9) and (10). From the definition (29), it is clear that the scalar product hα · hβ between any
two points in the support of G depends only on the number

α ∧ β := ∣∣p(α) ∩ p(β)
∣∣ (31)

of common vertices in the paths from the root ∅ to the leaves α,β ∈ N
r . With this notation,

(29) implies that hα · hβ = qα∧β . Now, if we take three leaves α,β, γ ∈ N
r then their paths

satisfy

β ∧ γ ≥ min(α ∧ β,α ∧ γ ),

since the vertices shared by the path p(α) with both paths p(β) and p(γ ) will also be shared
by p(β) and p(γ ) and, therefore,

hβ · hγ ≥ min(hα · hβ,hα · hγ ), (32)
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so the support of G is ultrametric in H by construction. In the work of Ruelle [36], it was
stated as an almost evident fact that the Gibbs measure in the Derrida GREM looks like
the measure (30) in the infinite-volume limit, but a detailed proof of this was given later by
Bovier and Kurkova in [6]. Because of the connection to the SK model mentioned above,
the Ruelle probability cascades are precisely the measures that were expected to describe
the Gibbs measures in the SK model in the sense that, asymptotically, the overlap array
(16) can be approximated in distribution by an overlap array generated by some RPC. The
points (hα)α∈Nr are the pure states and the tree A can be viewed as a branching tree that
indexes the clusters around all the pure states. One can show that the distribution (19) of
the overlap of two replicas sampled from the Ruelle probability cascades is equal to the
distribution function in (8), which agrees with the Parisi interpretation of the functional
order parameter ζ .

Such an explicit description of the expected asymptotic Gibbs measures was a very big
step, because one could now study their properties using the entire arsenal of the theory
of Poisson processes [19]. Some important properties of the Ruelle probability cascades
were already described in the original paper of Ruelle [36], while other important proper-
ties, which express certain invariance features of these measures, were discovered later by
Bolthausen and Sznitman in [5]. We will mention this again below when we talk about the
unified stability property in the SK model. In the next few section we will explain that all the
predictions of the physicists about the structure of the Gibbs measure in the SK and mixed
p-spin models are, essentially, correct. In general, they hold under a small perturbation of
the Hamiltonian, which does not affect the free energy in the infinite-volume limit, but for
a class of the so-called generic mixed p-spin models they hold precisely, without any per-
turbation. First, we will explain the connection between the Gibbs measure and the Parisi
formula for the free energy.

2 Free Energy and Gibbs Measure

The Aizenman-Sims-Starr Scheme Before we describe rigorous results about the structure
of the Gibbs measure, let us explain how this structure implies the Parisi formula for the free
energy (14). For simplicity of notation, we will focus on the Sherrington-Kirkpatrick model
(1) instead of the general mixed p-spin model (4). We begin with the so-called Aizenman-
Sims-Starr cavity computation, which was introduced in [2]. Let us recall the definition of
the partition function ZN in (7) and for j ≥ 0 let us denote

Aj = E logZj+1 − E logZj , (33)

with the convention that Z0 = 1. Then we can rewrite the free energy as follows,

FN = 1

N
E logZN = 1

N

N−1∑

j=0

Aj . (34)

Clearly, this representation implies that if the sequence AN converges then its limit is also
the limit of the free energy FN . Unfortunately, it is usually difficult to prove that the limit
of AN exists (we will mention one such result at the end, when we talk about generic mixed
p-spin models) and, therefore, this representation is used only to obtain a lower bound on
the free energy,

lim inf
N→∞

FN ≥ lim inf
N→∞

AN. (35)
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Let us compare the partition functions ZN and ZN+1 and see what they have in common and
what makes them different. If we denote ρ = (σ, ε) ∈ ΣN+1 for σ ∈ ΣN and ε ∈ {−1,+1}
then we can write

HN+1(ρ) = H ′
N(σ ) + εzN(σ ), (36)

where

H ′
N(σ ) = 1√

N + 1

N∑

i,j=1

gijσiσj (37)

and

zN(σ ) = 1√
N + 1

N∑

i=1

(gi(N+1) + g(N+1)i )σi . (38)

One the other hand, the part (37) of the Hamiltonian HN+1(ρ) is, in some sense, also a
part of the Hamiltonian HN(σ) since, in distribution, the Gaussian process HN(σ) can be
decomposed into a sum of two independent Gaussian processes

HN(σ)
d= H ′

N(σ ) + yN(σ ), (39)

where

yN(σ ) = 1√
N(N + 1)

N∑

i,j=1

g′
ij σiσj (40)

for some independent array (g′
ij ) of standard Gaussian random variables. Using the above

decompositions (36) and (39), we can write

E logZN+1 = E log
∑

σ∈ΣN

2 ch
(−βzN(σ )

)
exp

(−βH ′
N(σ )

)
(41)

and

E logZN = E log
∑

σ∈ΣN

exp
(−βyN(σ )

)
exp

(−βH ′
N(σ )

)
. (42)

Finally, if we consider the Gibbs measure on ΣN corresponding to the Hamiltonian H ′
N(σ )

in (37),

G′
N(σ ) = exp(−βH ′

N(σ ))

Z′
N

where Z′
N =

∑

σ∈ΣN

exp
(−βH ′

N(σ )
)
, (43)

then (41), (42) can be combined to give the Aizenman-Sims-Starr representation,

AN = E log
∑

σ∈ΣN

2 ch
(−βzN(σ )

)
G′

N(σ )

− E log
∑

σ∈ΣN

exp
(−βyN(σ )

)
G′

N(σ ). (44)

Notice that the Gaussian processes (zN(σ )) and (yN(σ )) are independent of the randomness
of the measure G′

N and have the covariance

EzN

(
σ 1

)
zN

(
σ 2

) = 2R1,2 + O
(
N−1

)
, EyN

(
σ 1

)
yN

(
σ 2

) = R2
1,2 + O

(
N−1

)
. (45)
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Suppose that we replace the Gibbs measure G′
N in (44) by the Ruelle probability cascades

G in (30) and replace the Gaussian processes (zN(σ )) and (yN(σ )) by Gaussian processes
(z(hα)) and (y(hα)) indexed by the points (hα)α∈Nr in the support of G with the same
covariance structure as (45),

Ez(hα)z(hβ) = 2hα · hβ, Ey(hα)y(hβ) = (hα · hβ)2. (46)

Such processes are very easy to construct explicitly, if we recall the definition of the points
hα in (29). Namely, let (ηα)α∈A \N0 be a sequence of i.i.d. standard Gaussian random vari-
ables and, for each p ≥ 1, let us define a family of Gaussian random variables indexed by
(hα)α∈Nr ,

gp(hα) =
∑

β∈p(α)

ηβ

(
q

p

|β| − q
p

|β|−1

)1/2
. (47)

Recalling the notation (31), it is obvious that the covariance of this process is

Egp(hα)gp(hβ) = q
p

α∧β = (hα · hβ)p, (48)

so we can take z(hα) = √
2g1(hα) and y(hα) = g2(hα). Then the functional (44) will be

replaced by

P(ζ ) = E log
∑

α∈Nr

2 ch
(−βz(hα)

)
vα − E log

∑

α∈Nr

exp
(−βy(hα)

)
vα. (49)

Writing P(ζ ) here is not an abuse of notation, since it turns out that the right hand side co-
incides with the Parisi functional in (13) when ξ(x) = x2 and θ(x) = x2, which is precisely
the case of the Sherrington-Kirkpatrick model. The equality of these two different represen-
tations can be proved using the properties of the Poisson processes with the mean measures
(25) that appear in the definition of the Ruelle probability cascades, and (49) gives a very
natural interpretation of the Parisi functional P(ζ ) in (13). It remains to explain that, if we
assume the Parisi ansatz for the Gibbs measure, then the connection between (44) and (49)
is more than just a formal resemblance and that together with (35) it implies that

lim inf
N→∞

FN ≥ inf
ζ

P(ζ ). (50)

This is again a consequence of the fundamental fact that we mentioned above, namely, that
all the relevant information about the Gibbs measure in the SK model is contained in the
overlap matrix. In the present context, it is not difficult to show that, due to the covariance
structure of the Gaussian processes (45) and (46), the quantities AN in (44) and P(ζ ) in
(46) are, in fact, given by the same continuous functional of the distribution of the overlap
arrays RN and R generated by i.i.d. samples of replicas from G′

N and G correspondingly.
As a result, if we consider a subsequence along which the lim infN→∞ AN is achieved and, at
the same time, the array RN converges in distribution to some array R∞, then the lower limit
of AN can be written as the same functional of the distribution of R∞. Finally, if we believe
that the predictions of the physicists are correct, we can approximate R∞ in distribution by
the overlap arrays R generated by the Ruelle probability cascades and, therefore, the lower
limit is bounded from below by infζ P(ζ ), which proves (50). The main difficulty in this
approach is to show that the Parisi ansatz for the Gibbs measure and the overlap array is,
indeed, correct in the infinite-volume limit, which will be discussed below.
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Guerra’s Replica Symmetry Breaking Bound The fact that the Parisi formula also gives an
upper bound on the free energy,

lim sup
N→∞

FN ≤ inf
ζ

P(ζ ), (51)

was proved in a breakthrough work of Guerra [17]. The original argument in [17] was given
in the language of the recursive formula (12), but, as was observed in [2], it can also be
written in the language of the Ruelle probability cascades. The essence of Guerra’s result is
the following interpolation between the SK model and the Ruelle probability cascades. Let
(zi(hα)) and (yi(hα)) for i ≥ 1 be independent copies of the processes (z(hα)) and (y(hα))

in (46) and, for 0 ≤ t ≤ 1, let us consider the Hamiltonian

HN,t (σ,hα) = √
t HN(σ ) + √

1 − t

N∑

i=1

zi(hα)σi + √
t

N∑

i=1

yi(hα) (52)

indexed by vectors (σ,hα) such that σ belongs to the support ΣN of the Gibbs measure
GN and hα belongs to the support of the measure G in (30). To this Hamiltonian one can
associate the free energy

ϕ(t) = 1

N
E log

∑

σ,α

vα exp
(−βHN,t (σ,hα)

)
(53)

and, by a straightforward computation using the Gaussian integration by parts, one can check
that ϕ′(t) ≤ 0 and, therefore, ϕ(1) ≤ ϕ(0). It is easy to see that

ϕ(0) = 1

N
E log

∑

α∈Nr

vα

∏

i≤N

2 ch
(−βzi(hα)

)

and

ϕ(1) = FN + 1

N
E log

∑

α∈Nr

vα

∏

i≤N

exp
(−βyi(hα)

)
.

It is, again, a consequence of the properties of the Poisson processes involved in the con-
struction of the Ruelle probability cascades that, in fact, the independent copies for i ≤ N

can be decoupled here and

ϕ(0) = E log
∑

α∈Nr

2 ch
(−βz(hα)

)
vα

and

ϕ(1) = FN + E log
∑

α∈Nr

exp
(−βy(hα)

)
vα.

Recalling the representation (49), the inequality ϕ(1) ≤ ϕ(0) can be written as FN ≤ P(ζ ),
which yields the upper bound (51). After Guerra’s discovery of the above interpolation ar-
gument, Talagrand proved in his famous tour-de-force paper [42] that the Parisi formula,
indeed, gives the free energy in the SK model in the infinite-volume limit. Talagrand’s in-
genious proof finds a way around the Parisi ansatz for the Gibbs measure, but it is rather
involved. The Aizenman-Sims-Starr scheme above gives a more natural approach if we are
able to confirm the Parisi ansatz for the asymptotic Gibbs measures. Moreover, the argument
in [42] works only for mixed p-spin models for even p ≥ 2, while the above approach can
be modified to yield the Parisi formula in the case when odd p-spin interactions are present
as well (see [29]). Nevertheless, to understand the impact of the results of Guerra [17] and
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Talagrand [42] (proved in 2003), one only needs to remember that a proof of the existence
of the limit of the free energy by Guerra and Toninelli in [18] was quite an impressive result
only a year earlier.

3 Stability of the Gibbs Measure

The Ghirlanda-Guerra Identities Below we will explain an approach to proving the pre-
dictions of the physicists for the Gibbs measure based on the so called Ghirlanda-Guerra
identities. These identities were first discovered by Ghirlanda and Guerra in [16] in the set-
ting of the mixed p-spin models, where they were proved on average over the parameters
(βp) in (4). However, the general idea can be used in many other models if we utilize the
mixed p-spin Hamiltonian in the role of a perturbation. We will try to emphasize wide ap-
plicability of this idea by giving some mild sufficient conditions that ensure the validity of
these identities. For all p ≥ 1, let us consider

gp(σ ) = 1

Np/2

N∑

i1,...,ip=1

g′
i1...ip

σi1 . . . σip , (54)

where the random variables (g′
i1...ip

) are i.i.d. standard Gaussian and independent of every-
thing else, and define

g(σ ) =
∑

p≥1

2−pxpgp(σ ) (55)

for some parameters (xp)p≥1 that belong to the interval xp ∈ [0,3] for all p ≥ 1. This Gaus-
sian process is of the same nature as the mixed p-spin Hamiltonian (4) except for a different
normalization in (54), which implies that the covariance

Eg
(
σ 1

)
g
(
σ 2

) =
∑

p≥1

4−px2
pR

p

1,2. (56)

In other words, g(σ ) is of a smaller order than HN(σ) because of the additional factor N−1/2.
Let us now consider a model with an arbitrary Hamiltonian H(σ) on ΣN , either random or
non-random, and consider the perturbed Hamiltonian

H pert(σ ) = H(σ) + sg(σ ), (57)

for some parameter s ≥ 0. What is the advantage of adding the perturbation term (55) to the
original Hamiltonian of the model? The answer to this question lies in the fact that, under
certain conditions, this perturbation term, in some sense, regularizes the Gibbs measure and
forces it to satisfy useful properties without affecting our mail goal—the computation of the
free energy. Using (56) and the independence of g(σ ) and H(σ), it is easy to see that

1

N
E log

∑

σ∈ΣN

expH(σ) ≤ 1

N
E log

∑

σ∈ΣN

exp
(
H(σ) + sg(σ )

)

≤ 1

N
E log

∑

σ∈ΣN

expH(σ) + s2

2N

∑

p≥1

4−px2
p. (58)

Both inequalities follow from Jensen’s inequality applied either to the sum or the expectation
with respect to g(σ ) conditionally on H(σ). This implies that if we let s = sN in (57) depend
on N in such a way that

lim
N→∞

N−1s2
N = 0, (59)
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then the limit of the free energy is unchanged by the perturbation term sg(σ ). On the other
hand, if s = sN is not too small then it turns out that the perturbation term has a non-trivial
influence on the Gibbs measure of the model. Consider a function

ϕ = log
∑

σ∈ΣN

exp
(
H(σ) + sg(σ )

)
(60)

that will be viewed as a random function ϕ = ϕ((xp)) of the parameters (xp), and suppose
that

sup
{
E|ϕ − Eϕ| : 0 ≤ xp ≤ 3, p ≥ 1

} ≤ vN(s) (61)

for some function vN(s) that describes how well ϕ((xp)) is concentrated around its expected
value uniformly over all possible choices of the parameters (xp) from the interval [0,3].
Main condition about the model will be expressed in terms of this concentration function,
namely, that there exists a sequence s = sN such that

lim
N→∞

sN = ∞ and lim
N→∞

s−2
N vN(sN) = 0. (62)

Of course, this condition will be useful only if the sequence sN also satisfies (59) and the
perturbation term does not affect the limit of the free energy. In the case of the mixed p-spin
model, H(σ) = −βHN(σ) for HN(σ) defined in (4), one can easily check using some stan-
dard Gaussian concentration inequalities that (59) and (62) hold with the choice of sN = Nγ

for any 1/4 < γ < 1/2. One can also check that this condition holds in other models, for ex-
ample, random p-spin and K-sat models, or for any non-random Hamiltonian H(σ). Now,
let

GN(σ) = expH pert(σ )

ZN

, where ZN =
∑

σ∈ΣN

expH pert(σ ), (63)

be the Gibbs measure corresponding to the perturbed Hamiltonian (57) and let 〈·〉 denote
the average with respect to G⊗∞

N , or all replicas. For any n ≥ 2, p ≥ 1 and any function f

of the overlaps (Rl,l′)l,l′≤n of n replicas, let us define

Δ(f,n,p) =
∣∣∣∣E

〈
f R

p

1,n+1

〉 − 1

n
E〈f 〉E〈

R
p

1,2

〉 − 1

n

n∑

l=2

E
〈
f R

p

1,l

〉∣∣∣∣. (64)

If we now think of the parameters (xp)p≥1 in (55) as a sequence of i.i.d. random variables
with the uniform distribution on [1,2] and denote by Ex the expectation with respect to such
sequence then (62) is a sufficient condition to guarantee that

lim
N→∞

ExΔ(f,n,p) = 0. (65)

Once we have this statement on average, we can, of course, make a specific non-random
choice of parameters (xN

p )p≥1, which may vary with N , such that

lim
N→∞

Δ(f,n,p) = 0. (66)

In the thermodynamic limit, this can be expressed as a property of the asymptotic Gibbs
measures. Let us consider any subsequential limit of the distribution of the overlap matrix
RN generated by the perturbed Gibbs measure GN in (63) and let G be the correspond-
ing asymptotic Gibbs measure on a Hilbert space defined via the Dovbysh-Sudakov repre-
sentation. If we still denote by 〈·〉 the average with respect to G⊗∞ then (66) implies the
Ghirlanda-Guerra identities,

E
〈
f R

p

1,n+1

〉 = 1

n
E〈f 〉E〈

R
p

1,2

〉 + 1

n

n∑

l=2

E
〈
f R

p

1,l

〉
, (67)
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for any n ≥ 2,p ≥ 1 and any function f of the overlaps (Rl,l′)l,l′≤n = (σ l · σ l′)l,l′≤n of
n replicas sampled from G. Of course, since any bounded measurable function ψ can be
approximated by polynomials (in the L1 sense),

E
〈
f ψ(R1,n+1)

〉 = 1

n
E〈f 〉E〈

ψ(R1,2)
〉 + 1

n

n∑

l=2

E
〈
f ψ(R1,l )

〉
. (68)

If ζ is the distribution of one overlap, as in (19), then (68) can be expressed by saying that,
conditionally on (Rl,l′)l,l′≤n, the distribution of R1,n+1 is given by the mixture

n−1ζ + n−1
n∑

l=2

δR1,l
.

These identities already appear in the Parisi replica method where they arise as a conse-
quence of “replica equivalence”, but Ghirlanda and Guerra gave the first mathematical proof
using the self-averaging of the free energy, which is what the condition (62) basically means.
The self-averaging of the free energy in the Sherrington-Kirkpatrick model was first proved
by Pastur and Shcherbina in [35]. The identities (67) might look mysterious, but, in fact,
they are just a manifestation of the general principle of the concentration of a Hamiltonian,
in this case

lim
N→∞

ExE
〈∣∣gp(σ ) − E

〈
gp(σ )

〉∣∣〉 = 0, (69)

which can be proved using the self-averaging of the free energy condition (62). The way (69)
implies the Ghirlanda-Guerra identities is very simple, essentially, by testing this concentra-
tion on a test function. If we fix n ≥ 2 and consider a bounded function f = f ((Rl,l′)l,l′≤n)

of the overlaps of n replicas then
∣∣E

〈
fgp

(
σ 1

)〉 − E〈f 〉E〈
gp(σ )

〉∣∣ ≤ ‖f ‖∞E
〈∣∣gp(σ ) − E

〈
gp(σ )

〉∣∣〉 (70)

and (69) implies that

lim
N→∞

Ex

∣∣E
〈
fgp

(
σ 1

)〉 − E〈f 〉E〈
gp(σ )

〉∣∣ = 0. (71)

This is precisely the equation (65) after we use the Gaussian integration by parts.

The Aizenman-Contucci Stochastic Stability Another famous property of the Gibbs mea-
sure, the so-called stochastic stability discovered by Aizenman and Contucci in [1], is also a
consequence of (69). A proof can be found in [43] (see also [8]) and a rigorous justification
of how to extend the stochastic stability to the setting of the asymptotic Gibbs measures
can be found in [4]. To state this property, let us assume, for simplicity, that the asymptotic
Gibbs measure G is atomic, G(hl) = vl , with the weights arranged in non-increasing order,
v1 ≥ v2 ≥ · · · . Given integer p ≥ 1, let (gp(hl))l≥1 be a Gaussian sequence conditionally on
G indexed by the points (hl)l≥1 with the covariance

Egp(hl)gp(hl′) = (hl · hl′)
p, (72)

which is reminiscent of (48), only now we do not know a priori that the support {hl : l ≥ 1}
is ultrametric in H . Given t ∈ R, consider a new measure

Gt(hl) = vt
l = vl exp tgp(hl)∑

j≥1 vj exp tgp(hj )
(73)

defined by the random change of density proportional to exp tgp(hl). Then the Aizenman-
Contucci stochastic stability, basically, states that this new measure generates the same over-
lap array in distribution as the original measure G. One way to express this property is as
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follows. Let π : N → N be a permutation such that the weights (vt
π(l)) are also arranged in

non-increasing order. Then,
((

vt
π(l)

)
l≥1

, (hπ(l) · hπ(l′))l,l′≥1

) d= (
(vl)l≥1, (hl · hl′)l,l′≥1

)
(74)

for any p ≥ 1 and t ∈ R, which, clearly, implies that the overlap arrays generated by these
measures will have the same distribution. It is not difficult to see that, in fact, the two state-
ments are equivalent.

Unified Stability Property Even though the proof of the Parisi ansatz that will be described
in the next section is based only on the Ghirlanda-Guerra identities, the reason we mention
the Aizenman-Contucci stochastic stability (74) is because, in a number of ways, it played
a very important role in the development of the area. In particular, one of the main ideas
behind the proof of the Parisi ansatz was first discovered using a unified stability prop-
erty, proved in [30], that combines the Ghirlanda-Guerra identities (67) and the Aizenman-
Contucci stochastic stability (74). It can be stated with the notation in (74) as follows. It is
well known (we will discuss this again below) that if the measure G satisfies the Ghirlanda-
Guerra identities and if c2 is the largest point of the support of the distribution of the overlap
R1,2 under EG⊗2 then, with probability one, G is concentrated on the sphere of radius c. Let

bp = (
c2

)p − E
〈
R

p

1,2

〉
. (75)

Then, a random measure G satisfies the Ghirlanda-Guerra identities (67) and the Aizenman-
Contucci stochastic stability (74) if and only if it is concentrated on the sphere of constant
radius, say c, and for any p ≥ 1 and t ∈ R,

((
vt

π(l)

)
l≥1

,
(
gp(hπ(l)) − bpt

)
l≥1

, (hπ(l) · hπ(l′))l,l′≥1

)

d= (
(vl)l≥1,

(
gp(hl)

)
l≥1

, (hl · hl′)l,l′≥1

)
. (76)

Comparing with (74), we see that the Ghirlanda-Guerra identities are now replaced by the
statement that, after the permutation π which rearranges the weights in (73) in the decreasing
order, the distribution of the Gaussian process (gp(hl)) will only be affected by a constant
shift bpt . Interestingly, the unified stability property (76) was known for some time in the
setting of the Ruelle probability cascades, where it was proved by Bolthausen and Sznitman
in [5] using properties of the Poisson processes in the construction of the Ruelle probability
cascades. However, the Ghirlanda-Guerra identities for the RPC were originally proved by
Talagrand [39] and Bovier and Kurkova [6] by analyzing the Gibbs measure in the Derrida
REM and GREM, and it was only later noticed by Talagrand that they follow much more
easily from the Bolthausen-Sznitman invariance. The main result of [30] stated in (76),
basically, reverses Talagrand’s observation.

4 Structure of the Gibbs Measure

It was clear since they were discovered that the stability properties impose strong con-
straints on the structure of the Gibbs measure, but the question was whether they lead all
the way to the Ruelle probability cascades? The first partial answer to this question was
given in an influential work of Arguin and Aizenman, [3], who proved that, under a techni-
cal assumption that the overlap takes only finitely many values in the thermodynamic limit,
R1,2 ∈ {q0, . . . , qr}, the Aizenman-Contucci stochastic stability (74) implies the ultrametric-
ity predicted by the Parisi ansatz. Soon after, it was shown in [25] under the same technical
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assumption that the Ghirlanda-Guerra identities also imply ultrametricity (an elementary
proof can be found in [27]). Another approach was given by Talagrand in [43]. However,
since at low temperature the overlap does not necessarily take finitely many values in the
thermodynamic limit, all these result were not directly applicable to the SK and mixed p-
spin models. Nevertheless, they strongly suggested that the stability properties can explain
the Parisi ansatz and, indeed, it was recently proved in [28] that the Ghirlanda-Guerra iden-
tities imply ultrametricity (21) without any technical assumptions. Before we explain some
of the main ideas in the proof, let us first describe several preliminary facts that follow from
the Ghirlanda-Guerra identities.

Pure States First of all, one can show very easily (see [25]) that the Ghirlanda-Guerra
identities (67) yield the Parisi pure states picture described above. Namely, if c2 is the largest
point in the support of the distribution ζ of the overlap R1,2 under EG⊗2 defined in (19)
then, with probability one, G(‖h‖ = c) = 1. Moreover, the measure G is purely atomic if
ζ({c2}) > 0, otherwise, it has no atoms. Of course, it is clear that Parisi’s pure states picture
in [34] was meant to be understood in approximate sense and, when ζ({c2}) = 0 and G

has not atoms, we can create pure states using ultrametricity by considering equivalence
clusters in (22) for small positive diameter d > 0. In the case when ζ({c2}) > 0, the pure
states picture holds not only for the asymptotic Gibbs measures in the infinite-volume limit,
but also for the original Gibbs measures GN for finite size systems in some approximates
sense, as was shown by Talagrand in [43].

Talagrand’s Positivity Principle Another important consequence of the Ghirlanda-Guerra
identities is the so-called Talagrand positivity principle, proved in [39], which states that the
overlaps can take only non-negative values in the thermodynamic limit, so σ 1 · σ 2 ≥ 0 for
any two points in the support of G. In the Parisi replica method, the overlap was always
assumed to be non-negative due to the symmetry breaking, and we see that this, indeed, can
be obtained using a small perturbation of the Hamiltonian which ensures the validity of the
Ghirlanda-Guerra identities. One key application of the positivity principle is to show that
Guerra’s interpolation argument leading to the upper bound (51) also works for mixed p-
spin models that include the pure p-spin Hamiltonians for odd p ≥ 3, which was observed
by Talagrand in [40].

Characterizing Asymptotic Gibbs’ Measures Finally, let us mention a fact that has been
well known since the discovery of the Ghirlanda-Guerra identities, namely, that together
with ultrametricity these identities determine the distribution of the entire overlap array
uniquely in terms of the functional order parameter ζ and, moreover, one can approximate
the overlap array in distribution by an overlap array generated by some Ruelle probability
cascades. In other words, as soon as we have ultrametricity, all the predictions of the physi-
cists are confirmed. The idea here is very straightforward and we will only illustrate it in the
simplest case when the overlaps take finitely many values, R1,2 ∈ {q0, . . . , qr}. The general
case easily follows by approximation. In the discrete case, we only need to demonstrate that,
using ultrametricity and the Ghirlanda-Guerra identities, we can compute in terms of ζ the
probability of any particular configuration of finitely many overlaps,

E
〈
I
(
Rl,l′ = ql,l′ : l 
= l′ ≤ n + 1

)〉
, (77)

for any n ≥ 1 and any ql,l′ ∈ {q0, . . . , qr}. Let us find the largest elements among ql,l′ for
l 
= l′ and, without loss of generality, suppose that q1,n+1 is one of them. We only have to
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consider (ql,l′) that are ultrametric, since, otherwise, (77) is equal to zero. In particular, since
q1,n+1 is the largest, for 2 ≤ l ≤ n,

q1,l ≥ min(q1,n+1, ql,n+1) = ql,n+1

and

ql,n+1 ≥ min(q1,n+1, q1,l) = q1,l ,

which implies that q1,l = ql,n+1. Hence, if the overlap R1,n+1 = q1,n+1 then, for all 2 ≤ l ≤ n,
R1,l = q1,l automatically implies that Rl,n+1 = q1,l and (77) equals

E
〈
I
(
Rl,l′ = ql,l′ : l, l′ ≤ n

)
I (R1,n+1 = q1,n+1)

〉
. (78)

In other words, if we know that the replicas σ 1 and σn+1 are the closest then, due to ultra-
metricity, all the conditions Rl,n+1 = ql,n+1 = q1,l become redundant and we can omit them.
The quantity (78) is now of the same type as the left hand side of (68) and, therefore, the
Ghirlanda-Guerra identities imply that it is equal to

1

n
ζ
({q1,n+1}

)
E

〈
I
(
Rl,l′ = ql,l′ : l, l′ ≤ n

)〉

+ 1

n

n∑

l=2

I (q1,l = q1,n+1)E
〈
I
(
Rl,l′ = ql,l′ : l, l′ ≤ n

)〉
. (79)

We can continue this computation recursively over n and, in the end, (77) will be expressed
completely in terms of the distribution of one overlap, ζ . To conclude that the overlap array
can actually be generated by the Ruelle probability cascades corresponding to the functional
order parameter ζ , we only need to recall that both properties, the Ghirlanda-Guerra identi-
ties and ultrametricity, are satisfied by the RPC, so all the probabilities (77) will be given by
the same computation.

Ultrametricity It remains to explain the main result in [28] which shows that ultrametricity
is also a consequence of the Ghirlanda-Guerra identities. The main idea of the proof is the
following invariance property. Given n ≥ 1, we consider n bounded measurable functions
f1, . . . , fn : R → R and let

F
(
σ,σ 1, . . . , σ n

) = f1

(
σ · σ 1

) + · · · + fn

(
σ · σn

)
. (80)

For 1 ≤ l ≤ n, we define

Fl

(
σ,σ 1, . . . , σ n

) = F
(
σ,σ 1, . . . , σ n

) − fl

(
σ · σ l

) + E
〈
fl(R1,2)

〉
, (81)

where, as before, 〈·〉 denotes the average with respect to G⊗∞. Then, for any bounded mea-
surable function Φ of the overlaps (Rl,l′)l,l′≤n of n replicas,

E〈Φ〉 = E

〈
Φ

exp
∑n

l=1 Fl(σ
l, σ 1, . . . , σ n)

〈expF(σ,σ 1, . . . , σ n)〉n−

〉
, (82)

where 〈·〉− in the denominator is the average in σ for fixed σ 1, . . . , σ n with respect to the
measure G. One can think of the ratio on the right hand side as a change of density that does
not affect the distribution of the overlaps of n replicas. Originally, this invariance property
was discovered using the unified stability property (76), so the Aizenman-Contucci stochas-
tic stability played an equally important role. However, the proof presented in [28] is much
more simple and straightforward, and is based only on the Ghirlanda-Guerra identities. In
some sense, this is good news because the Aizenman-Contucci stability is a more subtle
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property to work with than the Ghirlanda-Guerra identities, especially in the thermodynamic
limit. To prove (82), one can consider an interpolating function

ϕ(t) = E

〈
Φ

exp
∑n

l=1 tFl(σ
l, σ 1, . . . , σ n)

〈exp tF (σ,σ 1, . . . , σ n)〉n−

〉
(83)

and, using an elementary calculation, check that the Ghirlanda-Guerra identities imply that
all the derivatives vanish at zero, ϕ(k)(0) = 0. Taylor’s expansion and some basics estimates
of the derivatives yield that this function is constant for all t ≥ 0, proving that ϕ(0) = ϕ(1),
which is precisely (82). A special feature of the invariance property (82) is that it contains
some very useful information not only about the overlaps but also about the Gibbs weights of
the neighborhoods of the replicas σ 1, . . . , σ n. Let us give one simple example. Recall that the
measure G is concentrated on the sphere ‖h‖ = c and, for q = c2 − ε, let f1(x) = tI (x ≥ q)

and f2 = · · · = fn = 0. Then

F
(
σ,σ 1, . . . , σ n

) = tI
(
σ · σ 1 ≥ q

)

is a scaled indicator of a small neighborhood of σ 1 on the sphere ‖h‖ = c. If we denote
by W1 = G(σ : σ · σ 1 ≥ q) the Gibbs weight of this neighborhood then the average in the
denominator in (82) is equal to

〈
expF

(
σ,σ 1, . . . , σ n

)〉
− = W1e

t + 1 − W1.

Suppose now that the function Φ = IA is an indicator of the event

A = {(
σ 1, . . . , σ n

) : σ 1 · σ l < q for 2 ≤ l ≤ n
}

that the replicas σ 2, . . . , σ n are outside of this neighborhood of σ 1. Then, it is easy to see
that

n∑

l=1

Fl

(
σ l, σ 1, . . . , σ n

) = tE
〈
I (R1,2 ≥ q)

〉 =: tγ

and (82) becomes

E〈IA〉 = E

〈
IA

etγ

(W1et + 1 − W1)n

〉
, (84)

which may be viewed as a condition on the weight W1 and the event A. This is just one
artificial example, but the idea can be pushed much further and with some work one can
obtain some very useful consequences about the structure of the measure G. One of these
consequences is the following “duplication property”.

Suppose that with positive probability over the choice of the measure G we can sample
n replicas σ 1, . . . , σ n from G that are approximately at certain fixed distances from each
other. Of course, since all replicas live on the same sphere, this can be expressed in terms of
the overlaps, Rl,l′ ≈ al,l′ , for some n × n matrix of constraints A = (al,l′). Let

a∗
n = max(a1,n, . . . , an−1,n)

be the constraint corresponding to the closest point among σ 1, . . . , σ n−1 to the last replica
σn and suppose that the distance between them is strictly positive, a∗

n < c2. Then, using the
invariance property (82), one can show that with positive probability over the choice of G

one can sample n+ 1 replicas σ 1, . . . , σ n+1 from G such that the distances between the first
n replicas are as above, Rl,l′ ≈ al,l′ , and the new replica σn+1 duplicates σn in the following
sense (see Fig. 2). First of all, it is approximately at the same distances from the replicas
σ 1, . . . , σ n−1 as σn,

R1,n+1 ≈ a1,n, . . . ,Rn−1,n+1 ≈ an−1,n,
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Fig. 2 Duplication property.
The grey area corresponds to all
the points on the sphere ‖h‖ = c

which are approximately at the
same distance from the first n − 1
replicas σ 1, . . . , σn−1 as the last
replica σn. Then the white point
is a duplicate σn+1 of σn. It is in
the grey area, so it is
approximately at the same
distances from the replicas
σ 1, . . . , σn−1 as σn, and it is at
least as far from σn as the closest
of the first n − 1 replicas, in this
case σn−1

and, moreover, it is at least as far from σn as the other closest replica, Rn,n+1 � a∗
n . The mo-

tivation for this property becomes clear if we recall how the support of the Ruelle probability
cascades was constructed in (29). In that case it is obvious that one can always duplicate any
replica with probability one, and not just in a weak sense described here. On the other hand,
even this weak duplication property implies that the support of the measure G is ultrametric
with probability one.

To see this, suppose that ultrametricity is violated and with positive probability three
replicas can take values

R1,2 ≈ x,R1,3 ≈ y and R2,3 ≈ z (85)

for some constraints x < y ≤ z < c2. Let us duplicate each replica in the above sense m − 1
times, so that at the end we will have n = 3m replicas. Suppose that

{1, . . . , n} = I1 ∪ I2 ∪ I3

is the partition such that j ∈ Ij for j ≤ 3, |Ij | = m and each Ij \ {j} is precisely the index
set of duplicates of σ j . Then, it should be almost obvious that

(a) Rl,l′ � z for all l 
= l′ ≤ n,
(b) Rl,l′ ≈ x if l ∈ I1, l

′ ∈ I2, Rl,l′ ≈ y if l ∈ I1, l′ ∈ I3 and Rl,l′ ≈ z if l ∈ I2, l′ ∈ I3.

Property (a) holds, because a new replica never get too close to the old replicas and the
overlap will never exceed z, and property (b) holds, because, every time we duplicate a
point, the distances to all other points will be the same, so the overlaps between point in
different groups I1, I2, I3 will always be the same as the original constraints in (85). This
means that with positive probability we can find replicas σ 1, . . . , σ n on the sphere of radius
c such that their overlaps satisfy properties (a) and (b). Let σ̄ j be the barycenter of the set
{σ l : l ∈ Ij }. The condition (a) implies that

∥∥σ̄ j
∥∥2 = 1

m2

∑

l∈Ij

∥∥σ l
∥∥2 + 1

m2

∑

l 
=l′∈Ij

Rl,l′ � mc2 + m(m − 1)z

m2
,
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and the condition (b) implies that σ̄ 1 · σ̄ 2 ≈ x, σ̄ 1 · σ̄ 3 ≈ y and σ̄ 2 · σ̄ 3 ≈ z. Hence,

∥∥σ̄ 2 − σ̄ 3
∥∥2 = ∥∥σ̄ 2

∥∥2 + ∥∥σ̄ 3
∥∥2 − 2σ̄ 2 · σ̄ 3 � 2(c2 − z)

m

and 0 < b − a ≈ σ̄ 1 · σ̄ 3 − σ̄ 1 · σ̄ 2 � Km−1/2. We arrive at contradiction by letting m → ∞.
The conclusion is that if the measure G satisfies the Ghirlanda-Guerra identities then its
support must be ultrametric with probability one. Therefore, as was explained above, un-
der a small perturbation of the Hamiltonian that yields the Ghirlanda-Guerra identities, all
possible limits of the Gibbs measure can be identified with the Ruelle probability cascades.
Moreover, we will see below that for “generic” mixed p-spin models no perturbation is
necessary and the limit of the Gibbs measure is unique.

5 Consequences of the Parisi Formula

Once we know the Parisi formula for the free energy in the mixed p-spin models, some
results can be extended and strengthened.

Universality in the Disorder First of all, one can prove the universality in the disorder and
show that the Parisi formula (14) still holds if the Gaussian random variables (gij ) in the
Hamiltonian (1) are replaced by i.i.d. random variables (xij ) from any other distribution, as
long as

Ex11 = 0, Ex2
11 = 1 and E|x11|3 < ∞. (86)

This was proved by Carmona and Hu in [7], who generalized an earlier result of Talagrand
[38] in the case of the Bernoulli disorder. The proof is based on the following interpolation
between the two Hamiltonians for 0 ≤ t ≤ 1,

HN,t (σ ) = 1√
N

N∑

i,j=1

(
√

txij + √
1 − t gij )σiσj , (87)

and the estimates of the derivative of the free energy along this interpolation using some
approximate integration by parts formulas. The same result was also proved in [7] for the
p-spin model.

Generic Mixed p-Spin Models In another direction, we can say more about the thermody-
namic limit in the case of the so-called generic mixed p-spin models whose Hamitlonian (4)
contains sufficiently many pure p-spin terms (5), so that the following condition is satisfied:

(G) linear span of constants and power functions xp corresponding to βp 
= 0 is dense in
(C[−1,1],‖ · ‖∞).

The reason for this is that each pure p-spin term contains some information about the pth
moment of the overlap and the condition (G) allows us to confirm the Parisi ansatz for the
Gibbs measure in the thermodynamic limit without the help of the perturbation term in (55),
so the result becomes more pure, in some sense. Moreover, in this case we can show that
the asymptotic Gibbs measure is unique. This can be seen in two steps. Let us denote by
P = P((βp)) the infimum on the right-hand side of (14) and let M be the set of all
limits over subsequences of the distribution of the overlap R1,2 of two spin configurations
sampled from the Gibbs measure GN corresponding to the Hamiltonian (4). It was proved
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by Talagrand in [41] that, for each p ≥ 1, the Parisi formula is differentiable with respect to
βp and

∂P

∂βp

= βp

(
1 −

∫
qp dζ(q)

)
(88)

for all ζ ∈ M . If βp 
= 0, then this implies that all the limits ζ ∈ M have the same pth
moment and the condition (G) then implies that M = {ζ0} for some unique distribution
ζ0 on [−1,1]. As a second step, one can prove the convergence of the entire overlap array
(Rl,l′)l,l′≥1 in distribution as follows. As a consequence of the differentiability of the Parisi
formula, it was proved in [26] that, whenever βp 
= 0, the Ghirlanda-Guerra identities

E
〈
f R

p

1,n+1

〉 = 1

n
E〈f 〉E〈

R
p

1,2

〉 + 1

n

n∑

l=2

E
〈
f R

p

1,l

〉
(89)

for the pth moment of the overlap hold in the thermodynamic limit in a strong sense, for
the Gibbs measure GN corresponding to the original Hamiltonian (4) without the perturba-
tion term (55). The condition (G) then, obviously, implies that the general Ghirlanda-Guerra
identities (68) also hold. As we explained above, the Ghirlanda-Guerra identities imply ul-
trametricity and, as a result, the distribution of the entire overlap array can be uniquely deter-
mined by the distribution of one overlap. Since this distribution ζ0 is unique, the distribution
of the entire overlap array under EG⊗∞

N also has a unique limit, so the asymptotic Gibbs
measure is unique. Notice also that, by Talagrand’s positivity principle, the distribution ζ0

is, actually, supported on [0,1]. Finally, in this case one can show using the Aizenman-Sims-
Starr scheme (44) that the limit of the free energy is equal to P(ζ0), where we understand
that the definition of the Parisi functional P(ζ ) is extended to all distributions on [0,1]
by continuity. Thus, the infimum infζ P(ζ ) in the Parisi formula (14) is achieved on the
asymptotic distribution of the overlap, ζ0. The functional P(ζ ) is conjectured to be convex
in ζ (see [23] for a partial result) and, if true, this would imply that ζ0 is the unique mini-
mizer of P(ζ ). Convexity of P(ζ ) would also give a more direct approach to describing
the high temperature region, which was done by Talagrand in [39] (see also [44]).
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