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Abstract The diffusion of relativistic particle in a fluid at equilibrium is investigated
through an analytical and numerical study of the Relativistic Ornstein-Uhlenbeck process
(ROUP). Contrary to expectations, the ROUP exhibits short-time propagation in physical
space and only displays typical diffuse behavior at asymptotic times. The short-time propa-
gation is understood through an analytical computation and the density profile is fitted at all
times by a simple Ansatz. A generalization of Fick’s law is finally obtained, in which the dif-
fusion coefficient is replaced by a time-dependent metric. These results connect relativistic
diffusion with gravitational horizons and geometrical flows.

Keywords Relativistic stochastic processes · Bounded velocity diffusion

1 Introduction

Transport at effectively bounded velocity is encountered in many different contexts, from
astrophysics [23] and fusion plasma physics [15, 25] to metal [18, 22] and computer en-
gineering [4], and even tumor treatment [19, 21]. Finding physically and mathematically
sound models of such transport is a long standing problem of statistical physics [3, 8, 16,
17, 27]. The Relativistic Ornstein-Uhlenbeck Process (ROUP) has been introduced in 1997
[13] as the simplest possible model of relativistic particle transport and can also be used as
a blueprint [8] to construct models of non-relativistic transport at bounded velocities.

The ROUP is built after the traditional, non-relativistic Langevin equation [29] and de-
termines the stochastic phase-space trajectory of a relativistic particle diffusing in a fluid
at equilibrium. The projection of this trajectory onto momentum space has been analyzed,
both at short and asymptotic times [14]. The projection onto position space, however, has
only been studied in the long time limit [1, 11], where bounded velocity effects cannot be
captured by macroscopic equations [30], and the short-time density profile predicted by the
ROUP has never been explored.
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This article fills this gap by presenting the first systematic, analytical and numerical anal-
ysis of the ROUP at short and intermediate times. We consider the relativistic diffusion of
particles which start their motions from some common origin point O and which are ini-
tially thermalized with the surrounding fluid. The density profile is, at short times, strikingly
different from the predictions of both standard and hyperbolic diffusion models. Indeed, in-
stead of spreading around O , most diffusing particles propagate away from O at a velocity
very close to the velocity of light. As time goes, less and less particles propagate away from
their initial point, and the density profile slowly tends towards the Gaussian predicted by
Fick’s law. We present an analytical computation which delivers an approximate analytical
expression of the density profile at short-times and, thus, sheds light on the origin of the
short-time propagation. We complement this analytical expression of the short-time density
profile by exhibiting a simple function which fits the density profile at all times with a pre-
cision better than 3 %. We finally introduce a generalization of Fick’s law which correctly
describes the diffusion in physical space at all times. The diffusion coefficient is replaced
by a time-dependent diffusion metric which, at any time t , tends to infinity for points at a
Euclidean distance ct from O and, thus, prevents particles from being transported at supra-
luminal velocities. As t increases and tends to infinity, the limit distance ct also tends to
infinity; the metric becomes flatter, except near ct i.e. near infinity, and finally tends towards
the Euclidean metric over the whole space; our generalized law then degenerates into the
standard Fick’s law.

These results show that bounded velocity diffusions propagate at short times and can
be described as diffusions in time-dependent metrics. The propagation effect is particularly
striking and is surely relevant to first-passage time computations. On the purely mathemati-
cal side, our results connects bounded velocity diffusions to the general field of geometrical
flows.

2 The Relativistic Ornstein-Uhlenbeck Process

The ROUP is a stochastic process which describes the diffusion of a special relativistic point
mass m in a fluid at equilibrium with temperature θe . It is completely defined [13], in n space
dimensions, by the equations of motion of the point mass in the rest frame of fluid:

dx = p
mγ

dt (1)

dp = −α
p
γ

dt + √
2D dBt , (2)

where γ =
√

1 + (
p

mc
)2 and p2 is the squared Euclidean norm of p. Equation (1) is simply the

definition of the relativistic n-momentum in terms of the velocity [24]. Equation (2) states
that the force acting on the particle splits into two contributions. The first one is a determinis-
tic friction −αp/γ , which forces the n-momentum to relax to the vanishing n-momentum of
the fluid in which the particle diffuses, and the second one is a n-dimensional centered Gaus-
sian white noise. The noise coefficient D is linked to α and θe by the fluctuation-dissipation
relation kBθe = D/α.

The temperature θe and the mass m define the thermal velocity vth = (kBθe/m)1/2; this
velocity, combined with the time-scale α−1, defines the length-scale λth = vthα

−1. We use
these characteristic scales to define dimensionless time, position and momentum variables
T , X and P by T = αt , X = x/λth and P = p/(mvth). The relativistic character of the
problem is traced by the quotient
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Q = c

vth
=

(
mc2

kBθe

)1/2

.

This parameter is the dimensionless value of the light velocity c. The Galilean limit corre-
sponds to Q → ∞ and the so-called ultrarelativistic case corresponds to Q → 0.

The equations of motion, being stochastic, do not generate a single trajectory from a
given initial condition, but rather an infinite set of possible trajectories. The position of the
particle in its phase-space R

2n = {X,P} is thus represented, for a given initial condition and
value of Q, by a probability density FQ(T ,X,P) with respect to dnXdnP . This density
obeys the forward Kolmogorov equation

∂T FQ + ∇X ·
(

P
ΓQ(P)

FQ

)
= LQFQ, (3)

where

LQFQ = ∇P ·
(

P
ΓQ(P)

F

)
+ ΔPFQ (4)

and ΓQ(P) = √
1 + (P/Q)2 is the Lorentz factor.

The Jüttner distribution [20] describing a relativistic thermal equilibrium at temperature
θe reads simply:

F	
Q(P) = A exp

(−Q2ΓQ(P)
)
, (5)

where A is the normalization factor; this distribution obeys LQF 	
Q = 0.

The density of the process NQ(T ,X) and the particle current density JQ(T ,X) at time T

and position X are defined by:

NQ(T ,X) =
∫

Rn

FQ(t,X,P )dnP (6)

and

JQ(T ,X) =
∫

Rn

P
ΓQ(P)

FQ(T ,X,P)dnP . (7)

They obey the continuity relation ∂T NQ + ∂X · JQ = 0. Fick’s law posits that the current
density and density gradient are proportional to each other with constant coefficient. This
simple assumption is not valid for the ROUP. The generalized Fick’s law obeyed by the
ROUP is presented in Sect. 4 below.

The spatial Fourier transform F̂Q of the phase-space density FQ is defined by

F̂Q(T ,K,P) = 1√
2π

∫

Rn

FQ(T ,X,P) exp(iK · X)dnX (8)

and obeys:

∂T F̂Q + iK ·
(

P
ΓQ(P)

F̂Q

)
= LQF̂Q. (9)

The Fourier transform N̂Q is defined in a similar manner and coincides with the integral
of F̂Q over P . Suppose a diffusing particle is put into the fluid at time T = 0 with initial
position X = 0 and initial temperature θ = θe . The initial condition for Eq. (3) is then

FQ(T = 0,X,P) = δ(X)F 	
Q(P), (10)
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Fig. 1 Density profile and propagation. (left) Rescaled density-profile νQ against rescaled position
ξ = x/(ct) for Q = 1 and T = 0.5 (blue squares), T = 2 (red triangles) and T = 10 (green circles).
(right) Rescaled density-profile νQ against rescaled position ξ = x/(ct) for T = 1 and Q = 1 (blue squares),
Q = 1.2 (red triangles) and Q = 2 (green circles)

or, in Fourier space,

F̂Q(T = 0,K,P) = 1√
2π

F	
Q(P). (11)

This initial condition fully determines, for each value of Q, the value of density FQ at all
times and phase-space positions. Equation (9) does not involve any derivation with respect
to K, which can thus be viewed as a simple parameter (as opposed to a fully-fledged variable
with respect to which derivations are performed). Numerical simulations have been carried
out by solving (9) in n = 1 dimension for different, regularly spaced values of K and with
initial condition (11). The function FQ has been recovered by Fast Fourier Transform and
the spatial density NQ as well as the current JQ have been obtained from FQ by direct
numerical quadrature. All simulations have been performed with Mathematica 8. Various
integration methods and limit conditions in P have been used, to ensure the robustness of
numerical results.

3 The Density Profile of the ROUP

3.1 Qualitative Discussion

Since the particle is initially located at x = 0, the spatial density NQ(T ,X) at time T and
point X vanishes for |X| > QT (remember Q is the dimensionless value of the light ve-
locity c). To obtain the best visual representation of the early time evolution of the density
profile, we introduce the rescaled position variable ξ = X/QT and the rescaled density
νQ(T , ξ) = NQ(T ,QT ξ)/(QT ), which is normalized to unity against the measure dξ . Fig-
ure 1 presents typical plots of νQ against ξ for different values of T and Q, supposing the
particle is initially thermalized with the fluid (see Eq. (10)). At early times, the maximum
of the density profile is not situated at ξ = 0 i.e. at the starting point of the diffusion, but
rather at |ξ | = ξQ where ξQ is time-independent and approximately equal to 0.948. This cor-
responds to XQ(T ) ≈ 0.948QT i.e. xQ(t) ≈ 0.948ct . This means that the diffusion, at early
times, mostly propagates at velocity c̃ ≈ 0.95c. In time, a secondary maximum appears at
the origin point ξ = 0. This secondary maximum grows and finally becomes much higher
than the peaks at ±ξQ(T ). The density profile thus gets closer and closer to the standard
Gaussian G(T ,X) predicted by Fick’s law. This can be verified by computing the norm
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Fig. 2 Analysis of the density profile. (top left) Time-evolution of the absolute distance between the rela-
tivistic density profile NQ and the Fick profile G for Q = 1. (top right) Evolution with Q of absolute distance
between the relativistic density profile NQ and the Galilean profile NG for T = 1. (bottom) Evolution with K

of the relative discrepancy between ∂T NQ and �NQ for Q = 1 and T = 2. The hyperbolic Cattaneo model
predicts R identically vanishes

ΔQ(T ) =
∫

R

∣∣NQ(T ,X) − G(T ,X)
∣∣dX (12)

with

G(T ,X) = 1√
2πT

exp

(
−X2

2T

)
. (13)

Figure 2(top left) displays the time-evolution of ΔQ for Q = 1 and confirms that the law of
the process converges towards G, as expected from [1, 11].

Fix now an arbitrary, not necessarily large time T and consider the density profile
NQ(T , ·) at this time. As Q tends to infinity, this density profile tends as expected towards
the density profile predicted by the non-relativistic Ornstein-Uhlenbeck process [12]:

NG(T , ·) = 1√
2πσ 2

G(T )

exp

(
− X2

2σ 2
G(T )

)
(14)

with σ 2
G(T ) = (T − 1 + exp(−T )). This is illustrated in Fig. 2(top right), which plots the

evolution with Q of the norm

Δ̃Q(T ) =
∫

R

∣∣NQ(T ,X) − NG(T ,X)
∣∣dX (15)
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for T = 1. Note also that the time at which the secondary maximum appears at the origin is
a decreasing function of Q and tends to zero as Q tends to infinity i.e. in the Galilean limit.

Let us conclude this section by showing that the spatial density of the ROUP does not
obey Cattaneo’s hyperbolic diffusion equation [3], which is a popular model of bounded
speed transport. Cattaneo’s damped wave equation reads:

∂T N = �QN =
(

∂XX − 1

Q2
∂T T

)
N, (16)

where �Q is the D’Alembert operator with velocity Q. We have computed numerically the
relative discrepancy RQ(T ) between ∂T NQ and �QNQ; Fig. 2(bottom) displays a typical
result in Fourier space. This figure clearly displays the failure of Cattaneo’s hyperbolic dif-
fusion model to reproduce the correct density profile of the ROUP.

3.2 Analytical Computation of the Short-Time Density Profile

An approximate analytical expression for the short-time density profile presented in the
previous section can be obtained by the following argument.

Consider a diffusing particle starting its motion from point O with initial impulse P0. For
sufficiently small times, the position XT of this particle at time T varies linearly with T :

XT = P0

ΓQ(P0)
T + O

(
T 2

)
. (17)

The probability law of XT and, thus, the density NQ are then entirely determined by the
probability law of P0 i.e. the initial momentum distribution of the particle. More precisely,
XT /T has the same probability law as the initial velocity of the particle. This law can be
obtained by changing variables in the initial momentum distribution F ∗

Q(P ). The momentum
P and the velocity V of the relativistic particle are related by

P = γQ(V )V (18)

where

γQ(V ) = 1√
1 − V 2

Q2

(19)

is the Lorentz factor associated to the velocity V . By direct differentiation,

dP = (
γQ(V )

)3
dV (20)

and

F ∗
Q(P )dP = f ∗

Q(V )dV (21)

with (see Eq. (5))

f ∗
Q(V ) = A

(
γQ(V )

)3
exp

(−Q2γQ(V )
)
. (22)

Replacing V by X/T in the above equations, one obtains the following approximate expres-
sion for the density NQ at short times:

NQ(T ,X) ≈ A

T

(
γQ

(
X

T

))3

exp

(
−Q2γQ

(
X

T

))
. (23)
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This function of X/T indeed resembles the early time density profile of the ROUP obtained
by numerical simulations, with the characteristic ‘valley’ shape around the origin and max-
ima at |X/T | = 2

√
2Q/3 ≈ 0.943Q, remarkably close to the numerically observed maxima

situated at 0.948QT (see the above first section). It also tends very rapidly to zero as X/T

tends towards ±Q because the Lorentz factor tends to infinity at these points, and the expo-
nential thus tends to zero.

The above approximate expression for the short-time density profile can be recovered by
reasoning directly on the phase-space density of the ROUP. Indeed, the Fourier transform F̂Q

of the phase-space density is, at early times, close to its initial value F ∗
Q/

√
2π . As indicated

above, LQF ∗
Q = 0. Thus, at early times, the Fourier transform F̂Q obeys approximately (see

Eq. (9))

∂T F̂ + iK

(
P

ΓQ(P )
F̂

)
= 0, (24)

which can be integrated easily into:

F̂Q(T ,K,P ) ≈ 1√
2π

F ∗
Q(P ) exp

(
−i

KP

ΓQ(P )
T

)
. (25)

Carrying out the inverse Fourier transform and the integration over P delivers (23).
This analytical computation in a priori valid at short times only i.e. for values of T much

smaller than unity. The numerical computations presented in the previous section extend
well beyond T � 1. They reveal, in particular, that the density profile still presents the
characteristic valley shape with peaks close to 0.94QT up to T ≈ 1. The simulations are
also useful in understanding how this valley shape transforms into the standard asymptotic
Gaussian shape.

Let us finally note that the above analytical computation can be extended to other initial
conditions and other models of finite-speed transport. This extension is presented in the
Appendix to this article.

3.3 Fit of the Density Profile

Consider now the following function of position and time:

Nα,σ,B(T ,X) = B(T )

(
γQ

(
X

T

))α(T )

exp

(
−Q2γQ

(
X

T

))
exp

(
− X2

2σ(T )2

)
, (26)

where α and σ are two arbitrary functions of T and B ensures that Nα,σ,B is at all times nor-
malized to unity on (−QT,QT ). At each time T , the values of αQ(T ), σQ(T ) and BQ(T )

producing the best fits of NQ can be obtained, for example, by minimizing the following
distance function dC(T ) between NQ(T , ·) and NασB(T , ·):

dC(T ) =
∫

R

∣∣NQ(T ,X) − NασB(T ,X)
∣∣dX + λB

∣∣∣∣1 −
∫

R

NασB(T ,X)dX

∣∣∣∣, (27)

where λB is a Lagrange multiplier which enforces normalization and the convention
NασB(T ,X) = 0 for |X| > QT has been used. Figure 3 displays the results of the fit at
different times for Q = 1 and λB = 100. The precision of the fit is always better than
3 % (see Fig. 3(bottom)). The coefficient αQ remains close to the above computed value
of 3 and seems to globally decrease with time; its average value for the points plotted
in Fig. 3(top left) is 2.88. At small times, σQ(T ) behaves like 2

√
T /3 (see the green



44 F. Debbasch et al.

Fig. 3 Fit of the density profile. (top left) Time-evolution of the alpha-coefficient for Q = 1.
(top right) Time-evolution of the σ -coefficient (blue circles) for Q = 1. The straight line is x = ct i.e.
X = QT and the dashed green curve is x = (2/3) ×

√
kBθet/(mα2) i.e. X = 2

√
T /3. (bottom) Time-evolu-

tion of the absolute error of the fit for Q = 1

dashed curve on Fig. 3(top right)) and is thus larger than QT (the red straight line in
Fig. 3(top right)); the Gaussian then varies slowly over (−QT,+QT ), the shape of the

density profile is essentially controlled by the γ
αQ(T )

Q exp(−Q2γQ) and it thus displays the
characteristic peaks at |X/T | close to Q i.e. for x close to ct . As T increases, σQ(T ) be-
comes smaller than QT and the maximum of the Gaussian at X = 0 generates the secondary
maximum at X = 0. As time still increases, σQ(T ) increases slowly from 2

√
T /3 to

√
T (the

onset of this increase can actually be seen in Fig. 3(top right)) but σQ(T )/QT continues to
decrease towards zero; the density profile is then essentially controlled by the Gaussian and
tends towards the standard result predicted by Fick’s law.

Let us stress that the fit presented in this section is not based on an approximate analytical
computation of the finite-time density profile, but is only a heuristic extension of the short-
time computation presented in the previous section. This fit nevertheless highlights the fact
that the whole time-evolution of the density profile can be understood in very simple terms
i.e. as the superposition of two competing phenomena which are (i) the propagation of the
peaks at velocity close to the light-velocity (ii) a standard Gaussian diffusion with a typical
scaling as

√
T .

The fit also constitutes a simple, ready-to-use model of finite speed transport. It can be
easily integrated into numerical simulations and should thus prove useful in a wide variety
of physical and engineering applications.
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Fig. 4 Diffusion metric appearing in the generalized Fick’s law. Metric gQ plotted against the rescaled
variable ξ = x/(ct) for Q = 1 and T = 1 (blue curve), T = 4 (red small dashes curve), T = 10 (green large
dashes curve)

4 Generalized Fick’s Law

The generalized Fick’s law obeyed by the ROUP is best understood in geometrical terms.
Each Riemannian metric g defined over an n-dimensional physical space defines in a canoni-
cal manner a Brownian motion on this space. This result is well-known for time-independent
metrics [28] but has been extended recently [2, 5–7, 9] to time-dependent ones. For this
Brownian motion, the link between the density N (with respect to the g-independent mea-
sure dX), the current density J and the metric g reads

J (T ,X) = 1√
g(T ,X)

∂X

(
N(T ,X)√
g(T ,X)

)
. (28)

where n = 1 has been assumed. This last equation is a clear generalization of Fick’s law.
Changing point of view, this equation can also be viewed as a differential equation to be
solved for the metric g at given density N and current J . Let gQ be a metric thus associated
to NQ and JQ. This metric is best obtained from NQ and JQ by rewriting (28) in terms of
hQ = g−1

Q , which leads to:

NQ

2
∂XhQ + hQ∂XNQ = −JQ. (29)

We choose as solution hQ(T ,X) = IQ(T ,X)/N2
Q(T ,X) with

IQ(T ,X) = −2
∫ X

−QT

NQ(T ,Y )JQ(T ,Y )dY. (30)

The standard, Galilean Ornstein-Uhlenbeck process corresponds to Q = +∞; as shown
in [12], J∞ = −χ(T )∂XN∞, so that h∞(T ,X) = χ(T ), which is flat and tends (as it should)
to 1, i.e. the time-independent Euclidean metric, as T tends to infinity.

Typical results are displayed in Fig. 4. The metric is nearly flat at the center of the in-
terval (−QT,QT ) but grows to infinity near |X| ∼ QT . Consider for example a point with
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coordinate X and a point with coordinate X + �X, δX � X. As far as the diffusion is
concerned, the effective distance between these two points at time T is gQ(T ,X)�X. This
distance grows to infinity for any finite �X when X approaches ±QT . Thus, the distance
that a particle needs to travel to get closer to QT by the amount �X tends to infinity as
the particle approaches ±QT . This prevents the particle from ever crossing X = ±QT i.e.
from being transported faster than light.

Let us add that the metric gQ can be used to construct the space-time metric g̃Q, de-
fined by ds2 = dT 2 − gQ(T ,X)dX2, that g̃Q is conformal to ds2 = dT 2/

√
gQ(T ,X) −√

gQ(T ,X)dX2, and that this last metric admits an horizon at X = cT .
We finally remark that the apparently simpler generalization of Fick’s law J =

−D(T ,X)∂XN is ruled out by numerical simulations (data not shown) because the cur-
rent JQ, in the short-time propagative regime, does not vanish at the two maxima of NQ.
A similar simple proportionality between JQ and NQ in Fourier space is also ruled out, for
similar reasons.

5 Discussion

We have used the Relativistic Ornstein-Uhlenbeck Process to study the diffusion of rela-
tivistic particles in a fluid at equilibrium; to make the discussion definite, we have supposed
that these particles start their stochastic motion from some arbitrary point O and that they
are initially thermalized with the fluid. At short times, the density profile does not exhibit
the standard spreading around O commonly associated to diffusion, but reveals propagation
away from O at a velocity very close to the speed of light c. We have proposed a simple
Ansatz which fits this profile at all times with a precision better than 3 %. We have also
verified that the density profile of the ROUP does not obey Cattaneo’s hyperbolic diffusion
model, but a simple geometrical generalization of Fick’s law. In physical space, the ROUP
thus coincides with a Brownian motion in a time-dependent metric, and this metric tends
with time towards the Euclidean metric.

The material presented in the Appendix presented suggests that all bounded velocity dif-
fusions exhibit short-time propagative behavior, at least for a wide class of initial conditions.
This could in principle be verified by direct experiments, at least for some Galilean diffu-
sions. If short-time propagation is confirmed, the Ansatz (26) and the generalized Fick’s
law we propose in this article should be robust enough to accommodate most physically
interesting situations.

The short-time propagation effect can be understood in rather simple, physical terms.
Consider an arbitrary motion of a non-quantum point particle. At short times, the motion
is entirely determined by the initial position and the initial velocity of the particle. If the
initial velocity is distributed according to a certain probabilistic law, then the short-time
motion of the particle is entirely determined by the initial position and the initial velocity
law. This is true of all non-quantum motions and, in particular, of the physical diffusions of
particles immersed in a fluid, whether the particles be relativistic or non-relativistic. Sup-
pose now that a diffusing particle is initially in a thermal state of inverse temperature β .
In both relativistic and non-relativistic cases, this state is represented by a Gibbs distribu-
tion [10, 17, 26] of the form exp(−βε(p))dp, where ε(p) is the energy of the particle. In
the non-relativistic case, ε(p) = p2/(2m) and p = mv. The initial velocity distribution is
then Gaussian, it has no peak at non-vanishing velocities and there is thus no short-time
propagation effect. In the relativistic case, ε(p) = mc2

√
1 + p2/(mc)2 and v = pε(p)/c2.

The direct computation presented in Sect. 3.2 and extended in the Appendix shows that the
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corresponding velocity distribution presents two peaks at non-vanishing velocities ±c̃(β).
Moreover, these are the only maxima of the velocity distribution provided the temperature
is high enough (see the Appendix). In that case, the diffusing particle will undergo at short
times a ballistic motion and essentially travel at velocities ±c̃(β). This is the propagation
effect presented in this article. Naturally, as time increases, the cumulated effect of stochas-
tic collisions becomes dominant and the propagation is replaced by standard diffusion. The
simulations presented in this article show that, quite remarkably, the propagation effect is
not short-lived i.e. is not restricted to infinitesimally short times, but that it extends at least
to times of the same order as the inverse friction coefficient, which is the characteristic rela-
tion time of the system. The computation presented in the Appendix also shows that peaks
in relativistic velocity distributions are encountered, not only in relativistic thermal states,
but also in many other physically natural conditions, thus making short-time propagation a
robust aspect of bounded velocity transport.

Let us stress that the metric generalizing the usual diffusion coefficient depends explic-
itly on the starting point O , on the time elapsed since the onset of diffusion, and on the
initial temperature of the diffusing particles. All results presented in this article therefore
admit non-trivial extensions to other, more general initial conditions. This should hopefully
converge towards the obtention of a realistic and consistent hydrodynamical theory of spe-
cial relativistic fluids, which has eluded physics since 1940 [17]. Galilean diffusions in an
intrinsically curved space, like a membrane, and relativistic diffusions in space-times curved
by gravity should also be investigated.

The generalized Fick’s law points to a natural connection between bounded velocity dif-
fusion and geometrical flows. A link with the geometry of black holes is also apparent.
These connections will be explored in subsequent publications.

Acknowledgements Part of this work was funded by the ANR Grant 09-BLAN-0364-01.

Appendix

Consider an arbitrary problem of finite speed transport and model it by a Langevin-type
stochastic process. Restricting the discussion to 1D situations and using the same notations
are in the core of the article, we write this process as:

dx = vdt (31)

dv = F(v)dt + σ(v)dBt (32)

where F is a friction or dissipative term and σ is a noise coefficient. Since we are modeling
finite speed transport, we suppose that the initial condition and the process itself restricts v

to a finite interval, say I = (−c,+c), where c is an arbitrary constant. A simple one-to-one
map of this interval onto R is of course:

p : I → R

v → p(v) = γ (v) v
(33)

with γ (v) = (1 − v2

c2 )−1/2. Note that v → ±c corresponds to p → ±∞. The first equation
of the process transcribes into

dx = p

Γ (p)
dt (34)

with Γ (p) = (1 + p2/c2)1/2.
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Consider now as initial condition x = 0 and a certain probability law in p, which we de-
note by F ∗(p)dp. To make the discussion simpler, suppose also that F ∗ isotropic, and write
F ∗(p) = exp(−Φ(Γ (p))). Reasoning as in Sect. 3.2 leads to the following approximate
expression for the short-time density of the process in 1D space:

n(t, x) ≈ 1

t

(
γ

(
x

t

))3

exp

(
−Φ

(
γ

(
x

t

)))
. (35)

The first and second partial derivatives of n with respect to x read:

∂n

∂x
= x

c2t2
γ 2

(
3 − γ Φ ′(γ )

)
n(t, x) (36)

and

∂2n

∂x2
= γ 2

c2t2

[(
3 − γ Φ ′(γ )

)
n + x2

c2t2
γ
(
6γ − 3γ 2Φ ′(γ ) − γ 3Φ ′′(γ )

)
n

+ x
(
3 − γΦ ′(γ )

)∂n

∂x

]
. (37)

At early times, the density n thus admits an extremum at x = 0 i.e. for γ = 1. The second
derivative of the density at x = 0 is non-negative provided Φ ′(1) ≤ 3 and x = 0 is then a
local minimum of n. Suppose for example that Φ(γ ) = a + q2γ . The initial momentum
distribution is then a Jüttner distribution of temperature kBθi = mc2/q2 and Φ ′(1) = q2. In
this case, the origin x = 0 is a minimum for n at early times provided q2 ≤ 3 or, equivalently,
kBθi ≥ mc2/

√
3 i.e. for large enough initial temperatures. For initial temperatures smaller

than mc2/
√

3, x = 0 is a maximum for n. For these temperatures, the initial expectation or
mean value γ̄ of the Lorentz factor does not exceed ∼ 1.2; the initial conditions for which
x = 0 is a maximum of n are thus at most weakly relativistic.

Suppose now Φ is a strictly increasing function of γ and that the equation γ Φ ′(γ ) = 3
has a single solution γ ∗. This is so for Φ(γ ) = a + q2γ , in which case γ ∗ = 3/q2. At each
time t , the value γ ∗ corresponds to x/ct = ±x∗/ct = ±√

1 − 1/γ ∗2. The second derivative
of the density n at these points has the same sign as D∗ = −3γ ∗ − γ ∗3Φ ′′(γ ∗). A sufficient
(but not necessary) condition for D∗ to be positive is that Φ be convex in γ . Thus, for
any convex function Φ , the short-time density profile exhibits two peaks which travel at
velocity c

√
1 − 1/γ ∗2. For Φ(γ ) = a + q2γ , a direct computation shows that the quotient

n(t,±x∗)/n(t,0) is always greater or equal to unity and only reaches unity for q = √
3.

Thus, for this choice of Φ , the peaks are always higher than the extremum at x = 0, even
when this extremum is a local maximum. The short-time transport is then always mainly
propagative.
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