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Abstract In this paper we construct several models with nearest-neighbor interactions and
with the set [0,1] of spin values, on a Cayley tree of order k ≥ 2. We prove that each of the
constructed model has at least two translational-invariant Gibbs measures.

Keywords Cayley tree · Configuration · Gibbs measures · Uniqueness

1 Introduction

Spin systems on lattices are a large class of systems considered in statistical mechanics.
Some of them have a real physical meaning, others are studied as suitably simplified models
of more complicated systems. The structure of the lattice (graph) plays an important role in
investigations of spin systems. For example, in order to study the phase transition problem
for a system on Zd and on Cayley tree there are two different methods: Pirogov-Sinai theory
on Zd , Markov random field theory and recurrent equations of this theory on Cayley tree. In
[1–4, 7–9, 12–14] for several models on Cayley tree, using the Markov random field theory
Gibbs measures are described.

These papers are devoted to models with a finite set of spin values. It were shown that
these models have finitely many translation-invariant and uncountable numbers of non-
translation-invariant extreme Gibbs measures. Also for several models (see, for example,
[5, 7, 9]) it were proved that there exist three periodic Gibbs measures (which are invariant
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with respect to normal subgroups of finite index of the group representation of the Cayley
tree) and there are uncountable number of non-periodic Gibbs measures.

In [6] the Potts model with a countable set of spin values on a Cayley tree is considered
and it was showed that the set of translation-invariant splitting Gibbs measures of the model
contains at most one point, independently on parameters of the Potts model with countable
set of spin values on the Cayley tree. This is a crucial difference from the models with a
finite set of spin values, since the last ones may have more than one translation-invariant
Gibbs measures.

This paper is continuation of our investigations [3, 10]. In [10] models (Hamiltonians)
with nearest-neighbor interactions and with the (uncountable) set [0,1] of spin values, on a
Cayley tree of order k ≥ 1 were studied.

A central problem in the theory of Gibbs measures is to describe infinite-volume (or lim-
iting) Gibbs measures corresponding to a given Hamiltonian. In [10] we reduced the problem
to the description of the solutions of some nonlinear integral equation. Then for k = 1 we
showed that the integral equation has a unique solution. In case k ≥ 2 some models (with the
set [0,1] of spin values) which have a unique splitting Gibbs measure are constructed. In our
next paper [3] it was found a sufficient condition on Hamiltonian of the model with an un-
countable set of spin values under which the model has unique translation-invariant splitting
Gibbs measure. But we did not presented there any example of model (with uncountable
spin values) with more than one translation-invariant Gibbs measure.

This problem is solved in this paper: we shall construct several models with nearest-
neighbor interactions and with the set [0,1] of spin values, on a Cayley tree of order k ≥ 2.
We prove that each of the constructed model have at least two translational-invariant Gibbs
measures.

The paper is organized as follows. Section 2 introduces the main definitions. In Sect. 3,
the Hammerstein’s non linear integral equation is presented. In Sects. 4, 5, and 6, the exis-
tence of at least two Gibbs measures for several models with uncountable set of spin values
are proved respectively in cases k = 2, k = 3 and k ≥ 4.

2 Preliminaries

A Cayley tree Γ k = (V ,L) of order k ≥ 1 is an infinite homogeneous tree, i.e., a graph
without cycles, with exactly k + 1 edges incident to each vertices. Here V is the set of
vertices and L that of edges (arcs).

Consider models where the spin takes values in the set [0,1], and is assigned to the
vertexes of the tree. For A ⊂ V a configuration σA on A is an arbitrary function σA : A →
[0,1]. Denote ΩA = [0,1]A the set of all configurations on A. A configuration σ on V is
then defined as a function x ∈ V �→ σ(x) ∈ [0,1]; the set of all configurations is [0,1]V .
The (formal) Hamiltonian of the model is:

H(σ) = −J
∑

〈x,y〉∈L

ξσ(x),σ (y), (2.1)

where J ∈ R \ {0} and ξ : (u, v) ∈ [0,1]2 → ξu,v ∈ R is a given bounded, measurable func-
tion. As usually, 〈x, y〉 stands for nearest neighbor vertices.

Let λ be the Lebesgue measure on [0,1]. On the set of all configurations on A the a priori
measure λA is introduced as the |A| fold product of the measure λ. Here and further on
|A| denotes the cardinality of A. We consider a standard sigma-algebra B of subsets of
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Ω = [0,1]V generated by the measurable cylinder subsets. A probability measure μ on
(Ω, B) is called a Gibbs measure (with Hamiltonian H ) if it satisfies the DLR equation,
namely for any n = 1,2, . . . and σn ∈ ΩVn :

μ
({σ ∈ Ω : σ |Vn = σn}

) =
∫

Ω

μ(dω)ν
Vn

ω|Wn+1
(σn),

where ν
Vn

ω|Wn+1
is the conditional Gibbs density

ν
Vn

ω|Wn+1
(σn) = 1

Zn(ω|Wn+1)
exp

(−βH(σn ||ω|Wn+1)
)
,

and β = 1
T

, T > 0 is temperature. Here and below, Wl stands for a ‘sphere’ and Vl for a
‘ball’ on the tree, of radius l = 1,2, . . . , centered at a fixed vertex x0 (an origin):

Wl = {
x ∈ V : d(

x, x0
) = l

}
, Vl = {

x ∈ V : d(
x, x0

) ≤ l
};

and

Ln = {〈x, y〉 ∈ L : x, y ∈ Vn

};
the distance d(x, y), x, y ∈ V , is the length of (i.e. the number of edges in) the shortest path
connecting x to y. ΩVn is the set of configurations in Vn (and ΩWn that in Wn; see below).
Furthermore, σ |Vn and ω|Wn+1 denote the restrictions of configurations σ,ω ∈ Ω to Vn and
Wn+1, respectively. Next, σn : x ∈ Vn �→ σn(x) is a configuration in Vn and H(σn ||ω|Wn+1)

is defined as the sum H(σn) + U(σn,ω|Wn+1) where

H(σn) = −J
∑

〈x,y〉∈Ln

ξσn(x),σn(y),

U(σn,ω|Wn+1) = −J
∑

〈x,y〉: x∈Vn,y∈Wn+1

ξσn(x),ω(y).

Finally, Zn(ω|Wn+1) stands for the partition function in Vn, with the boundary condition
ω|Wn+1 :

Zn(ω|Wn+1) =
∫

ΩVn

exp
(−βH

(
σ̃n ||ω|Wn+1

))
λVn(dσ̃n).

Due to the nearest-neighbor character of the interaction, the Gibbs measure possesses
a natural Markov property: for given a configuration ωn on Wn, random configurations in
Vn−1 (i.e., ‘inside’ Wn) and in V \ Vn+1 (i.e., ‘outside’ Wn) are conditionally independent.

We use a standard definition of a translation-invariant measure (see, e.g., [11]). The main
object of study in this paper are translation-invariant Gibbs measures for the model (2.1)
on Cayley tree. In [10] this problem of description of such measures was reduced to the
description of the solutions of a nonlinear integral equation. For finite and countable sets of
spin values this argument is well known (see, e.g. [1–6, 8, 12–14]).

Write x < y if the path from x0 to y goes through x. Call vertex y a direct successor of
x if y > x and x, y are nearest neighbors. Denote by S(x) the set of direct successors of x.
Observe that any vertex x 
= x0 has k direct successors and x0 has k + 1.
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Let h : x ∈ V �→ hx = (ht,x, t ∈ [0,1]) ∈ R[0,1] be mapping of x ∈ V \ {x0}. Given n =
1,2, . . . , consider the probability distribution μ(n) on ΩVn defined by

μ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑

x∈Wn

hσ(x),x

)
. (2.2)

Here, as before, σn : x ∈ Vn �→ σ(x) and Zn is the corresponding partition function:

Zn =
∫

ΩVn

exp

(
−βH (̃σn) +

∑

x∈Wn

hσ̃(x),x

)
λVn(dσ̃n). (2.3)

The probability distributions μ(n) are compatible if for any n ≥ 1 and σn−1 ∈ ΩVn−1 :

∫

ΩWn

μ(n)(σn−1 ∨ ωn)λWn

(
d(ωn)

) = μ(n−1)(σn−1). (2.4)

Here σn−1 ∨ ωn ∈ ΩVn is the concatenation of σn−1 and ωn. In this case there exists a unique
measure μ on ΩV such that, for any n and σn ∈ ΩVn , μ({σ |Vn = σn}) = μ(n)(σn).

Definition 2.1 The measure μ is called splitting Gibbs measure corresponding to Hamilto-
nian (2.1) and function x �→ hx , x 
= x0.

The following statement describes conditions on hx guaranteeing compatibility of the
corresponding distributions μ(n)(σn).

Proposition 2.2 [10] The probability distributions μ(n)(σn), n = 1,2, . . . , in (2.2) are com-
patible iff for any x ∈ V \ {x0} the following equation holds:

f (t, x) =
∏

y∈S(x)

∫ 1
0 exp(Jβξt,u)f (u, y)du

∫ 1
0 exp(Jβξ0,u)f (u, y)du

. (2.5)

Here, and below f (t, x) = exp(ht,x − h0,x), t ∈ [0,1], and du = λ(du) is the Lebesgue
measure.

From Proposition 2.2 it follows that for any h = {hx ∈ R[0,1], x ∈ V } satisfying (2.5)
there exists a unique Gibbs measure μ and vice versa. However, the analysis of solutions to
(2.5) is not easy. This difficulty depends on the given function ξ .

Let ξt,u be a continuous function. We will present the construction of explicit functions
ξt,u under which Eq. (2.5) has at least two solutions in the class of translational-invariant
functions f (t, x), i.e. f (t, x) = f (t), for any x ∈ V . For such functions, Eq. (2.5) can be
written as

f (t) =
( ∫ 1

0 K(t,u)f (u)du
∫ 1

0 K(0, u)f (u)du

)k

, (2.6)

where K(t,u) = exp(Jβξt,u), f (t) > 0, t, u ∈ [0,1].
We put

C+[0,1] = {
f ∈ C[0,1] : f (x) ≥ 0

}
.



Non-uniqueness of Gibbs Measure for Models With Uncountable Set 783

We are interested in the positive continuous solutions of (2.6), i.e. such that f ∈ C+
0 [0,1] =

{f ∈ C[0,1] : f (x) ≥ 0} \ {θ ≡ 0}.
Note that Eq. (2.6) is not linear for any k ≥ 1.
Define the operator Rk : C+

0 [0,1] → C+
0 [0,1] by

(Rkf )(t) =
[

(Wf )(t)

(Wf )(0)

]k

, k ∈ N,

where W : C[0,1] → C[0,1] is the linear operator defined by:

(Wf )(t) =
∫ 1

0
K(t,u)f (u)du.

Then Eq. (2.6) can be written as

Rkf = f, f ∈ C+
0 [0,1].

3 The Hammerstein’s Nonlinear Integral Equation

For every k ∈ N we consider an integral operator Hk acting in the cone C+[0,1] as

(Hkf )(t) =
∫ 1

0
K(t,u)f k(u)du, k ∈ N.

The operator Hk is called Hammerstein’s integral operator of order k. Clearly, when
k ≥ 2 the operator Hk is nonlinear.

Lemma 3.1 Let k ≥ 2. The equation

Rkf = f, f ∈ C+
0 [0,1] (3.1)

has a nontrivial positive solution iff the Hammerstein’s operator has a positive eigenvalue,
i.e. the Hammerstein’s equation

Hkf = λf, f ∈ C+[0,1] (3.2)

has a nonzero positive solution for some λ > 0.

Proof Necessity. Let f0 ∈ C+
0 [0,1] be a solution of Eq. (3.1). We have

(Wf0)(t) = (Wf0)(0)f
1
k

0 (t).

From this equality we get

(Hkh)(t) = λ0h(t),

where h(t) = k
√

f0(t) ∈ C+
0 [0,1] and λ0 = (Wf0)(0), i.e., the number λ0 is the positive

eigenvalue of the Hammerstein’s operator Hk .
Sufficiency. Let λ0 be a positive eigenvalue of the operator Hk . Then λ0 > 0 and there

exists f0 ∈ C+
0 [0,1] such that

Hkf0 = λ0f0.
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Obviously, the function f0(t) is positive. Put

f (t) = f0(t)

f0(0)
, t ∈ [0,1].

Then the number λ = λ0f
1−k

0 (0) is an eigenvalue of Hk and corresponding the positive
eigenfunction f (t) satisfies

Hkf (t) = 1

f k
0 (0)

(Hkf0)(t) = λ0

f k
0 (0)

f0(t) = λ0f
1−k
0 (0)f (t) = λf (t).

Define

h(t) =
(

f0(t)

f0(0)

)k

= f k(t).

Then

(Rkh)(t) =
(

(Wh)(t)

(Wh)(0)

)k

=
(

(Hkf )(t)

(Hkf )(0)

)k

=
(

λ0f
1−k
0 (0)f (t)

λ0f
1−k
0 (0)f (0)

)k

= f k(t) = h(t). �

Corollary 3.2 Let k ≥ 2. If a function f ∈ C+
0 [0,1] is an eigenfunction of Hk , then the

function

h(t) =
(

f (t)

f (0)

)k

is a solution of Eq. (3.1).

Remark 3.3 As it was mentioned above, to each positive solution of Eq. (2.6) corresponds a
translation-invariant Gibbs measure of the model (2.1). In this section we reduced Eq. (2.6)
to Hammerstein’s equation. Consequently, the rest of the paper is devoted to solutions of
Hammerstein’s equation.

4 Existence of Two Gibbs Measures for the Model (2.1): Case k = 2

Consider the case k = 2 in the model (2.1) and

ξt,u = 1

βJ
ln

(
1 + 14

15
· 5

√

4

(
t − 1

2

)(
u − 1

2

))
, t, u ∈ [0,1].

Then, for the kernel K(t,u) of the Hammerstein’s integral operator H2 we have

K(t,u) = 1 + 14

15
· 5

√

4

(
t − 1

2

)(
u − 1

2

)
.

Proposition 4.1 The Hammerstein’s operator H2:

(H2f )(t) =
∫ 1

0
K(t,u)f 2(u)du

in the space C[0,1] has at least two positive fixed points.
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Proof (a) Let f1(t) ≡ 1. Then we have

(H2f1)(t) = 1 + 14

15
· 5

√

4

(
t − 1

2

)
·
∫ 1

0

(
u − 1

2

) 1
5

du = 1 = f1(t), t ∈ [0,1].

(b) Denote

f2(t) = 3

4
+

√
21

5
·

5
√

2

4
·
(

t − 1

2

) 1
5

, t ∈ [0,1].

Then f2 ∈ C[0,1] and the function f2(t) is positive. Put

a = 14

15
· 5
√

4, b =
√

21

5
·

5
√

2

4
.

We have

H2f2 = h1(t) + h2(t) + h3(t) + γ,

where

h1(t) = ab2 · 5

√
t − 1

2
·
∫ 1

0

5

√(
u − 1

2

)3

du,

h2(t) = 3ab

2
· 5

√
t − 1

2
·
∫ 1

0

5

√(
u − 1

2

)2

du,

h3(t) = 9a

16
· 5

√
t − 1

2
·
∫ 1

0

5

√
u − 1

2
du,

γ =
∫ 1

0
f 2

2 (u)du.

Observe that

h1(t) = h3(t) ≡ 0.

For the function h2(t) we obtain

h2(t) = 3ab

2
· 5

√
t − 1

2
·
∫ 1/2

−1/2
u

2
5 du = 15ab

14 5
√

4
· 5

√
t − 1

2
.

Observe that

γ = 5b2

7 5
√

4
+ 9

16
.

Consequently we have

(H2f2)(t) = h2(t) + γ = 15ab

14 5
√

4
· 5

√
t − 1

2
+ 5b2

7 5
√

4
+ 9

16

=
√

21

5
·

5
√

2

4
· 5

√
t − 1

2
+ 3

4
= f2(t). �
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Denote by μ1 and μ2 the translation-invariant Gibbs measures which by Proposition 2.2

correspond to solutions f1(t) = 1 and f2(t) = 3
4 +

√
21
5 · 5√2

4 · (t − 1
2 )

1
5 .

Thus we have proved the following

Theorem 4.2 The model

H(σ) = − 1

β

∑

〈x,y〉
x,y∈V

ln

(
1 + 14

15
· 5

√

4

(
σ(x) − 1

2

)(
σ(y) − 1

2

))
, σ ∈ ΩV

on the Cayley tree Γ 2 has at least two translation-invariant Gibbs measures μ1, μ2.

5 Existence of Two Gibbs Measures for the Model (2.1): Case k = 3

Now we shall consider the case k = 3 and

ξt,u = 1

βJ
ln

(
1 + 1

2
· 7

√

4

(
t − 1

2

)(
u − 1

2

))
, t, u ∈ [0,1].

Then, for the kernel K(t,u) of the operator H3 we have

K(t,u) = 1 + 1

2
7

√

4

(
t − 1

2

)(
u − 1

2

)
.

Proposition 5.1 The operator H3:

(H3f )(t) =
∫ 1

0

(
1 + 1

2
· 7

√

4

(
t − 1

2

)(
u − 1

2

))
f 3(u)du

in the space C[0,1] has at least two positive fixed points.

Proof (a) Let f1(t) ≡ 1. Then

(H3f1)(t) = 1 + 1

2
· 7

√

4

(
t − 1

2

)
·
∫ 1

2

− 1
2

u
1
7 du = 1 = f1(t), t ∈ [0,1].

(b) We define the function f2:

f2(t) = 1

2

(√
57

17
+

√
33

119
· 7

√

2

(
t − 1

2

))
, t ∈ [0,1].

Then f2 ∈ C[0,1] and the function f2(t) is positive. Put

a = 1

2

√
57

17
, b = 1

2

√
33

119
.

We have

(H3f2)(t) = h1(t) + h2(t) + h3(t) + h4(t) + γ,
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where

h1(t) = a3

2
ϕ(t) ·

∫ 1

0

7

√
u − 1

2
du,

h2(t) = 3a2b

2
· 7
√

2ϕ(t) ·
∫ 1

0

7

√(
u − 1

2

)2

du,

h3(t) = 3ab2

2
· 7
√

4ϕ(t) ·
∫ 1

0

7

√(
u − 1

2

)3

du,

h4(t) = b3

2
· 7
√

8ϕ(t) ·
∫ 1

0

7

√(
u − 1

2

)4

du,

γ =
∫ 1

0
f 3

2 (u)du.

Here ϕ(t) = 7
√

4(t − 1
2 ), t ∈ [0,1].

It is clear that

h1(t) = h3(t) ≡ 0.

For the functions h2(t) and h4(t) we obtain, that

h2(t) = 3a2b
7
√

2

2
· ϕ(t)

∫ 1
2

− 1
2

u
2
7 du = 7a2b

6 7
√

2
· ϕ(t),

h4(t) = b3 7
√

8

2
· ϕ(t)

∫ 1
2

− 1
2

u
4
7 du = 7b3

22 7
√

2
· ϕ(t).

Observe that

γ = a3 + 3ab2 7
√

4 ·
∫ 1

2

− 1
2

u
2
7 du = a3 + 7ab2

3
= a.

Consequently, we have

H3f2 = h2 + h4 + a = a + 7b

2 7
√

2

(
a2

3
+ b2

11

)
ϕ(t) = a + b

7
√

2
ϕ(t) = f2(t). �

From Proposition 5.1, Lemma 3.1 and Proposition 2.2 we get

Theorem 5.2 The model

H(σ) = − 1

β

∑

〈x,y〉
x,y∈V

ln

(
1 + 1

2
7

√

4

(
σ(x) − 1

2

)(
σ(y) − 1

2

))
, σ ∈ ΩV

on the Cayley tree Γ 3 has at least two translation-invariant Gibbs measures.
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6 Existence of Two Gibbs Measures for the Model (2.1): Case k ≥ 4

Let k ∈ N and k ≥ 2. We consider sequences of continuous functions Pn(x) (n ∈ N) and
Qm(x) (m ∈ N, m > k) defined by

Pn(x) ≡ Pn,k(x) =
(

1 + xn−1

2

)k+1

−
(

1 − xn−1

2

)k+1

, x ∈ R,

Qm(x) ≡ Qm,k(x) = (k + 1)xm−k, m > k, x ∈ R.

Proposition 6.1 Let k ≥ 2. Then

Pn(1) > Qn(1), (6.1)

for any n ∈ N, n > k.

Proof Let k ≥ 2 and n > k. We have

Pn(1) = μk = 3k+1 − 1

2k+1
, Qn = ηk = k + 1.

In the case k = 2 we obtain, that

Pn(1) = 13

4
> Qn(1) = 3.

We now suppose, that the inequality (6.1) holds for k = m > 2. Then we show that the
inequality (6.1) also is true for k = m + 1.

Obviously, that

μm+1 = 3(m+1)+1 − 1

2(m+1)+1
>

3(m+1)+1 − 3

2m+1 · 2
= 3m+1 − 1

2m+1
· 3

2

= μm · 3

2
> (m + 1) · 3

2
> m + 2 = ηm+1,

i.e. μm+1 > ηm+1. Thus we get

Pn(1) > Qn(1)

for any k ≥ 2 and n > k. �

Proposition 6.2 Let k ≥ 2. The equation

(
1 + x

2

)k+1

−
(

1 − x

2

)k+1

− (k + 1)x = 0, x ≥ 0 (6.2)

has a unique solution x = 0.

Proof Let k ≥ 2. Define the continuous function ϕ(x):

ϕ(x) =
(

1 + x

2

)k+1

−
(

1 − x

2

)k+1

− (k + 1)x, x ∈ [0,∞).
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We have

ϕ′(x) = (k + 1)

(
1

2

(
1 + x

2

)k

+ 1

2

(
1 − x

2

)k

− 1

)
.

However,
(

1 + x

2

)k

+
(

1 − x

2

)k

> 2, for all x ∈ (0,∞).

Consequently, we have ϕ′(x) > 0 for all x ∈ (0,∞), i.e. the function ϕ(x) is an increasing
on [0,∞). So, the zero is a unique solution of Eq. (6.2). �

Proposition 6.3 Let k ≥ 2. Then for each n ∈ N, n > k the equation

Pn(x) − Qn(x) = 0 (6.3)

has at least one solution ξ = ξ(k;n) in (0,1).

Proof Let k ≥ 2 and n > k. We have

lim
x→0+

Pn(x)

Qn(x)
= 1

k + 1
lim

x→0+
(1 + xn−1

2 )k+1 − (1 − xn−1

2 )k+1

xn−k

= 1

k + 1
lim

x→0+
((1 + xn−1

2 ) − (1 − xn−1

2 ))
∑k

j=0(1 + xn−1

2 )k−j (1 − xn−1

2 )j

xn−k

= 1

k + 1
lim

x→0+
xk−1 ·

k∑

j=0

(
1 + xn−1

2

)k−j(
1 − xn−1

2

)j

= 0.

Since the functions Pn(x) and Qn(x) are continuous, the exists a number δ > 0 such that

Pn(x) < Qn(x) for all x ∈ (0, δ).

However Pn(0) = Qn(0) = 0 and by Proposition 6.1 we have Pn(1) > Qn(1). Consequently,
there exists a number ξ = ξ(k;n) ∈ (0,1) such that Pn(ξ(k;n)) = Qn(ξ(k;n)) = 0.

Let k ≥ 2 be a fixed number and suppose that {ξ(k;n)}n>k ⊂ (0,1) – some set of solutions
of the following system of equations:

Pn(x) − Qn(x) = 0, n ∈ N, n > k.

We have 0 < ξ(k;n) < 1 for all n ∈ N, n > k. Consequently 0 < ξ(k;n)n−1 < 1 for all
n > k. Then there exists an upper limit of the sequence ξ(k;n)n−1, n > k, i.e. there exists a
subsequence αp = ξ(k;np)np−1, p ∈ N of the sequence ξ(k;n)n−1, n > k such that

α = lim
n→∞ sup ξ(k;n)n−1 = lim

p→∞ ξ(k;np)np−1 = lim
p→∞αp.

Obviously 0 ≤ α ≤ 1. Define the sequence βp, p ∈ N by

βp = ξ(k;np), p ∈ N.

Then

αp = β
np−1
p , p ∈ N. �
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Lemma 6.4 α = limp→∞ αp = 0.

Proof (a) Assume α = 1. Put

β = lim
p→∞ sup ξ(k;np) = lim

p→∞ supβp.

Then, there exists a subsequence {βpq }q∈N ⊂ {βp}p∈N such that

lim
q→∞βpq = β.

We have 0 ≤ β ≤ 1. If 0 ≤ β < 1, there exists q0 ∈ N such that βpq <
1+β

2 for all q > q0.
Thus

0 ≤ αpq ≤
(

1 + β

2

)npq −1

, q ∈ N, q > q0.

Therefore α = limq→∞ αpq = 0. The last equality is in contradiction with the assumption
α = 1. However, we obtain that β = 1. Then from the equality

Pnpq

(
ξ(k;npq )

) = Qnpq

(
ξ(k;npq )

)
, q ∈ N (6.4)

as q → ∞ we observe that

(
1 + 1

2

)k+1

−
(

1 − 1

2

)k+1

= k + 1,

i.e.

Pm(1) = Qm(1), m > k.

The last equality is in contradiction with the assertion of Proposition 6.1. Thus, we have
proved that α 
= 1.

(b) Assume that 0 < α < 1. In the case 0 ≤ β < 1 we get α = 0. So β = 1. Then from
(6.4) as q → ∞ we get

(
1 + α

2

)k+1

−
(

1 − α

2

)k+1

= (k + 1)α.

The last equality contradicts the assertion of Proposition 6.2. Thus, we have proved that
α 
∈ (0,1). Consequently, α = 0. �

Corollary 6.5 limp→∞ βp = 1.

Proof From the equality (6.4) we get

βp = ξ(k;np) = k−1

√
k + 1

∑k

j=0(1 + αp

2 )k−j (1 − αp

2 )j
, p ∈ N.

Hence by Lemma 6.4 it follows that

lim
p→∞βp = 1. �
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Define the sequence Cn, n > k ≥ 2:

Cn = Cn(k) = ξ(k;n)3n−k−2

1
2+k

· [(1 + ξ(k;n)n−1

2 )k+2 − (1 − ξ(k;n)n−1

2 )k+2] − ξ(k;n)n−k
, (6.5)

where ξ(k;n) ∈ (0,1) is an arbitrary solution to Eq. (6.3).
Put

γp = γp(k) = Cnp (k), p ∈ N.

Lemma 6.6 For every k ∈ N, k ≥ 2 the following equality holds

lim
p→∞γp(k) = 12

k
.

Proof We have

γp = α3
p · β1−k

p

1
k+2 · ((1 + αp

2 )k+2 − (1 − αp

2 )k+2) − ξ(k;np)np−k

= α3
p · β1−k

p

1
k+2 · ((1 + αp

2 )k+2 − (1 − αp

2 )k+2) − 1
k+1 · ((1 + αp

2 )k+1 − (1 − αp

2 )k+1)
.

However

(
1 + αp

2

)k+2

−
(

1 − αp

2

)k+2

=
k+2∑

j=0

C
j

k+2 ·
(

αp

2

)j

−
k+2∑

j=0

C
j

k+2 ·
(

−αp

2

)j

= 2C1
k+2 · αp

2
+ 2C3

k+2 · α3
p

23
+ · · · + 2C

m1
k+2 · α

m1
p

2m1
,

where

m1 ≡ m1(k) =
{

k + 2, if k is odd

k + 1, if k is even.

Analogously we have

(
1 + αp

2

)k+1

−
(

1 − αp

2

)k+1

= 2C1
k+1 · αp

2
+ 2C3

k+1 · α3
p

23
+ · · · + 2C

m2
k+1 · α

m2
p

2m2
,

where

m2 ≡ m2(k) =
{

k + 1, if k is even

k, if k is odd,

i.e. m2 = 2m0 − 1, m0 ∈ N.
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Therefore

1

k + 2
·
((

1 + αp

2

)k+2

−
(

1 − αp

2

)k+2)
− 1

k + 1
·
((

1 + αp

2

)k+1

−
(

1 − αp

2

)k+1)

=
m0∑

j=2

ajα
2j−1
p + am0+1α

2m0+1
p = α3

p

(
a2 + a3α

2
p + a4α

4
p + · · · + am0+1α

2(m0−1)
p

)
,

where

aj = 2

22j−1
·
(

C
2j−1
k+2

k + 2
− C

2j−1
k+1

k + 1

)
, j = 2,3, . . . ,

am0+1 =
⎧
⎨

⎩

0 if m1 = m2,

1
22m0

· C
2m0+1
k+2
k+2 if m2 < m1.

Obviously,

a2 = k

12
.

Thus we get

γp = β1−k
p

k
12 + a3α2

p + a4α4
p + · · · + am0+1α

2(m0−1)
p

, p ∈ N.

Hence by Corollary 6.5 it follows that

lim
p→∞γp = 12

k
. �

Corollary 6.7 If k ≥ 4 then 0 < limp→∞ γp ≤ 3.

For each k ≥ 4 we define the set N0(k):

N0(k) = {
p ∈ N : ∣∣γp(k)

∣∣ < 4
}
.

Note that, the set N0(k) is a countable subset in the set of all natural numbers. For each
p ∈ N0(k), (k ≥ 4) we define the continuous function Kp(t, u; k) on [0,1]2 by

Kp(t, u; k) = 1 + γp(k)

(
t − 1

2

)(
u − 1

2

)
, t, u ∈ [0,1].

By the inequality |γp(k)| < 4 it follows that, the function Kp(t, u; k) is positive.

Theorem 6.8 Let k ≥ 4. For each p ∈ N0(k) the Hammerstein’s equation

∫ 1

0
Kp(t, u; k)f k(u)du = f (t) (6.6)

in the C[0,1] has at least two positive solutions.
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Proof Obviously, the function f0(t) ≡ 1 is a solution of Eq. (6.6). Define the positive con-
tinuous function f1(t) on [0,1] by

f1(t) = ξ(k;np) + ξ(k;np)np

(
t − 1

2

)
, t ∈ [0,1].

We shall prove that the function f1(t) also is a solution of the Hammerstein’s equa-
tion (6.6):

∫ 1

0
Kp(t, u; k)f k

1 (u)du

=
∫ 1

0

(
1 + γp(k)

(
t − 1

2

)(
u − 1

2

))
·
(

ξ(k;np) + ξ(k;np)np

(
u − 1

2

))k

du

=
∫ 1/2

−1/2

(
1 + γp(k)

(
t − 1

2

)
u

)(
βp + β

np
p u

)k
du

=
∫ 1/2

−1/2

(
βp + β

np
p u

)k
du + γp(k)

(
t − 1

2

)∫ 1/2

−1/2
u
(
βp + β

np
p u

)k
du

= βk
p

β
np−1
p

∫ 1/2

−1/2

(
1 + β

np−1
p u

)k
d
(
1 + β

np−1
p u

)

+ γp(k)

(
t − 1

2

)
βk

p

β
np−1
p

∫ 1/2

−1/2
u
(
1 + β

np−1
p u

)
d
(
1 + β

np−1
p u

)

= βk
p

αp

· 1

k + 1
(1 + αpu)k+1

∣∣∣∣
1/2

−1/2

+ γp(k)βk
p

α2
p

(
t − 1

2

)∫ 1/2

−1/2

(
(1 + αpu)k+1 − (1 + αpu)k

)
d(1 + αpu)

= βk
p

αp

· 1

k + 1

((
1 + αp

2

)k+1

−
(

1 − αp

2

)k+1)

+ γp(k)βk
p

α2
p

(
t − 1

2

)
·
(

1

k + 2
(1 + αpu)k+2

∣∣∣∣
1/2

−1/2

− 1

k + 1
(1 + αpu)k+1

∣∣∣∣
1/2

−1/2

)

= βk
p

αp

· 1

k + 1
· (k + 1)β

np−k
p + γp(k)βk

p

α2
p

·
(

t − 1

2

)

×
[

1

k + 2

((
1 + αp

2

)k+2

−
(

1 − αp

2

)k+2)

− 1

k + 1

((
1 + αp

2

)k+1

−
(

1 − αp

2

)k+1)]

= β
np
p

αp

+ γp(k)βk
p

α2
p

·
(

t − 1

2

)
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×
[

1

k + 2

((
1 + αp

2

)k+2

−
(

1 − αp

2

)k+2)
− 1

k + 1
(k + 1)β

np−k
p

]

= βp + γp(k)βk
p

α2
p

·
(

t − 1

2

)(
1

k + 2

((
1 + αp

2

)k+2

−
(

1 − αp

2

)k+2)
− β

np−k
p

)

= βp + βk
p

α2
p

· α3
pβ1−k

p

(
t − 1

2

)
= βp + β

np
p ·

(
t − 1

2

)

= ξ(k;np) + ξ(k;np)np

(
t − 1

2

)
= f1(t). �

From Theorem 6.8, Lemma 3.1 and Proposition 2.2 we get the following theorem.

Theorem 6.9 Let k ≥ 4 and p ∈ N0(k). The model

H(σ) = − 1

β

∑

〈x,y〉
x,y∈V

lnKp

(
σ(x), σ (y); k)

, σ ∈ ΩV

on the Cayley tree Γ k has at least two translation-invariant Gibbs measures.
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