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Abstract A key goal of systems biology is the predictive mathematical description of gene
regulatory circuits. Different approaches are used such as deterministic and stochastic mod-
els, models that describe cell growth and division explicitly or implicitly etc. Here we con-
sider simple systems of unregulated (constitutive) gene expression and compare different
mathematical descriptions systematically to obtain insight into the errors that are introduced
by various common approximations such as describing cell growth and division by an effec-
tive protein degradation term. In particular, we show that the population average of protein
content of a cell exhibits a subtle dependence on the dynamics of growth and division, the
specific model for volume growth and the age structure of the population. Nevertheless, the
error made by models with implicit cell growth and division is quite small. Furthermore,
we compare various models that are partially stochastic to investigate the impact of differ-
ent sources of (intrinsic) noise. This comparison indicates that different sources of noise
(protein synthesis, partitioning in cell division) contribute comparable amounts of noise if
protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the bursti-
ness is the dominant noise source, independent of other details of the model. Finally, we
discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells
being at different stages in the division cycles, which we show to be small (for the protein
concentration and, surprisingly, also for the protein copy number per cell) and fluctuations
in the growth rate, which can have a significant impact.
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1 Introduction

With the emergence of systems biology and synthetic biology, concepts and methods from
mathematics, physics and engineering are increasingly used in the life sciences [1, 2, 14].
In particular, two central goals of this field are to predict the dynamics of gene expression
based on mathematical descriptions of the genetic networks of a cell and to design genetic
circuitry based on well-characterized regulatory elements [6, 17, 20, 46]. The progress of
this research program has however also highlighted a number of generic complications that
arise from the fact that all genetic circuits function in a cellular chassis that itself is dynamic
and adapts to external conditions, which can have unexpected effects on circuit function [24,
26, 28, 39, 42]. This observation raises the question what mathematical description is ap-
propriate for the description of genetic circuitry in a dynamic cell. In particular, even if the
external conditions are constant and the cells exhibit ‘balanced growth’ (a steady state of all
cellular parameters except for the overall exponential growth of the culture), each individual
cell grows and divides and, while doing so, doubles its content of all cellular components.
Some of the components will clearly affect the function of any gene circuit, the most impor-
tant example being the duplication of the circuit genes themselves. In mathematical models
of genetic circuits, these effects are often ignored and described by an average gene copy
number and an effective degradation of the protein that mimics the dilution of a protein
concentration due to cell growth in the absence of its synthesis. In this article, we therefore
ask how strongly cell growth within the division cycle affects gene expression and whether
models that do not describe growth and division explicitly introduce big errors through that
approximation.

Another facet of the question which mathematical description to use is the question
whether such a description should be deterministic or stochastic. It has been realized in
recent years that often the relevant molecules are present in the cell in low copy numbers,
giving rise to large fluctuations and thus requiring a stochastic description of gene expres-
sion [15, 18, 21, 29, 36]. The foundations for this view have been laid long ago [3, 40], but
the progress in single-molecule and single-cell technology now allows the direct observation
of these effects and the quantification of fluctuations from time series or from cell-to-cell
variability [15, 16, 43, 48]. Stochasticity in gene expression has been studied extensively
from a theoretical point of view, see e.g. [3, 4, 10, 19, 27, 34, 35, 38, 41, 44]. Here we ask
about the sources of stochasticity, as noise can be generated at many points in the process
of protein synthesis and by the partitioning during cell division. Many of the noise sources
have been studied before, but we are interested in a systematic comparison of their impact.
Specifically, we ask whether there is a dominant source of noise, and whether the noise pre-
dicted from models with explicit cell growth and division differs from what is obtained from
implicit cell division models.

It turns out that the question of stochasticity and the dependence of gene expression on
the growth and division cycle are closely related: The variation of a protein concentration
during the division cycle is observed as a cell-to-cell variation in that concentration in snap-
shots of cell cultures (where the division cycles of different cells are typically not synchro-
nized, i.e. different cells divide at different times). We therefore also determine the effective
‘noise’ that arises from the dependence on the division cycle (which in fact is a deterministic
component of the observed ‘noise’ and is seen as part of the so-called ‘extrinsic noise’ that
is common to different genes [15, 41]).

The paper is organized as follows: We start with deterministic descriptions of gene ex-
pression in Sect. 2, where we discuss the effects of the division cycle and approximations
that ‘average out’ the division cycle. In Sects. 3 and 4 we discuss several simple models
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that describe various processes of gene expression stochastically to address the question of
the relative importance of various sources of stochasticity. We derive analytical results for
some key characteristics of the noise. Here we focus on intrinsic noise, i.e. noise inherent
in the synthesis and division process and specific to one gene. Extrinsic noise is discussed
in Sect. 5, where we come back to the dependence of protein concentrations on the division
cycle and show that the effective ‘noise’ resulting from this dependence is small (Sect. 5.1).
In addition, we also include a discussion of fluctuations of the growth rate (Sect. 5.2). We
end with some general conclusions in Sect. 6, where we summarize the relative importance
of various sources of noise and cell-to-cell variations and discuss the minimal ingredients to
arrive at realistic descriptions of gene expression.

2 Deterministic Descriptions of Gene Expression

2.1 Basic Model

We will start by discussing a simple deterministic model of protein synthesis that accounts
for the effects of the cell division cycle, specifically cell division itself and gene duplication,
onto protein synthesis. Living cells grow and divide, while in the meantime, proteins are
continuously synthesized inside the cell. We determine the amount of protein synthesized
within a cell cycle and the corresponding concentrations for both exponential and linear cell
growth.

The number of copies of a specific protein in a cell, P (t), is described by the following
dynamics:

Ṗ = αg − βP, (1)

where α is the protein synthesis rate, g is the gene copy number and β is the protein degrada-
tion rate (typical parameter values are summarized in Appendix A.1). Throughout this work,
we will assume that the proteins are stable (β ≈ 0), as it is typically the case for bacterial
proteins [31].

While the proteins are synthesized, the cell also grows and divides. Divisions take place
at integer multiples of the doubling time T . Here we treat cell division as a deterministic
process that occurs instantaneously. At the time of division, the amount of our protein of
interest is divided equally among two daughter cells, so that its amount per cell is simply
divided by 2. The same partitioning applies to all other contents of the cell, and therefore, in
a steady state of growth, all content of the cell has to be doubled between divisions. Specifi-
cally, we are interested in the doubling of the gene that encodes our protein of interest. This
gene, which we assume to be present as a single copy in the genome of the cell, is doubled at
a time tx after the last division (and, of course, divided by 2 at the time of division). There-
fore, the gene copy number g that enters Eq. (1) is given by g = 1 for times 0 ≤ t < tx after
division and by g = 2 for times tx ≤ t < T . Another important characteristic of the cells that
has to double over the doubling time is the total cell mass or the cell volume. We will come
back to this point below, when we discuss the concentration of the protein.

Now we consider our gene to be in a ‘steady state’ of protein synthesis, in the sense
that the protein level only depends on the time in the division cycle, but is the same if
corresponding time points in different cycles are compared. In that case, the protein copy
number at the end of the cycle is exactly twice that at its beginning, i.e. P (t = T ) = 2P0 =
2P (t = 0) (here and in the following, we measure time with respect to the time of division,
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Fig. 1 Variation of the protein number P(t) (a) and concentrations plin(t) and pexp(t) (b) over the cell
division cycle. (a) The protein copy number increases from P0 = 7500 to 2P0 = 15000 during a cell division
cycle. Note that the protein synthesis rate doubles at time tx after each cell division, where the gene is
replicated. (b) The corresponding protein concentration decreases transiently during the division cycle. This
effect is more pronounced for linear volume growth (solid blue line) than for exponential volume growth
(green dashed line) within the division cycle. The parameters are α = 5000/T , T = 60 min, tx = 30 min,
V0 = 0.5 µm3 (Color figure online)

i.e. assume that divisions take place at integer multiples of T ). This condition, which can be
considered as a singular boundary condition for Eq. (1) with times restricted to the interval
[0, T ], determines the time course of the copy number of our protein of interest per cell,

P (t) =
{

α(t + 2T − tx) for 0 ≤ t ≤ tx

2α(t + T − tx) for tx < t ≤ T .
(2)

Immediately after division, there are P0 = α(2T − tx) copies of the protein in the cell, and
the same number is synthesized over the doubling time T (Fig. 1). This synthesis occurs in
two phases, from one or two copies of the gene, respectively. One can define an effective
synthesis rate αeff = α(2− tx/T ); then, the number of proteins synthesized over the division
cycle has the intuitive form αeffT .

We now turn to the corresponding concentration of the protein. This will be denoted
by p and is given by p = P/V , the number of protein molecules per cell divided by the
cell volume V . It therefore also depends on the time course of the cell volume over the
division cycle. The functional form of that time dependence has been debated for a long
time, see for example a recent discussion in Ref. [13]. Here we use two models that have
been proposed, namely linear and exponential growth of the cell volume, which we indicate
by the subscripts ‘lin’ and ‘exp’, respectively.

We denote the cell volume at the beginning of a cycle by V (t = 0) ≡ V0. In a steady state
of growth, this volume must have doubled at the end of the cell cycle, such that V (t = T ) =
2V0. Using this constraint, the cell volume V (t) is given by

Vlin(t) = V0(1 + t/T ), (3)

for linear and by

Vexp(t) = V0 exp

(
ln 2 t

T

)
(4)
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for exponential growth. As a consequence, the concentration of our protein at the beginning
and at the end of a division cycle is equal, p(t = 0) = p(t = T ) = P0/V0. However, it
decreases between divisions as the protein copy number initially grows more slowly than
the volume. When the gene is duplicated, the protein copy number growth speeds up and
becomes faster than volume growth and the concentration increases for times tx < t < T

such that the concentration returns to its initial value. This temporary decrease of the protein
concentration is more pronounced for linear than for exponential volume growth, as can
be seen in Fig. 1(b). The extent of this decrease depends on the timing of gene duplication
(which is dependent on the position of the gene with respect to the origin of DNA replication
[7, 12]). For example, in the extreme case, where the gene is duplicated immediately after or
before cell division, the protein content increases approximately linearly, and thus, for linear
volume growth, the concentration is almost constant over the division cycle. We will come
back to this point in Sect. 5.1, when we discuss the contribution of division cycle effects to
the observed ‘noise’ in the protein content.

2.2 Population Averages

The dynamics described so far is observable in experiments that track the content of spe-
cific proteins in single cells. Such experiments have been done (e.g., [11, 43, 48]), although
most of these studies were more focused on stochastic effects. In many experiments, how-
ever, what is observed is the population average of the protein content per cell. Unless the
cell culture is specifically prepared to synchronize the division cycles of these cells, the
population will consist of many cells (∼109 in a typical bacterial culture) that divide in an
asynchronous fashion. Averages of cellular properties over such populations will in general
not only depend on the dynamics of the observable over the division cycle, but also on the
age distribution in the population, i.e. the distribution of the time points in the division cy-
cle at which these cells are. The latter depends on the experimental setup. We consider two
cases, an exponential and a constant age distribution. The exponential age distribution,

φ(t) = 2 ln 2

T
exp

(
− ln 2 t

T

)
, (5)

applies to asynchronous cultures with an exponentially growing population size, where there
are more young cells than old cells. The average age of a cell in such a culture is 〈t〉 =∫ T

0 tφ(t) dt = T (1/ ln 2 − 1) ≈ 0.44T .
In addition we consider a constant age distribution, φ(t) = 1/T , which is obtained if,

for example, after each cell division only one of the daughter cells is kept and analyzed. An
example of such an experimental setup is the ‘mother machine’ that was described recently
[47].

The protein copy number per cell, averaged over such an exponentially growing popula-
tion, is given by

〈P 〉 =
∫ T

0
P (t)φ(t) dt = αT 21−tx /T

ln 2
. (6)

This result can be rewritten as 〈P 〉 = α〈g〉/βeff with an effective degradation rate of the
protein βeff = (ln 2)/T that describes the loss of proteins due to cell division (with half-
life equal to the doubling time of the cells), and the average copy number of the gene
〈g〉 = 21−tx /T . For comparison, the average protein copy number per cell in a population
with constant age distribution is 〈P 〉 = αT [3 − 2tx/T + 1

2 (tx/T )2]. Notice that this is in
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general not equal to 3P0/2. The numerical comparison with Eq. (6) shows that the average
protein number is approximately 4 % larger with the constant age distribution than with the
exponential age distribution.

The average concentration can be calculated in the same way, but is more involved due to
the age-dependence of the volume. We give only the result for exponential volume growth
and an exponential age distribution. In this case, we obtain

〈p〉 =
∫ T

0
p(t)φ(t) dt = αT

V0
× 1/2 + 2−2tx /T + 2 ln 2 − ln 2 tx/T

2 ln 2
. (7)

This can be compared to the ‘mean field’ result 〈p(t)〉 � 〈P 〉/〈V 〉 that is obtained from the
average protein number and the average volume. Using 〈V 〉 = (2 ln 2)V0, that approximation
leads to

〈p〉 � αT 21−tx /T

2(ln 2)2V0
� 1.04

αT 〈g〉
V0

. (8)

A numerical comparison with the exact result shows that they differ by less than 0.3 % for
all values of the replication time tx . Likewise, we find that the average concentrations for
linear and exponential volume growth also differ only by a few percent.

2.3 Averaging out the Cell Division Cycle

The observation that the ‘mean field’ approximation for the protein concentration given in
Eq. (8) is rather accurate suggests that the dynamics on time scales that are longer than the
generation time can actually be described by the following equation

ṗ = α〈g〉
〈V 〉 − βeffp, (9)

with βeff = ln 2/T as before (or βeff = β + ln 2/T , if the protein is unstable). The equation
can also be interpreted as describing the dynamics of the average concentration in a pop-
ulation of non-synchronized cells. Through βeff, the equation describes the loss of protein
due to growth and division of the cells as an effective degradation. As protein concentra-
tion is actually diluted out by volume growth throughout the division cycle (in contrast to
the protein number per cell, which experiences dilution through instantaneous reduction by
50 % at division), and thus its variations through the cycle are relatively small (Fig. 1b),
this approximation can be expected to be quite good. The same approximation can also be
used for the average protein copy number per cell, but there one has to keep in mind that
variations over the division cycle that are neglected, are stronger, as the protein number P

varies 2-fold over the cycle.

2.4 A Remark on Messenger RNA

Protein synthesis is a process that occurs in two steps, transcription and translation. In the
first step, the gene sequence is copied into a mRNA, which subsequently serves as a template
for protein synthesis. A more complete description of the process thus describes the copy
numbers of the protein (P ) and of the mRNA (M),

Ṁ = αmg − βmM

Ṗ = αpM − βpP,
(10)
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with αm, αp and βm, βp being the growth and degradation rates of mRNA and protein,
respectively. In many cases, however, mRNA is rather short-lived and one can approximate
the equation for M by its steady state, M = αmg/βm. In that case, we are back to Eq. (1)
with α = αpαm/βm.

This approximation is specifically suited for gene expression in bacteria, where typically
mRNA lifetimes are of the order of a few minutes [5, 43], while proteins, as mentioned
above, are mostly stable [31, 37]. This means that when a gene is turned off and synthesis of
the corresponding mRNA and protein is stopped, the mRNA will disappear with a half-life
of a few minutes, while the protein is diluted out through cell growth and division and its
half-life is given by the doubling time, which is typically of the order of 1 hour (the range
for E. coli is 20 min—many hours).

3 Sources of (Intrinsic) Stochasticity

As mentioned in the introduction, the copy numbers of some proteins can be small, so that
fluctuations play an important role, and stochastic descriptions of the dynamics of gene ex-
pression are required. In general, all steps in the synthesis pathway of proteins are stochastic
processes. The same is true for the degradation of the protein if that protein is unstable. In
addition, the partitioning of the copies of that protein during cell division also adds to the
noise. We will now consider these different sources of noise separately to characterize the
noise arising from different sources in a systematic way.1 In these considerations, we aim
at understanding the relative importance of different sources of stochasticity rather than at
accurately capturing the complicated processes that govern protein production in precise bi-
ological detail. Specifically we ask which sources contribute to the noise level observed in
the protein number and whether there is a dominant source. In this sense, the most realistic
model is the one that includes stochastic effects in all processes considered here, but we are
interested in whether a reduced model may be sufficient.

We use a bottom-up approach to study the contributions from cell division, protein syn-
thesis, and finally transcription and translation. We start with a stochastic version of the
models described in Sect. 2.1, i.e. with models that treat protein synthesis as a simple one-
step process. Effects that are due to the two-step nature of protein synthesis (transcription
and translation) will be discussed later in Sect. 4. The most basic model thus describes pro-
tein synthesis and cell division, and we study three versions of this scenario. First, we take
the partitioning of proteins into daughter cells upon division to be stochastic (Sect. 3.1), but
describe protein synthesis deterministically. Second, we treat protein synthesis as a stochas-
tic process but partitioning during cell division as deterministic (Sect. 3.2). Finally, both
synthesis and cell division are considered as stochastic processes (Sect. 3.3). Our analysis
shows that the two noise sources contribute similarly to the overall noise, so none of the
noise source is dominant.

In Sect. 4, we discuss models that explicitly treat protein synthesis as occurring in two
steps, transcription and translation. The resulting noise is then characterized in terms of a
parameter termed ‘burst size’, that characterizes the average number of proteins synthesized
per mRNA copy. Here, high burstiness leads to a significant increase in the noise with bursty
protein synthesis then being the dominant source of stochasticity. Thus, under the conditions

1There are some sources of noise that are specific to particular situations, e.g. to highly transcribed genes
with dense traffic of RNA polymerases [23, 25]. These will not be considered here.
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Fig. 2 Stochastic models of protein synthesis: (a)–(c) Trajectories of the protein copy number from stochas-
tic simulations with stochastic synthesis, cell division, or both, all with cell division modeled explicitly.
(d) Noise strength η2 as a function of the average protein copy number 〈P 〉 (varied by varying the synthesis
rate α) for the different models (for the models with explicit cell division, averages over cell immediately after
division are plotted, i.e. η2

0 and 〈P0〉). (e) Trajectory of the protein copy number for a model with implicit cell
division, i.e. where cell division is described by an effective degradation rate βeff. The corresponding curve
in (d) lies on top of the curve for stochastic synthesis and stochastic division. The parameter values used for
these plots are α = 0.5/min, T = 40 min, and, in (e), β = ln 2/T (Color figure online)

of high burstiness, therefore a reduced model that neglects other sources of noise can provide
a realistic description of the dynamics.

All the sources of stochasticity we discuss here produce so-called intrinsic noise [15], i.e.
the fluctuations are specific to the gene/protein under consideration and the fluctuations in
the level of two different proteins are uncorrelated. Sources of extrinsic noise, which affects
all genes will be discussed in Sect. 5.

3.1 Stochastic Partitioning During Cell Division

We first consider the case, where protein synthesis is described by a deterministic process,
but where proteins are distributed stochastically into the daughter cells during cell division.
Specifically, we consider the case, where each copy of the protein has probability r = 1/2
to end in each of the two daughter cells. This means that in every generation a constant
number Q = αT of proteins is newly synthesized, but the initial copy number of the protein
at the beginning of the division cycle fluctuates due to the stochastic partitioning during cell
division. Figure 2(a) shows a time series of such a process as obtained from simulations.

For this case, a number of characteristics can be obtained analytically using a method de-
scribed in Ref. [8], which we summarize briefly in Appendix A.2. For example, the average
copy number of the protein directly after cell division is 〈P0〉 = Q = αT and the variance
of that number is δP 2

0 = 2Q/3. Two commonly used characteristics of noise are the noise



616 R. Marathe et al.

strength η2 defined as

η2 = 〈(P − 〈P 〉)2〉
〈P 〉2

(11)

and the Fano factor F = η2〈P 〉. η2 typically scales as η2 ∼ 1/〈P 〉, so the latter parameter
provides a characterization of the prefactor of that scaling. In our specific case, we obtain

η2
0 = 2

3〈P0〉 (12)

or F0 = 2/3 (the index ‘0’ in these expressions indicates that we have taken averages over a
population of cells immediately after division), plotted in Fig. 2(d).

3.2 Stochastic Protein Synthesis

Next we consider the stochasticity that is inherent in the protein synthesis process itself.
To disentangle it from the effects of stochastic partitioning we first describe partitioning
deterministically, i.e. we consider the case where each daughter cell inherits exactly one
half of the protein molecules (Fig. 2b).

We consider again one lineage of cells. Between two cell divisions proteins are syn-
thesized stochastically with rate α. At the time of cell division (integer multiples of the
doubling time T ), the protein number is divided by two (if the protein number P is an odd
number, we take the number after division to be either (P + 1)/2 or (P − 1)/2, each with
probability 1/2, so strictly speaking, there is a minimal remnant of stochasticity in our de-
terministic description of division as well). To keep the discussion simple, we assume here
that the synthesis rate is constant, i.e. we neglect the fact that the synthesis rate changes
upon duplication of the gene. We find

〈P0〉 = αT , δP 2
0 = αT

3
and η2

0 = 1

3〈P0〉 . (13)

The last result implies that the Fano factor is F0 = 1/3, which is just half of what we have
seen for stochastic partitioning (Eq. (12)).

3.3 Both Sources Combined

Now let us combine the two sources of stochasticity discussed so far and consider the
case where both protein synthesis and partitioning are stochastic (Fig. 2c). Using again the
method of Ref. [8], we obtain

〈P0〉 = αT , δP 2
0 = αT , and η2

0 = 1/〈P0〉. (14)

Two points are noteworthy here: (i) The noise strengths (η2) of independent noise sources
are additive. In our case, the noise in Eq. (14) is the sum of the noise components that
arise from stochastic partitioning (2/〈3P0〉) and from stochastic synthesis (1/〈3P0〉). (ii) The
contributions from both sources of noise are of the same order, there is no dominant source
of noise in this simple case.

For comparison, we also consider the corresponding model with implicit cell division,
i.e. a stochastic version of Eq. (9), where the effect of protein dilution through cell growth
and division is described by an effective degradation rate βeff = β + ln 2/T . In this case,



Deterministic and Stochastic Descriptions of Gene Expression Dynamics 617

we end up with a simple birth-death process, where the number P of copies of our protein
of interest increases with constant rate α and decreases with rate βeffP , described by the
following master equation

∂P(P, t)

∂t
= α

[
P(P − 1, t) − P(P, t)

]
+ βeff

[
(P + 1)P(P + 1, t) − P P(P, t)

]
, (15)

where P(p, t) is the probability to have P proteins at time t . The moments of that distri-
bution in the steady state 〈P n〉 can easily be calculated by multiplying the master equation
with powers of P and summing over P . For this type of model, the protein copy number
does not exhibit the periodic behavior seen in the models with explicit cell division, but
rather fluctuates around a constant mean value 〈P 〉 = α/βeff in the steady state (Fig. 2e).
These fluctuations are characterized by η2 = 1/〈P 〉, so the Fano factor is the same as F0 for
the case with explicit cell division discussed before. This indicates that using models with
implicit cell division (which by the choice of βeff are constructed to correctly describe the
dynamics of the mean protein number on time scales that are long compared to the genera-
tion time T ) also provide a good description of the fluctuations in such a system.

4 Bursts of Protein Synthesis

As discussed in Sect. 2.4, the two-step nature of protein synthesis can often be neglected as
mRNA levels evolve on faster time scales than protein levels, and therefore the dynamics
of mRNA can be approximated by its steady state. However, while absorbing the mRNA
degrees of freedom into effective protein synthesis results in a correct description of the av-
erage protein level, it generally underestimates fluctuations, as it smoothens out the ‘bursty’
nature of protein synthesis resulting from the two-step process. This was realized first by
Berg in 1978 [3] and has been studied extensively in recent years, as experimental tech-
niques to count proteins in individual cells were developed [9, 32, 48].

To keep the discussion simple, we start with the stochastic version of Eq. (10), i.e. with a
model that describes cell division by an effective protein degradation [44]. The mRNA part
of Eq. (10), follows the same dynamics as the protein in Eq. (15) and is thus characterized by
the same noise η2

M = 1/〈M〉 with 〈M〉 = αm/βm. However the protein number, P , behaves
differently and is characterized by 〈P 〉 = αmαp/βmβp and η2

P = (1 + b)/〈P 〉 [44], where
b = αp/(βp + βm) ≈ αp/βm is called the ‘burst size’ and describes the average number of
proteins synthesized per copy of the mRNA or the amplification of transcription by transla-
tion. Experimentally determined burst sizes range between 1 and 10 [43, 48]. The increase
in noise can be interpreted as an additional (independent) source of noise that arises from
the stochastic amplification of the transcription output by translation. This additional noise
is characterized by a noise strength b/〈P 〉 that is added to the noise already present from
stochastic protein synthesis and degradation/dilution in the absence of stochastic amplifica-
tion.

The bursty nature of these processes is shown by cases with low transcription rate: In this
case, protein synthesis events are rare (as transcripts are produced infrequently), but multiple
copies of the protein are generated in every synthesis event. The increase in fluctuations for
the case of bursty synthesis is illustrated in Fig. 3, where we plot trajectories for three cases
with the same average protein number. In Fig. 3(a), protein synthesis is described by a
single step with rate α = αmαp/βm ≈ αmb, in Fig. 3(b) and (c) protein synthesis is described
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Fig. 3 Burstiness of protein synthesis: (a)–(c) Trajectories of the protein copy number from stochastic
simulations with (a) a one-step model of protein synthesis, (b) a two-step model (transcription and trans-
lation) with low burstiness, and (c) a bursty two-step model. All three cases are for implicit cell division
and exhibit the same average protein copy number. (d) Noise strength η2 for bursty protein synthesis with
exponential burst size distribution (as in the two-step models) or with constant burst sizes as a function
of the average protein copy number (varied by varying αm). (e) Fano factor for models with either im-
plicit or explicit cell division as function of the burst size b. The parameter values are (a) α = 2/min,
βeff = 0.01/min, (b) αp = 0.4/min, βp = 0.01/min, αm = 10/min, βm = 2/min, (c) αp = 10/min,
βp = 0.01/min, αm = 0.4/min, βm = 2/min, (d) βp = 0.01/min, and (e) βp = 0.01/min, αm = 2/min,
βm = 5/min, T = 60 min (Color figure online)

as a two-step process. However, while in Fig. 3(b) the transcription rate is large and the
translation rate is small (b � 0.2), the translation rate is large and the transcription rate is
small in Fig. 3(c), resulting in bursty protein synthesis (with b � 5).

It is worth mentioning here that the bursts on the one hand amplify the noise from tran-
scription, but on the other hand also create additional noise as the size of each burst is a
stochastic quantity. To disentangle these two effects, we determine the noise strength η2

for a one-step model of protein synthesis, where however b copies of the protein are pro-
duced in every synthesis event. In that case, the burst size does not fluctuate, but bursts
can still amplify the noise from the one-step synthesis process that mimics transcription.
This case can be solved using a modified version of the master equation (15)2 and leads to
a noise strength η2 = (1 + b)/(2〈P 〉) with 〈P 〉 = b × α/βeff. This is exactly half of what
we have obtained for exponentially distributed burst sizes in the two-step model (see also
Fig. 3(d), where we plot the noise strength for both constant and exponentially distributed
burst sizes).3 This result indicates that the two effects of bursting contribute equally to the
increased noise.

2The first term is replaced by αP (P − b, t) × Θ(P − b), where Θ is the Heaviside function with Θ(P −
b) = 1 for P ≥ b and Θ(P − b) = 0 for P < b.
3For constant burst sizes, the values of b must be integers and that the result for a single-step protein synthesis
is recovered for b = 1, where every transcription event leads to the synthesis of exactly one protein molecule.
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The model discussed so far describes cell division implicitly as an effective protein degra-
dation, but models with explicit stochastic cell division exhibit the same burstiness behavior.
This is shown in Fig. 3(e), where we plot the Fano factor FP,0 = η2

P,0〈P0〉 for a model where
both protein and mRNA are divided stochastically between daughter cells as in Sect. 3.3.
FP,0 shows the same dependence on the burst size except for a different prefactor of the
linear term (≈ ln 2), which arises from the fact that averages are taken over slightly differ-
ent populations (over cells immediately after division vs. over age-less cells representing an
average over the division cycle).

Finally, we want to mention that burstiness can also arise from other physical processes
than from multiple translations of a transcript. For example, bursts have been demonstrated
experimentally to occur on the level of transcription [16], which can be interpreted as re-
sulting from the stochastic switching of the gene between two activity states (transcrip-
tion ‘on’ or ‘off’). The molecular origin of these activity states remains however unclear,4

although several mechanisms have been proposed (e.g. states of chromosome structures,
binding/unbinding of transcription factors, etc. [30, 45]). In a genome-wide study, the Fano
factors for mRNA were found to range mostly between 1 and 2, larger than what is expected
for a single-step (Poisson) synthesis, but not much larger [43].

5 Extrinsic Noise

So far, we have discussed intrinsic noise in gene expression, i.e. noise that is specific to
a particular gene or protein and results from the inherent stochasticity of the synthesis and
degradation of that protein. As we have seen, a characteristic property of intrinsic noise is its
scaling proportional to the inverse of the average protein number in the cell. We now turn to
extrinsic noise i.e. fluctuations of cellular parameters that affect all genes/proteins in a cell.
Such noise has first been demonstrated by a study of the correlations between the reporter
proteins expressed from two copies of the same operon [15]. For highly abundant proteins,
intrinsic noise becomes negligible and the extrinsic component of the noise, which does not
depend on protein abundance, is dominant with fluctuations of about 30% in the protein
concentration as shown by a study of a library of fluorescent reporter proteins [43]. There
are many possible sources of extrinsic noise such as fluctuations in the concentrations of
essential components of the transcription and translation machinery or mRNA degradation
enzymes (RNA polymerases, ribosomes, RNases). Here we consider two effects that should
be present even if such fluctuations are suppressed by feedback mechanisms for the synthesis
of these machines: cell-to-cell variations arising from different cell ages in a population
(Sect. 5.1) and effects due to fluctuations in the growth rate (Sect. 5.2).

We note that another definition of extrinsic and intrinsic noise has been given in Ref. [33].
There, the distinction between extrinsic and intrinsic noise is not based on distinguishing
a specific genetic system and its environment, which affects different genes in the same
way, but on the dependence of the noise on the average protein number. One component of
the noise exhibits the characteristic 1/〈P 〉 behavior and is classified as intrinsic, while the
component of the noise that does not exhibit this behavior and depends on the fluctuation of
a variable that influences the protein synthesis rate is classified as extrinsic. The two cases

With stochastic burst sizes, however, b can have non-integer values and the single-step process is recovered
by taking the limit b → 0, while keeping b × αm constant.
4In eukaryotic systems, they are believed to mostly reflect different states of the chromatin structure.
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Fig. 4 Distributions for protein number and concentrations as arising from the deterministic variation
over the division cycle. (a) Distributions for the protein number Φ(P ) and concentration Φ(plin(t)) and
Φ(pexp(t)) (for the case of linear and exponential volume growth, respectively) for a single lineage. (b) Dis-
tributions for the protein number Ψ (P ) and concentrations Ψ (plin) and Ψ (pexp) for an exponentially grow-
ing cell population with age distribution φ(t). The parameters are as in Fig. 1 (Color figure online)

we consider here are extrinsic according to both definitions, but based on the definition
of Ref. [33], one could, for example, consider the noise from transcription as extrinsic to
translation.

5.1 Effects of the Division Cycle

In Sect. 2, we have seen that the protein concentration varies systematically over the course
of a division cycle. In a population of non-synchronized cells, this age-dependence of the
protein content is observed as a cell-to-cell variation that forms part of the extrinsic noise. To
study the effect of age-dependent protein content and to estimate what part of the extrinsic
noise can be understood from such deterministic variation, we now determine the distri-
butions of the protein number and concentration over the division cycle. As for the average
protein number calculated in Sect. 2, we have to take the age distribution of the experimental
culture into account. We consider again the case of a single lineage and of an exponentially
growing population, i.e. a constant and an exponential age distribution as given in Eq. (5).
We denote the resulting protein copy number distributions by Φ(P ) and Ψ (P ). They can be
calculated by inverting the time dependence of P (t) and using the inverse relation t (P ) for
a transformation of variable in the age distribution, see Appendix A.3.

The distributions for both types of cell culture are presented in Fig. 4. Panel (a) shows
the distributions of protein number and concentration for a single lineage, Φ(P ) and Φ(p),
respectively. The concentration distribution was determined for both linear and exponential
volume growth. The distribution of the protein copy number, Φ(P ) (top panel), exhibits two
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Fig. 5 Noise parameter η2

arising from deterministic
variations over the division cycle
for (a) the protein number P and
(b) for the protein concentration,
η2
plin

and η2
pexp (with linear and

exponential volume growth) as
functions of the replication
time tx (Color figure online)

flat plateaus. The probability to find a protein number P < P(t = tx) that is seen prior to the
replication time tx is twice as high as for a protein number that corresponds to larger times,
P (t > tx), as the synthesis rate doubles at time tx .

For the concentration subject to linear volume growth (middle panel), Φ(plin(t)) is al-
most flat with a minimum for intermediate concentrations. In the case of exponential volume
growth (bottom panel), Φ(pexp(t)), which is quite flat for small concentrations, rises sharply
towards the maximum concentration.

It is worth noting that while the protein copy number exhibits a broad distribution over
a two-fold range, defined by the copy numbers directly before and after cell division, the
range over which the concentration varies is much smaller: The maximal concentration is
only ≈13 % larger than the minimal concentration for linear volume growth and even less
(≈6 %) for exponential volume growth.

Figure 4(b) shows the corresponding results for an exponentially growing culture (with
an exponential age distribution). The distribution for the protein number (top panel), Ψ (P ),
still exhibits two plateaus, which are tilted towards smaller values of P as the age distribution
gives more weight to younger cells. The distributions of the concentrations (middle and
lower panel), Ψ (plin) and Ψ (pexp), are not radically altered by the change in age distribution.

Next, we determine the noise parameter that characterizes the variation over the division
cycle, which in analogy to Eq. (11) can be defined as

η2 = δP/〈P 〉2 =
∫ T

0 (P (t) − 〈P 〉)2φ(t) dt

〈P 〉2
(16)

for the protein copy number and likewise, η2
plin

= δplin/〈plin〉2 or η2
pexp

= δpexp/〈pexp〉2, for
the concentration (for linear and exponential volume growth, respectively). One parameter
that affects the extent of this deterministic cell-to-cell variation is the replication time tx ,
which depends on the genomic location of the gene of interest relative to the origin of
replication. In Fig. 5, we show the noise parameters for the protein copy number and the
concentration as functions of tx in the range of 0 ≤ tx ≤ T .

We first note that these noise parameters only depend on T and tx , or, more precisely,
on their ratio tx/T . Specifically they are independent of the protein synthesis rate α and,
in case of the concentrations, the initial cell volume V0. Therefore, this contribution to the
observed noise does not decrease with increasing protein concentration and does not become
negligible for abundant proteins. However, the overall contribution of the division cycle to
the noise is relatively small. For the protein concentration, the noise η2

plin
in the case of



622 R. Marathe et al.

linear growth is on the order of 0.001 (solid line in Fig. 5b), and for exponential growth
η2

pexp
≤ 5 · 10−4 for all values of tx . These values correspond to 2–3 % variation of the

concentration and are considerably smaller than the observed extrinsic noise, which is of the
order of η2 � 0.1 [43]. For the protein copy number, which varies over a wider range, the
effect of the division cycle is more pronounced and varies by about one fourth of its mean
over different values of tx . However, even here, the absolute value of η2, being on the order
of 0.04, remains rather small. We can thus conclude that, while the division cycle contributes
to the observed extrinsic noise, other sources of extrinsic noise are more dominant.

5.2 Fluctuations of the Growth Rate

The fluorescent reporter protein library study of Taniguchi et al. mentioned above [43]
showed that abundant proteins exhibit extrinsic noise that does not display the inverse scal-
ing with the mean protein concentration. The same study also revealed some additional
characteristics of that noise: In particular, (i) there are correlations between the noise of
different extrinsic proteins, a defining feature of extrinsic noise [15], and (ii) the extrinsic
fluctuations are slow, with variations in the protein concentration over timescales longer
than the generation time [43]. Moreover, they come together with substantial fluctuations
of the generation time. We therefore ask now whether fluctuations in the growth rate may
substantially contribute to the observed extrinsic noise.

For an estimate of the effect of a fluctuating growth rate, we make the assumption that
while the doubling time fluctuates slowly, the protein synthesis rate per cell volume α/V

remains approximately constant. This condition is (approximately) satisfied by the popu-
lation average of the synthesis rate as a function of growth rate when the growth rate is
systematically varied by using different growth media [24]. It basically means that changes
of the growth conditions, while affecting the synthesis rate of protein numbers, do not af-
fect the rate of synthesis of protein concentration. Only the effective degradation is changed
when the growth rate changes. Under balanced growth, this constancy is the result of the
combination of several factors (such as the availability of RNA polymerases and ribosomes,
the gene copy number etc. [22, 24]) that do change, but in such a way that their combined
effect cancels out (with the exception of conditions of very slow growth) [24]. Obviously,
it is not clear that this assumption holds for slowly varying growth rates in individual cells;
in principle, all factors that contribute to the growth-rate dependence of protein concentra-
tions could vary in a mutually independent fashion, but we can consider the case where they
vary together as one that provides a lower limit for the resulting noise. With a deterministic
description of protein synthesis, we obtain p = (α/V ) × T/ ln 2, so fluctuations of T are
directly carried over into fluctuations of the protein concentration p. If T fluctuates by some
time ΔT (of about 10–25 % of the doubling time), p will fluctuate by Δp = αΔT/(V ln 2)

or also about 10–25 %, as Δp/p = ΔT/T . This would correspond to a noise parameter
η2 of 0.01–0.08. While this simple estimate is certainly not an accurate description of such
global noise, it clearly indicates that fluctuations in the growth rate can lead to noise in
protein concentrations of the order of the observed extrinsic noise [43].

6 Concluding Remarks

In this article, we have discussed several ways of describing gene expression with determin-
istic or stochastic models. Deterministic models that explicitly describe cell division, gene
duplication, and volume growth provide a detailed description of the dynamics over both
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short and long time scales (compared to the doubling time). We have shown that the results
depend generally on specific details of the model such as how volume growth is imple-
mented and the age structure of the population over which averages are taken. Fortunately,
however, these differences are not dramatic. Moreover, a mean-field-like approximation that
describes protein synthesis by an effective rate per volume given by the average gene copy
number and the average cell volume provides a good approximation that averages over the
detailed dynamics within the division cycle. Nevertheless, it is worth keeping in mind that
there are all these subtle effects as well as to carefully distinguish different normalizations
of protein amounts or synthesis rates such as per gene (e.g. α), per cell (α〈g〉) and per vol-
ume (α〈g〉/〈V 〉). This is particularly important for studies that address the coupling of gene
expression and global cellular physiology, where quantities such as the average gene copy
number and the average volume per cell may change [24].

With respect to the fluctuations around this average behavior, we have compared several
simple models to disentangle the contributions of different sources of noise. This compari-
son shows that the noise contributions from sources such as stochastic protein synthesis or
degradation and stochastic partitioning during cell division are all of the same order and that
there is no single dominant noise source, except when protein synthesis is pronouncedly
bursty. The burstiness of protein synthesis is the largest contribution to the noise (with a
Fano factor ≈ b, while the other noise sources have Fano factors of fractions of 1). If b is
large, this is clearly dominant, and one could neglect all other sources of noise. The study
of Taniguchi et al. [43], however, indicates that typical values of b for many low-abundance
proteins are in the range 1–10 and thus are not necessarily very dominant. In many cases, a
realistic description of the dynamics of expression of low-abundance proteins will therefore
need to include all these sources of noise.

For intermediate-abundance to high-abundance proteins (with 〈P 〉 > 20), the noise is
dominated by extrinsic noise [43]. Here we have considered two sources of extrinsic noise:
We have shown that the deterministic contribution from systematic variation over the divi-
sion cycle is rather small (even for the protein copy number, but in particular for the concen-
tration), while fluctuations in the growth rate can be expected to give a larger contribution.
These results suggest that a model that incorporates the burstiness of protein synthesis and
fluctuations in the growth rate might provide a minimal description of stochastic effects in
gene expression that is able to describe both intrinsic and extrinsic components of the noise.

Acknowledgements The authors would like to thank Angelo Valleriani for stimulating discussions during
the course of this work.

Appendix

A.1 Typical Values of the Parameters

Estimates of typical parameter values in the model organism E. coli are summarized in Ta-
ble 1. Most of these can, for example, be estimated from the data of Ref. [43]. A few of
them require additional comments: (i) In E. coli proteins are typically stable, i.e. βp ≈ 0.
So far, no complete survey of protein stability has been made, but the total cellular protein
mass was found to be stable [31] and early proteomics studies (2d-gels) also indicated that
almost all proteins covered by their approach were stable [37]. Nevertheless, some proteins
are known to be unstable and, in these cases, βp can be of the order of 1 min−1. (ii) Genes
are typically present as a single copy in the genome. This means that the gene copy number
per cell is 1 before the gene is replicated and 2 after replication. Average gene copy numbers
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Table 1 Typical parameter values for E. coli cells

Parameter Symbol Typical range Comments

Transcription rate αm 0.1–10 min−1

mRNA degradation rate βm 0.2–2 min−1

Translation rate αp 1–10 min−1

Protein degradation rate βp ≈ 0 see text

Gene copy number g 1–2 see text

Division time T 20 min–hours

Average cell volume 〈V0〉 ≈ 1 µm3 see text

Effective synthesis rate α 0.1–500 min−1 = αmαpg/βm

Burstiness b 1–50 ≈ αp/βm

Effective degradation rate βeff ∼ 0.01 min−1 = βp + ln 2/T

are between 1 and 2, except at fast growth with doubling times T < 60 min, where rounds of
DNA replication overlap and the gene copy numbers can be larger [7, 12]. (iii) The cell vol-
ume doubles over the division cycle and its average value depends on the growth conditions
[7]. The value given in the table should be taken as an order or magnitude estimate.

A.2 Models with Stochastic Protein Synthesis and Stochastic Division

A general method for solving processes involving different rules of protein synthesis and
cell division has been described in Ref. [8]. This method allows us in most of the cases to
find averages and standard deviation of the protein number. We will describe the method
briefly here following [8]. Let Pn be the protein content in the nth generation immediately
after the cell division. Let λn be the amount of protein produced and accumulated till the
cell division time in generation n and qn be the fraction of protein inherited by the daughter
cell at the time cell division. Then one can write

Pn+1 = qn(Pn + λn). (17)

The protein generation as well as division can be taken from some distributions. If these dis-
tributions admit finite moments then in the steady-state the distributions of λ and q become
independent and hence one can write

〈
P k

〉 = 〈
qk

〉 〈
(P + λ)k

〉
. (18)

From here one can get all the moments for P , in particular 〈P 〉 = 〈λ〉. Let us consider an
example where we add protein with rate α in between every two cell divisions and where
the protein number is divided deterministically into half at every cell division after every T

time. In this case the synthesis of protein follows a binomial distribution giving 〈λ〉 = δλ2 =
αT and the division fraction is given by a delta function δ(q − 1/2) with 〈q〉 = 1/2 and
〈q2〉 − 〈q〉2 = 0. Thus Eq. (18) gives 〈P 〉 = 〈λ〉 and 〈P 2〉 = 1

3 (2〈λ〉2 + 〈λ2〉). After some

algebra one finds η2 = 〈P 2〉−〈P 〉2

〈P 2〉 = 1
3〈P0〉 which is one of the cases discussed in the main text.
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A.3 Distribution of Protein Number and Concentration Due to Variation over the Division
Cycle

The distribution of the protein number discussed in Sect. 5.1 is obtained by inverting the
time-dependence of the protein copy number, P (t) to obtain t (P ) and a transformation of
variables in the age distribution from t to P , which leads to

Ψ (P ) =
(

d

dP
t(P )

)
φ
(
t (P )

)
. (19)

Specifically, for the constant age distribution that describes averages over a single lineage,
this leads to Φ(P ) = d

dP
t (P ). As a consequence, the result for an arbitrary age distribution

can be rewritten as

Ψ (P ) = Φ(P )φ
(
t (P )

)
, (20)

i.e., the distribution of protein number in a single lineage weighted with the age distribution
of the corresponding inverse.

The distributions for the concentrations are obtained in an analogous fashion, but the
calculation is technically more involved as the concentration is not a monotonic function of
time (see, e.g. Fig. 1). We thus split the functions plin(t) and pexp(t) into piecewise mono-
tonic functions and determine the distributions for these separately. The concentration for
linear cell growth, plin(t), is monotonic in the intervals [0, tx] and [tx, T ], and for pexp(t)

we have three intervals [0, tx], [tx, tmax] and [tmax, T ], where tmax is the time where pexp(t) is
maximal. The complete distributions Φ(plin(t)) and Φ(pexp(t)) are then obtained by adding
up the distributions from the respective intervals. The distributions for the concentrations
Ψ (p), are again obtained for the corresponding intervals, weighted with the age distribution
and summed up to yield the full distribution.
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