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Abstract We study random spatial permutations on Z
3 where each jump x �→ π(x) is pe-

nalized by a factor e−T ‖x−π(x)‖2
. The system is known to exhibit a phase transition for low

enough T where macroscopic cycles appear. We observe that the lengths of such cycles
are distributed according to Poisson-Dirichlet. This can be explained heuristically using a
stochastic coagulation-fragmentation process for long cycles, which is supported by numer-
ical data.
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1 Introduction

Random permutations are common in probability theory and combinatorics [4]. They also
occur in statistical mechanics, albeit with an additional spatial structure. With � denoting
a finite box in Z

3, we consider the set S� of permutations of �, i.e., the set of bijections
� → �. The probability of a given permutation π ∈ S� depends on the jump lengths in such
a way that all sites are mapped in their neighborhoods. In this paper, we study the model
with probability

P�(π) = 1

Z�

exp

(
−T

∑
x∈�

‖x − π(x)‖2

)
. (1)

Here T > 0 is a positive parameter and ‖x − π(x)‖ denotes the Euclidean distance between
x and π(x). The normalization Z� is defined by

Z� =
∑

π∈S�

exp

(
−T

∑
x∈�

‖x − π(x)‖2

)
. (2)
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Fig. 1 A typical spatial
permutation with periodic
boundary conditions for small T .
The cycle that contains the origin
is depicted in black and it may be
long. Isolated sites belong to
1-cycles (i.e., they are mapped
onto themselves)

This model has its origin in Feynman’s approach to the quantum Bose gas [13], where T

is proportional to the temperature. Bosons are described by Brownian trajectories with 1
T

playing the rôle of time; this suggests the weights (1) for the permutation π . The presence
of a lattice is not really justified, but it does not affect the qualitative behavior, at least in
dimension 3 (we comment on dimension 2 at the end of the article).

Let us understand the qualitative behavior of the model when we vary the parameter T .
The most probable permutation is the identity, which has weight 1. Typical permutations
should be close to the identity when T is large, with small cycles here and there. The weight
in (1) penalizes large jumps and we expect that ‖x −π(x)‖ � 1√

T
. As T decreases, sites are

allowed to be mapped to more locations and the lengths of permutation cycles grow. One
expects that a phase transition takes place (in dimension 3 or more) that is accompanied by
the occurrence of infinite cycles. See Fig. 1 for a schematic spatial permutation with small T .

The phase transition was observed numerically in [15, 17]; it takes place at Tc ≈ 1.71.
The fraction of sites that belong to macroscopic cycles was seen to converge to a non-
random function ν∞(T ) as |�| → ∞, which is continuous and monotone decreasing in T .
There are many macroscopic cycles and their sizes fluctuate. It was also observed that the
average length of the largest cycle scales like 0.624ν∞(T )|�|, which is identical to the
expectation of the largest cycle in a random permutation with uniform distribution [23]. The
latter observation was unexplained and puzzling at the time.

The situation is understood better now, and the explanation turns out to be surprisingly
general. The joint distribution of the length of the long cycles is given by the Poisson-
Dirichlet distribution. This distribution has been introduced by Kingman in [18] and has
cropped up in combinatorics, population genetics, number theory, Bayesian statistics and
probability theory, see [4, 12, 19–21] for details of applications and extensions.

Occurrence of the Poisson-Dirichlet distribution in models of statistical mechanics, i.e.
in models with spatial structure, seems to have been noticed only recently. It has been rig-
orously established in the “annealed” model of spatial permutations where the locations of
the sites are averaged upon [9]. The proof is inspired by [24] and it uses a representation
in terms of occupation numbers of Fourier modes, and non-spatial permutations within the
modes. Such a structure is not present here, however.

We recall the definition of the Poisson-Dirichlet distribution in Sect. 2.2 and provide
numerical evidence in Sect. 2.3 that it is present in our model. In order to explain this,
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we show that the equilibrium state can be viewed as the stationary measure of an effective
split-merge process. This strategy was recently applied successfully by Schramm to the ran-
dom interchange model on the complete graph [22] (the result was first conjectured by Al-
dous, see [6]). The absence of spatial structure makes the situation much simpler, but it was
nonetheless a tour de force to prove that long cycles occur, that they satisfy an effective split-
merge process, and that their asymptotic distribution is Poisson-Dirichlet (see also [5] for
subsequent simplifications and improvements). This strategy was also devised in [16] for the
cycles and loops that arise in the Tóth and Aizenman-Nachtergaele representations of quan-
tum Heisenberg models in three spatial dimensions [2, 25]. It allowed in particular to identify
the parameter of the conjectured Poisson-Dirichlet distribution. Further situations that look
similar include the random currents in the classical or quantum Ising models [1, 10, 14].

The key features are as follows: Long cycles are one-dimensional macroscopic objects
and they are spread uniformly over the whole space. Introducing a suitable stochastic process
with local changes, we observe that cycles are merged at a rate proportional to the number
of “contacts” between them, and this number is proportional to the product of their lengths.
Cycles are split at a rate proportional to the number of self-contacts, which is proportional
to the square of the length. This is exactly analogous to a split-merge process on interval
partitions [3, 7, 21]. As a consequence, the distribution of cycle lengths at equilibrium should
be given by the invariant measure of the split-merge process, which is known to be the
Poisson-Dirichlet distribution.

This explanation seems very attractive but it glosses over many technicalities. It assumes
that a spatially uniform distribution of long cycles leads to a “mean-field” interaction and
the correlations due to their spatial structure can be ignored. We provide mathematical back-
ground for these ideas in Sect. 3.1 and this allows us to state precise conjectures in Sect. 3.2.
These conjectures are confronted with numerical results in Sect. 3.3. As it turns out, the
above heuristics is fully confirmed.

2 Distribution of Long Cycles

2.1 Nature of Long Cycles

Let us first give precise definitions for “macroscopic”, “mesoscopic” and “finite” cycles in
the infinite volume limit. Given x ∈ � and a permutation π ∈ S�, let Lx(π) denote the
length of the cycle that contains x, i.e., the number of sites in the support of this cycle.

• Macroscopic cycles occupy a non-zero fraction of the volume. The fraction of sites in
macroscopic cycles is given by

νmacro(T ) = lim
ε→0+ lim inf|�|→∞

1

|�|E�

(
#{x ∈ �: Lx > ε|�|}). (3)

• Mesoscopic cycles are infinite cycles that are not macroscopic. The fraction of sites in
mesoscopic cycles is given by

νmeso(T ) = lim
K→∞

lim inf|�|→∞
1

|�|E�

(
#

{
x ∈ �: K < Lx <

|�|
K

})
. (4)

• Finally, the fraction of sites in finite cycles is given by

νfinite(T ) = lim
K→∞

lim inf
|�|→∞

1

|�|E�

(
#{x ∈ �: Lx < K})

= 1 − ν∞(T ). (5)

Here, ν∞(T ) = νmeso(T ) + νmacro(T ) is the fraction of sites in infinite cycles.



1108 S. Grosskinsky et al.

Fig. 2 Plots of the expected fraction of sites ρ|�|(a) in cycles of length smaller than or equal to |�|a . The
horizontal dashed line indicates 1 − ν∞(T ), the fraction of particles in finite cycles in the infinite volume
limit. The curves have an intersection point independent of |�| at a ≈ 0.6 which is therefore used as the
cutoff to distinguish long and short cycles. ν∞(0.8) is estimated to be 0.292. Averages were taken over
5 × 104 realizations

One expects that only finite cycles are present when T is large, that a phase with macro-
scopic cycles is present when T is smaller than a positive number Tc. This was proved in the
annealed model in [8, 9]. We check this numerically in the lattice model. Let

ρ|�|(a) = E�

(
#{x ∈ �: Lx ≤ |�|a}

|�|
)

(6)

denote the fraction of sites that belong to cycles of length less than or equal to |�|a . No-
tice that ρ|�|(0) is the fraction of particles mapped onto themselves and that ρ|�|(1) = 1.
Numerical results for ρ|�|(a) are depicted in Fig. 2 for various parameters T .

In a finite domain, we need to define the cutoff that separates finite and “infinite” cycles.
We can choose |�|a with any power 0 < a < 1, since in the infinite volume limit, ρ∞(a)

will not depend on our choice. The graphs of ρ�(a) depend on the size of the domain, but
we see in Fig. 2(d) that they cross the same point around a ≈ 0.6 for T < Tc. This value of
a is approximately independent of T and we choose it for the cutoff, since it significantly
reduces finite size effects. For the numerical results, we define the fraction ν|�| of sites that
belong to infinite cycles by

ν|�|(T ) = 1 − ρ|�|(0.6). (7)

In accordance with results for the annealed model [8, 9] we expect that νmeso(T ) = 0 and
that
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lim|�|→∞ ν|�|(T ) = ν∞(T ) = νmacro(T ). (8)

This is supported by the numerics in Fig. 2.

2.2 Griffiths-Engen-McCloskey and Poisson-Dirichlet Distributions

For a given permutation π ∈ S� we call the cycle at x with length Lx(π) macroscopic
if Lx(π) > |�|0.6, as discussed in the previous section. Let L(1)(π),L(2)(π), . . . ,L(k)(π)

denote the cycle lengths in decreasing order, where L(k) is the smallest macroscopic cycle
for the permutation π . If λ(i) = L(i)

|�| is the fraction of the sites in the ith macroscopic cycle,
we define

ν(π) := λ(1) + · · · + λ(k) (9)

to be the fraction of sites in macroscopic cycles, and have E�(ν) = ν|�|(T ). The sequence
(λ(i)) forms a random partition of the (random) interval [0, ν(π)]. We now introduce the
relevant measures on such partitions, that will allow us to describe the joint distribution of
cycle lengths.

The Poisson-Dirichlet distribution (PD) is a one-parameter family but we only need the
distribution with parameter 1, so we ignore the parameter altogether. It is best introduced
with the help of the Griffiths-Engen-McCloskey distribution (GEM). The latter is also called
the “stick-breaking” distribution. One can generate a random sequence of positive numbers
(λ1, λ2, . . .) such that

∑
i λi = ν as follows:

• choose λ1 uniformly in [0, ν];
• choose λ2 uniformly in [0, ν − λ1];
• choose λ3 uniformly in [0, ν − λ1 − λ2];
• and so on. . . , always chopping a piece off the remaining portion of the “stick”.

This is equivalent to choosing a sequence of i.i.d. random variables (α1, α2, . . .) where each
αi is taken uniformly in [0,1], and then to form the sequence

(
α1, (1 − α1)α2, (1 − α1)(1 − α2)α3, . . .

) × ν.

Our goal is to recognize that a given sequence has the distribution GEM. One can invert
the above construction, and form an i.i.d. sequence out of a GEM sequence. Namely, if
(λ1, λ2, . . .) is GEM on the interval [0, ν], the following sequence is i.i.d. with respect to the
uniform distribution on [0,1]:

(α1, α2, α3, . . .) =
(

λ1

ν
,

λ2

ν − λ1
,

λ3

ν − λ1 − λ2
, . . .

)
. (10)

PD is a distribution on ordered partitions, and a PD sequence can be obtained by rearrang-
ing a GEM sequence in decreasing order. On the other hand, given an ordered PD sequence,
a GEM sequence can be obtained as a size-biased permutation of that sequence [21].

2.3 Numerical Observations of Cycle Lengths

The GEM distribution is easier to handle than the PD distribution, and it contains more
information. We thus introduce an order on cycles allowing us to establish an order for the
cycle lengths. This can be done as follows. First, choose an order for the sites of �. Then
order the cycles according to the smallest sites in their support; namely, given two cycles
γ = (x1, . . . , x|γ |) and γ ′ = (x ′

1, . . . , x
′
|γ ′|), we say that γ < γ ′ if and only if min1≤i≤|γ | xi <
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Fig. 3 The lengths of
macroscopic cycles, divided by
the volume, give a random
partition of [0, ν] which is
expected to follow the GEM
distribution

min1≤i≤|γ ′| x ′
i . We then denote L1,L2, . . . the lengths of cycles larger than |�|0.6 in this order,

which is not to be confused with the notation Lx for lengths of cycles rooted in x ∈ �.
Let ν ≡ ν(π) for a given permutation. Our aim is to show that (

L1
ν|�| ,

L2
ν|�| . . . .) converges

to GEM as |�| → ∞, as illustrated in Fig. 3. This is equivalent to showing that

(α1, α2, α3, . . .) =
(

L1

ν|�| ,
L2

ν|�| − L1
,

L3

ν|�| − L1 − L2
, . . .

)
(11)

converges to a sequence of i.i.d. uniform random variables in [0,1], see (10).
The Cumulative Distribution Function for αi is defined as

Fαi
(s) = P (αi ≤ s). (12)

Numerical plots of Fαi
for the first three cycles can be found in Fig. 4. They clearly point to

uniform random variables. Covariances can be found in Fig. 5, showing that they do indeed
tend to 0 in the infinite volume limit. The discontinuities at s = 1 in Fig. 4 for i = 1,2,3 are
due to the fact that in finite volumes it may happen that only 0,1,2 cycles larger than |�|0.6,
respectively, are present.

2.4 Markov Chain Monte-Carlo

To sample spatial permutations we use a Markov chain Monte-Carlo process which is er-
godic and has P� as its unique stationary distribution. Let B� denote a suitable set of bonds,
i.e., a set of unordered pairs {x, y} of sites x, y ∈ �. Let τxy = τyx denote the transposition
of x and y. We say that two permutations π,π ′ ∈ S� are “in contact”, noted π ∼ π ′, if there
exists a bond {x, y} ∈ B� such that π ′ = π ◦ τxy . Let Q(π,π ′), π,π ′ ∈ S�, be the transition
matrix of a continuous-time Markov chain (πt : t ≥ 0) on S�.

Proposition 2.1 Suppose that B� is large enough so that the graph (�,B�) is connected,
and that Q(π,π ′) > 0 whenever π ∼ π ′. The Markov chain with transition rates Q is er-
godic.

Proof This is done in [17], but we recall the argument here. The space S� of lattice permu-
tations is finite and irreducibility of the chain implies ergodicity. It then suffices to show that
for all π,π ′ ∈ S�, π ′ �= π there exists n < ∞ such that Qn(π,π ′) > 0. Every permutation
π can be represented by a composition of transpositions. We still need to show that each of
these transpositions can be written as a composition of transpositions along bonds of B�.

Since the graph (�,B�) is connected, there exists a connected path (x0, x1, . . . , xm) such
that x0 = x, xm = y, and {xi−1, xi} ∈ B� for all 1 ≤ i ≤ m. One can check that the following
composition gives τx,y :

τx,y = τx0,x1 ◦ · · · ◦ τxm−2,xm−1 ◦ τxm−1,xm ◦ τxm−2,xm−1 ◦ · · · ◦ τx0,x1 . (13)

This shows that every π ∈ S� is connected to the identity permutation under the Markov
chain dynamics. �
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Fig. 4 (Color online) Cumulative distribution functions Fαi
(s) (12) with i = 1,2,3 for system sizes

|�| = 323,643,1283,2563 and T = 0.8. As the volume tends to infinity, they converge to the CDF of a
uniform random variable. Averages were taken over 105 realizations

The composition of π with a transposition is explicitly given by

(π ◦ τxy)(z) = π
(
τxy(z)

) =

⎧⎪⎨
⎪⎩

π(z) if z �= x, y,

π(y) if z = x,

π(x) if z = y.

(14)
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Fig. 5 Covariances of α1, α2, α3
as given in (11) shown for
different system sizes |�| = 323,

643,1283,2563 and T = 0.8

Let H�(π) denote the “energy” of π ∈ S�,

H�(π) = T
∑
x∈�

‖x − π(x)‖2. (15)

Here the Euclidean distance ‖ · ‖ is measured with periodic boundary conditions on a reg-
ular box � ∈ Z

3. The distribution (1) then assumes the familiar form of the Gibbs state
e−H�(π)/Z�. For the transition rates we choose

Q
(
π,π ′) =

{
1

|B�| min(1, e−(H�(π ′)−H�(π))) if π ′ ∼ π,

0 otherwise.
(16)

Note that all rates are in [0,1] and can therefore be used as acceptance probabilities for the
standard Metropolis algorithm: pick a bond {x, y} ∈ B� uniformly at random and swap the
images of x and y under π with probability 1 if this lowers the energy, and with probability
e−(H�(π ′)−H�(π)) < 1 if the swap increases the energy.

It is clear that the measure P� fulfills the detailed balance conditions, since

e−H�(π)Q(π,π ′) = e−H�(π ′)Q(π ′,π) (17)

for all π,π ′ ∈ S�. This implies stationarity.
The particular algorithm we use is the “swap only” method described in [17]. The initial

permutation is set to be the identity. The Metropolis steps are then as follows:

• Choose a bond {x, y} of nearest-neighbors at random (we use periodic boundary condi-
tions).

• The candidate permutation, π ′ = π ◦ τxy , replaces π with probability min(1,

e−(H�(π ′)−H�(π))).

The Metropolis step is then computationally fast since H�(π ◦ τxy) − H�(π) depends
only on local terms:

H�(π ◦ τxy) − H�(π) = T
(‖x−π(y)‖2 + ‖y−π(x)‖2

−‖x−π(x)‖2 − ‖y−π(y)‖2
)
. (18)

We use a standard approach based on the ergodic theorem for sampling, where we let
the system equilibrate for a number of Metropolis steps of order 103|�|, and ensure that our
measurements are spread over 5 × 103|�| steps. We have strong numerical evidence that the
equilibration time of relevant observables is indeed of order |�|, as is shown in Fig. 6.
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Fig. 6 (Color online) Expected
value of the fraction of particles
in macroscopic cycles for the
permutation after t Metropolis
steps starting from the identity
permutation, for |�| = 163,323,

643,1283 and T = 0.8.
Rescaling time by 1

|�| shows the
asymptotic behavior, showing
that the equilibration time is of
order |�|. The dashed line
indicates the asymptote for the
curves, ν∞(0.8). Averages were
taken over 104 realizations

2.5 Periodic Boundary Conditions

We use periodic boundary conditions where � ⊂ Z
3 is a 3-dimensional torus with equal side

lengths L. This has the advantage of having less finite size effects than other choices such
as closed boundary conditions. In the limit |�| → ∞ we expect our results not to depend on
that choice.

Precisely, for y ∈ Z
d we define vi(y) to be the ith component of y modulo L, in such a

way that vi(y) ∈ {−L
2 + 1, . . . , L

2 } (we assume here that L is even, but the modifications for
odd L are straightforward). The Euclidean distance on Z

d is then replaced by

‖y‖ =
(

d∑
i=1

∣∣vi(y)
∣∣2

)1/2

. (19)

Permutations on the torus can be characterized by their winding number, which is in
reality a winding vector. The winding number of π in the ith direction, i = 1, . . . , d , is the
integer

Wi(π) = 1

L

∑
x∈�

vi

(
π(x) − x

)
. (20)

In a large box, one should not expect any jumps of order L for positive T > 0 because
of the Gaussian weights (1). The dynamics restricted to such permutations conserves the
winding number:

Proposition 2.2 Suppose that the permutation π satisfies

max
x∈�

‖π(x) − x‖ ≤ L

2
− 2.

Then Wi(π ◦ τxy) = Wi(π) for all i and all pairs (x, y) of nearest-neighbors in �.

Proof Using (14), we have

Wi(π ◦ τxy) − Wi(π) = 1

L
vi

(
π(y) − x

) + 1

L
vi

(
π(x) − y

) − 1

L
vi

(
π(x) − x

)

− 1

L
vi

(
π(y) − y

)
. (21)



1114 S. Grosskinsky et al.

Because of the modulo operation, we have

vi(π(y) − x) = [π(y) − x]i + k1L, vi(π(x) − x) = [π(x) − x]i + k3L,

vi(π(x) − y) = [π(x) − y]i + k2L, vi(π(y) − y) = [π(y) − y]i + k4L.
(22)

Here, [·]i denotes the ith coordinate of the vector in Z
d , and we always have ki ∈ {−1,0,1}.

It follows from the assumptions that k1 = k4 and k2 = k3, so that (21) vanishes. �

The consequence of this proposition is that we effectively lose ergodicity in very large
systems, since the dynamics conserves the winding number on simulation time scales. On
the other hand, when macroscopic cycles are present, we expect nonzero winding numbers
to appear with positive probability in the equilibrium measure. The dynamics always start
with the identity permutation which has zero winding number. By the proposition, the path
to nonzero winding numbers must cross bottlenecks, i.e., permutations with large jumps
which occur with probability less than 1

Z
e−T ( L

2 −1)2
. A big part of the phase space is not

explored by the dynamics.
By introducing Monte-Carlo transitions that flip the orientations of cycles (which does

not change their probability), it is easy to move between permutations with even winding
numbers. On the other hand, it would be interesting to study the winding numbers of typical
permutations at equilibrium, but this seems to be a very difficult task numerically since it
requires dynamics that can move between odd an even winding numbers and still sample
from the correct distribution.

Due to the metastability of the winding number, the actual mixing time of the Monte-
Carlo dynamics is (at least) ecL2

with c > 0. However, since we are only interested in cycle
lengths and not in their orientation, we do not expect this to be relevant for the observables
discussed in the present paper. In fact, as is shown in Fig. 6 and later in Fig. 13, we observe
convergence on time scales of order |�| = L3. This is still much faster than processes such
as card shuffles leading to uniform distributions on permutations (see e.g. [27]), which are
typically of order |�|3 with logarithmic corrections. This is due to the fact that for positive
temperature T the stationary distribution (1) is not uniform, and jumps in a typical permuta-
tion are local of order 1/

√
T . Furthermore, the identity permutation we start with is actually

the ground state (permutation with highest probability) of that measure.

3 Effective Split-Merge Process

In the previous section we presented numerical evidence that the lengths of macroscopic cy-
cles are distributed according to the Poisson-Dirichlet distribution. The goal of the present
section is to explain it with a split-merge process, defined below in Sect. 3.1. More pre-
cisely, the Markov chain Monte-Carlo process of Sect. 2.4, when restricted to the cycle
structure, becomes an effective split-merge process with the correct rates. We formulate pre-
cise conjectures about macroscopic cycles in typical spatial permutations, which we then
test numerically.

3.1 Split-Merge Process

Recall that a partition λ = (λ(1), λ(2), . . .) of the interval [0, ν] is a sequence of decreasing
positive numbers such that

∑
i λ

(i) = ν. Here, ν is any positive real number. The split-merge
process (λ(t): t ≥ 0), also called coagulation-fragmentation, is a continuous-time stochastic
process on partitions where the ith and j th components (i �= j ) merge with rate
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Fig. 7 Illustration for the
split-merge process. The partition
undergoes a merge followed by
two splits and another merge

qij = 2λ(i)λ(j)/ν2, (23)

and the ith component is split uniformly into two parts with rate

qi = (λ(i))2/ν2. (24)

Note that the rates are in [0,1] and they add up to 1, so they can be used directly for the
following implementation of the process. If λ(t) = (λ(1)(t), λ(2)(t), . . .) denotes the partition
at time t , one chooses the new configuration λ(t + Exp(1)) after an exponential waiting time
with rate 1 as follows:

• Choose a first part of the partition with probability proportional to its size. That is, the
index i is chosen with probability λ(i)(t)/ν. This is called “size-biased sampling”.

• Choose a second part in the same manner, independently of the first. Let j the correspond-
ing index.

• If i �= j , merge λ(i)(t) and λ(j)(t). That is, the partition λ(t + Exp(1)) contains all parts
λ(k)(t) with k �= i, j , and a part of size λ(i)(t) + λ(j)(t).

• If i = j , split λ(i)(t) uniformly. That is, the partition λ(t + Exp(1)) contains all parts
λ(k)(t) with k �= i, and two parts uλ(i)(t) and (1 − u)λ(i)(t), where u is a uniform random
number in [0,1].

• The sequence is rearranged so that (λ(k)(t + Exp(1))) is decreasing.

The process is illustrated in Fig. 7. Additional background can be found in [3, 7]. Tsilevich
showed that the Poisson-Dirichlet distribution is invariant for the split-merge process [26].
It was proved in [11] that it is the unique invariant measure (see also [22]).

A key property of our Monte-Carlo process (πt : t ≥ 0) described in Sect. 2.4 is that, at
each step, either a cycle is split, or two cycles are merged. This is illustrated in Fig. 8. Let
us state this precisely.

Proposition 3.1 Let π ∈ S� and x, y ∈ � with x �= y.

• If x, y belong to the same cycle in π , then x, y belong to different cycles in π ◦ τxy .
• If x, y belong to different cycles in π , then x, y belong to the same cycle in π ◦ τxy .
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Fig. 8 The transposition τxy splits a cycle if x, y belong to the same cycle (left), or it merges two cycles if
x, y belong to distinct cycles (right). These are the only two possibilities

See [17] for more details. It is clear that all cycles of π that do not involve x or y are also
present in π ◦ τxy , and reciprocally. The length of the coalesced cycle is equal to the sum of
the lengths of the two original cycles, and similarly for a fragmentation.

3.2 Effective Split-Merge Process for Macroscopic Cycles

We have seen in the previous section that each Monte-Carlo step results in either splitting
a cycle, or merging two cycles. We have also seen in Sect. 2.1 that two kinds of cycles are
present: The finite cycles, whose lengths do not diverge in the thermodynamic limit. And
the macroscopic cycles, whose lengths are positive fractions of the volume. A Monte-Carlo
step does one of the following:

(a) Merge two finite cycles.
(b) Merge a macroscopic cycle and a finite cycle.
(c) Merge two macroscopic cycles.
(d) Split a finite cycle (resulting in two finite cycles).
(e) Splits a macroscopic cycle, resulting in a finite and in a macroscopic cycles.
(f) Splits a macroscopic cycle, resulting in two macroscopic cycles.

One expects each of these options to take place with rates of order O(1) in the limit |�| →
∞. The ones that are relevant to the effective split-merge process are (c) and (f), since
their effect is reflected in a change in (λ(1)(π(t)), λ(2)(π(t)), . . .), the ordered lengths of
macroscopic cycles normalized by |�|. Accordingly, we introduce the rate Rij at which the
ith and j th largest cycles merge. It depends on the permutation π , and, with i �= j , it is
given by

Rij (π) = 2
∑

x∈γ (i)

∑
y∈γ (j)

Q(π,π ◦ τxy). (25)

Notice that Rij (π) scales to a constant as the volume diverges, since the sum over x, y is
of order |�|, and Q(·) is of order 1/|B(�)|, see (16). The rate Ri at which the ith largest
cycle splits into two macroscopic cycles involves the cutoff K that distinguishes finite vs
macroscopic cycles:

Ri(π) =
∑

x∈γ (i)

L(i)−K∑
k=K

Q(π,π ◦ τx,πk(x)). (26)

Here, πk(x) is the site at “distance” k of x along the cycle γ (i). If we set K = 1 in the right
side, we get the rate at which γ (i) splits, irrespective of the sizes of the resulting cycles. The
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Fig. 9 Schematic drawing of the
situation in a mesoscopic box. It
contains finite cycles in light
color, and two legs that belong to
each of the macroscopic cycles γ

and γ ′ . The probability that γ

and γ ′ merge in the next step is
proportional to the number of
‘contacts’ between them, which
in turn is proportional to Lγ Lγ ′ .
The probability that γ splits into
two macroscopic cycles is
proportional to the self contacts
amongst different legs of γ ,
which is in turn proportional
to L2

γ

expression above gives the rate at which γ (i) splits in two cycles, each of which has length
greater than K . As in previous sections we use the cutoff K = |�|0.6.

We expect that, for almost all permutations in equilibrium, the rates Rij and Ri are equal
to those of the split-merge process modulo a constant time-scale R, resulting from the ef-
fective rate of macroscopic processes (c) and (f) above. Recall that λ(i)(π) = L(i)(π)/|�| is
a random variable.

Conjecture 1 Let T such that ν∞(T ) > 0. There exists a number R (that depends on T but
not on indices) such that for all i, j , and all ε > 0,

lim
|�|→∞

P�

(∣∣Rij − 2λ(i)λ(j)R
∣∣ > ε

) = 0,

lim
|�|→∞

P�

(∣∣Ri − (
λ(i)

)2
R

∣∣ > ε
) = 0.

The time scale of the effective split-merge process is determined by R, but the invariant
measure is not, so the exact value of R is irrelevant. It is important, however, that it is
identical for both the splits and the merges, and for all macroscopic cycles.

Let us explain the heuristics towards this remarkably simple behavior. Consider a meso-
scopic box �′ whose size is large enough so that boundary effects are irrelevant, yet small
enough so that � is made up of a large number of mesoscopic boxes. The restriction of π on
�′ gives many finite cycles, and open legs that are parts of macroscopic cycles. See Fig. 9
for a schematic picture. Let us choose a pair of nearest-neighbors x, y at random, with the
condition that x, y belong to distinct legs. The probability that τxy merges γ (i) and γ (j) is
equal to the probability that x belongs to γ (i) and y belongs to γ (j), or conversely, which
is equal to 2λ(i)λ(j)/ν(T )2, up to vanishing finite-size effects. The probability that τxy splits
γ (i) is equal to the probability that both legs belong to γ (i), which is equal to (λ(i)/ν(T ))2.
This heuristics assumes that macroscopic cycles are spread uniformly in space, so they are
present in all mesoscopic boxes in proportion to their size, and also that the local config-
urations do not depend on the situation in other boxes. Note that short range correlations
in the cycle structure affect only the probability that a randomly chosen pair x, y belongs
to distinct legs, which is absorbed in the constant R that determines the time scale of the
effective split merge process.

In addition, we also conjecture that when a cycle is split, it is split uniformly.
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Fig. 10 (Color online) A single permutation has been chosen with respect to the equilibrium measure for
|�| = 128, T = 0.8. The longest cycle γ (1) is spread everywhere. (Left) Scatter plot of every 500th site
along γ (1) . The color (shades of gray) indicates the distance along γ (1) , renormalized by the length of γ (1) ,
starting from the site closest to the origin. (Right) The box � of volume 1283 has been partitioned in 64
subsets of volume 323. The histogram depicts the number of sites of γ (1) that can be found in each subset. It
is essentially constant

Conjecture 2 Let T such that ν∞(T ) > 0 and define the CDF for a function of the split
length a ∈ [0,1],

θ
(a)
i (π) = 1

Ri(π)

∑
x∈γ (i)

aL(i)∑
k=K

P (π,π ◦ τx,πk(x)). (27)

Then

lim
|�|→∞

P�

(∣∣θ(a)
i (π) − a

∣∣ > ε
) = 0.

If these conjectures hold true, the effective process (λ(1)(π(t)), λ(2)(π(t)) . . .)t≥0 with sta-
tionary initial condition converges in the limit |�| → ∞ to a split-merge process as defined
in (23) and (24), running with total rate Rν2∞. Therefore the distribution of cycle lengths has
to be invariant with respect to the split-merge process, so it has to be Poisson-Dirichlet. We
now check these conjectures numerically.

3.3 Numerical Data About the Effective Split-Merge Process

In this section we give numerical evidence that the rates for splitting and merging macro-
scopic cycles converge to those of a split-merge process, thus confirming the Poisson-
Dirichlet distribution of macroscopic cycles. The heuristics behind this argument, as de-
scribed in the previous section, is that macroscopic cycles are distributed uniformly amongst
lattice sites on a mesoscopic level, and are not confined to a bounded region. This is illus-
trated in Fig. 10.

In order to verify Conjecture 1, the rates of merging the two longest cycles, splitting the
longest, and splitting the second longest in the next timestep were calculated using (25) and
(26). We define

rij (π) = Rij (π)

2λ(i)λ(j)
, ri(π) = Ri(π)

(λ(i))2
. (28)
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Fig. 11 Expectations (left) and standard deviations (right) of the rates defined in (28). |�| = 83,163,

323,643, T = 0.8. The standard error for the mean is within the marker size. Averages were taken over 103

realizations

Fig. 12 Cycles split uniformly. Plot of θ
(a)
1 (π) as defined in (27) for a typical permutation π under the

equilibrium measure with |�| = 643, T = 0.8

Figure 11 shows that rij and ri converge to a constant R as expected, supporting Conjec-
ture 1. Note that in addition to convergence of the mean the variance is decreasing, confirm-
ing convergence in probability as stated in the conjecture.

If the cycle is split uniformly, θ
(a)
i (π) as defined in Conjecture 2 is the CDF of a uniform

random variable on [0,1]. The graph of θ
(a)

1 (π) is shown in Fig. 12 for a given permutation
π chosen randomly from the equilibrium measure, which confirms the expected behavior.

4 Further Prospects

The emergence of macroscopic cycles seems intriguing and it is worth being studied. Start-
ing the Monte-Carlo Markov chain from the identity permutation, one expects the system
to display only finite cycles for some time, before infinite objects built up. Let E�,t denote
the corresponding expectation, and N|�|(π) denote the number of cycles of length larger
than |�|0.6. Figure 13 shows E�,t (N|�|) for T = 0.8 and various volumes. There is a peak
at the transition to the phase with macroscopic cycles. It is certainly due to the presence of
many mesoscopic cycles for a short time, that are going to merge afterwards. It would be
interesting to get plots for numbers of cycles larger than |�|a for a other than 0.6.

While the fraction of sites in large cycles, E�,t (ν), varies continuously with time on
the scale t/|�|, the steps (c) and (f) of Sect. 3.2 take place at a very high rate (propor-
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Fig. 13 Expected value of the
number of cycles longer than
|�|0.6, E�,t (N|�|), as a function
of time. The Monte-Carlo chain
starts from the identity
permutation and has been
recorded for various system
sizes. Averages were taken over
104 realizations

Fig. 14 The Poisson-Dirichlet distribution occurs already during equilibration. (Left) Expected values of
the fraction of sites in macroscopic cycles E�,t (ν), and of the lengths of the four largest cycles (divided by
the volume). (Right) The expectation of the i-th longest cycle has been divided by the average length of the
i-th part in a random partition with Poisson-Dirichlet distribution. It is always close to E�,t (ν). |�| = 1283,
T = 0.8. Averages were taken over 104 realizations

tional to |�|) once the phase with macroscopic cycles has been reached. One then expects
the lengths of macroscopic cycles to split and merge so fast that the Poisson-Dirichlet dis-
tribution appears immediately. The numerical results of Fig. 14 confirms this. Indeed, the
expected lengths of the longest cycles, when divided by the number of sites in macroscopic
cycles, is equal to the expected values obtained with respect to the Poisson-Dirichlet distri-
bution, that can be found e.g. in [23].

Finally, let us comment on the physical dimension, taken here to be d = 3. It is safe
to bet that everything is similar in all dimensions greater than 3. On the other hand, the
dimension d = 2 remains mysterious. There are certainly no macroscopic cycles, as was
observed in [15]. An open question is whether a phase occurs where a positive fraction of
points belong to mesoscopic cycles. This has been ruled out in the “annealed” model that
involves averaging over point positions [8, 9]. The present lattice model may be closer to a
Bose gas with interactions, on the other hand, where a Kosterlitz-Thouless phase transition
is expected. The presence of mesoscopic cycles could indeed be related to the slow decay of
correlation functions.
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