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Abstract For κ ∈ (0,4], a family of annulus SLE(κ;�) processes were introduced in (Zhan
in arXiv:1004.1865v1) to prove the reversibility of whole-plane SLE(κ). In this paper we
prove that those annulus SLE(κ;�) processes satisfy a restriction property, which is simi-
lar to that for chordal SLE(κ). Using this property, we construct n ≥ 2 curves crossing an
annulus such that, when any n− 1 curves are given, the last curve is a chordal SLE(κ) trace.
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1 Introduction

Oded Schramm’s SLE process generates a family of random curves that grow in plane do-
mains. The evolution is described by the classical Loewner differential equation with the
driving function being

√
κB(t), where B(t) is a standard Brownian motion and κ is a posi-

tive parameter. SLE behaves differently for different value of κ . We use SLE(κ) to empha-
size the parameter. See [5] and [9] for the fundamental properties of SLE.

There are several versions of SLE, among which chordal SLE and radial SLE are most
well known. They describe random curves that grow in simply connected domains. A num-
ber of statistical physics models in simply connected domains have been proved to converge
in their scaling limits to chordal or radial SLE with different parameters.

People have been working on extending SLE to general plane domains. A version of SLE
in doubly connected domains, called annulus SLE, was introduced in [12]. The definition
uses the annulus Loewner equation, in which the Poisson kernel function is used for the
vector field, and the driving function is still

√
κB(t). Annulus SLE(2) turns out to be the

scaling limit of loop-erased random walk in doubly connected domains. In fact, loop-erased
random walk in any finitely connected plane domain converges to some SLE(2)-type curve
(cf. [14]).
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Annulus SLE defined in [12] generates a trace in a doubly connected domain that starts
from a marked boundary point and ends at a random point on the other boundary component
(cf. [13]). This is different from the behavior of chordal SLE or radial SLE, whose trace
ends at a fixed boundary point or interior point. The reason for this phenomena is that the
definition of annulus SLE does not specify any point other than the initial point.

The annulus SLE(κ;�) process was defined in [15] to describe SLE in doubly connected
domains with one marked boundary point other than the initial point. Here the � is a func-
tion, and the marked boundary point may or may not lie on the same boundary component as
the initial point. The definition uses the annulus Loewner equation with the driving function
equal to

√
κB(t) plus some drift function, and the drift function is determined by λ. The

precise relation will be given in Definition 4.3.
There is very little restriction on the function � in the above definition. For any κ ∈ (0,4],

there is a family of particular functions �κ;〈s〉, s ∈ R, such that the annulus SLE(κ;�κ;〈s〉)
process satisfies the remarkable reversibility properties as follows. Suppose D is a doubly
connected domain, and z0, w0 are two boundary points that lie on different boundary com-
ponents. Let β be an annulus SLE(κ;�κ;〈s〉) trace in D that grows from z0 with w0 as the
marked point. Then almost surely β ends at w0, and the time-reversal of β is a time-change
of an annulus SLE(κ;�κ;〈−s〉) trace in D that grows from w0 with z0 as the marked point.
This property was used [15] to prove the reversibility of whole-plane SLE(κ) process for
κ ∈ (0,4]. We will state the definitions of �κ;〈s〉 in Sect. 4.2, especially in (4.10).

In this paper we study the restriction property of the annulus SLE(κ;�κ;〈s〉) process. We
use μloop to denote the Brownian loop measure defined in [7], which is a σ -finite infinite
measure on the space of loops, and define

c = c(κ) = (6 − κ)(3κ − 8)

2κ
. (1.1)

It is well known that c is the central change for SLE(κ). Set Ap = {e−p < |z| < 1}, T =
{|z| = 1} and Tp = {|z| = e−p}. We will prove the following two theorems.

Theorem 1.1 Let p > 0, κ ∈ (0,4], s ∈ R, z0 ∈ T and w0 ∈ Tp . Let ν be the distribution of
an annulus SLE(κ;�κ;〈s〉) trace in Ap started from z0 with marked point w0. Let L ⊂ Ap

be such that Ap \ L is a doubly connected domain and dist(L, {z0,Tp}) > 0. Define a prob-
ability measure νL by

dνL

dν
= 1{β∩L=∅}

Z
exp

(
c(κ)μloop[LL,p]), (1.2)

where β is the SLE trace, LL,p is the set of all loops in Ap that intersect both L and β , and
Z ∈ (0,∞) is a normalization constant. Then νL is the distribution of a time-change of an
annulus SLE(κ;�κ;〈s〉) trace in Ap \ L started from z0 with marked point w0.

Theorem 1.2 Let p,κ, s, z0,w0, ν be as in Theorem 1.1. Let L ⊂ Ap be such that Ap \ L

is a simply connected domain, and dist(L, {z0,w0}) > 0. Define νL by (1.2). Then νL is the
distribution of a time-change of a chordal SLE(κ) trace in Ap \ L from z0 to w0.

The proofs of the two theorems are similar. For the proof of Theorem 1.1, we consider
two random curves β(t) and γ (t), 0 ≤ t < p, where β is an annulus SLE(κ;�κ;〈s〉) trace
in Ap started from z0 with marked point w0, and γ is an SLE(κ;�κ;〈s〉) trace in Ap \ L

started from z0 with marked point w0, reparameterized by the capacity in Ap . Decomposing
β and γ according to their winding numbers, we get a family of random curves βm and γm,



1028 D. Zhan

m ∈ Z. For each m, we find a positive local martingale Mm(t), 0 ≤ t < p, which serves as
the “local” Radon-Nikodym derivative between βm and γm, which means that, if a stopping
time T satisfies that Mm is uniformly bounded on [0, T ], then Mm(T ) is the Radon-Nikodym
derivative between the distributions of βm and γm both stopped at T . The construction of Mm

uses Itô’s calculus and Girsanov Theorem. It turns out that Mm(p) := limt→p− Mm(t) serves
as the global Radon-Nikodym derivative between the distributions of βm and γm, and is
equal to the right-hand side of (1.2) with Z depending on m. This result then can be easily
passed to the Radon-Nikodym derivative between β and γ . The rest of the proof focuses
on studying the properties of Mm. We will derive the uniform boundedness of Mm in a
countable family of events whose union supports the distribution of βm, and calculate the
limit of Mm(t) as t → p−. The argument relies heavily on the analysis of the drift function
�κ;〈s〉 and several special functions related to �κ;〈s〉. For this purpose, we cite estimations
from [15] and develop some new estimations.

If κ = 8
3 , then c = 0. The above two theorems imply that, if we condition an annulus

SLE( 8
3 ,� 8

3 ;〈s〉) trace in Ap to avoid some set L, then the resulting curve is a time-change

of an annulus SLE( 8
3 ,� 8

3 ;〈s〉) or chordal SLE( 8
3 ) trace in Ap \ L. This is similar to the

restriction property of chordal or radial SLE( 8
3 ) [6]. If κ ∈ (0, 8

3 ), then c < 0, and the strong
restriction property does not hold. But we may use the argument in [6] to construct a random
shape with the restriction property as below.

Let β be an annulus SLEκ;〈s〉 trace in Ap from z0 to w0. Let L−c denote a Brownian
loop soup in Ap with density −c (a Poisson point process with intensity −cμloop restricted
in Ap) independent of β . Let S ′

κ;s(Ap; z0,w0) denote the union of the image of β and
the loops in L−c that intersect β . Let Sκ;s(Ap; z0,w0) be obtained by filling the holes in
S ′

κ;s(Ap; z0,w0). In other words, Sκ;s(Ap; z0,w0) = Ap \ (D0 ∪Dp), where D0 (resp. Dp) is
the connected component of Ap \ S ′

κ;s(Ap; z0,w0) whose boundary contains T \ {z0} (resp.
Tp \ {w0}). Then Sκ;s(Ap; z0,w0) satisfies restriction property, which means that, if we con-
dition Sκ;s(Ap; z0,w0) to avoid a hull H in Ap with dist(H, {z0,w0}) > 0, then we get
Sκ;s(Ap \ H ; z0,w0).

The paper is organized as follows. We introduce notation, symbols and definitions in
Sects. 2, 3 and 4. The proof of Theorem 1.1 is started at Sect. 5, and finished at the end of
Sect. 7. The argument introduced in [6] is used. In Sect. 8 we give a sketch of the proof of
Theorem 1.2, and use Theorem 1.2 to prove Theorem 8.1, which generates n ≥ 2 mutually
disjoint random curves crossing an annulus such that conditioned on all but one trace, the
remaining trace is a chordal SLE(κ) trace. We believe that, in the case n = 2, if the inner
circle of the annulus shrinks to a single point, then the two curves tend to the two arms of a
two-sided radial SLE(κ) (cf. [5]) in the disc. This may be used to understand the microscopic
behavior of an SLE(κ) trace near a typical point on this trace.

After finishing the first draft, the author noticed Lawler’s work in [4], which studies the
same object from a different perspective. Lawler defines SLEκ (κ ≤ 4) process in a doubly
connected domain connecting two opposite boundary points, which satisfies Theorems 1.1
and 1.2 here without the normalization constants, and if normalized agrees with our annulus
SLE(κ,�κ;〈s〉) process. The distribution of SLE in [4] may not be a probability measure,
but a positive measure in general. Lawler defines his annulus SLEκ process in the covering
space by comparing it with the chordal SLEκ in that space. He derives a PDE for the partition
function and proves the existence of the solution. A nontrivial result proved in [4] is that the
total mass of such annulus SLE is in fact finite, and so can be normalized to get a probability
measure.
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2 Preliminary

2.1 Symbols and Notation

We will frequently use functions cot(z/2), tan(z/2), coth(z/2), tanh(z/2), sin(z/2),
cos(z/2), sinh(z/2), and cosh(z/2). For simplicity, we write 2 as a subscript. For exam-
ple, cot2(z) means cot(z/2), and cot′2(z) = − 1

2 sin−2
2 (z).

Let T = {z ∈ C: |z| = 1}. For p > 0, let Ap = {z ∈ C: 1 > |z| > e−p}, Sp = {z ∈ C: 0 <

Im z < p}, Tp = {z ∈ C: |z| = e−p}, and Rp = {z ∈ C: Im z = p}. Then ∂Ap = T ∪ Tp and
∂Sp = R ∪ Rp . Let ei denote the map z �→ eiz. Then ei is a covering map from Sp onto Ap ,
maps R onto T and maps Rp onto Tp .

A subset K of a simply connected domain D is called a hull in D if D \ K is a simply
connected domain. A subset K of a doubly connected domain D is called a hull in D if D\K

is a doubly connected domain, and K is bounded away from a boundary component of D. In
this case, we define capD(K) := mod(D)−mod(D \K) to be the capacity of K in D, where
mod(·) is the modulus of a doubly connected domain. We have 0 ≤ capD(K) < mod(D),
where the equality holds iff K = ∅. For example, the L in Theorem 1.1 is a hull in Ap .

We say a set K ⊂ C has period p ∈ C if p + K = K . We say that a function f has
progressive period (p1;p2) if f (· ± p1) = f ± p2. In this case, the definition domain of f

has period p1, and the range of f has period p2.
An increasing function in this paper will always be strictly increasing. For a real interval

J , we use C(J ) to denote the space of real continuous functions on J . The maximal solution
to an ODE or SDE with initial value is the solution with the biggest definition domain.

A conformal map in this paper is an injective analytic function. We say that f maps

D1 conformally onto D2, and write f : D1
Conf
� D2, if f is a conformal map defined on the

domain D1 and f (D1) = D2. If, in addition, for j = 1,2, cj is a point or a set in D or on

∂D, and f or its continuation maps c1 onto c2, then we write f : (D1; c1)
Conf
� (D2; c2).

Throughout this paper, a Brownian motion means a standard one-dimensional Brownian
motion, and B(t), 0 ≤ t < ∞, will always be used to denote a Brownian motion. This means
that B(t) is continuous, B(0) = 0, and B(t) has independent increment with B(t) − B(s) ∼
N (0, t − s) for t ≥ s ≥ 0.

Many functions in this paper depend on two variables. The first variable represents time
or modulus, and the second variable does not. We use ∂t and ∂n

t to denote the partial deriva-
tives w.r.t. the first variable, and use ′, ′′, and the superscripts (h), h ∈ N, to denote the partial
derivatives w.r.t. the second variable.

2.2 Special Functions

The vector fields used in the definition of the annulus Loewner equation are the following
special functions S(t, z) and H(t, z). For t > 0, define

S(t, z) = lim
M→∞

M∑

k=−M

e2kt + z

e2kt − z
= P.V.

∑

2|n

ent + z

ent − z
,

H(t, z) = −iS
(
t, ei(z)

) = −i P.V.
∑

2|n

ent + eiz

ent − eiz
= P.V.

∑

2|n
cot2(z − int).

Then H(t, ·) is a meromorphic function in C, whose poles are {2mπ + i2kt : m,k ∈ Z},
which are all simple poles with residue 2. Moreover, H(t, ·) is an odd function and takes
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real values on R \ {poles}; Im H(t, ·) ≡ −1 on Rt ; H(t, ·) has period 2π and progressive
period (i2t;−2i). Let r(t) ∈ R be such that the power series expansion of H(t, ·) near 0 is

H(t, z) = 2

z
+ r(t)z + O

(
z3

)
. (2.1)

Let SI (t, z) = S(t, e−t z) − 1 and HI (t, z) = −iSI (t, e
iz) = H(t, z + it) + i. It is easy to

check:

SI (t, z) = P.V.
∑

2�n

ent + z

ent − z
, HI (t, z) = P.V.

∑

2�n

cot2(z − int).

So HI (t, ·) is a meromorphic function in C with poles {2mπ + i(2k + 1)t : m,k ∈ Z}, which
are all simple poles with residue 2; HI (t, ·) is an odd function and takes real values on R;
HI (t, ·) has period 2π and progressive period (i2t;−2i).

It is possible to express H and HI using classical functions. Let θ(ν, τ ) and θk(ν, τ ), k =
1,2,3, be the Jacobi theta functions defined in [1]. Define (t, z) = θ( z

2π
, it

π
) and I(t, z) =

θ2(
z

2π
, it

π
). Then (t, ·) has antiperiod 2π , I(t, ·) has period 2π , and

H = 2
′


, HI = 2

′
I

I

. (2.2)

It is useful to rescale the special functions. Let

̂(t, z) = e
z2
4t

(
π

t

) 1
2



(
π2

t
,
π

t
z

)
, ̂I (t, z) = e

z2
4t

(
π

t

) 1
2

I

(
π2

t
,
π

t
z

)
. (2.3)

From the Jacobi identities, we have ̂(t, z) = θ(i z
2π

, it
π
) = (t, iz) and ̂I (t, z) =

θ1(i
z

2π
, it

π
). From the product representations of θ1, we get

̂I (t, z) = 2e− t
4 cosh2(z)

∞∏

m=1

(
1 − e−2mt

)(
1 + ez−2mt

)(
1 + e−z−2mt

)
. (2.4)

Let Ĥ = 2 ̂′
̂

and ĤI = 2
̂′

I

̂I
. From (2.2) and (2.3) we have

Ĥ(t, z) = π

t
H

(
π2

t
,
π

t
z

)
+ z

t
, ĤI (t, z) = π

t
HI

(
π2

t
,
π

t
z

)
+ z

t
. (2.5)

Since ̂(t, z) = (t, iz) and HI (t, z) = H(t, z + it) + i, we have

Ĥ(t, z) = iH(t, iz) = P.V.
∑

2|n
coth2(z − nt); (2.6)

ĤI (t, z) = Ĥ(t, z + πi) = P.V.
∑

2|n
tanh2(z − nt). (2.7)

From (2.6), the power series expansion of Ĥ(t, ·) near 0 is

Ĥ(t, z) = 2

z
+ r̂(t)z + O

(
z3

)
, (2.8)

where r̂(t) := −∑∞
k=1 sinh−2(kt) + 1

6 = O(e−t ) + 1
6 as t → ∞. Hence we may define

R̂(t) = −
∫ ∞

t

(
r̂(s) − 1

6

)
ds, 0 < t < ∞. (2.9)
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Then R̂ is positive and decreasing as r̂ − 1
6 < 0. From (2.1), (2.5), and (2.8), we have

r̂(t) =
(

π

t

)2

r
(

π2

t

)
+ 1

t
. (2.10)

3 Loewner Equations

3.1 Annulus Loewner Equation

The annulus Loewner equations are defined in [12]. Fix p ∈ (0,∞) and T ∈ (0,p]. Let
ξ ∈ C([0, T )). The annulus Loewner equation of modulus p driven by ξ is

∂tg(t, z) = g(t, z)S
(
p − t, g(t, z)/eiξ(t)

)
, g(0, z) = z.

For 0 ≤ t < T , let K(t) denote the set of z ∈ Ap such that the solution g(s, z) blows up
before or at time t . Then each K(t) is a hull in Ap , capAp

(K(t)) = t , and g(t, ·) maps
Ap \ K(t) conformally onto Ap−t , and maps Tp onto Tp−t . We call K(t) and g(t, ·), 0 ≤
t < T , the annulus Loewner hulls and maps of modulus p driven by ξ .

The equivalence between annulus SLE and radial SLE (Theorem 1.1 in [12]) and the exis-
tence of radial SLE trace imply the existence of annulus SLE trace. If ξ is a semi-martingale
whose stochastic part is

√
κB(t), and whose drift part is continuously differentiable, then ξ

generates an annulus Loewner trace β of modulus p, which means that

β(t) := lim
Ap−t�z→eiξ(t)

g(t, ·)−1(z) (3.1)

exists for all 0 ≤ t < T , and β is a continuous simple curve in Ap ∪T with β(0) = eiξ(0) ∈ T.
If κ ∈ (0,4], then β is simple and β((0, T )) ⊂ Ap . In this case, K(t) = β((0, t]) for
0 ≤ t < T , and we say that β is parameterized by its capacity in Ap w.r.t. Tp , i.e.,
capAp

(β((0, t])) = t for 0 ≤ t < T .
On the other hand, if β(t), 0 ≤ t < T , is a simple curve with β(0) ∈ T, β((0, T )) ⊂ Ap ,

and if β is parameterized by its capacity in Ap w.r.t. Tp , then β is a simple annulus Loewner
trace of modulus p driven by some ξ ∈ C([0, T )). If β is not parameterized by its capacity,
then β(v−1(t)), 0 ≤ t < v(T ), is an annulus Loewner trace of modulus p, where v(t) :=
capAp

(β((0, t])) is an increasing function with v(0) = 0. See Proposition 2.1 in [12].

3.2 Covering Annulus Loewner Equation

The covering annulus Loewner equation of modulus p driven by ξ ∈ C([0, T )) is

∂t g̃(t, z) = H
(
p − t, g̃(t, z) − ξ(t)

)
, g̃(0, z) = z. (3.2)

For 0 ≤ t < T , let K̃(t) denote the set of z ∈ Sp such that the solution g̃(s, z) blows up
before or at time t . Then for 0 ≤ t < T ,

g̃(t, ·) : (Sp \ K̃(t);Rp

) Conf
� (Sp−t ;Rp−t ). (3.3)

We call K̃(t) and g̃(t, ·), 0 ≤ t < T , the covering annulus Loewner hulls and maps of mod-
ulus p driven by ξ .

The relation between the covering annulus Loewner equation and the annulus Loewner
equation is as follows. Let K(t) and g(t, ·) be the annulus Loewner hulls and maps of
modulus p driven by ξ . Then we have K̃(t) = (ei)−1(K(t)) and ei ◦ g̃(t, ·) = g(t, ·) ◦ ei ,
0 ≤ t < T . Thus, K̃(t) has period 2π , and g̃(t, ·) has progressive period (2π;2π).
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If ξ generates an annulus Loewner trace β defined by (3.1), then there is a continuous
simple curve β̃(t), 0 ≤ t < T , which is defined by

β̃(t) = lim
Sp−t �z→ξ(t)

g̃(t, ·)−1(z), 0 ≤ t < T . (3.4)

Such β̃ is called the covering annulus Loewner trace of modulus p driven by ξ , and satisfies
that β = ei ◦ β̃ and β̃(0) = ξ(0). If β is simple with β((0, T )) ⊂ Ap , then β̃ is also simple,
β̃((0, T )) ⊂ Sp , and K̃(t) = β̃((0, t]) + 2πZ, 0 ≤ t < T .

Since g̃(t, ·) maps Rp onto Rp−t and HI (t, z) = H(t, z + it) + i, we have

∂t Re g̃(t, z) = HI

(
p − t,Re g̃(t, z) − ξ(t)

)
, z ∈ Rp. (3.5)

Differentiating (3.5) w.r.t. z, we see that

∂t g̃
′(t, z) = g̃′(t, z)H′

I

(
p − t,Re g̃(t, z) − ξ(t)

)
, z ∈ Rp. (3.6)

Since S(p − t, ·) and H(p − t, ·) have period 2π , for any n ∈ Z, ξ and ξ + 2nπ generate
the same family of annulus Loewner maps and the same family of covering annulus Loewner
maps.

3.3 Strip Loewner Evolution

Strip Loewner equations will be used in Sect. 8. The strip Loewner equation [11] driven by
ξ ∈ C([0, T )) is

∂t g̃(t, z) = coth2

(
g̃(t, z) − ξ(t)

)
, 0 ≤ t < T , g̃(0, z) = z.

For 0 ≤ t < T , let K̃(t) denote the set of z ∈ Sπ such that the solution g̃(s, z) blows up
before or at time t . Then K̃(t) and g̃(t, ·), 0 ≤ t < T , are called the strip Loewner hulls and
maps driven by ξ . For each t ∈ [0, T ), K̃(t) is a bounded hull in Rπ with dist(K̃(t),Rπ ) > 0,

g̃(t, ·) : (Sπ \ K̃(t);Rπ )
Conf
� (Sπ ;Rπ ), and g̃(t, z) − z → ±t as z → ±∞ in Sπ \ K̃(t). If

K̃ is a bounded hull in Rπ with dist(K̃(t),Rπ ) > 0, then there exist a number cK̃ ≥ 0 and a

map g̃K̃ determined by K̃ such that g̃K̃ : (Sπ \ K̃;Rπ )
Conf
� (Sπ ;Rπ ) and g̃K̃ − z → ±cK̃ as

z → ±∞. We call cK̃ the capacity of K̃ in Sπ w.r.t. Rπ . Thus, the capacity of K̃(t) in Sπ

w.r.t. Rπ is t , and g̃(t, ·) = g̃K̃(t).
Since g̃(t, ·) maps Rπ onto Rπ and coth2(z + πi) = tanh2(t, z), we have

∂t Re g̃(t, z) = tanh2

(
Re g̃(t, z) − ξ(t)

)
, z ∈ Rπ . (3.7)

Differentiating (3.7) w.r.t. z, we see that

∂t g̃
′(t, z) = g̃′(t, z) tanh′

2

(
Re g̃(t, z) − ξ(t)

)
, z ∈ Rπ . (3.8)

If ξ is a semi-martingale whose stochastic part is
√

κB(t), and whose drift part is con-
tinuously differentiable, then ξ generates a strip Loewner trace β̃ , which is defined by

β̃(t) := lim
Sπ �z→ξ(t)

g̃(t, ·)−1(z), 0 ≤ t < T . (3.9)

Such β̃ is a continuous curve in Sπ ∪ R which satisfies that β̃(0) = ξ(0) ∈ R. If κ ∈ (0,4],
then β̃ is simple, β̃((0, T )) ⊂ Sπ , and K̃(t) = β̃((0, t]) for 0 ≤ t < T .

On the other hand, suppose β̃(t) is a simple curve in Sπ \ R, which intersects R only at
t = 0. Let v(t) be the capacity of β̃((0, t]) in Sπ w.r.t. Rπ . Then v is a continuous increasing
function, which maps [0, T ) onto [0, S) for some S ∈ (0,∞], and there is ξ ∈ C([0, S))

which generates the strip Loewner trace β̃ ◦ v−1.
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The chordal SLE(κ;ρ) process defined in [6] naturally extends to strip SLE(κ;ρ) pro-
cess. Let κ > 0 and ρ ∈ R. Let x0, y0 ∈ R. Let ξ(t) and q(t), 0 ≤ t < ∞, be the solution
of

dξ(t) = √
κ dB(t) + ρ

2
tanh2

(
ξ(t) − q(t)

)
dt, ξ(0) = x0;

dq(t) = tanh2

(
q(t) − ξ(t)

)
, q(0) = y0.

Then the strip Loewner trace β̃ driven by ξ is called a strip SLE(κ;ρ) trace in Sπ started
from x0 with marked point y0 + πi. From [10] we know that, when ρ = κ − 6, β̃ is a time-
change of a chordal SLE(κ) trace in Sπ from x0 to y0 + πi, stopped when it hits Rπ . If, in
addition, κ ≤ 4, since the chordal SLE(κ) trace does not hit Rπ before it ends, we see that
β̃ is a time-change of a complete chordal SLE(κ) trace.

4 One SLE Curve Crossing an Annulus

4.1 Annulus SLE with One Marked Point

We now cite some definitions in Sect. 4.1 of [15].

Definition 4.1 A covering crossing annulus drift function is a real valued C0,1 differentiable
function defined on (0,∞) × R. A covering crossing annulus drift function with period 2π

in its second variable is called a crossing annulus drift function.

Definition 4.2 Suppose � is a covering crossing annulus drift function. Let κ > 0, p > 0,
and x0, y0 ∈ R. Let ξ(t), 0 ≤ t < p, be the maximal solution to the SDE

dξ(t) = √
κ dB(t) + �

(
p − t, ξ(t) − Re g̃(t, y0 + pi)

)
dt, ξ(0) = x0, (4.1)

where g̃(t, ·), 0 ≤ t < p, are the covering annulus Loewner maps of modulus p driven by ξ .
Then the covering annulus Loewner trace of modulus p driven by ξ is called the covering
annulus SLE(κ;�) trace in Sp started from x0 with marked point y0 + pi.

Definition 4.3 Suppose � is a crossing annulus drift function. Let κ ≥ 0, p > 0, a ∈ T

and b ∈ Tp . Choose x0, y0 ∈ R such that a = eix0 and b = e−p+iy0 . Let ξ(t), 0 ≤ t < p,
be the maximal solution to (4.1). The annulus Loewner trace of modulus p driven by ξ(t),
0 ≤ t < p, is called the annulus SLE(κ;�) trace in Ap started from a with marked point b.

Remark The above definition does not depend on the choices of x0 and y0 because
�(p− t, ·) has period 2π , g̃(t, ·) has progressive period (2π;2π), and for any n ∈ Z, the an-
nulus Loewner objects driven by ξ(t)+ 2nπ agree with those driven by ξ(t). Via conformal
maps, we can define the annulus SLE(κ;�) trace in any doubly connected domain.

4.2 Annulus SLE with Reversibility

A family of functions are defined in Sect. 7 of [15], which are �̂∞, �̂q , �̂0, �0, �m, m ∈ Z,
�〈s〉, �0, and �〈s〉, s ∈ R. They are all smooth functions on (0,∞)×R, and depend on three

parameters: κ ∈ (0,4], σ ∈ [0, 4
κ
), and τ = κ

4 −
√

κ2

16 + κσ ≤ 0. Now we suppose κ ∈ (0,4]
is fixed, and

σ = 4

κ
− 1 ≥ 0, τ = κ

2
− 2 ≤ 0. (4.2)
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Then these function depend only on κ ∈ (0,4], m ∈ Z and s ∈ R. For simplicity, we omit the
symbol κ . The �〈s〉 here is the �κ;〈s〉 in Theorems 1.1 and 1.2.

The �̂∞ is defined in (7.31) of [15]:

�̂∞(t, x) = e− τ2 t
2κ cosh

2
κ τ

2 (x). (4.3)

The �̂q is defined by (7.33) of [15]:

�̂q(t, x) = E
[

exp

(
σ

∫ ∞

0
Ĥ′

I,q

(
t + s,Xx(s)

)
ds

)]
, (4.4)

where ĤI,q is defined by (7.8) of [15]: ĤI,q (t, z) = ĤI (t, z) − tanh2(z), and Xx(t), 0 ≤ t <

∞, is a diffusion process which satisfies SDE (7.2) of [15]:

dXx(t) = √
κ dB(t) + τ tanh2

(
Xx(t)

)
dt, Xx(0) = x. (4.5)

The �̂0 is defined in Theorem 7.2 of [15]:

�̂0 = �̂∞�̂q . (4.6)

The �0 is defined in Theorem 7.3 of [15]:

�0(t, x) = e− x2
2κt

(
π

t

)σ+ 1
2

�̂0

(
π2

t
,
π

t
x

)
. (4.7)

For m ∈ Z and s ∈ R, the �m and �〈s〉 are defined in Theorem 7.4 of [15]:

�m(t, x) = �0(t, x − 2mπ), �〈s〉 =
∑

m∈Z

e
2π
κ ms�m. (4.8)

The functions �̂∞, �̂q , �̂0, �0, �m, �〈s〉 are all positive. The functions �0 and �〈s〉 are

defined in Proposition 7.4 and Theorem 7.4, respectively, of [15]: �0 = κ
� ′

0
�0

− HI , �〈s〉 =
κ

� ′〈s〉
�〈s〉 − HI . For the sake of completeness, we now define �m = κ

� ′
m

�m
− HI = �0(· − 2mπ)

and

�m = �m
− 2

κ

I , �〈s〉 = �〈s〉
− 2

κ

I . (4.9)

From (2.2), we see that �m and �〈s〉 have simpler expressions:

�m = κ
�′

m

�m

, �〈s〉 = κ
�′

〈s〉
�〈s〉

. (4.10)

From Lemma 5.2 of [15], we see that �m and �〈s〉 solve the PDE (5.6) in [15]. Since we here
set the value of σ by (4.2), this PDE becomes (5.2) in [15], i.e.,

∂t�m = κ

2
�′′

m + �′
mHI + αH′

I�m, (4.11)

where

α = 6 − κ

2κ
. (4.12)

Define �̂0 on (0,∞) × R such that

�̂0(t, x) =
(

π

t

)α

�0

(
π2

t
,
π

t
x

)
. (4.13)
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From (2.3), (4.7), and (4.9), we have

�̂0 = �̂0̂
− 2

κ

I . (4.14)

Define ̂I,∞, ̂I,q , �̂∞, and �̂q on (0,∞) × R such that

̂I,∞(t, x) = 2e− t
4 cosh2(x); ̂I,q = ̂I /̂I,∞; (4.15)

�̂∞(t, x) = 2− 2
κ e− τ2−1

2κ
t cosh2(x)

2
κ (τ−1); �̂q = �̂0/�̂∞. (4.16)

One may check that �̂∞ solves

−∂t �̂∞ = κ

2
�̂′′

∞ + �̂′
∞ tanh2 +α tanh′

2 �̂∞. (4.17)

From (4.3) we have �̂∞ = �̂∞̂
− 2

κ

I,∞. From (4.6) and (4.9) we have

�̂q = �̂q̂
− 2

κ

I,q . (4.18)

Let p > 0 and x0, y0 ∈ R. Let ym = y0 + 2mπ , m ∈ Z. Consider the following two SDEs.

dξ(t) = √
κ dB(t) + �0

(
p − t, ξ(t) − Re g̃(t, ym + pi)

)
dt,

0 ≤ t < p, ξ(0) = x0, (4.19)

dξ(t) = √
κ dB(t) + �〈s〉

(
p − t, ξ(t) − Re g̃(t, y0 + pi)

)
dt,

0 ≤ t < p, ξ(0) = x0, (4.20)

where g̃(t, ·) are the covering annulus Loewner maps driven by ξ . Let μm or μ〈s〉 denote the
distribution of (ξ(t),0 ≤ t < p) if it solves (4.19) or (4.20), respectively. Then

μ〈s〉 =
∑

m∈Z

e
2π
κ ms �m(p,x0 − y0)

�〈s〉(p, x0 − y0)
μm =

∑

m∈Z

e
2π
κ ms �0(p, x0 − ym)

�〈s〉(p, x0 − y0)
μm, (4.21)

where the first equality follows from Proposition 7.4 in [15], and the second equality follows
from (4.8), (4.9), and the fact that I(p, ·) has period 2π .

Let β and β̃ be the annulus Loewner trace and covering annulus Loewner trace, respec-
tively, of modulus p, driven by ξ . If (ξ) has distribution μm, then β̃ is a covering annulus
SLE(κ;�0) trace in Sp started from x0 with marked point ym + pi. If (ξ) has distribu-
tion μ〈s〉, then β is an annulus SLE(κ;�〈s〉) trace in Ap started from eix0 with marked point
eiy0−p . Let Em denote the event that the covering trace ends at ym +pi. Proposition 7.4, The-
orem 8.3, and Theorem 9.3 in [15] together imply that μm(Em) = 1 and μ〈s〉(

⋃
m∈Z Em) = 1.

Since Em, m ∈ Z, are mutually disjoint, the μm’s are singular to each other. From (4.21) we
have

dμm

dμ〈s〉
= e

2π
κ ms �0(p, x0 − ym)

�〈s〉(p, x0 − y0)
1Em. (4.22)

4.3 Some Estimations

Lemma 4.1 For any t > 0 and 0 ≤ x ≤ 3t ,

Ĥ′
I,q (t, x) < min

{
1

2
,2ex−2t

}
+ 4e−t

1 − e−2t
.
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Proof Since ĤI,q (t, z) = ĤI (t, z) − tanh2(z), from (2.7), we have

Ĥ′
I,q (t, x) = tanh′

2(x − 2t) +
∞∑

n=2

tanh′
2(x − 2nt) +

−1∑

n=−∞
tanh′

2(x − 2nt).

Note that tanh′
2(x) = 2

(ex/2+e−x/2)2 ≤ min{ 1
2 ,2ex,2e−x} for x ∈ R. If 0 ≤ x ≤ 3t , then

∞∑

n=2

tanh′
2(x − 2nt) ≤ 2

∞∑

n=2

ex−2nt = 2ex−4t

1 − e−2t
≤ 2e−t

1 − e−2t
,

−1∑

n=−∞
tanh′

2(x − 2nt) ≤ 2
−1∑

n=−∞
e2nt−x = 2e−x−2t

1 − e−2t
≤ 2e−2t

1 − e−2t
.

The conclusion follows from the above displayed formulas. �

Proposition 4.1 If F is one of the following functions: ̂I,q , �̂q , or �̂q , then

(i) lim2t−|x|→+∞ ln(F (t, x)) = 0;
(ii) for every R > 0, ln(F ) is bounded on {t ≥ R, |x| ≤ 2t + R}.

Proof From (2.4) and (4.15), the conclusion is clearly true for F = ̂I,q . From (4.18), we
suffice to prove this proposition for F = �̂q . Throughout this proof, we use Ot(1) to denote
a positive quantity which depends on κ,σ, t , and is uniformly bounded when t is bigger than
any positive constant.

Fix t > 0 and x ∈ R. Let Xx(s) be as in (4.5), and (Fs) be the filtration generated by
(Xx(s)). Define a uniformly integrable martingale Mt,x(s), 0 ≤ s < ∞, by

Mt,x(s) := E
[

exp

(
σ

∫ ∞

0
Ĥ′

I,q

(
t + r,Xx(r)

)
dr

)∣∣
∣∣Fs

]
.

From (4.4) we have Mt,x(s) = �̂q(t + s,Xx(s)) exp(σ
∫ s

0 Ĥ′
I,q (t + r,Xx(r)) dr). Suppose

S is an a.s. finite (Fs)-stopping time. From the Optional Stopping Theorem, E[Mt,x(S)] =
Mt,x(0). Since Mt,x(0) = �̂q(t, x), we have

�̂q(t, x) = E
[
�̂q

(
t + S,Xx(S)

)
exp

(
σ

∫ S

0
Ĥ′

I,q

(
t + s,Xx(s)

)
ds

)]
. (4.23)

Let λ(s, x) = min{ 1
2 ,2ex−2s}. If 0 ≤ Xx(s) ≤ 3(t + s) for 0 ≤ s ≤ S, then from

Lemma 4.1, we have
∫ S

0
Ĥ′

I,q

(
t + s,Xx(s)

)
ds ≤

∫ S

0
λ
(
t + s,Xx(s)

)
ds +

∫ ∞

0

4e−(t+s)

1 − e−2(t+s)
ds

=
∫ S

0
λ
(
t + s,Xx(s)

)
ds + 2 ln

(
1 + e−t

1 − e−t

)
,

which together with (4.23) implies that

�̂q(t, x) ≤ exp
(
Ot(1)e−t

)
E

[
�̂q

(
t + S,Xx(S)

)
exp

(
σ

∫ S

0
λ
(
t + s,Xx(s)

)
ds

)]
. (4.24)

Recall that σ ∈ [0, 4
κ
). Let σ ′ = κ

4 σ . From Proposition 7.1 in [15], for any c0 ∈ (1+σ ′,2),
there is C > 0 depending only on κ , σ , and c0 such that for any t ∈ (0,∞) and x ∈ R,

1 ≤ �̂q(t, x) ≤ exp
(
C

(
t−1 + 1

)
e(c0−2)t

)(
1 + Ce

2
κ |x|− 2

κ c0t
)
. (4.25)
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This immediately implies that ln(�̂q) is bounded on {|x| ≤ c0t, t ≥ t0} for any t0 > 0.
Choose any c0 ∈ (1 + σ ′,2) such that c0 ≥ 2

1+2/κ
and c0 �= 3 − κ

2 . Let a = 3 − c0 ∈
(1,2−σ ′). Then a �= κ

2 . Since c0 −1 > σ ′ and 2 > a > 1, we have a(2−a) = a(c0 −1) > σ ′.
Thus,

− 2

κ
a + 2

κ

a + σ ′

c0
= − 2

κc0

(
a(c0 − 1) − σ ′) < 0; (4.26)

− 2

κ
a + σ

2(2 − a)
= − 2

κ(2 − a)

(
a(2 − a) − σ ′) < 0. (4.27)

For m ∈ N ∪ {0}, let Gm denote the event that
√

κB(s) < as + m for any s ≥ 0. Then ∅ =
G0 ⊂ G1 ⊂ · · · ⊂ Gm ⊂ Gm+1 ⊂ · · ·. It is well known that P[⋃∞

m=0 Gm] = 1 and

P
[

Gc
m

] ≤ e− 2
κ ma, m ∈ N. (4.28)

Suppose t > 0 and 2t ≤ x ≤ 3t . Let S be the first time that Xx(s) ≤ 0 or Xx(s) ≥ 3(t +s).
Then S is a stopping time, and 0 ≤ Xx(s) ≤ 3(t + s) for 0 ≤ s ≤ S. Since Xx(s) is recurrent,
S is a.s. finite. Since τ ≤ 0 and tanh2(x) ≥ 0 for x ≥ 0, from (4.5) we have

Xx(s) ≤ x + as + m, 0 ≤ s ≤ S, on Gm. (4.29)

Let El and Er denote the event that Xx(S) = 0 and Xs(S) = 3(t + S), respectively. From
(4.25) and the facts that 0 > c0 − 2 ≥ − 2

κ
c0 and 3 − c0 > 0 we see that

�̂q

(
t + S,Xx(S)

) ≤ exp
(
Ot(1)e(c0−2)t

) ≤ Ot(1) on El , (4.30)

�̂q

(
t + S,Xx(S)

) ≤ Ot(1)e
2
κ (3−c0)(t+S) on Er . (4.31)

From (4.24) we have

�̂q(t, x) ≤ exp
(
Ot(1)e−t

) ∞∑

m=1

E
[

1(Gm\Gm−1)∩Er �̂q

(
t + S,Xx(S)

)

× exp

(
σ

∫ S

0
λ
(
t + s,Xx(s)

)
ds

)]

+ exp
(
Ot(1)e−t

) ∞∑

m=1

[
1(Gm\Gm−1)∩El

�̂q

(
t + S,Xx(S)

)

× exp

(
σ

∫ S

0
λ
(
t + s,Xx(s).

)
ds

)]
. (4.32)

Suppose Gm ∩ Er occurs. From (4.29) we have 3(t + S) = Xx(S) ≤ x + aS + m. Since
3 − a = c0 > 0, we have

S ≤ x − 3t + m

c0
on Gm ∩ Er . (4.33)

Since S ≥ 0, we see that Gm ∩ Er = ∅ when m < 3t − x. Let m0 = �3t − x�. Then from
(4.28), (4.31), and the fact that λ ≤ 1

2 , we find that for any m ∈ N and m ≥ m0,

E
[

1(Gm\Gm−1)∩Er �̂q

(
t + S,Xx(S)

)
exp

(
σ

∫ S

0
λ
(
t + s,Xx(s)

)
ds

)]

≤ E
[
e− 2

κ (m−1)aOt (1) exp

(
2

κ
(3 − c0)(t + S) + σ

2
S

)]
.
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Since 2
κ
(3−c0)+ σ

2 = 2
κ
(a+σ ′) > 0, from (4.33) we find that the RHS of the above formula

is

≤ Ot(1) exp

(
− 2

κ
a(m − 1 − t) + 2

κ

(
a + σ ′) · x − 3t + m

c0

)
.

So we have

∞∑

m=1

E
[

1(Gm\Gm−1)∩Er �̂q

(
t + S,Xx(S)

)
exp

(
σ

∫ S

0
λ
(
t + s,Xx(s)

)
ds

)]

≤ Ot(1)

∞∑

m=m0

exp

(
− 2

κ
a(m − t) + 2

κ

(
a + σ ′) · x − 3t + m

c0

)

= Ot(1) exp

(
2

κ
at + 2

κ

a + σ ′

c0
(x − 3t)

) ∞∑

m=m0

exp

(
− 2

κ
a + 2

κ

a + σ ′

c0

)m

≤ Ot(1) exp

(
2

κ
at + 2

κ

a + σ ′

c0
(x − 3t) − 2

κ
am0 + 2

κ

a + σ ′

c0
m0

)

≤ Ot(1)e
2
κ a(x−2t) (4.34)

where the second last inequality follows from (4.26), and the last inequality follows from
the fact that |m0 − (3t − x)| < 1.

Suppose Gm ∩ El occurs. From (4.29) we have Xx(s)− 2(t + s) ≤ x − 2t +m+ (a − 2)s,
0 ≤ s ≤ S. Suppose that 2t ≤ x ≤ 3t . Then x −2t +m ≥ 0 for any m ∈ N. Let p = x−2t+m

2−a
≥

0. Then we have
∫ S

0
λ
(
t + s,Xx(s)

)
ds

≤
∫ p

0

1

2
ds +

∫ ∞

p

2ex−2t+m+(a−2)s ds

= p

2
+

∫ ∞

p

2e(a−2)(s−p) ds = p

2
+ 2

2 − a
= x − 2t + m + 4

2(2 − a)
. (4.35)

From (4.27), (4.28) and (4.30), we have

∞∑

m=1

E
[

1(Gm\Gm−1)∩El
�̂q

(
t + S,Xx(S)

)
exp

(
σ

∫ S

0
λ
(
t + s,Xx(s)

)
ds

)]

≤ Ot(1)

∞∑

m=1

exp

(
− 2

κ
(m − 1)a + σ · x − 2t + m + 4

2(2 − a)

)

≤ Ot(1)e
σ(x−2t)
2(2−a)

∞∑

m=1

exp

(
− 2

κ
a + σ

2(2 − a)

)m

≤ Ot(1)e
2
κ a(x−2t). (4.36)

From (4.32), (4.34), and (4.36), we have

�̂q(t, x) ≤ Ot(1)e
2
κ a(x−2t), 2t ≤ x ≤ 3t. (4.37)

Suppose 0 ≤ x ≤ 2t . Let m1 = �2t − x�. Then x − 2t + m ≥ 0 if and only if m ≥ m1. If
m ≥ m1, then (4.35) still holds. Following the argument of (4.36), we get
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∞∑

m=m1

E
[

1(Gm\Gm−1)∩El
�̂q

(
t + S,Xx(S)

)
exp

(
σ

∫ S

0
λ
(
t + s,Xx(s)

)
ds

)]

≤ Ot(1)e
σ(x−2t)
2(2−a)

∞∑

m=m1

exp

(
− 2

κ
a + σ

2(2 − a)

)m

≤ Ot(1)e
σ(x−2t)
2(2−a) exp

(
− 2

κ
a + σ

2(2 − a)

)m1

≤ Ot(1)e
2
κ a(x−2t), (4.38)

where the last inequality holds because |m1 − (2t − x)| < 1.
For m < m1, we use the estimation:

∫ S

0
λ
(
t + s,Xx(s)

)
ds ≤

∫ ∞

0
2ex−2t+m+(a−2)s ds = 2ex−2t+m

2 − a
on Gm.

From (4.30) we see that, when m < m1, on the event Gm ∩ El ,

�̂q

(
t + S,Xx(S)

)
exp

(
σ

∫ S

0
λ
(
t + s,Xx(s)

)
ds

)

= exp

(
Ot(1)e(c0−2)t + σ

ex−2t+m

2 − a

)

= 1 + Ot(1)e(c0−2)t + Ot(1)ex−2t+m,

where the last equality holds because ex−2t+m ≤ Ot(1) for m < m1. Thus,

m1−1∑

m=1

E
[

1(Gm\Gm−1)∩El

(
�̂q

(
t + S,Xx(S)

)
exp

(
σ

∫ S

0
λ
(
t + s,Xx(s)

)
ds

)
− 1

)]

≤
m1−1∑

m=1

e− 2
κ (m−1)aOt (1)

(
e(c0−2)t + ex−2t+m

)

= Ot(1)

(
e(c0−2)t + ex−2t

m1−1∑

m=1

exp

(
1 − 2

κ
a

)m)

≤ Ot(1)e(c0−2)t + Ot(1)ex−2t
(
1 + e(1− 2

κ a)m1
)

≤ Ot(1)e(c0−2)t + Ot(1)
(
ex−2t + e

2
κ a(x−2t)

)
,

where the second last inequality holds because a �= κ
2 . The above inequality together with

(4.32), (4.34), and (4.38) implies that,

�̂q(t, x) − 1 ≤ Ot(1)
(
e−t + e(c0−2)t + ex−2t + e

2
κ a(x−2t)

)

≤ Ot(1)e(1− c0
2 )(x−2t), 0 ≤ x ≤ 2t.

Since 1 ≤ �̂q , the above inequality implies that

0 ≤ ln
(
�̂q(t, x)

) ≤ Ot(1)e(1− c0
2 )(x−2t), 0 ≤ x ≤ 2t,

which finishes the proof of (i) for F = �̂q . The above inequality together with (4.37) implies
that

0 ≤ ln
(
�̂q(t, x)

) ≤ Ot(1) + 2

κ
a
(
0 ∨ (x − 2t)

)
, 0 ≤ x ≤ 3t,

which finishes the proof of (ii) for F = �̂q . �
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5 Annulus SLE with Domain Changed

We now start proving Theorem 1.1. The proof will be finished at the end of Sect. 7.2. Let
p > 0, κ ∈ (0,4], s ∈ R z0 ∈ T, w0 ∈ Tp , and the hull L be as in Theorem 1.1. Choose
x0, y0 ∈ R such that z0 = eix0 and w0 = eiy0−p . Let ym = y0 + 2mπ , m ∈ Z.

Note that Ap \ L is a doubly connected domain, whose boundary contain Tp and eix0 .
Let pL = mod(Ap \ L). Let L̃ = (ei)−1(L). Then L̃ is a subset of Sp with period 2π . We

may find WL and W̃L such that WL : (Ap \ L;Tp)
Conf
� (ApL

;TpL
), W̃L : (Sp \ L̃;Rp)

Conf
�

(SpL
;RpL

), ei ◦ W̃L = WL ◦ ei , and W̃L has progressive period (2π;2π).

5.1 Stochastic Differential Equations

Suppose ξ ∈ C([0,p)) with ξ(0) = x0. Let g(t, ·) and g̃(t, ·), 0 ≤ t < p, be the annulus
and covering annulus Loewner maps of modulus p, respectively, driven by ξ . Let K(t) and
K̃(t) be the corresponding hulls and covering hulls. Suppose ξ generates a simple annulus
Loewner trace β of modulus p with β((0,p)) ⊂ Ap . Then ξ also generates a simple covering
annulus Loewner trace β̃ of modulus p with β̃((0,p)) ⊂ Sp . We have β = ei ◦ β̃ , β̃(0) =
ξ(0) = x0, K(t) = β((0, t]), and K̃(t) = β̃((0, t]) + 2πZ, 0 ≤ t < p.

Let T be the biggest number in (0,p] such that β((0, T ))∩L = ∅. Let β̃L(t) = W̃L(β̃(t))

and βL(t) = WL(β(t)), 0 ≤ t < T . Then βL and β̃L are simple curves, βL = ei ◦ β̃L,
βL(0) ∈ T, and βL((0, T )) ⊂ ApL

. Let v(t) = capApL
(βL((0, t])). Then v is a continu-

ous increasing function, which maps [0, T ) onto [0, S) for some S ∈ (0,pL]. Let γL(t) =
βL(v−1(t)), 0 ≤ t < S. Then γL(t), 0 ≤ t < S, is the annulus Loewner trace of modulus
pL driven by some ηL ∈ C([0, S)). Let hL(t, ·) and h̃L(t, ·), 0 ≤ t < S, be the annulus and
covering annulus Loewner maps of modulus pL, respectively, driven by ηL.

For 0 ≤ t < T , define ξL(t) = ηL(v(t)), g̃L(t, ·) = h̃L(v(t), ·);
g̃L,W (t, ·) = g̃L(t, ·) ◦ W̃L; W̃ (t, ·) = g̃L,W (t, ·) ◦ g(t, ·)−1. (5.1)

Then both g̃L,W (t, ·) and W̃ (t, ·) have progressive period (2π;2π), and

g̃L,W (t, ·) : (Sp \ (
L̃ ∪ (

β̃
(
(0, t]) + 2πZ

));Rp

) Conf
� (SpL−v(t);RpL−v(t)), (5.2)

W̃ (t, ·) : (Sp−t \ L̃t ;Rp−t )
Conf� (SpL−v(t);RpL−v(t)), (5.3)

where L̃t := g̃(t, L̃) ⊂ Sp−t . We have gL(βL(t)) = eiξL(t). Since βL = ei(β̃L), there is n ∈ Z

such that g̃L(t, β̃L(t)) = ξL(t)+2nπ for 0 ≤ t < T . We now add 2nπ to the driving function
ηL. Then the new ηL is still the driving function for γL, hL(t, ·) and h̃L(t, ·), and we have

g̃L,W

(
t, β̃(t)

) = ξL(t); (5.4)

W̃
(
t, ξ(t)

) = ξL(t). (5.5)

Define qm(t), qL,m(t), Aj(t), AI,m(t), Xm(t), XL,m(t), 0 ≤ t < T , such that

qm(t) + (p − t)i = g̃(t, ym + pi); (5.6)

qL,m(t) + (
pL − v(t)

)
i = g̃L,W (t, ym + pi); (5.7)

Aj(t) = W̃ (j)
(
t, ξ(t)

)
, j = 1,2,3; AI,m(t) = W̃ ′(t, qm(t) + (p − t)i

); (5.8)

Xm(t) = ξ(t) − qm(t); XL,m(t) = ξL(t) − qL,m(t). (5.9)

A standard argument together with Lemma 2.1 in [12] shows that

v′(t) = W̃ ′(t, ξ(t)
)2 = A1(t)

2. (5.10)
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Hence,

∂t g̃L,W (t, z) = W̃ ′(t, ξ(t)
)2

H
(
pL − v(t), g̃L,W (t, z) − ξL(t)

)
. (5.11)

Since HI (t, ·) is odd, from (3.5), (3.6), and (5.11) we have

dqm(t) = −HI

(
p − t,Xm(t)

)
dt; (5.12)

dg̃′(t, ym + pi)

g̃′(t, ym + pi)
= H′

I

(
p − t,Xm(t)

)
dt; (5.13)

dqL,m(t) = −A1(t)
2HI

(
pL − v(t),XL,m(t)

)
dt; (5.14)

dg̃′
L,W (t, ym + pi)

g̃′
L,W (t, ym + pi)

= A1(t)
2H′

I

(
pL − v(t),XL,m(t)

)
dt. (5.15)

From (5.1), (5.13) and (5.15) we get

dAI,m(t)

AI,m(t)
= A1(t)

2H′
I

(
pL − v(t),XL,m(t)

)
dt − H′

I

(
p − t,Xm(t)

)
dt. (5.16)

Differentiating W̃ (t, ·) ◦ g̃(t, z) = g̃L,W (t, z) w.r.t. t using (3.2) and (5.11), and letting
w = g̃(t, z), we obtain an equality for ∂t W̃ (t,w) with w ∈ Sp−t \ L̃t . Differentiating this
equality w.r.t. w, we get an equality for ∂t W̃

′(t,w). Letting w → ξ(t) in Sp−t \ L̃t in these
two equalities and using (2.1) we get

∂t W̃
(
t, ξ(t)

) = −3A2(t). (5.17)

∂tA1(t)

A1(t)
= 1

2

(
A2(t)

A1(t)

)2

− 4

3

A3(t)

A1(t)
+ A1(t)

2r
(
pL − v(t)

) − r(p − t). (5.18)

Let κ ∈ (0,4]. Suppose now (ξ) is a semimartingale, and d〈ξ 〉t = κdt , 0 ≤ t < p. We
will frequently apply Itô’s formula (cf. [8]). From (5.5) and (5.17) we have

dξL(t) = A1(t) dξ(t) +
(

κ

2
− 3

)
A2(t) dt. (5.19)

From (5.12) and (5.14) we see that Xm(t) and XL,m(t) satisfy

dXm(t) = dξ(t) + HI

(
p − t,Xm(t)

)
dt; (5.20)

dXL,m(t) = dξL(t) + A1(t)
2HI

(
pL − v(t),XL,m(t)

)
dt. (5.21)

From (5.18) we see that

dA1(t)

A1(t)
= A2(t)

A1(t)
dξ(t) +

[
1

2

(
A2(t)

A1(t)

)2

+
(

κ

2
− 4

3

)
A3(t)

A1(t)

+ A1(t)
2r

(
pL − v(t)

) − r(p − t)

]
dt.

Let c and α be as in (1.1) and (4.12), respectively. Then we compute that

dA1(t)
α

A1(t)α
= α

A2(t)

A1(t)
dξ(t) +

[
c

6
AS(t) + αA1(t)

2r
(
pL − v(t)

) − αr(p − t)

]
dt, (5.22)

where AS(t) := A3(t)

A1(t)
− 3

2 (
A2(t)

A1(t)
)2 is the Schwarz derivative of W̃ (t, ·) at ξ(t).

Let

Ym(t) = �0
(
p − t,Xm(t)

)
, YL,m(t) = �0

(
pL − v(t),XL,m(t)

)
, (5.23)
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From (4.10), (4.11), (5.10), (5.20) and (5.21) we find that

dYm(t)

Ym(t)
= 1

κ
�0

(
p − t,Xm(t)

)
dξ(t) − αH′

I

(
p − t,Xm(t)

)
dt, (5.24)

dYL,m(t)

YL,m(t)
= 1

κ
�0

(
pL − v(t),XL,m(t)

)
dξL(t) − αA1(t)

2H′
I

(
pL − v(t),XL,m(t)

)
dt.

(5.25)

Define Mm on [0, T ) by

Mm = Aα
1 Aα

I,m

YL,m

Ym

exp

(
− c

6

∫ ·

0
AS(s) ds + α

∫ pL−v(·)

p−·
r(s) ds

)
. (5.26)

From (5.16), (5.19), (5.22), (5.24) and (5.25), we find that

dMm(t)

Mm(t)
=

[
α

A2(t)

A1(t)
+ A1(t)

κ
�0

(
pL − v(t),XL,m(t)

) − 1

κ
�0

(
p − t,Xm(t)

)]

× (
dξ(t) − �0

(
p − t,Xm(t)

)
dt

)
, 0 ≤ t < T . (5.27)

Let Cp,L = exp(− c
2

∫ pL

p
(r(s) + 1

s
) ds) > 0. We have Mm = Nm exp(cU), where

Nm = Cp,LAα
1 Aα

I,m

YL,m

Ym

exp

((
α + c

2

)∫ pL−v(·)

p−·
r(s) ds + c

2

∫ pL−v(·)

p−·

1

s
ds

)
. (5.28)

U = −1

6

∫ ·

0
AS(s) ds − 1

2

∫ pL−v(·)

p−·

(
r(s) + 1

s

)
ds + 1

2

∫ pL

p

(
r(s) + 1

s

)
ds. (5.29)

5.2 Rescaling

Let p̂ = π2

p
, T̂ = π2

p−T
− p̂ and ť = p − π2

p̂+t
. Then the function t �→ ť maps [0,∞) onto

[0,p), and maps [0, T̂ ) onto [0, T ). Let L̂ = π
p
L̃ ⊂ Sπ , x̂0 = π

p
x0, and ŷm = π

p
ym, m ∈

Z. Since L̃ has period 2π , and dist(L̃, {x0} ∪ Rp) > 0, we see that L̂ has period 2p̂, and
dist(L̂, {̂x0} ∪ Rπ ) > 0. Let β̂(t) = π

p
β̃(ť), 0 ≤ t < ∞. Then β̂ is a curve in Sπ ∪ R started

from x̂0, and T̂ is the biggest number in (0,∞] such that β̂((0, T̂ )) ∩ L̂ = ∅. Furthermore,
we have

{T = p} = {T̂ = ∞} = {β ∩ L = ∅} = {β̃ ∩ L̃ = ∅} = {β̂ ∩ L̂ = ∅}. (5.30)

For 0 ≤ t < T̂ , let p̂L(t) = π2

pL−v(ť)
. Since pL −v(t) = mod(Ap \L\β((0, t]), while p − t =

mod(Ap \ β((0, t]), we have pL − v(t) ≤ p − t , 0 ≤ t < T . Thus,

p̂L(t) ≥ π2

p − ť
= p̂ + t, 0 ≤ t < T̂ . (5.31)

From (2.10), for any 0 ≤ t < T̂ ,

−
∫ p̂L(t)

p̂+t

r̂(s) ds =
∫ pL−v(ť)

p−ť

(
r(s) + 1

s

)
ds. (5.32)

Let m ∈ Z. For 0 ≤ t < T̂ , define

ξ̂ (t) = p̂ + t

π
· ξ(ť); q̂m(t) = p̂ + t

π
· qm(ť); X̂m(t) = p̂ + t

π
· Xm(ť); (5.33)

ξ̂L(t) = p̂L(t)

π
· ξL(ť); q̂L,m(t) = p̂L(t)

π
· qL,m(ť); X̂L,m(t) = p̂L(t)

π
· XL,m(ť).

(5.34)
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From (5.9) we have X̂m = ξ̂ − q̂m and X̂L,m = ξ̂L − q̂L,m. For 0 ≤ t < T̂ , define

ĝ(t, z) = p̂ + t

π
g̃

(
ť ,

p

π
z

)
; ĝL,W (t, z) = p̂L(t)

π
g̃L,W

(
ť ,

p

π
z

)
. (5.35)

From (3.3), (3.4), (5.4), (5.2), (5.6) and (5.7) we have

ĝ(t, ·) : (Sπ \ (
β̂
(
(0, t]) + 2p̂Z

);Rπ , β̂(t), ŷm + πi
) Conf�

(
Sπ ;Rπ , ξ̂ (t), q̂m(t)

); (5.36)

ĝL,W (t, ·) : (Sπ \ ((
β̂
(
(0, t]) + 2p̂Z

) ∪ L̂
);Rπ , β̂(t), ŷm + πi

)

Conf
�

(
Sπ ;Rπ , ξ̂L(t), q̂L,m(t) + πi

)
. (5.37)

For 0 ≤ t < T̂ , define

Ŵ (t, ·) = ĝL,W (t, ·) ◦ ĝ(t, ·)−1; (5.38)

Â1(t) = Ŵ ′(t, ξ̂ (t)
)
, ÂI,m(t) = Ŵ ′(t, q̂m(t) + πi

)
. (5.39)

Let L̂t = p̂+t

π
L̃ť . Since L̃t = g̃(t, L̃), we have L̂t = ĝ(t, L̂). From (5.36) and (5.37) we have

Ŵ (t, ·) : (Sπ \ L̂t ;Rπ )
Conf
� (Sπ ;Rπ ); (5.40)

Ŵ
(
t, ξ̂ (t)

) = ξ̂L(t); Ŵ
(
t, q̂m(t) + πi

) = q̂L,m(t) + πi. (5.41)

From (5.1), (5.8), (5.35) and (5.38) we have

Â1(t) = p̂L(t)

p̂ + t
A1(ť), ÂI,m(t) = p̂L(t)

p̂ + t
AI,m(ť). (5.42)

For m ∈ Z and 0 ≤ t < T̂ , let

Ŷm(t) = �̂0

(
p̂ + t, X̂m(t)

)
, ŶL,m(t) = �̂0

(
p̂L(t), X̂L(t)

)
. (5.43)

From (4.13), (5.23), (5.33), and (5.34), we have

Ŷm(t) =
(

π

p̂ + t

)α

Ym(ť), ŶL,m(t) =
(

π

p̂L(t)

)α

YL,m(ť). (5.44)

Define N̂m on [0, T̂ ) such that

N̂m = Cp,LÂα
1 Âα

I,mŶL,mŶ −1
m exp

(
−

(
α + c

2

)∫ p̂L(·)

p̂+·
r̂(s)ds

)
.

From (5.28), (5.32), (5.42) and (5.44) we find that

N̂m(t) = Nm(ť), 0 ≤ t < T̂ . (5.45)

From (1.1), (2.9), (4.2), (4.12), (4.14), (4.16), and (5.43), we see that for 0 ≤ t < T̂ ,

N̂m(t) = Â1(t)
αÂI,m(t)α�̂q

(
p̂L(t), X̂L,m(t)

)
�̂q

(
p̂ + t, X̂m(t)

)−1

× exp

(
−α

∫ X̂L,m(t)

X̂m(t)

tanh2(s) ds −
(

α + c

2

)(
R̂

(
p̂L(t)

) − R̂(p̂ + t)
))

. (5.46)
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6 Estimations on ̂Nm(t)

For m ∈ Z, let Pm denote the set of (ρ1, ρ2) with the following properties.

1. For j = 1,2, ρj is a polygonal crosscut in Sπ that grows from a point on R to a point on
Rπ , whose line segments are parallel to either x-axis or y-axis, and whose vertices other
than the end points have rational coordinates.

2. ρ1 + 2np̂, ρ2 + 2np̂, n ∈ Z, and L̂ are mutually disjoint; ρ1 lies to the left of ρ2.
3. ρ1 ∪ ρ2 disconnects x̂0 and ŷm + πi from L̂ in Sπ .

For each (ρ1, ρ2) ∈ Pm, let T̂ρ1,ρ2 denote the biggest number such that β̂((0, T̂ρ1,ρ2)) ∩
(ρ1 ∪ ρ2) = ∅. Since β̂ starts from x̂0, we have T̂ρ1,ρ2 ≤ T̂ . Let Em be as in Sect. 4.2. Then

Em =
{

lim
t→p

β̃(t) = ym + pi
}

=
{

lim
t→∞ β̂(t) = ŷm + πi

}
.

We will prove the following proposition at the end of Sect. 6.1 and Sect. 6.2.

Proposition 6.1 Let m ∈ Z.

(i) limt→∞ ln(N̂m(t)/Cp,L) = 0) on the event Em ∩ {T̂ = ∞}.
(ii) For any (ρ1, ρ2) ∈ Pm, ln(N̂m(t)) is uniformly bounded on [0, T̂ρ1,ρ2).

For m ∈ Z, define P̃m = {( p

π
ρ1,

p

π
ρ2): (ρ1, ρ2) ∈ Pm}. Then for each (ρ1, ρ2) ∈ P̃m, ρ1

and ρ2 are simple curves that grow from a point on R to a point on Rπ , and ρ1 ∪ ρ2 dis-
connects x0 and ym + pi from L̃. For each (ρ1, ρ2) ∈ P̃m, let Tρ1,ρ2 denote the biggest time
such that β̃((0, Tρ1,ρ2)) ∩ (ρ1 ∪ ρ2) = ∅. Then Tρ1,ρ2 ≤ T , and the function t �→ ť maps
[0, T̂ρ1,ρ2) onto [0, T p

π ρ1,
p
π ρ2

). From Proposition 6.1, (5.30), and (5.45) we conclude the fol-
lowing proposition:

Proposition 6.2 Let m ∈ Z.

(i) limt→p Nm(t) = Cp,L on the event Em ∩ {T = p}.
(ii) For any (ρ1, ρ2) ∈ P̃m, Nm(t) is uniformly bounded on [0, Tρ1,ρ2).

6.1 The Limit Value

We now use H and D to denote the upper half-plane {Im z > 0} and the unit disk {|z| < 1},
respectively. Let H denote the set of bounded hulls in H. For every H ∈ H, there is unique
ϕH which maps H \H conformally onto H such that as z → ∞, ϕH (z) = z + c

z
+O(|z|−2),

where c =: hcap(H) is called the half-plane capacity of H . If H = ∅, then ϕH = id and
hcap(H) = 0; otherwise hcap(H) > 0.

Suppose H ∈ H and H �= ∅. Then H ∩ R �= ∅. Let aH = inf(H ∩ R) and bH =
sup(H ∩ R). Let

�H = C \ (
H ∪ {z: z ∈ H } ∪ [aH , bH ]).

By reflection principle, ϕH extends to �H , and ϕH : �H

Conf
� C \ [cH , dH ] for some cH <

dH ∈ R. Moreover, ϕH is increasing on (−∞, aH ) and (bH ,∞), and maps them onto
(−∞, cH ) and (dH ,∞), respectively. So ϕ−1

H extends conformally to C \ [cH , dH ].

Example 1 Suppose r > 0. Let H = {z ∈ H: |z| ≤ r}. Then H ∈ H, aH = −r and bH = r .
It is clear that ϕH (z) = z + r2

z
. Thus hcap(H) = r2, and [cH , dH ] = [−2r,2r].
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From (5.1) in [14] there is a measure μH supported by [cH , dH ] with |μH | = hcap(H)

such that for any z ∈ �H ,

ϕ−1
H (z) − z =

∫ dH

cH

−1

z − x
dμH (x). (6.1)

Since ϕ∅ = id, (6.1) is also true for H = ∅ if we set μ∅ = 0, a∅ = c∅ = ∞ and b∅ = d∅ =
−∞. The following lemma is a combination of Lemma 5.2 and Lemma 5.3 in [14].

Lemma 6.1

(i) For any H ∈ H, ϕH (x) ≤ x on (−∞, aH ) and ϕH (x) ≥ x on (bH ,∞).
(ii) If H1,H2 ∈ H and H1 ⊂ H2, then [cH1 , dH1 ] ⊂ [cH2 , dH2 ].

Lemma 6.2 Let r > 0. Suppose H ∈ H and H ⊂ {|z| ≤ r}. Suppose W : (H \ H ;∞)
Conf
�

(H;∞), and satisfies that W ′(∞) = 1, W((−∞,−r)) ⊂ (−∞,0) and W((r,∞)) ⊂
(0,∞). Then for any z ∈ H ∪ R with |z| ≥ (1 + r)2, |W(z) − z| ≤ r2 + 2r .

Proof Let Hr = {z ∈ H: |z| ≤ r}. Then H ⊂ Hr ∈ H. From Lemma 6.1(i) and Ex-
ample 1, we have [cH , dH ] ⊂ [cHr , dHr ] = [−2r,2r]. Define K = ϕH (Hr \ H). Then
K ∈ H and ϕHr = ϕK ◦ ϕH , which implies that hcap(Hr) = hcap(K) + hcap(H). Thus,
hcap(H) ≤ hcap(Hr) = r2. Applying Lemma 6.1(ii) to K , we find that ϕH (x) ≤ ϕHr (x)

for any x ∈ (bHr ,∞) = (r,∞). Thus, infϕH ((r,∞)) ≤ infϕHr ((r,∞)) = dHr = 2r . Simi-
larly, supϕH ((−∞,−r)) ≥ −2r . Since both W and ϕH map H \ H conformally onto H

and fix ∞, and have derivative 1 at ∞, there is w ∈ R such that W(z) = ϕH (z) − w for
any z ∈ H \ H . From the assumption of W , we get infW((r,∞)) ≥ 0 ≥ supW((−∞,−r)).
So we have |w| ≤ 2r . We now suffice to show that for any z ∈ H ∪ R with |z| ≥ (1 + r)2,
|ϕH (z) − z| ≤ r2.

Let z ∈ H ∪ R and |z| ≥ 1 + 2r . Since [cH , dH ] ⊂ [−2r,2r] and |μH | = hcap(H) ≤ r2,
from (6.1) we have |ϕ−1

H (z) − z| ≤ r2. Let γ = {z ∈ H: |z| = 1 + 2r}. Then ϕ−1
H (γ ) is a

crosscut in H, which divides H into two components. Let D denote the unbounded compo-
nent. Then ϕ−1

H maps {z ∈ H ∪ R: |z| ≥ 1 + 2r} onto D. Since |ϕ−1
H (z) − z| ≤ r2 for z ∈ γ ,

we have ϕ−1
H (γ ) ⊂ {|z| ≤ 1 + 2r + r2}, which implies that D ⊃ {z ∈ H ∪ R: |z| ≥ (1 + r)2}.

Thus, if z ∈ H∪R and |z| ≥ (1+ r)2, then ϕH (z) ∈ {z ∈ H∪R: |z| ≥ 1+2r}, which implies
that |ϕH (z) − z| = |ϕ−1

H (ϕH (z)) − ϕH (z)| ≤ r2. �

Lemma 6.3 Let K be a hull in Sπ such that Re z ≤ c for any z ∈ K . Suppose that V : (Sπ \
K;+∞)

Conf
� (Sπ ;+∞), and satisfies V ((c,∞)) ⊂ R and V ((c,∞)+πi) ⊂ Rπ . Then there

is h ∈ R such that if z ∈ Sπ ∪ R ∪ Rπ and Re z ≥ c + ln(4), then |V (z) − z − h| ≤ 12ec−Re z.

Proof There is h ∈ R such that V (z) = z+h+o(1) as z ∈ Sπ and z → +∞. By considering
V − h instead of V , we may assume that V (z) = z + o(1) as z ∈ Sπ and z → +∞. Let
z ∈ Sπ ∪R∪Rπ with Re z ≥ c + ln(4). Let a = Re z− c. Then ea ≥ 4, and there is r ∈ (0,1]
such that (1 + r)2/r = ea . Let H = r

ec exp(K) and

W(z) = exp
(
V

(
ln z − ln(r) + c

) + ln(r) − c
)
. (6.2)

Then H ∈ H, H ⊂ {z ∈ H: |z| ≤ r}, W : (H \ H ;∞)
Conf
� (H;∞), and W ′(∞) = 1.

Since V ((c,∞)) ⊂ R and V ((c,∞) + πi) ⊂ Rπ , we have W((−∞,−r)) ⊂ (−∞,0)

and W((r,∞)) ⊂ (0,∞). Since z ∈ Sπ ∪ R ∪ Rπ and Re z = c + a = c + 2 ln(1 + r) −
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ln(r), we have ez+ln(r)−c ∈ H ∪ R and |ez+ln(r)−c| ≥ (1 + r)2. From Lemma 6.2, we have
|W(ez+ln(r)−c) − ez+ln(r)−c| < r2 + 2r . So the line segment [ez+ln(r)−c,W(ez+ln(r)−c)] lies
outside D. Since | ln′(z)| ≤ 1 for z ∈ C \ D, we have | ln(W(ez+ln(r)−c)) − (z + ln(r) − c)| <
r2 + 2r ≤ 3r . From (6.2), V (z) = ln(W(ez+ln(r)−c)) − ln(r) + c, so |V (z) − z| < 3r . Fi-
nally, since ear = (r + 1)2 = r2 + 2r + 1 ≤ 3r + 1, we have r ≤ 1

ea−3 . Since a ≥ ln(4),
ea − 3 ≥ 1 ≥ 4e−a . Thus, |V (z) − z| ≤ 12e−a = 12ec−Re z. �

Proposition 6.3 Let K = K+ ∪K− ⊂ Sπ , where ReK− is bounded above by c− ∈ R, ReK+
is bounded below by c+ ∈ R, and c+ − c− ≥ 2 ln(12). Suppose W maps Sπ \ K conformally
onto Sπ , and satisfies W((c−, c+)) ⊂ R and W((c−, c+)+πi) ⊂ Rπ . Then there exists h ∈ R

such that if z ∈ Sπ satisfies that d := min{c+ − Re z,Re z − c−} ≥ ln(12), then |W(z) −
z − h| ≤ 48e−d .

Proof Choose W− : (Sπ \K−;+∞)
Conf� (Sπ ;+∞). By composing a suitable U : (Sπ ;+∞)

Conf� (Sπ ;+∞) on its left, we may assume that W− satisfies W− ◦ W−1(−∞) = −∞. Let

K ′+ = W−(K+) and W+ = W ◦ W−1
− . Then W+ : (Sπ \ K ′+;−∞)

Conf
� (Sπ ;−∞).

The assumption on W implies that there is no x ∈ (c−,∞) such that W(x) = −∞. Since
W− ◦ W−1(−∞) = −∞, there is no x ∈ (c−,∞) such that W−(x) = −∞. This implies that
W−((c−,∞)) ⊂ R. Similarly, W−((c−,∞) + πi) ⊂ Rπ . From Lemma 6.3, there is h− ∈ R

such that
∣∣W−(z) − z − h−

∣∣ ≤ 12ec−−Re z, if z ∈ Sπ ∪ R ∪ Rπ and Re z ≥ c− + ln(4). (6.3)

Let cd = c+ − c− ≥ 2 ln(12) and c′+ = c+ + h− − 12e−cd . If z ∈ Sπ ∪ R ∪ Rπ and
Re z ≥ c+, then Re z ≥ c− + cd ≥ c− + ln(4), which implies that ReW−(z) ≥ c′+ by (6.3).
Since ReK+ is bounded below by c+, we find that ReK ′+ is bounded below by c′+.
Suppose W−((c−, c+)) = (a−, a+). The above argument show that a+ ≥ c′+. Since W =
W+ ◦ W− and W((c−, c+)) ⊂ R, we have W+((a−, a+)) ⊂ R. Since W+ fixes −∞, we
have W+((−∞, a+)) ⊂ R, which implies that W+((−∞, c+)) ⊂ R as a+ ≥ c′+. Similarly,
W+((−∞, c+) + πi) ⊂ Rπ . From a mirror result of Lemma 6.3, we see that there exists
h+ ∈ R such that

∣
∣W+(w) − w − h+

∣
∣ ≤ 12eRew−c′+ , if w ∈ Sπ ∪ R ∪ Rπ and Rew ≤ c′

+ − ln(4). (6.4)

Now suppose that z ∈ Sπ satisfies that d := min{c+ − Re z,Re z − c−} ≥ ln(12). From
(6.3) and that c+ − Re z,Re z − c− ≥ d ≥ ln(12), we obtain

ReW−(z) ≤ Re z + h− + 12ec−−Re z ≤ c+ − d + h− + 12e−d = c′
+ − d + 12e−cd + 12e−d

≤ c′
+ − d + 12e−2 ln(12) + 12e− ln(12) = c′

+ − d + 13

12

≤ c′
+ − d + ln(3) ≤ c′

+ − ln(4). (6.5)

Let h = h+ + h−. Applying (6.4) to w = W−(z) and using (6.3) and (6.5), we get

∣∣W(z) − z − h
∣∣ ≤ ∣∣W+

(
W−(z)

) − W−(z) − h+
∣∣ + ∣∣W−(z) − z − h−

∣∣

≤ 12eReW−(z)−c′+ + 12ec−−Re z < 12eln(3)−d + 12e−d = 48e−d . �
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Differentiating (6.1) w.r.t. z, we see that for z ∈ �H ,

(
ϕ−1

H

)′
(z) − 1 =

∫ dH

cH

1

(z − x)2
dμH (x);

(
ϕ−1

H

)(n)
(z) =

∫ dH

cH

(−1)n+1n!
(z − x)n+1

dμH (x), n ≥ 2.

The proofs of Lemma 6.2, Lemma 6.3, and Proposition 6.3 can be slightly modified to prove
the following proposition.

Proposition 6.4 There are constants C1,C2 > 0 such that the following hold. Let K =
K+ ∪ K− ⊂ Sπ , where ReK+ is bounded above by c− ∈ R, ReK+ is bounded below
by c+ ∈ R, and c+ ≥ c− + 2C2. Suppose W maps Sπ \ K conformally onto Sπ , and
satisfies W((c−, c+)) ⊂ R and W((c−, c+) + πi) ⊂ Rπ . Then for any z ∈ Sπ with d :=
min{c+ − Re z,Re z − c−} ≥ C2, we have |W ′(z) − 1|, |W ′′(z)|, |W ′′′(z)| ≤ C1e

−d .

Proof of Proposition 6.1(i) From (5.46), we suffice to show that (i) holds if ln(N̂m(t)/Cp,L)

is replaced by ln(Â1(t)), ln(ÂI,m(t)), ln(�̂q(p̂ + t, X̂m(t))), ln(�̂q(p̂L(t), X̂L,m(t))),
X̂L,m(t) − X̂m(t), or R̂(p̂L(t)) − R̂(p̂ + t), respectively. Suppose Em ∩ {T̂ = ∞} occurs.
From (5.31) and (2.9) we conclude that R̂(p̂L(t)) − R̂(p̂ + t) → 0 as t → ∞.

Decompose L̂ into L̂l and L̂r such that L̂l ∩ R (resp. L̂r ∩ R) lies to the left (resp. right)

of x̂0. Let L̂l,t = ĝ(t, L̂l) and L̂r,t = ĝ(t, L̂r ), 0 ≤ t < T . Then L̂l,t ∩ R (resp. L̂r,t ∩ R) lies
to the left (resp. right) of ξ̂ (t). Let Er be a subset of Sπ , which touches both R and Rπ ,
disconnects β̂ from L̂r in Sπ , and is disjoint from L̂ and β̂ . As t → ∞, the diameter of
β̂((t,∞)) tends to 0, which implies that the extremal distance (cf. [2]) in Sπ \ (β̂((0, t]) +
2p̂Z) between Er and the set

St := (−∞, x0] ∪ (
β̂
(
(0, t]) − 2p̂N

) ∪ {
the left side of β̂

(
(0, t])} ∪ {y + πi: y ≤ ŷm}

tends to ∞. From (5.36) and conformal invariance, the extremal distance in Sπ between
ĝ(t,Er) and (−∞, ξ̂ (t)] ∪ {x + πi: x ≤ q̂m(t)} tends to ∞ as t → ∞. Since Er touches
both R and Rπ , ĝ(t,Er) also has this property. Thus, dist({̂ξ(t), q̂m(t)}, ĝ(t,Er)) → ∞
as t → ∞. Since Er disconnects β̂ from L̂r in Sπ , we see that ĝ(t,Er) disconnects ξ̂ (t)

and q̂m(t) + πi from L̂r,t . Thus, dist({̂ξ(t), q̂m(t) + πi}, L̂r,t ) → ∞ as t → ∞. Similarly,
dist({̂ξ(t), q̂m(t) + πi}, L̂l,t ) → ∞ as t → ∞. Thus, dist({̂ξ(t), q̂m(t) + πi}, L̂t } → ∞ as
t → ∞. From (5.39), (5.40), and Proposition 6.4 we conclude that ln(Â1(t)) → 0 and
ln(ÂI,m(t)) → 0 as t → ∞. From (5.41) and Proposition 6.3, we see that X̂L,m(t)−X̂m(t) =
(̂ξL(t) − ξ̂ (t)) − (q̂L,m(t) − q̂m(t)) → 0 as t → ∞.

Let ar(t) = min{L̂r,t ∩ R} and al(t) = max{L̂l,t ∩ R}. From the last paragraph, we
see that ar(t) − ξ̂ (t), ar(t) − q̂m(t), ξ̂ (t) − al(t), and q̂m(t) − al(t) all tend to +∞ as
t → ∞. Since X̂m = ξ̂ − q̂m, we have ar(t) − al(t) ± Xm(t) → ∞ as t → ∞. Since L̂t

has period 2(p̂ + t), we have ar(t) − al(t) ≤ 2(p̂ + t). Thus, 2(p̂ + t) − |Xm(t)| → ∞
as t → ∞. Let b1, b2 ∈ R be such that b1 < ŷm < b2 = b1 + 2p̂. Using (5.37) and an
extremal distance argument, we conclude that, as t → ∞, ξ̂L(t) − Re ĝL,W (t, b1 + πi),
q̂L,m(t)−Re ĝL,W (t, b1 +πi), Re ĝL,W (t, b2 +πi)− ξ̂L(t), and Re ĝL,W (t, b2 +πi)− q̂L,m(t)

all tend to +∞. Since g̃L,W has progressive period (2π;2π), from (5.35), ĝL,W (t, ·) has pro-
gressive period (2p̂;2p̂L(t)). So Re ĝL,W (t, b2 +πi)−Re ĝL,W (t, b1 +πi) = 2p̂L(t). Since
X̂L,m = ξ̂L − q̂L,m, we conclude that 2p̂L(t) − |X̂L,m(t)| → ∞ as t → ∞. From Proposi-
tion 4.1(i) and (5.31) we see that ln(�̂q(p̂ + t, X̂m(t))) and ln(�̂q(p̂L(t), X̂L,m(t))) tend to 0
as t → ∞. �



1048 D. Zhan

6.2 Uniformly Boundedness

Now we introduce the notation of convergence of domains in [14]. We have the following
definition and proposition.

Definition 6.1 Suppose Dn is a sequence of plane domains and D is a plane domain. We

say that (Dn) converges to D, denoted by Dn

Cara−→ D, if for every z ∈ D, dist(z, ∂Dn) →
dist(z, ∂D). This is equivalent to the following:

(i) every compact subset of D is contained in all but finitely many Dn’s;
(ii) for every point z0 ∈ ∂D, dist(z0, ∂Dn) → 0 as n → ∞.

Suppose Dn

Cara−→ D, and for each n, fn is a complex valued function on Dn, and f is a
complex valued function on D. We say that fn converges to f locally uniformly in D, or

fn

l.u.−→ f in D, if for each compact subset F of D, fn converges to f uniformly on F .

Proposition 6.5 Suppose Dn

Cara−→ D, fn : Dn

Conf� En for each n, and fn

l.u.−→ f in D. Then
either f is constant on D, or f maps D conformally onto some domain E. And in the latter

case, En

Cara−→ E and f −1
n

l.u.−→ f −1 in E.

Fix m ∈ Z and (ρ1, ρ2) ∈ Pm. Choose (ρ∗
1 , ρ∗

2 ) ∈ Pm such that ρ∗
1 ∪ ρ∗

2 is disjoint from
(ρ1 ∪ ρ2) + 2p̂Z, and ρ∗

1 ∪ ρ∗
2 disconnects ρ1 ∪ ρ2 from L̂ in Sπ . Then ρ∗

1 , ρ1, ρ2, ρ∗
2 ,

and ρ∗
1 + 2p̂ lie in the order from left to right. Suppose ρj ∩ R = {aj }, ρ∗

j ∩ R = {a∗
j },

ρj ∩ Rπ = {bj + πi}, and ρ∗
j ∩ Rπ = {b∗

j + πi}, j = 1,2. Then we have a∗
1 < a1 < x̂0 <

a2 < a∗
2 < a∗

1 + 2p̂ and b∗
1 < b1 < ŷm < b2 < b∗

2 < b∗
1 + 2p̂.

Let Iπ (z) = 2π − z denote the reflection about Rπ . Let �ρ1,ρ2 denote the region in S2π

bounded by ρ2 ∪ Iπ (ρ2) and (ρ1 ∪ Iπ (ρ1)) + 2p̂. Fix r̊ ∈ (b∗
2, b

∗
1 + 2p̂). Then r̊ + πi ∈ �H .

Let Dρ1,ρ2 denote the family of simply connected subdomains of S2π which contain �ρ1,ρ2 ,

and are symmetric about Iπ . For each D ∈ Dρ1,ρ2 , there is a unique f̊D : (S2π ; r̊ + πi)
Conf
�

(D; r̊ + πi) such that f̊ ′
D(r̊ + πi) > 0. Such f̊D commutes with Iπ . Define a topology on

Dρ1,ρ2 such that Dn → D0 iff f̊Dn

l.u.−→ f̊D0 in S2π .

Lemma 6.4 Every sequence in Dρ1,ρ2 contains a convergent subsequence.

Proof Choose V such that V : (S2π ; r̊ + πi)
Conf� (D;0). Let (Dn) be a sequence in Dρ1,ρ2 .

Then V ◦ f̊Dn , n ∈ N, is a family of conformal maps from S2π into D. Since this fam-
ily is uniformly bounded, it contains a subsequence (V ◦ f̊Dnk

) which converges lo-
cally uniformly in S2π . From Lemma 6.5, this subsequence converges to either a con-
stant function or a conformal map defined on S2π . Suppose that the first case happens.

Since V ◦ f̊Dn(r̊ + πi) = 0, the constant is 0. Then we conclude that f̊Dnk

l.u.−→ r̊ + πi

in S2π , which implies that f̊ ′
Dnk

(r̊ + πi) → 0. Since dist(r̊ + πi, ∂S2π ) = π , from Koebe’s
1/4 theorem (cf. [2]), we should have dist(r̊ + πi, ∂Dnk

) → 0, which contradicts that
dist(r̊ + πi, ∂Dnk

) ≥ dist(r̊ + πi,R ∪ R2π ∪ ρ2 ∪ (ρ1 + 2p̂)) > 0. Thus, (V ◦ f̊Dnk
) con-

verges locally uniformly to a conformal map, which implies that f̊Hnk
converges locally

uniformly to a conformal map defined on S2π , say f̊ . Since f̊Dnk
all map into S2π , fix

r̊ +πi, have positive derivative at r̊ +πi, and commute with Iπ , f̊ should also satisfy these
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properties. Let D0 = f̊ (S2π ). Then D0 is a simply connected subdomain of S2π , contains
r̊ + πi, and is symmetric about Rπ . We suffice to show that D0 ⊃ �ρ1,ρ2 because if this is
true, then D0 ∈ Dρ1,ρ2 and f̊ = f̊D0 , which implies that Dnk

→ D0. Suppose D0 �⊃ �ρ1,ρ2 .
Since r̊ + πi ∈ D0, and �ρ1,ρ2 is connected, there exists z0 ∈ �ρ1,ρ2 ∩ D0. From Lemma 6.5

we have Dnk

Cara−→ D0. From Definition 6.1(ii), we see that dist(z0, ∂Dnk
) → 0, which con-

tradicts that z0 ∈ �ρ1,ρ2 ⊂ Dnk
for each k. This finishes the proof. �

Let I0(z) = z denote the reflection about R. For D ∈ Dρ1,ρ2 , let

D± = D ∪ I0(D) ∪ (a2, a1 + 2p̂).

Then D± is a simply connected subdomain of S
±
2π := {−2π < Im z < 2π}, and is symmetric

about R. Let g̊D = f̊ −1
D : D

Conf� S2π . From Schwarz reflection principle, g̊D extends to a
conformal map g̊±

D from D± into S
±
2π , which commutes with I0.

Lemma 6.5 If Dn → D0, then D±
n

Cara−→ D±
0 and g̊±

Dn

l.u.−→ g̊±
D0

in D±
0 .

Proof From Lemma 6.5 we have Dn

Cara−→ D0 and g̊Dn

l.u.−→ g̊D0 in D0. Then we easily

see that D±
n

Cara−→ D±
0 . Let (Dnk

) be a subsequence of (Dn). Choose V : S
±
2π

Conf� D. Then
(V ◦ g̊±

Dnk
) is uniformly bounded family, which contains a subsequence (V ◦ g̊±

Dnkl

) that

converges locally uniformly to some function G in D±
0 . Since g̊±

Dnkl

l.u.−→ g±
D0

in D0, we

see that G is the analytic extension of V ◦ gD0 . Thus, G = V ◦ g±
D0

. So we conclude that

g̊±
Dnkl

l.u.−→ g±
D0

in D±
0 . The proof is now finished because every subsequence of (g̊±

Dn
) con-

tains a subsequence which converges to g̊±
D0

locally uniformly in D±
0 . �

For each D ∈ Dρ1,ρ2 , let D(L̂) be the connected component of D \ (L̂ ∪ Iπ (L̂)) that
contains r̊ + πi. Then D(L̂) is a simply connected subdomain of S2π , and is symmetric

about Rπ . There is a unique g̊D,L̂ such that g̊D,L̂ : (D(L̂); r̊ + πi)
Conf
� (S2π ; r̊ + πi) and

g̊′
D,L̂

(+̊πi) > 0. Let

D±(L̂) = D(L̂) ∪ I0

(
D(L̂)

) ∪ (
(a2, a1 + 2p̂) \ L̂

)
.

Then g̊D,L̂ extends to a conformal map g̊±
D,L̂

from D±(L̂) into S
±
2π , which commutes with I0.

We easily see that Dn

Cara−→ D0 iff D±
n (L̂)

Cara−→ D±
0 (L̂). Using some subsequence argument

we can derive the following lemma.

Lemma 6.6 If Dn → D0, then D±
n (L̂)

Cara−→ D±
0 (L̂) and g̊±

Dn,L̂

l.u.−→ g̊±
D0,L̂

in D±
0 (L̂).

For each D ∈ Dρ1,ρ2 , ρ∗
1 and ρ∗

2 are compact subsets of D± and D±(L̂). From
Lemma 6.4, Lemma 6.5, and Lemma 6.6 we conclude that, there is a constant C > 0 which
depends only on ρ1, ρ2, ρ

∗
1 , ρ∗

2 , L̂, r̊ such that, for any D ∈ Dρ1,ρ2 and z ∈ ρ∗
1 ∪ ρ∗

2 , the fol-
lowing quantities:

∣
∣g̊D(z) − z

∣
∣,

∣
∣g̊′

D(z)
∣
∣,

∣
∣1/g̊′

D(z)
∣
∣,

∣
∣g̊D,L̂(z) − z

∣
∣,

∣
∣g̊′

D,L̂
(z)

∣
∣,

∣
∣1/g̊′

D,L̂
(z)

∣
∣,

are all bounded above by C.
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Fix t ∈ [0, T̂ρ1,ρ2). Let D = S2π \ (β̂((0, t]) + 2p̂Z) \ Iπ (β̂((0, t]) + 2p̂Z). Then D ∈
Dρ1,ρ2 . We have g̊D : (Sπ \ (β̂((0, t]) + 2p̂Z);Rπ )

Conf
� (Sπ ;Rπ ). Let h1 = ĝ(t, r̊ + πi) −

(r̊ +πi) ∈ R. Since g̊D fixes r̊ +πi, from (5.36) we have g̊D = ĝ(t, ·)−h1. Similarly, using
(5.37) we conclude that g̊D,L̂ = ĝL,W (t, ·) − h2 for some h2 ∈ R. Thus, for any z ∈ ρ∗

1 ∪ ρ∗
2 ,

the following quantities:
∣∣̂g(t, z) − z − h1

∣∣,
∣∣̂g′(t, z)

∣∣,
∣∣1/ĝ′(t, z)

∣∣,
∣∣̂gL,W (t, z) − z − h2

∣∣,
∣
∣̂g′

L,W (t, z)
∣
∣,

∣
∣1/ĝ′

L,W (t, z)
∣
∣,

are all bounded above by the C in the last paragraph. Let h = h2 −h1 and C ′ = max{2C,C2}.
From (5.38), we find that,

∣∣Ŵ (t, z) − z − h
∣∣ ≤ C ′, 1/C ′ ≤ ∣∣Ŵ ′(t, z)

∣∣ ≤ C ′, z ∈ ĝ
(
t, ρ∗

1

) ∪ ĝ
(
t, ρ∗

2

)
. (6.6)

Proof of Proposition 6.1(ii) From (5.46), we suffice to show that (ii) holds if ln(N̂m(t)) is
replaced by ln(Â1(t)), ln(ÂI,m(t)), ln(�̂q(p̂+ t, X̂m(t))), ln(�̂q(p̂L(t), X̂L,m(t))), X̂L,m(t)−
X̂m(t), or R̂(p̂L(t)) − R̂(p̂ + t), respectively. From (2.9) and (5.31) we see that R̂(p̂L(t))

and R̂(p̂ + t) are both positive and bounded above by R̂(p̂), which is a uniform constant.
So R̂(p̂L(t)) − R̂(p̂ + t) is uniformly bounded.

Fix (ρ1, ρ2) ∈ Pm and t ∈ [0, T̂ρ1,ρ2). Then (6.6) holds. From Schwarz reflection princi-

ple, Ŵ (t, ·) extends conformally to a conformal map on � := C \ (L̂t ∪ I0(L̂t ) + 2πiZ),
and the extended map commutes with both I0 and Iπ . Thus, Ŵ (t, ·) has progressive period
(2πi;2πi). So Ŵ ′(t, ·), 1/Ŵ ′(t, ·), and Ŵ (t, ·) − · are all analytic functions with period
2πi. Let

ρ∗
j,t = (

ĝ
(
t, ρ∗

1

) ∪ I0

(
ĝ
(
t, ρ∗

1

))) + 2πiZ, j = 1,2.

Then ρ∗
1,t and ρ∗

2,t are two disjoint simple curves with period 2πi, which lie inside �, and
(6.6) holds for any z ∈ ρ∗

1,t ∪ ρ∗
2,t . Since ξ̂ (t) and q̂m(t) + πi lie inside the region bounded

by ρ∗
1,t and ρ∗

2,t , from Maximum Principle, (5.39), and (5.41) we have
∣∣̂ξL(t) − ξ̂ (t) − h

∣∣,
∣∣̂qL,m(t) − q̂m(t) − h

∣∣ ≤ C ′, 1/C ′ ≤ Â1(t), ÂI,m(t) ≤ C ′.

Since X̂m = ξ̂ − q̂m and X̂L,m = ξ̂L − q̂L,m, we have |X̂L,m(t) − X̂m(t)| ≤ 2C ′. Thus, the
lemma holds if ln(N̂m(t)) is replaced by ln(Â1(t)), ln(ÂI,m(t)), or X̂L,m(t) − X̂m(t).

We know that ρ∗
1 , ρ∗

2 , and ρ∗
1 + 2p̂ are pairwise disjoint, and lie in the order from left

to right. Since g̃(ť , ·) has progressive period (2π;2π), from (5.35), ĝ(t, ·) has progressive
period (2p̂;2(p̂ + t)). Thus, ĝ(t, ρ∗

1 ), ĝ(t, ρ∗
2 ), and ĝ(t, ρ∗

1 )+ 2(p̂ + t) are pairwise disjoint,
and lie in the order from left to right. Since ξ̂ (t) and q̂m(t) + πi are bounded by ĝ(t, ρ∗

1 )

and ĝ(t, ρ∗
2 ) in Sπ , they are also bounded by ĝ(t, ρ∗

1 ) and ĝ(t, ρ∗
1 ) + 2(p̂ + t) in Sπ . Thus,

|X̂m(t)| = |̂ξ(t)− q̂m(t)| is bounded above by 2(p̂+ t)+diam(ĝ(t, ρ∗
1 )). Since |̂g′(t, z)| ≤ C

on ρ∗
1 , diam(ĝ(t, ρ∗

1 ) ≤ C diam(ρ∗
1 ). Thus, |X̂m(t)|−2(p̂+ t) is bounded above by a uniform

constant. From Proposition 4.1(ii) we see that the lemma holds if ln(N̂m(t)) is replaced by
ln(�̂q(p̂+ t, X̂m(t))). Similarly, |X̂L,m(t)|−2p̂L(t) is bounded above by a uniform constant,
which implies that the lemma holds if ln(N̂m(t)) is replaced by ln(�̂q(p̂L(t), X̂L,m(t))). �

7 Restriction

7.1 Brownian Loop Measure

Lemma 7.1 Let p0 > 0 and L0 be a hull in Ap0 w.r.t. Tp0 . Let L̃0 = (ei)−1(L0). Suppose

that p1 = mod(Ap0 \ L0) ∈ (0,p0), W0 : (Ap0 \ L0;Tp0)
Conf� (Ap1;Rp1), and W̃0 : (Sp0 \
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L̃0;Rp0)
Conf� (Sp1;Rp1), and ei ◦ W̃0 = W0 ◦ ei . Let x0 ∈ R be such that dist(eix0 ,L0) > 0.

Let SW̃0(x0) denote the Schwarz derivative of W̃0 at x0. Let μeix0 denote the Brownian
bubble measure in Ap−t rooted at eix0 . Let EL0 denote the set of curves that intersect L0.
Then

μeix0 [EL0 ] = −1

6
SW̃0(x0) + 1

2
W̃ ′

0(x0)
2

(
r(p1) + 1

p1

)
− 1

2

(
r(p0) + 1

p0

)
.

Proof Let z0 ∈ Sp0 . The bubble measure μeix0 equals limz0→x0

Pz0;x0
|z0−x0|2 , where Pz0;x0 is

the distribution of a planar Brownian motion started from eiz0 conditioned to exit Ap0

from eix0 . Choose x1, x2 ∈ R such that x1 < x0 < x2 < x1 + 2π . Then Pz0;x0 equals the
limit of Pz0;(x1,x2) as x1, x2 → x0, where Pz0;(x1,x2) := Pz0 [·|Ex1,x2 ], Pz0 is the distribution of
a planar Brownian motion started from eiz0 , and Ex1,x2 denotes the event that the curve ends
at the arc ei((x1, x2)).

Since the Poisson kernel function in Ap0 with the pole at eix ∈ T is z �→ 1
2π

(Re S(p0,

z/eix) + ln |z|
p0

), we get

Pz0 [Ex1,x2 ] = − 1

2π

∫ x2

x1

Im

(
H(p0, z0 − x) + z0

p0

)
dx. (7.1)

From conformal invariance of planar Brownian motions, Pz0 [Ex1,x2 \ EL0 ] is equal to the
probability of a planar Brownian motion started from W0(e

iz0) = ei(W̃0(z0)) hits ∂Ap1 at
the arc W0(e

i((x1, x2))) = ei((W̃0(x1), W̃0(x2))). From (7.1) and change of variables, we
get

Pz0 [Ex1,x2 \ EL0 ] = − 1

2π

∫ x2

x1

Im

(
H

(
p1, W̃0(z0) − W̃0(x)

) + W̃0(z0)

p1

)
W̃ ′

0(x) dx.

Then we get an expression for Pz0;x1,x2 [EL0 ] = Pz0 [EL0 |Ex1,x2 ]. Letting x1, x2 → x0, we
get

Pz0;x0 [EL0 ] = 1 − W̃ ′
0(x0) Im(H(p1, W̃0(z0) − W̃0(x0)) + W̃0(z0)−W̃0(x0)

p1
)

Im(H(p0, z0 − x0) + z0−x0
p0

)
.

Finally we compute limz0→x0

Pz0;x0
[EL0 ]

|z0−x0|2 . The proof is completed by some tedious but
straightforward computation involving power series expansions. �

Lemma 7.2 For the U(t) defined in (5.29), we have μloop[LL,t ] = U(t), 0 ≤ t ≤ T , where
LL,t denotes the set of loops in Ap that intersect both L and β((0, t)).

Proof For 0 ≤ t < T , let μt denote the Brownian bubble measure in Ap−t rooted at eiξ(t).
The argument in [7] shows that μloop[LL,t ] = ∫ t

0 μs[{· ∩ Ls �= ∅}]ds for 0 ≤ t ≤ T . From
(5.3), (5.8) and the previous lemma, we have

μs

[{· ∩ Ls �= ∅}] = −1

6
AS(s) + 1

2
A1(s)

2

(
r
(
pL − v(s)

) + 1

pL − v(s)

)

− 1

2

(
r(p − s) + 1

p − s

)
.

The proof can now be completed by integrating the right-hand side of this formula from 0
to t and using (5.10) and that v(0) = 0. �
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Lemma 7.3 Let m ∈ Z.

(i) On the event Em ∩ {β ∩ L = ∅}, U(p) is finite.
(ii) For any (ρ1, ρ2) ∈ P̃m, U(t) is uniformly bounded on [0, T̃ρ1,ρ2).

Proof From [7], if two sets in C have positive distance from each other, then the Brownian
loop measure of the loops that intersect both of them is finite. (i) If Em occurs and β ∩
L = ∅, then dist(L,β((0,p))) > 0. From Lemma 7.2 and the above observation, U(p) =
μloop[LL,p] is finite. (ii) Let LL,ρ1,ρ2 denote the set of loops in Ap that intersect both L and
ρ1 ∪ ρ2. Since dist(L,ρ1 ∪ ρ2) > 0, we have μloop[LL,ρ1,ρ2 ] < ∞. If t < Tρ1,ρ2 , then ρ1 ∪ ρ2

disconnects β((0, t]) from L, which means that a loop in Ap that intersects both L and
β((0, t]) must also intersect ρ1 ∪ ρ2. So LL,t ⊂ LL,ρ1,ρ2 . Thus, U(t), 0 ≤ t < T , is bounded
above by μloop[LL,ρ1,ρ2 ]. �

7.2 Radon-Nikodym Derivatives

Let s ∈ R and m ∈ Z. Consider the following two SDEs:

dξ(t) = √
κ dB(t) +

(
3 − κ

2

)
A2(t)

A1(t)
dt + A1(t)�〈s〉

(
pL − v(t),XL,0(t)

)
dt,

0 ≤ t < T ; (7.2)

dξ(t) = √
κ dB(t) +

(
3 − κ

2

)
A2(t)

A1(t)
dt + A1(t)�0

(
pL − v(t),XL,m(t)

)
dt,

0 ≤ t < T . (7.3)

Let the distribution of (ξ(t),0 ≤ t < T ) be denoted by μL,〈s〉 or μL,m, respectively, if (ξ(t)),
0 ≤ t < T , is the maximal solution of (7.2) or (7.3), respectively, and ξ(0) = x0.

Suppose that (ξ) has distribution μL,m. From (5.1), (5.7), (5.9) and (5.19), we get

dξL(t) = A1(t)
√

κ dB(t) + A1(t)
2�0

(
pL − v(t), ξL(t)

− Re g̃L

(
t, W̃L(ym + pi)

))
dt, 0 ≤ t < T .

Since ξL(t) = ηL(v(t)) and g̃L(t, ·) = h̃L(v(t), ·), from (5.10) and (5.8) we conclude that
there is another Brownian motion Bv(t) such that

dηL(t) = √
κ dBv(t) + �0

(
pL − t, ηL(t) − Re h̃L

(
t, W̃L(ym + pi)

))
dt, 0 ≤ t < v(T ).

Recall that h̃L and γ̃L are the covering annulus Loewner maps and trace of modulus pL

driven by ηL. Thus, γ̃L(t), 0 ≤ t < v(T ), is a covering annulus SLE(κ;�0) trace in SpL

started from W̃L(ξ(0)) with marked point W̃L(ym + pi), stopped at v(T ).
There are two possibilities. Case 1: v(T ) = pL. Then γ̃L(t), 0 ≤ t < v(T ) is a complete

covering annulus SLE(κ;�0) trace. From the last paragraph of Sect. 4.2 we know that a.s.
limt→v(T )− γ̃L(t) = W̃L(ym + pi). Since γ̃L(t) = β̃L(v(t)) = W̃L(β(v(t))), we have T = p

and limt→T − β̃(t) = ym + pi, which means that the event Em occurs. Case 2: v(T ) < pL.
Then limt→v(T )− γ̃L(t) exists and lie in SpL

, which implies that limt→T − β̃(t) exists and lie
in Sp \ L̃. This means that the solution ξ(t), 0 ≤ t < T , can be further extended, which is a
contradiction. So only Case 1 can happen, which implies that μL,m({T = p} ∩ Em) = 1.

Similarly, if (ξ(t)) has the distribution μL,〈s〉, then a.s. v(T ) = pL, γ̃L(t), 0 ≤ t < v(T ),
is a complete covering annulus SLE(κ;�〈s〉) trace in SpL

started from W̃L(ξ(0)) with
marked point W̃L(y0 +pi), and limt→v(T )− γ̃L(t) exists and belongs to y0 +pi +2πZ. Thus,
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μL,〈s〉({T = p}) = 1 and μL,〈s〉(
⋃

m∈Z Em) = 1. Since XL,m(0) = W̃L(ξ(0)) − Re W̃L(ym +
pi), from (4.22) we have

dμL,m

dμL,〈s〉
= e

2π
κ ms �0(pL,XL,m(0))

�〈s〉(pL,XL,0(0))
1Em. (7.4)

Suppose (ξ(t)) has the distribution μL,〈s〉. Since γL is the trace driven by ηL, the above
argument shows that, γL(t), 0 ≤ t < v(T ), is a complete annulus SLE(κ;�〈s〉) trace in ApL

started from ei ◦ W̃L(ξ(0)) = WL(eix0) with marked point ei ◦ W̃L(y0 + pi) = WL(eiy0−p).

Since WL : (Ap \ L;β(v−1(t)))
Conf� (ApL

;γL(t)), we see that β(v−1(t)), 0 ≤ t < v(T ), is an
annulus SLE(κ;�〈s〉) trace in Ap \ L started from eix0 with marked point eiy0−p .

The process (Mm(t)) defined earlier will be used to derive the Radon-Nikodym deriva-
tive between the μL,m defined here and the μm defined as the distribution of the solution
of (4.19). Suppose that (ξ(t)) has distribution μm. Then ξ(t), 0 ≤ t < p, solves the SDE:

dξ(t) = √
κ dB(t) + �0

(
p − t,Xm(t)

)
dt, 0 ≤ t < p, ξ(0) = x0. (7.5)

From (5.27) we see that Mm(t), 0 ≤ t < T , is a local martingale under μm.
Let (ρ1, ρ2) ∈ P̃m. From Proposition 6.2(ii), Lemma 7.3(ii), and Mm = Nm exp(cU), we

see that Mm(t) is uniformly bounded on [0, Tρ1,ρ2). Thus, Mm(t ∧ Tρ1,ρ2) is a bounded
martingale, and we have Eμm [Mm(Tρ1,ρ2)] = Mm(0). If we now change the distribution of
(ξ(t)) from μm to a new probability measure ν defined by dν/dμm = Mm(Tρ1,ρ2)/Mm(0),
then from Girsanov’s Theorem and (5.27) we see that the current ξ(t) satisfies SDE (7.3)
for 0 ≤ t < Tρ1,ρ2 . Thus, on the event {Tρ1,ρ2 = p}, μL,m � μm, and the Radon-Nikodym
derivative between the two measures restricted to the event {Tρ1,ρ2 = p} is Mm(p)/Mm(0).
From Proposition 6.2(i), Lemma 7.3(i), (5.30) and Mm = Nm exp(cU), we see that Mm(p) =
Cp,L exp(cU(p)). So

dμL,m/dμm = Cp,L exp
(
cU(p)

)
/Mm(0) on {Tρ1,ρ2 = p}. (7.6)

Suppose Em occurs and T = p. Then β̃ ∩ L̃ = ∅. Since β̃ starts from x0, we can find
(ρ1, ρ2) ∈ P̃m such that β̃ ∩ (ρ1 ∪ ρ2) = ∅, which implies that Tρ1,ρ2 = p. Thus,

Em ∩ {T = p} ⊂
⋃

(ρ1,ρ2)∈P̃m

{Tρ1,ρ2 = p}. (7.7)

Since μm(Em) = 1 and Pm is countable, from (7.6) and (7.7) we see that dμL,m/dμm =
Cp,L exp(cU(p))/Mm(0) on {T = p}. Since μL,m({T = p}) = 1, from (5.30) and Lemma 7.2
we know that

dμL,m

dμm

= Cp,L

Mm(0)
1{β̃∩L̃=∅} exp

(
cμloop[LL,p]), (7.8)

where LL,p is the set of loops in Ap that intersect both L and β((0,p)).
Let s ∈ R. Now we compare μ〈s〉 with μL,〈s〉. Define

Y〈s〉(t) = �〈s〉
(
p − t,X0(t)

)
, YL,〈s〉(t) = �〈s〉

(
pL − v(t),XL,0(t)

)
.

Define M〈s〉 using (5.26) with Ym and YL,m replaced by Y〈s〉 and YL,〈s〉, respectively, and AI,m

replaced by AI,0.
Since g̃(t, ·) has progressive period (2π;2π), from (5.6) we have qm(t) = q0(t) + 2mπ .

Since W̃ (t, ·) has progressive period (2π;2π), from (5.8) we have AI,m = AI,0. Thus,

Mm(0)

M〈s〉(0)
= �0(pL,XL,m(0))/�0(p,Xm(0))

�〈s〉(pL,XL,0(0))/�〈s〉(p,X0(0))
.
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Since Xm(0) = x0 − ym, from (4.22), (7.4), (7.8) and the above formula, we get

dμL,〈s〉
dμ〈s〉

= Cp,L

M〈s〉(0)
1{β∩L=∅} exp

(
cμloop[LL,p]).

Recall that when (ξ(t)) has distribution μ〈s〉, β(t), 0 ≤ t < p, is an annulus SLE(κ;�〈s〉)
trace in Ap started from z0 = eix0 with marked point w0 = eiy0−p . When (ξ(t)) has distribu-
tion μL,〈s〉, a time change of β: β(v−1(t)), 0 ≤ t < v−1(T ), is an annulus SLE(κ;�〈s〉) trace
in Ap \L started from z0 with marked point w0. This finishes the proof of Theorem 1.1 with

Z = Cp,L

M〈s〉(0)
.

8 Other Results

8.1 Restriction in a Simply Connected Subdomain

We now give a sketch of the proof of Theorem 1.2. Let p > 0, κ ∈ (0,4], s ∈ R z0 ∈ T,
w0 ∈ Tp , and the set L be as in Theorem 1.1. Choose x0, y0 ∈ R such that z0 = eix0 and
w0 = eiy0−p . Let ym = y0 + 2mπ , m ∈ Z. Let L̃ = (ei)−1(L). Then Sp \ L̃ is a disjoint
union of simply connected domains D̃m, m ∈ Z, such that D̃m = D̃0 + 2mπ for m ∈ Z.
We label one of the domains D̃0 such that x0 ∈ ∂D̃0. There is a unique m0 ∈ Z such that

ym0 + pi ∈ ∂D̃0. We have ei : D̃0
Conf� Ap \ L. Let J0 be the component of Tp \ L that

contains w0. We may find WL such that WL : (Ap \ L;J0)
Conf
� (Sπ ;Rπ ). Let W̃L = WL ◦ ei ,

and J̃0 be a component of Rp \ L̃ that contains ym0 + pi. Then W̃L : (D̃0; J̃0)
Conf
� (Sπ ;Rπ ).

Let ξ(t), g(t, ·), g̃(t, ·), β(t), β̃(t), 0 ≤ t < p, and T ∈ (0,p] be as in Sect. 5.1. Now we
define β̃L(t) = WL(β(t)) = W̃L(β̃(t)), 0 ≤ t < T . Then β̃L is a simple curve with β̃(0) ∈ R

and β̃((0,p)) ⊂ Sπ . Let v(t) be the capacity of β̃L((0, t]) in Sπ w.r.t. Rπ for 0 ≤ t < T . Let
S = supv([0, T )), and γ̃L(t) = β̃L(v−1(t)), 0 ≤ t < S. Then γ̃L is the strip Loewner trace
driven by some ηL ∈ C([0, S)).

Let h̃L(t, ·), 0 ≤ t < S, be the strip Loewner maps driven by ηL. Define ξL(t) = ηL(v(t))

and g̃L(t, ·) = h̃L(v(t), ·). Define g̃L,W (t, ·) and W̃ (t, ·) using (5.1). Then (5.2) and (5.3)
hold with pL − v(t) replaced by π . From (3.9) we see that (5.4) and (5.5) hold.

For m ∈ Z, define qm(t) and qL,m(t) using (5.6) and (5.7) with pL − v(t) replaced by π .
Define Aj(t) and AI,m(t) using (5.8). Define Xm(t) and XL,m(t) using (5.9). A standard
argument shows that (5.10) holds here. So (5.11) holds with H(pL − v(t), ·) replaced by
coth2. Now (5.12) and (5.13) still hold here. From (3.7) and (3.8) we see that (5.14), (5.15)
and (5.16) hold here with HI (pL − v(t), ·) replaced by tanh2.

By differentiating W̃ (t, ·) ◦ g̃(t, z) = g̃L,W (t, z) w.r.t. t and z, and letting w = g̃(t, z) →
ξ(t), we conclude that (5.17) holds here, and (5.18) holds with r(pL − v(t)) replaced by 1

6 ,
which comes from the power series expansion: coth2(z) = 2

z
+ z

6 + O(z2) when z is near 0.
Then (5.19) and (5.20) still hold here; (5.21) holds with HI (pL − v(t), ·) replaced by tanh2;
and (5.22) should be modified with 1

6 in place of r(pL − v(t)).
Define Ym(t) using (5.23), but define YL,m(t) := �̂∞(v(t),XL,m(t)). Since �0 solves

(4.11) and �̂∞ solves (4.17), using (5.10), (5.20), and the modified (5.16) and (5.21) we
find that (5.24) still holds, and (5.25) holds with HI (pL − v(t), ·) and �0(pL − v(t), ·) re-
placed by replaced by tanh2 and κ�̂′∞/�̂∞ = ( κ

2 − 3) tanh2, respectively.

Define Mm using (5.26) with α
∫ pL−v(·)

p−· r(s) ds replaced by α
∫ p

p−· r(s) ds − α
6 v(·). Us-

ing (5.10), (5.19), (5.24), and the modified (5.16), (5.21), (5.22), and (5.25), we find
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that (5.27) holds here with �0(pL − v(t), ·) replaced by ( κ
2 − 3) tanh2. We may write

Mm = Nm exp(cU), where

Nm = Aα
1 Aα

I,m

YL,m

Ym

exp

((
α + c

2

)(∫ p

p−·

(
r(s) + 1

s

)
ds − v

6

)
− α

∫ p

p−·

1

s
ds

)
;

U = −1

6

∫ ·

0
AS(s) ds + 1

12
v − 1

2

∫ p

p−·

(
r(s) + 1

s

)
ds.

To get estimations on Nm(t), we do some rescaling. Let p̂, T̂ , ť , x̂0, ŷm, and β̂ be as
defined in the first paragraph of Sect. 5.2. Then (5.30) holds here. From (2.10), we see
that (5.32) holds if p̂L(t) is replaced by p̂ and pL − v(ť) is replaced by p. Define ξ̂ (t),
q̂m(t), and X̂m(t) using (5.33); define ξ̂L, q̂L,m, and X̂L,m using (5.34 ) with the factors
p̂L(t)

π
removed. Define ĝ(t, ·) and ĝL,W (t, ·) using (5.35) with the factor p̂L(t)

π
removed. Then

(5.36) holds here and (5.37) holds if “Sπ \ ((β̂((0, t]) + 2p̂Z) ∪ L̂);Rπ ” is replaced by
“D̂0 \ β̂((0, t]); Ĵ0”, where D̂0 := p̂

π
D̃0 and Ĵ0 := p̂

π
J̃0. Define Ŵ (t, ·), Â1(t), and ÂI,m(t)

using (5.38) and (5.39). Then (5.41) still holds, (5.42) holds with p̂L(t) replaced by π , and

(5.40) should be replaced by Ŵ (t, ·) : (D̂0,t ; Ĵ0,t )
Conf� (Sπ ;Rπ ), where D̂0,t := ĝ(t, D̂0) and

Ĵ0,t := ĝ(t, Ĵ0).
Let v̂(t) = v(ť). Define Ŷm(t) using (5.43), but define ŶL,m(t) = �̂∞(̂v(t), X̂L,m(t)). Then

(5.44) holds with p̂L(t) replaced by π . Define N̂m on [0, T̂ ) such that

N̂m =
(

p̂

π

)α

Âα
1 Âα

I,mŶL,mŶ −1
m exp

((
α + c

2

)(∫ p̂+·

p̂

r̂(s) ds − v̂

6

))
.

From the modified (5.32), (5.42) and (5.44), we find that (5.45) holds here. From (1.1), (2.9),
(4.2), (4.12), (4.14), (4.16), and the modified (5.43), we see that

N̂m = CpÂα
1 Âα

I,m�̂q(p̂ + ·, X̂m)−1 exp

(
−α

∫ X̂L,m

X̂m

tanh2(s) ds +
(

α + c

2

)
R̂(p̂ + ·)

)
,

where Cp := (
p̂

π
)α exp(−(α + c

2 )(R̂(p̂) + p̂

6 )).
Let Em, m ∈ Z, be as in Sect. 6. Since β̂(t) stays inside D̂0 before time T̂ , we see that

{T̂ = ∞} ∩ Em = ∅ for m ∈ Z \ {m0}. Suppose that {T̂ = ∞} ∩ Em0 occurs. An argument
using extremal length shows that dist({̂ξ(t), q̂m(t)+πi}, (Sπ ∪Rπ )\ D̂0,t ) → ∞ as t → ∞.
Applying Proposition 6.3 and Proposition 6.4, we find that Proposition 6.1(i) holds here with
m = m0 and Cp,L replaced by Cp .

Let Pm denote the family of pairs of disjoint polygonal crosscuts (ρ1, ρ2) in D̂0 such
that, (i) for j = 1,2, the two end points of ρj lie on R and Rπ , respectively; (ii) for j = 1,2,
the line segments of ρj are parallel to x or y axes, and all vertices other than the end points
have rational coordinates; and (iii) dist(ρ1 ∪ ρ2, ∂D̂0) > 0 and ρ1 ∪ ρ2 disconnect x̂0 and
ŷm + πi from ∂D̂0 in Sπ . For each (ρ1, ρ2) ∈ Pm, define T̂ρ1,ρ2 to be the biggest time such
that β̂((0, T̂ρ1,ρ2)) ∩ (ρ1 ∪ ρ2) = ∅. Applying Lemma 6.4, Lemma 6.5 and Lemma 6.6 we
find that Proposition 6.1(ii) holds here. We define P̃m as in Sect. 6. Then Proposition 6.2
holds here with m = m0 and Cp,L replaced by Cp .

Following the argument of Lemma 7.1 and Lemma 7.2, we can show that U(t) equals
the Brownian loop measure of the loops in Ap that intersect both L and β((0, t)). Here we
use the fact that − 1

2π
Im coth2(· − x) is the Poisson kernel in Sπ with the pole at x ∈ R.

Let μL,m denote the distribution of (ξ(t)) if ξ(t), 0 ≤ t < T , is the maximal solution
of (7.3) with ( κ

2 − 3) tanh2 in place of �0(pL − v(t), ·), and satisfies ξ(0) = x0. Suppose
(ξ(t)) has distribution μL,m0 . From (5.19) we conclude that βL(t) = WL(β(t)), 0 ≤ t < T ,
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is a time-change of strip SLE(κ;κ − 6) trace in Sπ started from WL(eix0) with marked point
WL(e−p+iym0 ). Thus, under this distribution, β is a time-change of a chordal SLE(κ) trace
in Ap \ L from z0 = eix0 to w0 = e−p+iy0 . Let μm denote the distribution of the maximal so-
lution of (4.19), or equivalently (7.5). Using the argument in Sect. 7.2, Girsanov’s theorem,
and the modified (5.27) and Proposition 6.2 we conclude that for some constant Zm0 > 0,

dμL,m0

dμm0

= 1β∩L=∅
Zm0

exp
(
cμloop[LL,p]). (8.1)

Let s ∈ R. If the distribution of (ξ(t)) is the μ〈s〉 in Sect. 4.2, then β is an annulus
SLE(κ;�〈s〉) trace in Ap started from z0 = eix0 with marked point w0 = e−p+iy0 . Since
{β ∩ L = ∅} ∩ Em = ∅ for m ∈ Z \ {m0}, from (4.22) we see that (8.1) holds with μm0

replaced by μ〈s〉 and Zm0 replaced by some other Z〈s〉 > 0. This finishes the sketch of the
proof of Theorem 1.2.

8.2 Multiple SLE Crossing an Annulus

Fix κ ∈ (0,4] and p > 0. Let n ∈ N and n ≥ 2. Let z1, . . . , zn be n distinct points that lie
on T in the counterclockwise direction. Let w1, . . . ,wn be n distinct points that lie on Tp

in the counterclockwise direction. Let �z = (z1, . . . , zn) and �w = (w1, . . . ,wn). Let G denote
the set of (β1, . . . , βn) such that each βj is a crosscut in Ap that connects zj and wj , and the
n curves are mutually disjoint.

Definition 8.1 A random n-tuple (β1, . . . , βn) with values in G is called a multiple SLE(κ)

in Ap from �z to �w if for any j ∈ {1, . . . , n}, conditioned on all other n − 1 curves, βj is a
chordal SLE(κ) trace from zj to wj that grows in Dj , which is the subregion in Ap bounded
by βj−1 and βj+1 (β0 = βn and βn+1 = β1) that has zj and wj as its boundary points.

Theorem 8.1 Let s1, . . . , sn ∈ R. For j = 1, . . . , n, let νj denote the distribution of the
annulus SLE(κ;�κ;〈sj 〉) trace in Ap started from zj with marked point wj . Define a joint
distribution νM of (β1, . . . , βn) by

dνM

∏n

j=1 νj

= 1Edisj

Z
exp

(

c
n∑

s=2

μloop(L≥s)

)

, (8.2)

where Edisj is the event that βj , 1 ≤ j ≤ n, are mutually disjoint; L≥s is the set of loops in
Ap that intersect at least s curves among βj , 1 ≤ j ≤ n; and Z > 0 is a constant. Then νM

is the distribution of a multiple SLE(κ) in Ap from �z to �w.

Proof Suppose for 1 ≤ j ≤ n, βj is a crosscut in Ap connecting zj with wj . Fix j ∈
{1, . . . , n}. Let Lj,1

≥s (resp. Lj,0
≥s ) denotes the set of loops in Ap that intersect at least s curves

among βk , k �= j , and intersect (resp. do not intersect) βj . Then L≥s = Lj,0
≥s ∪ Lj,1

≥s−1. Let

Lj
≥s = Lj,0

≥s ∪ Lj,1
≥s . Then Lj

≥s depends only on βk , k �= j . Since Lj,0
≥n = ∅, we have

n∑

s=2

μloop(L≥s) =
n∑

s=2

μloop

(
Lj,0

≥s

) +
n−1∑

s=1

μloop

(
Lj,1

≥s

) = μloop

(
Lj,1

≥1

) +
n−1∑

s=2

μloop

(
Lj

≥s

)
.
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Let E j

disj denote the event that βk , k �= j , are mutually disjoint. When E j

disj occurs, let Dj

be the simply connected subdomain of Ap as in Definition 8.1. Let Lj = Ap \ Dj . Then
Edisj = E j

disj ∩ {βj ∩ Lj = ∅}. Thus, we may rewrite the right-hand side of (8.2) as

1E j
disj

1{βj ∩Lj =∅}

Z
exp

(

c
n−1∑

s=2

μloop

(
Lj

≥s

) + cμloop

(
Lj,1

≥1

)
)

= C∗1{βj ∩Lj =∅} exp
(
cμloop

(
Lj,1

≥1

))
,

where C∗ = 1
Z

1E j
disj

exp(c
∑n−1

s=2 μloop(Lj
≥s)) is measurable w.r.t. the σ -algebra generated

by βk , k �= j . Let νM
j denote the conditional distribution of βj when (β1, . . . , βn) ∼ νM

and all βk other than βj are given. The above argument shows that the conditional Radon-
Nikodym derivative between νM

j and νj is C∗1{βj ∩Lj =∅} exp(cμloop(Lj,1
≥1)). Note that Lj,1

≥1 is
the set of all loops in Ap that intersect both βj and Lj . From Theorem 1.2 we conclude that
νM

j is the distribution of a time-change of a chordal SLE(κ) trace in Ap \ Lj = Dj from zj

to wj . �

Choose xj , yj ∈ R such that zj = eixj , wj = eiyj −p , 1 ≤ j ≤ n, z1 < z2 < · · · < zn <

z1 + 2π , and w1 < w2 < · · · < wn < w1 + 2π . For each m ∈ Z, let Gm denote the set of
(β1, . . . , βn) ∈ G such that for each j , (ei)−1(βj ) has a component that connects xj with
yj + 2mπ + pi. Then G is the disjoint union of Gm’s. Let νM be given by Theorem 8.1, and
let νM

m = νM [·|Gm], m ∈ Z. Then each νM
m is also the distribution of a multiple SLE(κ) in Ap

from �z to �w, and the same is true for any convex combination of νM
m ’s. In fact, the converse

is also true.

Proposition 8.1 If ν is the distribution of a multiple SLE(κ) in Ap from �z to �w, then ν is
some convex combination of νM

m , m ∈ Z.

Proof Define another probability measure ν∗ by dν∗
dν

= 1
Z

exp(−c
∑n

s=2 μloop(L≥s)), where
Z ∈ (0,∞) is a normalization constant. From the proof of Theorem 8.1, we see that, if
(β1, . . . , βn) ∼ ν∗, then for any j , conditioning on the other n − 1 curves, βj has the dis-
tribution of an annulus SLE(κ;�〈sj 〉) trace in Ap from zj to wj conditioned to avoid other
curves.

Let A denote the set of (�1, . . . ,�n) such that each �j is a subdomain of Ap bounded
by two crosscuts crossing Ap , and the �j ’s are mutually disjoint. Let S�j

denote the event
that the curve stays within �j . Let μ = ν∗[·|∏n

j=1 S�j
]. From the property of ν∗, we see

that, if (β1, . . . , βn) ∼ μ, then for any j , conditioning on the other n − 1 curves, βj has
the distribution of an annulus SLE(κ;�〈sj 〉) trace in Ap from zj to wj conditioned to stay
inside �j . Thus, μ = ∏n

j=1 νj [·|S�j
]. This implies that ν∗ = C(�1, . . . ,�n)

∏n

j=1 νj on∏n

j=1 S�j
for some positive constant C(�1, . . . ,�n).

Decompose A into Am, m ∈ Z, such that Am is the set of all (�1, . . . ,�n) ∈ A
such that there exists (β1, . . . , βn) ∈ Gm with βj ∈ �j , 1 ≤ j ≤ n. Fix m ∈ Z and
(�1, . . . ,�n), (�

′
1, . . . ,�

′
n) ∈ Am. Then νj (S�j

∩ S�′
j
) > 0 for each j . Thus,

∏n

j=1 S�j
∩

∏n

j=1 S�′
j

is a positive event under
∏

νj . So we must have C(�1, . . . ,�n) = C(�′
1, . . . ,�

′
n).

This means that the function C(�1, . . . ,�n) is constant, say Cm, on each Am. For m ∈ Z,
we may find countably many (�1, . . . ,�n) ∈ Am such that the events

∏n

j=1 S�j
cover Gm.

Thus, ν∗ = Cm

∏n

j=1 νj on Gm for each m ∈ Z, which implies that ν[·|Gm] = νM
m for each

m ∈ Z. Since ν is supported by G = ⋃
m∈Z Gm, the proof is finished. �



1058 D. Zhan

Remarks

1. Theorem 8.1 extends the main result in [3] which states that, if Ap is replaced by a simply
connected domain D, if z1, . . . , zn,wn, . . . ,w1 are 2n distinct points that lie on ∂D in the
counterclockwise direction, if νj is the distribution of a chordal SLE(κ) trace in D from
zj to wj , and if (β1, . . . , βn) has joint distribution νM which is defined by (8.2), then for
any 1 ≤ j ≤ n, conditioning on the other n − 1 curves, βj is a time-change of a chordal
SLE(κ) trace from zj to wj that grows in the component of D \⋃

k �=j βk whose boundary
contains zj and wj . In fact, for the (β1, . . . , βn) in Theorem 8.1, if we condition on one
of the curves, say βn, then the conditional joint distribution of the rest of the curves
β1, . . . , βn−1 agrees with the joint distribution given by [3] with D = Ap \ β1.

2. Since Gm’s are mutually disjoint, Proposition 8.1 implies that for each m ∈ Z, νM
m does

not depend on the choice of s1, . . . , sn. In fact, if we define another multiple SLE(κ)

distribution νM ′
using s ′

1, . . . , s
′
n ∈ R, then there is a constant Z > 0 such that for each

m ∈ Z, dνM′
dνM = e

2πm
κ (

∑
s′
j
−∑

s′
j
) on Gm. Moreover, since each μj satisfies reversibility, we

see that νM and νM
m should also satisfy reversibility.

3. In the case n = 2, if we let the inner circle shrink to 0, it is expected that the two curves
tend to the two arms of a two-sided radial SLE(κ). The two-sided radial SLE(κ) (κ ≤ 4)
generates two simple curves in D, which connect 0 with two different points on T, and in-
tersect only at 0. The union of the two arms can be understood as a chordal SLE(κ) trace
connecting the two boundary points, conditioned to pass through 0. Thus, the knowledge
on multiple SLE(κ) with n = 2 can be used to study the microscopic behavior of an SLE
trace near a typical point on the trace.
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