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Abstract We study the fluctuations of the matrix entries of regular functions of Wigner
random matrices in the limit when the matrix size goes to infinity. In the case of the Gaus-
sian ensembles (GOE and GUE) this problem was considered by A. Lytova and L. Pastur
(J. Stat. Phys. 134:147–159, 2009). Our results are valid provided the off-diagonal matrix
entries have finite fourth moment, the diagonal matrix entries have finite second moment,
and the test functions have four continuous derivatives in a neighborhood of the support
of the Wigner semicircle law. Moreover, if the marginal distributions satisfy the Poincaré
inequality our results are valid for Lipschitz continuous test functions.
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1 Introduction

Let XN = 1√
N

WN be a random Wigner real symmetric (Hermitian) matrix. In the real sym-
metric case, we assume that the off-diagonal entries

(WN)jk, 1 ≤ j < k ≤ N, (1.1)
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are i.i.d. random variables with probability distribution μ, such that

E(WN)jk = 0, V(WN)jk = σ 2, E(WN)4
jk = m4 < ∞, 1 ≤ j < k ≤ N, (1.2)

where Eξ denotes the mathematical expectation and Vξ the variance of a random variable ξ.

The diagonal entries

(WN)ii , 1 ≤ i ≤ N, (1.3)

are i.i.d. random variables, independent from the off-diagonal entries, such that

E(WN)ii = 0, V(WN)ii = σ 2
1 , 1 ≤ i ≤ N. (1.4)

We will denote the probability distribution of 1√
2
(WN)11 by μ1.

In a similar fashion, in the Hermitian case, we assume that the off-diagonal entries
√

2Re(WN)jk,
√

2Im(WN)jk, 1 ≤ j < k ≤ N, (1.5)

are i.i.d. centered random variables with probability distribution μ with variance σ 2 and
finite fourth moment m4. The diagonal entries

(WN)ii , 1 ≤ i ≤ N, (1.6)

are i.i.d. random variables, independent from the off-diagonal entries, with probability dis-
tribution μ1 and finite second moment.

While the independence of the matrix entries (WN)ij , 1 ≤ i ≤ j ≤ N , is crucial in our
analysis, the requirement that the entries are identically distributed can be replaced by certain
Lindeberg-Feller type conditions for the fourth moments of marginal distributions [27].

Given a real symmetric (Hermitian) matrix B of order N, we define its empirical dis-
tribution of the eigenvalues as μB = 1

N

∑N

i=1 δλi
, where λ1 ≤ · · · ≤ λN are the (ordered)

eigenvalues of B. One of the fundamental results of random matrix theory is the celebrated
Wigner semicircle law (see e.g. [2, 3, 7]). It states that almost surely μXN

converges weakly
to the nonrandom limiting distribution μsc whose density is given by

dμsc

dx
(x) = 1

2πσ 2

√
4σ 2 − x21[−2σ,2σ ](x). (1.7)

In other words, for any bounded continuous test function ϕ : R → R, the linear statistic

1

N

N∑

i=1

ϕ(λi) = 1

N
Tr(ϕ(XN)) =: trN(ϕ(XN))

converges to
∫

ϕ(x)dμsc(x) almost surely; here and throughout the paper we use the nota-
tion trN = 1

N
Tr to denote the normalized trace.

The Stieltjes transform of the semi-circle law is

gσ (z) :=
∫

dμsc(x)

z − x
= z − √

z2 − 4σ 2

2σ 2
, z ∈ C\[−2σ,2σ ]. (1.8)

It is the solution to

σ 2g2
σ (z) − zgσ (z) + 1 = 0 (1.9)

that decays to 0 as |z| → ∞.
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In this paper, we are interested in studying the joint distribution of matrix entries of
regular functions of a Wigner random matrix XN. In [26], Lytova and Pastur studied the
limit of the one dimensional distribution of

√
N(f (XN)ij −E(f (XN)ij )) in the case of GOE

(GUE) ensembles (so the marginal distribution μ of matrix entries is Gaussian) provided
f (x) is a bounded differentiable function with bounded derivative. Namely, they prove that

√
N(f (XN)ij − E(f (XN)ij )) → N

(

0,
1 + δij

β
ω2(f )

)

, (1.10)

with β = 1(2) in the GOE (GUE) case,

ω2(f ) := V(f (η)) = 1

2

∫ 2σ

−2σ

∫ 2σ

−2σ

(f (x) − f (y))2 1

4π2σ 4

√
4σ 2 − x2

√
4σ 2 − y2dxdy

(1.11)
where η is distributed according to the Wigner semicircle law (1.7). In the case of the off-
diagonal entries in the GUE case, the r.h.s. in (1.10) should be understood as a complex
Gaussian distribution with independent identically distributed real and imaginary parts, each
with the variance 1

2ω2(f ). The proof in [26] relies on the orthogonal (unitary) invariance of
the GOE (GUE) ensembles.

We extend the results of [26] in the following way. We study the joint distribution of any
finite number of the matrix entries f (XN)ij . The limiting distribution on the r.h.s. of (1.10)
is, in general, no longer Gaussian. Instead, it is the distribution of a linear combination
of (WN)ij and a Gaussian random variable, independent from (WN)ij (see Theorems 2.3
and 2.7 below). We refer the reader to Remark 2.4 after Theorem 2.3 for the discussion
on when one of the two components in the linear combination vanishes. In particular, the
limiting distribution of

√
N(f (XN)ij − E(f (XN)ij )) is Gaussian if and only if either the

marginal distribution is Gaussian or
∫ 2σ

−2σ
xf (x)

√
4σ 2 − x2dx = 0.

Our approach requires that f has four continuous derivatives in a neighborhood of the
support of the Wigner semicircle law, [−2σ,2σ ]. If the marginal distributions μ and μ1

satisfy a Poincaré inequality (2.15) then our results hold provided f is Lipschitz continuous
in a neighborhood of [−2σ,2σ ].

The problem about the fluctuation of the entries of f (XN) is interesting in its own right.
However, for us the main motivation to study the problem came from the question about
the limiting distribution of the outliers of finite rank perturbations of standard Wigner ma-
trices (see e.g. [12, 13, 30]). Let MN = XN + CN, where XN is a random real symmetric
(Hermitian) Wigner matrix defined above and CN is a deterministic real symmetric (Her-
mitian) matrix of finite rank k with fixed non-zero eigenvalues λ1(CN), . . . , λk(CN) and the
corresponding orthonormal eigenvectors v1, . . . , vk. By the interlacing property, MN has at
most k eigenvalues (called outliers) that stay outside the support of the Wigner semicircle
law in the limit of large N. Capitaine, Donati-Martin, and Féral proved in [13] that the lim-
iting distribution of the outliers depends on the localization/delocalization properties of the
eigenvectors v1, . . . , vk. In particular, if the eigenvectors are localized (so only a finite num-
ber of coordinates are non-zero as N → ∞), then the limiting distribution of the outliers is
non-universal and depends on the marginal distribution of the matrix entries of WN.

The results in [13] are proved under the assumption that the marginal distribution of the
i.i.d. entries of WN is symmetric and satisfies the Poincaré inequality (2.15). In [30], we
have extended the results of [13] to the case of a finite fifth moment. Our approach relies on
an ideas from [8]. In particular, an important step of the proof is the study of the limiting
distribution of the eigenvalues of the k × k matrix (〈vi,RN(z)vj 〉)1≤i,j≤k, where RN(z) is
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the resolvent of XN and 〈·, ·〉 is the standard inner product in C
N (see Proposition 1 in [30]).

Thus, in the localized case one is interested in the joint distribution of a finite number of
resolvent entries of a standard Wigner matrix.

The rest of this section is devoted to the explanation of the main idea of the proof. Com-
plete formulations of the results are given in Sect. 2. We restrict our attention to the real
symmetric case since the arguments in the Hermitian case are very similar.

We start by considering the test functions of the form f (x) = 1
z−x

which corresponds to
studying the resolvent entries. Define

RN(z) := (zIN − XN)−1,

the resolvent of a real symmetric Wigner matrix XN = 1√
N

WN for z outside the spectrum of
XN. For simplicity, we will consider here a diagonal entry of RN(z), say the (N,N)-th entry
(RN(z))NN . The off-diagonal entries can be treated in a similar way (see Sect. 5). When it
does not lead to ambiguity, we will use the shorthand notations Rij for (RN(z))ij and Wij

for (WN)ij . Further, assume that z is fixed and Im z 	= 0. By Cramer’s rule, the (N,N)-th
entry of the resolvent can be written as

RNN =
(

z − 1√
N

WNN − 1

N
btGb

)−1

, (1.12)

where b is the (N − 1)-dimensional column vector with the coordinates Wi1, 1 ≤ i ≤ N − 1,
bt its transpose, and G = G(z) is the resolvent of the (N −1)× (N −1) upper-left submatrix
X̃ = ( 1√

N
Wij )1≤i,j≤N−1 of the Wigner matrix XN, i.e.

G := (zIN−1 − X̃)−1.

We note that X̃ can be viewed as a standard (N − 1) × (N − 1) real symmetric Wigner
matrix since the normalization by

√
N instead of

√
N − 1 does not make any difference in

the limit of large N. It is very important in our analysis that the random variables WNN and
btGb in (1.12) are independent. Moreover, in the quadratic form

btGb =
∑

1≤i,j≤N−1

GijWi1Wj1, (1.13)

the vector b is independent from the matrix G. By subtracting and adding E( 1
N

btGb) = σ 2 ×
E( 1

N
TrG) in the denominator, we rewrite (1.12) as

RNN =
(

z − E

(
1

N
btGb

)

− 1√
N

WNN −
(

1

N
btGb − E

(
1

N
btGb

)))−1

(1.14)

=
(

z − σ 2
E

(
1

N
TrG

)

− 1√
N

WNN −
(

1

N
btGb − σ 2

N
E(TrG)

))−1

(1.15)

=
(

z − σ 2
E

(
1

N
TrRN(z)

)

+ O

(
1

N

)

− 1√
N

WNN −
(

1

N
btGb − σ 2

N
E(TrG)

))−1

,

(1.16)



554 A. Pizzo et al.

where in (1.16) we used the interlacing property satisfied by the eigenvalues of XN and its
submatrix X̃ to write

E

(
1

N
TrG

)

= E

(
1

N
TrRN(z)

)

+ O

(
1

N

)

since Im z 	= 0 is fixed.
It follows from the semicircle law that

lim
N→∞

E
1

N
TrRN(z) = gσ (z),

where the Stieltjes transform gσ (z) of the semicircle law has been defined in (1.8). It follows
from the calculations in Sect. 3 (see (3.1) in Proposition 3.1) that for fixed z

E
1

N
TrRN(z) = gσ (z) + O

(
1

N

)

.

Therefore,

RNN =
(

z − σ 2gσ (z) + O

(
1

N

)

− 1√
N

(

WNN + 1√
N

(btGb − σ 2
E(TrG))

))−1

.

(1.17)
As we have already remarked, the random variables WNN and 1√

N
(btGb − σ 2

E(TrG)) are
independent. The crucial step in the analysis of the fluctuation of the resolvent entries is to
prove that

1√
N

(btGb − σ 2
E(TrG)) (1.18)

converges in distribution as N → ∞ to a centralized complex Gaussian random variable.
We discuss why such a convergence in distribution takes place a few paragraphs below but
first we note that the Central Limit Theorem for (1.18) together with the formula (1.17) for
RNN and

z − σ 2gσ (z) = 1

gσ (z)

from (1.9) immediately implies that the normalized resolvent entry
√

N(RNN − gσ (z)) con-
verges in distribution as N → ∞ to the law of a linear combination of WNN and a complex
centralized Gaussian random variable. The coefficients of the linear combination and the
covariance matrix of the complex Gaussian random variable are easily computable (see
Theorem 2.1 in the next section).

In order to get insight into the limiting distribution of (1.18), it is useful to consider first
the case of a quadratic form with deterministic coefficients. Let b be a random n-dimensional
vector with centralized i.i.d. real components with unit variance and finite fourth moment,
and An be an n × n deterministic real symmetric matrix such that

the operator norm ‖An‖ ≤ a for all n ≥ 1, (1.19)

1

n
Tr(A2

n) → a2 as n → ∞, (1.20)
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1

n

n∑

i=1

(An)
2
ii → a2

1 as n → ∞, (1.21)

where a > 0 is some constant that does not depend on n. The CLT for 1√
n
(btAnb − σ 2 ×

E(TrAn)) was first established by Sevast’yanov [33] in the case when the coordinates of b

are i.i.d. standard Gaussian random variables. For subsequent developments, we refer the
reader to [4, 9, 40]. In particular, since

btAnb − σ 2
E(TrAn) =

n∑

j=1

(

aii(b
2
i − σ 2) +

∑

i<j

aij bibj

)

=
n∑

j=1

Zn

we can write btAnb − σ 2
E(TrAn) as a sum of martingale differences with respect to the

filtration Fj = σ(b1, . . . , bj ), j = 1, . . . , n. It is not difficult to prove that the conditions
(1.19–1.21) imply that the Central Limit Theorem for martingale differences (see e.g. [15])
is applicable and the normalized random variable 1√

n
(btAnb − TrAn) converges in distri-

bution to N(0, κ4a
2
1 + a2) as n → ∞, where κ4 is the fourth cumulant of the marginal

one-dimensional distribution of b. In (1.18), the quadratic form is associated with a com-
plex symmetric random matrix G. Thus, first of all, one has to study the joint distribution
of

1√
N

(
bt

ReGb − σ 2
E(TrReG)

)
and

1√
N

(
bt

ImGb − σ 2
E(TrImG)

)
,

where

ReG = (ReGij , 1 ≤ i, j ≤ N − 1), ImG = (ImGij , 1 ≤ i, j ≤ N − 1).

This corresponds to the choice of

An = x ReG + y ImG, n = N − 1, (1.22)

where x and y are arbitrary real numbers. The second difference is that An in (1.22) is
random. However, the CLT still holds if ‖An‖ is bounded from above by a non-random
constant a with probability 1 and 1

n
Tr(A2

n) and 1
n

∑n

i=1(An)
2
ii converge in probability to

non-random limits (see e.g. [8] and the Appendix by J. Baik and J. Silverstein in [12]). We
note that ‖G‖ ≤ 1

|Im z| . The desired convergence in probability will easily follow from the
self-averaging property of the resolvent entries established in Sect. 3 (see Proposition 3.1).
The generalization of the CLT to random An is not unexpected since the distribution of

1√
n
(btAnb − TrAn) conditioned on the matrix entries of An is approximately N(0, κ4 ×

1
n

∑n

i=1(An)
2
ii + 1

n
Tr(A2

n)) for large n, and the expression in the variance converges to a
non-random limit as n → ∞.

As a result, one obtains that the term 1√
N

(btGb − σ 2
E(TrG)) in (1.17) converges in

distribution as N → ∞ to a complex Gaussian random variable with zero mathemati-
cal expectation and the covariance matrix given by the r.h.s. of (2.7–2.9) with w = z and
ϕ++(z,w), ϕ−−(z,w), and ϕ+−(z,w) defined in (2.2–2.5) in Sect. 2. Since it is indepen-
dent from WNN, the limiting distribution of

√
N(RNN −gσ (z)) is given by gσ (z)2 multiplied

by the convolution of the marginal diagonal distribution μ1 and the complex Gaussian.
To study the joint distribution of several resolvent entries Riljl (zl), 1 ≤ l ≤ k, one follows

a similar route. The main new ingredient is a multi-dimensional CLT for random bilinear
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(sesquilinear in the complex case) forms (see Theorem 6.4. in [8] and Theorem 7.3 in [4];
for the convenience of the reader we reproduce the last one as Theorem 7.1 in Appendix).
Thus, one is able to prove the result of Theorem 2.3 in Sect. 2 for the test functions of the
form

f (x) =
k∑

i=1

ci

1

zi − x
, ci ∈ R, zi ∈ C, Im zi 	= 0, 1 ≤ i ≤ k. (1.23)

The finite fourth moment condition on the off-diagonal entries of WN and the finite
second moment condition for the diagonal entries of WN imply that ‖XN‖ → 2σ a.s. as
N → ∞ [5]. Therefore, the limiting fluctuations of normalized matrix entries of f (XN) do
not change if we alter f outside [−2σ − δ,2σ + δ], where δ > 0 is an arbitrary fixed pos-
itive number. In particular, one can replace f by f h where h ∈ C∞(R) is a function with
compact support such that h = 1 on [−M,M] for sufficiently large M.

In order to extend the result of Theorem 2.3 from (1.23) to more general test functions f ,
one approximates f by test functions fm of the form (1.23) so that ‖f −fm‖ → 0 as m → ∞
in an appropriate norm and NV(f (XN)ij − fm(XN)ij ) goes to zero uniformly in N when
m → ∞, where V denotes the variance.

This program is the easiest to implement when the marginal distributions of the entries
of WN satisfy the Poincaré inequality. Indeed, for a Lipschitz test function f, a matrix entry
f (X)ij is a Lipschitz function of the matrix entries of X (see e.g. [14]). Therefore, as a
direct consequence of the Poincaré inequality (2.15) for the marginal distributions of WN

one gets the bound

V(f (XN)ij ) ≤ |f |2L
υN

, (1.24)

where |f |L := supx 	=y
|f (x)−f (y)|

|x−y| is the Lipschitz constant. We note that NV(f (XN)ij ) goes
to zero if |f |L goes to zero. Approximating a Lipschitz continuous compactly supported
test function f by functions fmh, where fm, m ≥ 1, are of the form (1.23) one finishes the
proof.

If the marginal distributions do not satisfy the Poincaré inequality, one needs to impose
some additional smoothness condition on f to obtain an analogue of (1.24). We refer the
reader to the bound (2.22) in Proposition 2.1 in Sect. 2. The proof of (2.22) consists of two
steps. First, one estimates the variance of the resolvent entries and proves

V(Rij (z)) = O

(
P6(|Im z|−1)

N

)

, 1 ≤ i, j ≤ N, uniformly on C \ R,

where P6 is some polynomial of degree 6 with fixed positive coefficients (see (3.3) in Propo-
sition 3.1 in Sect. 3). The proof of this bound is a bit long but quite standard and relies on
the resolvent technique (see e.g. [3, 12, 24, 25, 34]). In particular, many computations are
similar to those used in the derivation of the master loop equation in the proof of the Wigner
semicircle law by the resolvent method.

To extend the last estimate to more general test functions we use the Helffer-Sjöstrand
functional calculus discussed in Sect. 4 (see e.g. [15, 19, 20], or the proof of Lemma 5.5.5
in [2]). One then requires that f have four derivatives to compensate for the |Im z|−6 factor
in the upper bound on VRij (z).

The rest of the paper is organized as follows. Section 2 is devoted to formulation of
our main results. Perhaps, during the first glance at the paper the reader could just look at
Theorem 2.3 in the real symmetric case (the analogue in the Hermitian case is Theorem 2.7)
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and omit the rest of the section. Theorems 2.1 and 2.5 deal with the resolvent entries and
are important building blocks in the proofs of Theorems 2.3 and 2.7. Theorems 2.2, 2.4, 2.6,
and 2.8 prove slightly stronger results since they assume that the marginal distributions
satisfy the Poincaré inequality.

The actual proof starts in Sect. 3 which is devoted to estimates on the mathematical
expectation and the variance of the resolvent entries. The main results of this section are
collected in Proposition 3.1. During the first reading of the paper, the reader might wish to
skip long but rather straightforward computations in Sect. 3 and jump to the next section
once the statement of Proposition 3.1 is absorbed.

In Sect. 4, we extend our estimates to the matrix entries f (XN)ij for sufficiently nice
test functions f by applying the Helffer-Sjöstrand functional calculus. The main result of
Sect. 4 is the proof of Proposition 2.1.

Section 5 is devoted to studying the fluctuation of the resolvent entries and contains
the proofs of Theorems 2.1, 2.2, 2.5, and 2.6. The proofs of Theorems 2.1 and 2.6 follow
the route explained above when we discussed the fluctuation of a diagonal resolvent entry.
The proofs of Theorems 2.2 and 2.6 could be omitted at the first reading as they prove the
functional convergence in a special case when the marginal distributions satisfy the Poincaré
inequality.

Theorems 2.3 and 2.4 are proved in Sect. 6. The proofs of the corresponding results in
the Hermitian case, namely Theorems 2.7 and 2.8 are very similar and mostly left to the
reader.

In the Appendix, we discuss various tools used throughout the paper.
We will denote throughout the paper by consti , Consti , various positive constants that

may change from line to line. Occasionally, we will drop the dependence on N in the nota-
tions for the matrix entries.

We would like to thank M. Shcherbina for useful discussions and S. O’Rourke for careful
reading of the manuscript and useful remarks.

2 Formulation of Main Results

First, we consider the resolvent entries. In Theorems 2.1 and 2.5 formulated below, we
study the limiting joint distribution of a finite number of resolvent matrix entries of a real
symmetric (Hermitian) Wigner matrix XN . We recall that the resolvent RN(z) of XN is
defined as

RN(z) := (zIN − XN)−1,

for z outside the spectrum of XN. We will be interested in the limiting joint distribution of
a finite number of the resolvent entries. Since the entries of XN are i.i.d. random variables
up from the diagonal, we can study, without a loss of generality, the joint distribution of the
resolvent entries in an m × m upper-left corner of the matrix provided that m is an arbitrary
fixed positive integer.

Let us denote by R(m)(z) the m × m upper-left corner of the matrix RN(z). In a similar
fashion, we denote by W(m), X(m), the m × m upper-left corner of matrices WN and XN,

respectively. If the reader is put off by some cumbersome formulas/notations in this section,
he/she can always assume m = 1 and deal with just one diagonal resolvent entry. The case
m > 1 does not require any significant new ideas.

Consider a matrix-valued random field

ϒN(z) = √
N

(
R(m)(z) − gσ (z)Im

)
, z ∈ C \ [−2σ,2σ ]. (2.1)
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Clearly, ϒN(z) is a random function on C \ [−2σ,2σ ] with values in the space of complex
symmetric m × m matrices (ϒN(x) is real symmetric for real x). Let us define

ϕ(z,w) :=
∫ 2σ

−2σ

1

z − x

1

w − x

1

2πσ 2

√
4σ 2 − x2dx =

{− gσ (w)−gσ (z)

w−z
: if w 	= z,

−g′
σ (z) : if w = z,

(2.2)

for z,w ∈ C \ [−2σ,2σ ]. Clearly, ϕ(z,w) = E( 1
z−η

1
w−η

), where η is distributed according
to the Wigner semicircle law (1.7). We also define

ϕ++(z,w) :=
∫ 2σ

−2σ

Re
1

z − x
Re

1

w − x

1

2πσ 2

√
4σ 2 − x2dx

= 1

4
(ϕ(z,w) + ϕ(z̄, w̄) + ϕ(z̄,w) + ϕ(z, w̄)) , (2.3)

ϕ−−(z,w) :=
∫ 2σ

−2σ

Im
1

z − x
Im

1

w − x

1

2πσ 2

√
4σ 2 − x2dx

= −1

4
(ϕ(z,w) + ϕ(z̄, w̄) − ϕ(z̄,w) − ϕ(z, w̄)) , (2.4)

ϕ+−(z,w) :=
∫ 2σ

−2σ

Re
1

z − x
Im

1

w − x

1

2πσ 2

√
4σ 2 − x2dx

= − i

4
(ϕ(z,w) + ϕ(z̄,w) − ϕ(z̄, w̄) − ϕ(z, w̄)) . (2.5)

Theorem 2.1 Let XN = 1√
N

WN be a random real symmetric Wigner matrix (1.1–1.4). The
random field ϒN(z) in (2.1) converges in finite-dimensional distributions to a random field

ϒ(z) = g2
σ (z)(W(m) + Y (z)), (2.6)

where W(m) is the m × m upper-left corner submatrix of a Wigner matrix WN, and Y (z) =(
Yij (z)

)
, Yij (z) = Yji(z), 1 ≤ i, j ≤ m, is a Gaussian random field such that

Cov(ReYjj (z),ReYjj (w)) = κ4(μ)Regσ (z)Regσ (w) + 2σ 4ϕ++(z,w), (2.7)

Cov(ImYjj (z),ImYjj (w)) = κ4(μ)Imgσ (z)Imgσ (w) + 2σ 4ϕ−−(z,w), (2.8)

Cov(ReYjj (z),ImYjj (w)) = κ4(μ)Regσ (z)Imgσ (w) + 2σ 4ϕ+−(z,w), (2.9)

Cov(ReYij (z),ReYij (w)) = σ 4ϕ++(z,w), i 	= j, (2.10)

Cov(ImYij (z),ImYij (w)) = σ 4ϕ−−(z,w), i 	= j, (2.11)

Cov(ReYij (z),ImYij (w)) = σ 4ϕ+−(z,w), i 	= j, (2.12)

where the fourth cumulant κ4(μ) := ∫
x4μ(dx) − 3(

∫
x2μ(dx))2 = m4 − 3σ 4.

In addition, for any finite r ≥ 1, the entries Yiljl (z1), 1 ≤ il ≤ jl ≤ m, 1 ≤ l ≤ r, are
independent provided (il1 , jl1) 	= (il2 , jl2) for 1 ≤ l1 	= l2 ≤ r.
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Remark 2.1 If z = x ∈ R\[−2σ,2σ ], then Yij (x), 1 ≤ i ≤ j ≤ m, are independent centered
real Gaussian random variables with the variance given by

V(Yii(x)) = κ4(μ)g2
σ (x) − 2σ 4g′

σ (x), 1 ≤ i ≤ m, (2.13)

V(Yij (x)) = −σ 4g′
σ (x), 1 ≤ i < j ≤ m. (2.14)

Let D ⊂ C \ [−2σ,2σ ] be a compact set. The distribution of ϒN(z), z ∈ D, defines a
probability measure P N on C(D,C

m(m+1)/2). One can prove functional convergence in dis-
tribution for the random field ϒN(z), z ∈ D, provided μ and μ1 satisfy some additional
conditions on the decay of their tail distributions. For simplicity, we will consider the case
when μ and μ1 satisfy the Poincaré inequality.

We recall that a probability measure P on R
M satisfies the Poincaré inequality with con-

stant υ > 0 if, for all continuously differentiable functions f : R
M → C,

VP(f ) = EP

(|f (x) − EP(f (x))|2) ≤ 1

υ
EP[|∇f (x)|2]. (2.15)

Note that the Poincaré inequality tensorizes and the probability measures satisfying the
Poincaré inequality have sub-exponential tails [2, 18]. By a standard scaling argument, we
note that if the marginal distributions μ and μ1 of the matrix entries of WN satisfy the
Poincaré inequality with constant υ > 0 then the marginal distributions of the matrix entries
of XN = 1√

N
WN satisfy the Poincaré inequality with constant Nυ.

Theorem 2.2 Let XN = 1√
N

WN be a random real symmetric Wigner matrix (1.1–1.4) and
the marginal distributions μ and μ1 satisfy the Poincaré inequality (2.15). The probability
measure P N on C(D,C

m(m+1)/2) given by the random field ϒN(z) in (2.1) weakly converges
to the distribution of the random field ϒ(z) defined in Theorem 2.1.

Next, we extend the results of Theorem 2.1 to the matrix entries of f (XN) for regular f.

We say that a function f : R → R belongs to Cn(I), if f and its first n derivatives are
continuous on I. We will use the notation Cn

c (R) for the space of n times continuously dif-
ferentiable functions on R with compact support. We define the norm on Cn(I) for compact
I ⊂ R as

‖f ‖Cn(I) := max

(∣
∣
∣
∣
dkf

dxk
(x)

∣
∣
∣
∣, 0 ≤ k ≤ n, x ∈ I

)

. (2.16)

We also define for f ∈ Cn(R)

‖f ‖n,1 := max

(∫ ∞

−∞

∣
∣
∣
∣
dkf

dxk
(x)

∣
∣
∣
∣dx, 0 ≤ k ≤ n

)

, (2.17)

and

‖f ‖n,1,+ := max

(∫

R

(|x| + 1)

∣
∣
∣
∣
dlf

dxl
(x)

∣
∣
∣
∣dx, 0 ≤ l ≤ n

)

. (2.18)

Clearly, the right hand sides of (2.17) and (2.18) could be infinite.
We start with Proposition 2.1 that holds both in the real symmetric and Hermitian cases.

Proposition 2.1 Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix
defined in (1.1–1.4) ((1.5)–(1.6)).
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(i) Let L be some positive number and f ∈ C7
c (R) with supp(f ) ⊂ [−L,+L]. Then there

exists a constant Const(L,μ,μ1) that depends on L,μ, and μ1, such that

∣
∣
∣
∣E(f (XN)ii) −

∫ 2σ

−2σ

f (x)
1

2πσ 2

√
4σ 2 − x2dx

∣
∣
∣
∣

≤ Const(L,μ,μ1)
‖f ‖C7([−L,L])

N
, 1 ≤ i ≤ N. (2.19)

(ii) Let f ∈ C8(R), then

∣
∣
∣
∣E(f (XN)ii) −

∫ 2σ

−2σ

f (x)
1

2πσ 2

√
4σ 2 − x2dx

∣
∣
∣
∣

≤ Const(μ,μ1)
‖f ‖8,1,+

N
, 1 ≤ i ≤ N. (2.20)

(iii) Let f ∈ C6(R), then there exists a constant Const(μ,μ1) such that

|E(f (XN)jk)| ≤ Const(μ,μ1)
‖f ‖6,1

N
, 1 ≤ j < k ≤ N. (2.21)

(iv) Let f ∈ C4(R), then there exists a constant Const(μ,μ1) such that

V(f (XN)ij ) ≤ Const(μ,μ1)
‖f ‖2

4,1

N
, 1 ≤ i, j ≤ N. (2.22)

(v) If μ has finite fifth moment, μ1 has finite third moment, and f ∈ C10(R), then one can
improve (2.21), namely

|E(f (XN)jk)| ≤ Const(μ,μ1)
‖f ‖10,1

N3/2
, 1 ≤ j < k ≤ N. (2.23)

Remark 2.2 In [30], we extend the results of Propositions 2.1 to the case of 〈u(N),

f (XN)v(N)〉, where u(N) and v(N) are arbitrary nonrandom vectors from C
N .

In order to formulate our next theorem, we need to introduce several notations. Recall
that we defined ω2(f ) in (1.11) as

ω2(f ) = V(f (η)) = 1

2

∫ 2σ

−2σ

∫ 2σ

−2σ

(f (x) − f (y))2 1

4π2σ 4

√
4σ 2 − x2

√
4σ 2 − y2dxdy,

where η is distributed according to the Wigner semicircle law (1.7). In addition, we define

α(f ) := E

(
f (η)

η

σ

)
= 1

σ

∫ 2σ

−2σ

xf (x)
1

2πσ 2

√
4σ 2 − x2dx (2.24)

and

β(f ) := E

(

f (η)
η2 − σ 2

σ 2

)

= 1

σ 2

∫ 2σ

−2σ

f (x)(x2 − σ 2)
1

2πσ 2

√
4σ 2 − x2. (2.25)
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We recall that a function f : R → R is called Lipschitz continuous on an interval I ⊂ R

if there exists a constant L such that

|f (x) − f (y)| ≤ L|x − y|, for all x, y ∈ I. (2.26)

We define

|f |L,R = sup
x 	=y

|f (x) − f (y)|
|x − y| , (2.27)

and

|f |L,δ = sup
x 	=y, x,y∈[−2σ−δ,2σ+δ]

|f (x) − f (y)|
|x − y| . (2.28)

Finally, let us introduce a C∞(R) function h(x) with compact support such that

h(x) ≡ 1 for x ∈ [−2σ − δ,2σ + δ], δ > 0. (2.29)

Theorem 2.3 Let XN = 1√
N

WN be a random real symmetric Wigner matrix (1.1–1.4). Let
f : R → R be four times continuously differentiable on [−2σ − δ,2σ + δ] for some δ > 0.

Then the following holds.

(i) For i = j,
√

N (f (XN)ii − E ((f h)(XN)ii)) (2.30)

converges in distribution to the sum of two independent random variables α(f )

σ
Wii and

N(0, v2
1(f )), where h is an arbitrary C∞

c (R) function satisfying (2.29), and

v2
1(f ) := 2

(

ω2(f ) − α2(f ) + κ4(μ)

2σ 4
β2(f )

)

. (2.31)

If f is seven times continuously differentiable on [−2σ − δ,2σ + δ], then the statement
still holds if one replaces E ((f h)(XN)ii) in (2.30) by

∫ 2σ

−2σ

f (x)
1

2πσ 2

√
4σ 2 − x2dx. (2.32)

(ii) For i 	= j,
√

N
(
f (XN)ij − E

(
(f h)(XN)ij

))
(2.33)

converges in distribution to the sum of two independent random variables α(f )

σ
Wij and

N(0, d2(f )), with

d2(f ) := ω2(f ) − α2(f ). (2.34)

If f is six times continuously differentiable on [−2σ − δ,2σ + δ], then one can replace
E((f h)(XN)ij ) in (2.33) by 0.

(iii) For any finite m, the normalized matrix entries

√
N

(
f (XN)ij − E((f h)(XN)ij )

)
, 1 ≤ i ≤ j ≤ m, (2.35)

are independent in the limit N → ∞.
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We follow Theorem 2.3 with several remarks.

Remark 2.3 If f ∈ C4(R), and ‖f ‖4,1 < ∞, where ‖f ‖4,1 is defined in (2.17), then it fol-
lows from Proposition 2.1 that the centralizing constants in (2.30) and (2.33) can be taken
to be E(f (XN))ij .

Remark 2.4 It follows from the definition of the fourth cumulant that κ4(μ)

2σ 4 ≥ −1, with the

equality taking place only when μ is Bernoulli. Since 1, x
σ

, and x2−σ 2

σ 2 , are the first three
orthonormal polynomials associated with the semicircle measure (1.7), it follows from the
Bessel inequality that for the diagonal entries the variance v2

1(f ) of the Gaussian component
in (2.31) is zero if and only if f (x) is either a linear function of x or f (x) a quadratic
polynomial and μ Bernoulli. Similarly, for the off-diagonal entries one has that the variance
d2(f ) of the Gaussian component in (2.34) is zero if and only if f (x) is linear.

The statement of the Theorem 2.3 also implies that the limiting distribution of the nor-
malized (ij)th entry of f (XN) is Gaussian if and only if either μ for i 	= j (correspondingly
μ1 for i = j ) is Gaussian or E(ηf (η)) = 0. The same holds in the Hermitian case.

Remark 2.5 Utilizing Proposition 1 in [34], one can extend the result of Theorem 2.3 to the
test functions satisfying

‖f ‖2
s =

∫

(1 + |k|)2s |f̂ (k)|2dk < ∞, s > 3, f̂ (k) :=
∫

e−2πikxf (x)dx, (2.36)

and, more generally, to the functions that coincide with the functions in (2.36) on
[−2σ − δ,2σ + δ] for some δ > 0 [27].

Remark 2.6 There has been a significant body of work on the Central Limit Theorem for
Trf (XN) = ∑N

i=1 f (XN)ii . We refer the reader to [1, 4, 6, 25, 34], and the references
therein. In particular, in [34], the CLT is proved assuming that the fourth moment of the
marginal distribution is finite and ‖f ‖s < ∞ for s > 3/2.

If μ and μ1 satisfy the Poincaré inequality, one can prove convergence in distribution for
the matrix entries of Lipschitz continuous test functions.

Theorem 2.4 Let XN = 1√
N

WN be a random real symmetric Wigner matrix (1.1–1.4) and
the marginal distributions μ and μ1 satisfy the Poincaré inequality (2.15). Then the follow-
ing holds.

(i) If f : R → R is Lipschitz continuous on [−2σ − δ,2σ + δ] that satisfies a sub-
exponential growth condition

|f (x)| ≤ a exp(b|x|) for all x ∈ R (2.37)

for some positive constants a and b, then the results of Theorem 2.3 hold with the
centralizing constants E(f (XN)ij ) in (2.30) and (2.33).

Moreover,

P
(|f (XN)ij − E(f (XN)ij )| ≥ t

)

≤ 2K exp

(

−
√

υNt

2|f |L,δ

)

+ (2K + o(1)) exp

(

−
√

υN

2
δ

)

, (2.38)
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where |f |L,δ is defined in (2.28),

K = −
∑

i≥0

2i log(1 − 2−14−i ), (2.39)

and υ is the constant in the Poincaré inequality (2.15).
(ii) If f ∈ C7(R) (correspondingly, f ∈ C6(R), f ∈ C10(R)) and f satisfies the subex-

ponential growth condition (2.37), then the estimate (2.19) (correspondingly, (2.21),
(2.23)) from Proposition 2.1 holds.

(iii) If f is a Lipschitz continuous function on R, then

P
(|f (XN)ij − E(f (XN)ij )| ≥ t

)

≤ 2K exp

(

−
√

υNt

2|f |L,R

)

, (2.40)

where |f |L,R is defined in (2.27).

Remark 2.7 If f is a Lipschitz continuous function on [−2σ − δ,2σ + δ] that does not
satisfy the subexponential growth condition (2.37) then the results of Theorem 2.3 still hold
with the centralizing constants E((f h)(XN)ij ) in (2.30) and (2.33).

In the second part of this section, we formulate the analogous results in the Hermitian
case.

As in the real symmetric case, consider a matrix-valued random field

ϒN(z) = √
N

(
R(m)(z) − gσ (z)Im

)
, z ∈ C \ [−2σ,2σ ].

Clearly, ϒN(z) is a random function on C \ [−2σ,2σ ] with values in the space of complex
m × m matrices. ϒN(x) is Hermitian for real x and, more generally, ϒN(z) = ϒN(z̄)∗.

Theorem 2.5 Let XN = 1√
N

WN be a Hermitian Wigner matrix (1.5–1.6). The random field
ϒN(z) converges in finite-dimensional distributions to a random field

ϒ(z) = g2
σ (z)(W(m) + Y (z)), (2.41)

where W(m) is the m × m upper-left corner submatrix of a Wigner matrix WN, and Y (z) =
(Yij (z)), 1 ≤ i, j ≤ m, is a Gaussian random field such that

Cov(ReYjj (z),ReYjj (w)) = κ4(μ)Regσ (z)Regσ (w) + σ 4ϕ++(z,w), (2.42)

Cov(ImYjj (z),ImYjj (w)) = κ4(μ)Imgσ (z)Imgσ (w) + σ 4ϕ−−(z,w), (2.43)

Cov(ReYjj (z),ImYjj (w)) = κ4(μ)Regσ (z)Imgσ (w) + σ 4ϕ+−(z,w), (2.44)

Cov(ReYij (z),ReYij (w)) = 1

2
σ 4(ϕ++(z,w) + ϕ−−(z,w)), i 	= j, (2.45)

Cov(ImYij (z),ImYij (w)) = 1

2
σ 4(ϕ++(z,w) + ϕ−−(z,w)), i 	= j, (2.46)

Cov(ReYij (z),ImYij (w)) = 1

2
σ 4(ϕ+−(z,w) − ϕ+−(w, z)), i 	= j, (2.47)
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where the fourth cumulant κ4(μ) := E|(WN)12|4 − 2E|(WN)12|2 = m4 − 2σ 4.

In addition, for any finite r ≥ 1, the entries Yiljl (z1), 1 ≤ il ≤ jl ≤ m, 1 ≤ l ≤ r, are
independent provided (il1 , jl1) 	= (il2 , jl2) for 1 ≤ l1 	= l2 ≤ r.

Remark 2.8 If z = x ∈ R \ [−2σ,2σ ], then Yll(x), 1 ≤ l ≤ m ReYij (x), ImYij (x), 1 ≤ i <

j ≤ m, are independent centered real Gaussian random variables with the variance given by

V(Yll(x)) = κ4(μ)g2
σ (x) − σ 4g′

σ (x), 1 ≤ l ≤ m, (2.48)

V(ReYij (x)) = −1

2
σ 4g′

σ (x), V(ImYij (x)) = −1

2
σ 4g′

σ (x), 1 ≤ i < j ≤ m,

(2.49)

Cov(ReYij (x),ImYij (x)) = 0, 1 ≤ i < j ≤ m. (2.50)

Let D, as before, be a compact subset of C\[−2σ,2σ ]. The distribution of ϒN(z), z ∈ D,

defines a probability measure PN on C(D,C
m(m+1)/2).

Theorem 2.6 Let XN = 1√
N

WN be a random Hermitian Wigner matrix (1.5–1.6) and the
marginal distributions μ and μ1 satisfy the Poincaré inequality (2.15). The probability mea-
sure P N on C(D,C

m(m+1)/2) given by the random field ϒN(z) weakly converges to the dis-
tribution of the random field ϒ(z) defined in Theorem 2.5.

Next theorem extends the results of Theorems 2.3 and 2.4 to the Hermitian case. We
recall that ω2(f ),α(f ),β(f ), and d2(f ) have been defined in (1.11), (2.24), (2.25), and
(2.34).

Theorem 2.7 Let XN = 1√
N

WN be a random Hermitian Wigner matrix (1.5–1.6). Let
f : R → R be four times continuously differentiable on [−2σ − δ,2σ + δ] for some δ > 0.

Then the following holds.

(i) For i = j,
√

N (f (XN)ii − E ((f h)(XN)ii)) (2.51)

converges in distribution to the sum of two independent random variables α(f )

σ
Wii and

N(0, v2
2(f )), where h is an arbitrary C∞

c (R) function satisfying (2.29),

v2
2(f ) := ω2(f ) − α2(f ) + κ4(μ)

σ 4
β2(f ), (2.52)

and

κ4(μ) = E|(WN)12|4 − 2E|(WN)12|2 = m4 − 2σ 4.

If f is seven times continuously differentiable on [−2σ − δ,2σ + δ], then one re-
place E((f h)(XN)ii) in (2.51) by (2.32).

(ii) For i 	= j,
√

N
(
f (XN)ij − E

(
(f h)(XN)ij

))
(2.53)

converges in distribution to the sum of two independent random variables α(f )

σ
Wij and

complex Gaussian N(0, d2(f )) with i.i.d. real and imaginary parts N(0, 1
2d2(f )). If
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f is six times continuously differentiable on [−2σ − δ,2σ + δ], then one can replace
E((f h)(XN)ij ) in (2.53) by 0.

(iii) For any finite m, the normalized matrix entries

√
N

(
f (XN)ij − E((f h)(XN)ij )

)
, 1 ≤ i ≤ j ≤ m, (2.54)

are independent in the limit N → ∞.

Theorem 2.8 Let XN = 1√
N

WN be a random Hermitian Wigner matrix (1.5–1.6) and the
marginal distributions μ and μ1 satisfy the Poincaré inequality (2.15). Then the following
holds.

(i) If f is a Lipschitz continuous function on [−2σ − δ,2σ + δ] that satisfies the subex-
ponential growth condition (2.37), then the results of (2.7) hold with the centralizing
constants E((f h)(XN)ij ) in (2.51) and (2.53).

Moreover,

P
(|f (XN)ij − E(f (XN)ij )| ≥ t

)

≤ 2K exp

(

−
√

υNt√
2|f |L,δ

)

+ (2K + o(1)) exp

(

−
√

υN√
2

δ

)

, (2.55)

where K is as in (2.39), υ is the constant in the Poincaré inequality (2.15), and |f |L,δ

is defined in (2.28).
(ii) If f ∈ C7(R) (correspondingly, f ∈ C6(R), f ∈ C10(R)) and f satisfies the subex-

ponential growth condition (2.37), then the estimate (2.19) (correspondingly, (2.21),
(2.23)) from Proposition 2.1 holds.

(iii) If the marginal distributions μ and μ1 satisfy the Poincaré inequality (2.15) and f is a
Lipschitz continuous function on R, then

P
(|f (XN)ij − E(f (XN)ij )| ≥ t

)

≤ 2K exp

(

−
√

υNt√
2|f |L,R

)

, (2.56)

where |f |L,R is defined in (2.27).

Most of the proofs will be given in the real symmetric case. The proofs in the Hermitian
are essentially the same.

Remark 2.9 Theorems 2.1, 2.3, 2.5, 2.7 can be extended to the case when the matrix entries
(WN)ij , 1 ≤ i ≤ j ≤ N, are independent but not identically distributed [27]. In the real
symmetric case, one requires that the off-diagonal entries satisfy

E(WN)ij = 0, V((WN)ij ) = σ 2, 1 ≤ i < j ≤ N, sup
N,i 	=j

E((WN)ij )
4 = m4 < ∞,

m4(i) := lim
N→∞

1

N

∑

j :j 	=i

E|(WN)ij |4 exists for 1 ≤ i ≤ m,

LN(ε) → 0, as N → ∞, ∀ε > 0, where
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LN(ε) = 1

N2

∑

1≤i<j≤N

E

(
|(WN)ij |4χ(|(WN)ij | ≥ ε

√
N)

)
,

Li,N (ε) → 0, as N → ∞, ∀ε > 0, 1 ≤ i ≤ m, where

Li,N (ε) = 1

N

∑

j :j 	=i

E
(|(WN)ij |4χ(|(WN)ij | ≥ εN1/4)

)
,

and the diagonal entries satisfy

E(WN)ii = 0, sup
i,N

E|(WN)ii |2 < ∞,

lN (ε) → 0, as N → ∞, ∀ε > 0, where

lN (ε) = 1

N

∑

1≤i≤N

E

(
|(WN)ii |2χ(|(WN)ii | ≥ ε

√
N)

)
.

In the Hermitian case, one requires that, in addition, Re(WN)ij is independent from
Im(WN)ij , 1 ≤ i < j ≤ N, and

V(Re(WN)ij ) = V(Im(WN)ij ) = σ 2

2
, 1 ≤ i < j ≤ N.

3 Mathematical Expectation and Variance of Resolvent Entries

In this section, we estimate mathematical expectation and variance of resolvent entries
Rij (z) := (RN(z))ij . Without loss of generality, we can restrict our attention to the real
symmetric case. The proofs in the Hermitian case are very similar. Usually, we will assume
in our calculations that μ1 = μ. The proofs in the case μ1 	= μ are very similar. From time
to time, we will point out the (small) changes in the proofs one needs to make if μ1 	= μ.

Proposition 3.1 Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix

defined in (1.1–1.4) ((1.5)–(1.6)) and RN(z) = (zIN − XN)−1 where z ∈ C. We will denote
by Pl(x), l ≥ 1, a polynomial of degree l with fixed positive coefficients.

Then

E trN RN = ERii(z) = gσ (z) + O

(
1

|Im z|6N
)

,

uniformly on bounded subsets of C \ R, (3.1)

ERij (z) = O

(
P5(|Im z|−1)

N

)

, 1 ≤ i 	= j ≤ N, uniformly on C \ R, (3.2)

VRij (z) = O

(
P6(|Im z|−1)

N

)

, 1 ≤ i, j ≤ N, uniformly on C \ R. (3.3)

In addition, if μ has finite fifth moment and μ1 has finite third moment, then

ERij (z) = O

(
P9(|Im z|−1)

N3/2

)

, 1 ≤ i 	= j ≤ N, uniformly on C \ R. (3.4)
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Remark 3.1 We refer the reader to [17] (see e.g. Theorem 2.1 there) for the optimal (up
to logN factors) estimates on the resolvent entries with the correct |Im z|−1 behavior. The
authors in [17] require that the marginal distributions are subexponential. For related results,
we refer the reader to the survey [16].

Proof We use the resolvent identity (7.2) to write

zERij (z) = δij +
∑

k

E(XikRkj ). (3.5)

Applying the decoupling formula (7.1) to the term E(XikRkj (z)) in (3.5), we obtain the
equation

zERij (z) = δij + σ 2
E

(
Rij (z) trN RN(z)

) + σ 2

N
E

(
(RN(z)2)ij

)

− 2σ 2

N

(
E(Rii(z)Rij (z))

) + rN , (3.6)

where rN contains the third cumulant term corresponding to p = 2 in (7.1) for k 	= i, and
the error terms due to the truncation of the decoupling formula (7.1) at p = 2 for k 	= i and
at p = 0 for k = i. We rewrite (3.6) as

zERij (z) = δij + σ 2
ERij (z)gσ (z) + σ 2

ERij (z) (E trN RN(z) − gσ (z)) (3.7)

+ σ 2
Cov(Rij (z), trN RN(z)) + σ 2

N
E

(
(RN(z)2)ij

)

− 2σ 2

N

(
E(Rii(z)Rij (z))

) + rN . (3.8)

We claim the following estimates uniformly on C \ R.

Lemma 3.1

Cov(Rij (z), trN RN(z)) = O

(
P3(|Im z|−1)

N

)

, (3.9)

σ 2

N
E

(
(RN(z)2)ij

) = O

(
P2(|Im z|−1)

N

)

, (3.10)

rN = O

(
P4(|Im z|−1)

N

)

. (3.11)

Proof The bound (3.10) immediately follows from (7.9). To obtain (3.9), we again use (7.9)
and the estimate

V(trN RN(z)) = O

(
1

|Im z|4N2

)

, (3.12)

from Proposition 2 of [34]. It follows from the proof that the bound is valid provided the
second moments of the diagonal entries are uniformly bounded and the fourth moments of
the off-diagonal entries are also uniformly bounded [35].
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Now, we turn our attention to (3.11). First, we note that the term 2σ 2

N
(E(Rii(z)Rij (z))) in

(3.8) is O( 1
|Im z|2N

) which immediately follows from (7.9).
The third cumulant term gives

κ3

2!N3/2

[

4E

(∑

k:k 	=i

RijRikRkk

)

+ 2E

(∑

k:k 	=i

RiiRkkRkj

)

+ 2E

(∑

k:k 	=i

(Rik)
2Rjk

)]

. (3.13)

Since
∑

k

|Rik|2 ≤ ‖R‖2 ≤ 1

|Im z|2 , and |Rpq |(z) ≤ 1

|Im z| , (3.14)

we conclude that the third cumulant term contributes O( 1
N |Im z|3 ) to rN in (3.8). In a similar

way, the error term that appears due to the truncation of the decoupling formula (7.1) at
p = 2 is O( 1

N |Im z|4 ). Indeed, it can be written as a sum of O(N) terms, where each term is

bounded by O(
κ4
N2 |Im z|−4). Lemma 3.1 is proven. �

Proof of (3.1) Now, we turn our attention to (3.1). For

gN(z) := E trN R = ER11

one can write the Master Equation as

zgN(z) = 1 + σ 2g2
N(z) + σ 2

Cov(R11(z), trNRN(z)) + σ 2

N
E

(
(RN(z)2)11

) + rN , (3.15)

by applying (7.1) to E(X1kRk1(z)) and summing over 1 ≤ k ≤ N. As before, rN contains
the third cumulant term corresponding to p = 2 in (7.1) for k 	= i, and the error due to the
truncation of the decoupling formula (7.1) at p = 2 for k 	= i and at p = 0 for k = i.

By (3.9) and (3.10), we bound the third and the fourth terms on the r.h.s. of (3.15) by

O(
P3(|Im z|−1)

N
) and O(

P2(|Im z|−1)

N
), respectively. Thus, we obtain

zgN(z) = 1 + σ 2g2
N(z) + O

(
P4(|Im z|−1)

N

)

, (3.16)

uniformly in z ∈ C \ R.

We now show that the bound (3.16) implies (3.1) uniformly in z satisfying

|z| ≤ T , and Im z 	= 0, (3.17)

where T is an arbitrary large fixed positive number. Our proof follows closely arguments
from [12] Proposition 4.2, [11] Sect. 3.4, and [19] Lemma 5.5, Proposition 5.6, and Theo-
rem 5.7. Define

QN = {z : |z| < T + 1, |Im z| > LN−1/5}, (3.18)

where L > 0 will be chosen to be sufficiently large. Then for z ∈ QN, the error term
1

N |Im z|4 = O(N−1/5). Therefore

zgN(z) − σ 2g2
N(z) = 1 + O(N−1/5), (3.19)
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so

|gN(z)| ≥ δ1 > 0 on QN . (3.20)

Let

sN(z) = σ 2gN(z) + 1

gN(z)
.

Then it follows from (3.19) and (3.20)

sN(z) − z = σ 2gN(z) + 1

gN(z)
− z = O

(
1

N |Im z|4
)

(3.21)

on QN . Since

σ 2gN(z) + 1

gN(z)
= σ 2gσ (sN(z)) + 1

gσ (sN(z))
,

we conclude that

gN(z) = gσ (sN(z)), (3.22)

first for |Im z| >
√

2σ, and then for all z ∈ QN by the principle of uniqueness of analytic
continuation.

Choosing L in (3.18) sufficiently large, we have that

|Im sN(z)| ≥ 1

2
|Im z|

on QN . Since | dgσ (z)

dz
| ≤ 1

|Im z|2 , we conclude that (3.21) and (3.22) imply (3.1) on QN .

If |Im z| ≤ LN−1/5, then 1
N |Im z|5 ≥ L−5, and

|gN(z) − gσ (z)| ≤ 2

|Im z| = O

(
1

N |Im z|6
)

.

Therefore, the estimate (3.1) is proven. �

Proof of (3.2) Now, we prove (3.2). It follows from (3.7–3.8) and Lemma 3.1 that

zER12 = σ 2gN(z)ER12 + σ 2

N
E((RN(z))2)12 + O

(
P4(|Im z|−1)

N

)

. (3.23)

Therefore,

(
z − σ 2gN(z)

)
ER12 = O

(
P4(|Im z|−1)

N

)

. (3.24)

It follows from (3.16) that

gN(z)(z − σ 2gN(z)) = 1 + O

(
P4(|Im z|−1)

N

)

. (3.25)

It follows from (3.24) and (3.25) that
(

1 + O

(
P4(|Im z|−1)

N

))

ER12 = O

(
P4(|Im z|−1)

N

)

gN(z). (3.26)
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Consider ON = {z : |Im z| > LN−1/4}, where the constant L is chosen sufficiently large so

that the O(
P4(|Im z|−1)

N
) term on the l.h.s. of (3.26) is at most 1/2 in absolute value. Since

|gN(z)| ≤ 1
|Im z| , we obtain

|ER12| ≤ 1

|Im z|O
(

P4(|Im z|−1)

N

)

= O

(
P5(|Im z|−1)

N

)

(3.27)

for z ∈ ON . On the other hand, if |Im z| ≤ LN−1/4, then 1
N |Im z|4 ≥ L−4, and

|ER12| ≤ 1

|Im z| = O

(
1

N |Im z|5
)

. (3.28)

Combining (3.27) and (3.28), we obtain (3.2). �

Proof of (3.3) Now we proceed to prove the variance bound (3.3). We apply the resolvent
identity (7.2) to write

zE
(
Rij (z)Rij (z̄)

) = ERij (z̄)δij +
∑

k

E
(
XikRkjRij (z̄)

)
. (3.29)

Applying the decoupling formula (7.1) to the term E(XikRkj (z)Rij (z̄)) in (3.29), we obtain

zE
(
Rij (z)Rij (z̄)

) = ERij (z̄)δij + σ 2
E

(
Rij (z) trN RN(z)Rij (z̄)

)
(3.30)

+ σ 2

N
E

(
(RN(z)2)ijRij (z̄)

) + σ 2

N
E

(
Rii(z̄)(|RN(z)|2)jj

)
(3.31)

+ σ 2

N
E

(
Rij (z̄)(|RN(z)|2)ij

) + rN , (3.32)

where as before rN contains the third cumulant term corresponding to p = 2 in (7.1) for
k 	= i, and the error terms due to the truncation of the decoupling formula (7.1) at p = 2 for
k 	= i and at p = 0 for k = i. One can treat rN as before and obtain

rN = O

(
P5(|Im z|−1)

N

)

, (3.33)

uniformly on C \R. Indeed, the bound on the truncation error term at p = 2 for k 	= i follows
from the fact that it can be written as a sum of O(N) terms, where each term is bounded by
O(

κ4
N2 |Im z|−5). The truncation error term at p = 0 for k = i contains one term bounded by

O(
κ2(μ1)

N
|Im z|−3). The third cumulant term can be written as

κ3

2!N3/2
E

[∑

k:k 	=i

∂2Rkj (z)

∂X2
ik

Rij (z̄) + 2
∂Rkj (z)

∂Xik

∂Rij (z̄)

∂Xik

+ Rkj (z)
∂2Rij (z̄)

∂X2
ik

]

. (3.34)

We will treat each of the three subsums in (3.34) separately. The first one is equal to

κ3

2!N3/2
E

[∑

k:k 	=i

∂2Rkj (z)

∂X2
ik

Rij (z̄)

]
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= κ3

2!N3/2

[

4E

(∑

k:k 	=i

Rij (z)Rik(z)Rkk(z)Rij (z̄)

)

+ 2E

(∑

k:k 	=i

Rii(z)Rkk(z)Rkj (z)Rij (z̄)

)

+ 2E

(∑

k:k 	=i

(Rik(z))
2Rjk(z)Rij (z̄)

)]

.

The same arguments as after (3.13) bound it by O( 1
N |Im z|4 ). The second subsum equals

κ3

N3/2
E

[∑

k:k 	=i

∂Rkj (z)

∂Xik

∂Rij (z̄)

∂Xik

]

= κ3

N3/2
E

[∑

k:k 	=i

(
Rij (z)Rkk(z) + Rik(z)Rkj (z)

) (
Rii(z̄)Rkj (z̄) + Rji(z̄)Rki(z̄)

)
]

.

It follows from (3.14) that the second subsum is O( 1
N |Im z|4 ). Finally, the third subsum

equals

κ3

2!N3/2
E

[∑

k:k 	=i

Rkj (z)
∂2Rij (z̄)

∂X2
ik

]

≤ κ3

2!N3/2
O(|Im z|−3)E

∑

k

|Rkj (z)|,

so it is also O( 1
N |Im z|4 ).

Using the bound (3.12) on the variance of trN RN(z) and (3.1–3.2), we estimate the last
term in (3.30) as

E
(
Rij (z) trN RN(z)Rij (z̄)

) = gN(z)E
(
Rij (z)Rij (z̄)

) + O

(
1

|Im z|4N
)

,

where we recall that gN(z) = E trN RN(z). Since the two terms in (3.31) and the first term
in (3.32) are bounded by O( 1

|Im z|3N
), we conclude that

zE
(
Rij (z)Rij (z̄)

) = ERij (z̄)δij + σ 2gN(z)E
(
Rij (z)Rij (z̄)

) + O

(
P5(|Im z|−1)

N

)

(3.35)

uniformly on C \ R. We now rewrite (3.16) and (3.23) as

zERij (z) = δij + σ 2gN(z)ERij (z) + O

(
P4(|Im z|−1)

N

)

. (3.36)

Multiplying both sides of (3.36) by ERij (z̄) and subtracting from (3.35), we obtain

(z − σ 2gN(z))V (Rij (z)) = O

(
P5(|Im z|−1)

N

)

, (3.37)

uniformly on C \ R. Repeating the arguments after (3.23), we conclude that

VRij (z) = O

(
P6(|Im z|−1)

N

)

.

This is exactly (3.3). �
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Proof of (3.4) Now, we turn our attention to the proof of (3.4). Let us assume that μ has
finite fifth moment, μ1 has finite third moment, and i 	= j. Without loss of generality, we
can assume i = 1 and j = 2. We write the Master equation for ER12(z) as

zER12(z) = E

(∑

k

X1kRk2(z)

)

= σ 2
E (R12(z) trN RN(z)) (3.38)

+ σ 2

N
E

(
(RN(z)2)12

) + rN , (3.39)

where we apply the decoupling formula (7.1) to the term E(X1kR2j (z)) and truncate it at
p = 3 for k 	= 1 and at p = 1 for k = 1. Thus, the rN term contains the third and fourth
cumulant terms (corresponding to p = 2 and p = 3) for k 	= 1 as well as the error terms due
to the truncation of the decoupling formula at p = 3 for k 	= 1 and at p = 1 for k = 1. We
note that in order to truncate the decoupling formula at p = 3, we have to require that μ has
finite fifth moment.

It follows from (3.3) and (3.12) that we can replace in (3.38) E(R12(z) trN RN(z)) by

E(R12(z))E trN RN(z) up to the error O(
P5(|Im z|−1)

N3/2 ). We bound the absolute values of the

terms in (3.39) by O(
P8(|Im z|−1)

N3/2 ) (see Lemmas 3.2 and 3.3 below). Combining these results,
we obtain

zER12(z) = σ 2gN(z)ER12(z) + O

(
P8(|Im z|−1)

N3/2

)

. (3.40)

Repeating the arguments after (3.24), we obtain (3.4). �

Lemma 3.2 Let μ have finite fifth moment and μ1 has finite third moment. Then

E
(
(RN(z)2)12

) = O

(
P8(|Im z|−1)

N1/2

)

, (3.41)

uniformly on C \ R.

Proof We write the Master equation and use (3.2) to obtain

zE(R2)12 = zE
∑

k

R1kRk2 = ER12 + E

∑

l

∑

k

X1lRlkRk2

= σ 2

N
E

[∑

l,k

(RllR1k + Rl1Rlk)Rk2

]

+ σ 2

N
E

[∑

l,k

Rlk(Rk1Rl2 + RklR12)

]

+ O

(
P5(|Im z|−1)

N

)

+ rN ,

where rN contains the third and fourth cumulant terms and the error terms due to the trun-
cation in the decoupling formula at p = 3 for l 	= 1 and at p = 1 for l = 1. Thus, we have

zE(R2)12 = σ 2
E[(R2)12 trN R] + 2

σ 2

N
E(R3)12 + σ 2

N
E

[

R12

∑

l,k

R2
lk

]

+ O

(
P5(|Im z|−1)

N

)

+ rN
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= σ 2gN(z)E(R2)12 + σ 2

N
E

[

R12

∑

l,k

R2
lk

]

+ O

(
P5(|Im z|−1)

N

)

+ rN ,

where we used (3.9). We note that

σ 2

N
ER12E

(∑

l,k

R2
lk

)

= O

(
P5(|Im z|−1)

N2

)

O

(
N

|Im z|2
)

= O

(
P7(|Im z|−1)

N

)

,

and using (3.3), we have

σ 2

N
[VR12]1/2

[

V

(∑

l,k

R2
lk

)]1/2

= O

(
P3(|Im z|−1)

N3/2

)

O

(
N

|Im z|2
)

= O

(
P5(|Im z|−1)

N1/2

)

.

Thus, we arrive at

(z − σ 2gN(z))E(R2)12 = O

(
P7(|Im z|−1)

N1/2

)

+ rN . (3.42)

Rather long but straightforward calculations bound rN in (3.42) by O(
P6(|Im z|−1)

N1/2 ). We leave
the details to the reader. Therefore, we have

(z − σ 2gN(z))E(R2)12 = O

(
P7(|Im z|−1)

N1/2

)

. (3.43)

Now consider, as before, ON = {z : |Im z| > LN−1/4}, where the constant L is chosen
sufficiently large. It follows from (3.25) that

|E(R2)12| ≤ 1

|Im z|O
(

P7(|Im z|−1)

N1/2

)

= O

(
P8(|Im z|−1)

N1/2

)

,

for z ∈ ON . On the other hand, if |Im z| ≤ LN−1/4, then 1
N1/2|Im z|2 ≥ L−2, and

|E(R2)12| ≤ 1

|Im z|2 = O

(
1

N1/2|Im z|4
)

, (3.44)

for z /∈ ON . Lemma 3.2 is proven. �

Lemma 3.3 The term rN on the r.h.s. of (3.39) satisfies

O

(
P8(|Im z|−1)

N3/2

)

. (3.45)

Proof First, we look at the third cumulant terms

κ3

2!N3/2

[

4E

(∑

k 	=1

R12R1kRkk

)

+ 2E

(∑

k 	=1

R11RkkRk2

)

+ 2E

(∑

k 	=1

(R1k)
2R2k

)]

. (3.46)
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To estimate the first subsum in (3.46), we write
∣
∣
∣
∣E

[

R12

(∑

k 	=1

R1kRkk

)]

− E[R12]E
[∑

k 	=1

R1kRkk

]∣
∣
∣
∣

≤ (V(R12))
1/2

(

V

(∑

k 	=1

R1kRkk

))1/2

≤ O

(
P3(|Im z|−1)

N1/2

)
N1/2

|Im z|2 ≤ O(P5(|Im z|−1)).

Taking into account (3.2) and (3.14), we have

E[R12]E
[∑

k 	=1

R1kRkk

]

= O

(
1

|Im z|5N
)

N1/2

|Im z|2 = O

(
P7(|Im z|−1)

N1/2

)

.

Therefore, we can bound the first subsum in (3.46) by O(
P7(|Im z|−1)

N3/2 ). To bound the second
subsum in (3.46), we note that

∑

k 	=1

(ER11Rkk)ERk2 = O(P7(|Im z|−1)) (3.47)

by (3.2) and (3.14). To bound

∑

k 	=1

(V(R11Rkk))
1/2(VRk2)

1/2, (3.48)

we use (3.3) and

V(R11Rkk) ≤ E
(|[(R11 − gN(z)) + gN(z)][(Rkk − gN(z)) + gN(z)] − g2

N(z)|2)

= E|(R11 − gN(z))(Rkk − gN(z)) + gN(z)(Rkk − gN(z))

+ gN(z)(R11 − gN(z))|2.
Using (3.3), we see that

V(R11Rkk) = O

(
P8(|Im z|−1)

N

)

. (3.49)

The bounds (3.49), (3.3), and (3.47) then show that the second subsum in (3.46) is
O(

P7(|Im z|−1)

N3/2 ).

Finally, we bound the third subsum in (3.46) by using the estimate
∣
∣
∣
∣

∑

k 	=1x

(R1k)
2R2k

∣
∣
∣
∣ ≤ |Im z|−3.

Now, let us look at the fourth cumulant terms:

κ4

3!N2

[

18E

(∑

k 	=1

R11R1kRkkRk2

)

+ 6E

(∑

k 	=1

R11(Rkk)
2R12

)

(3.50)
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+ 18E

(∑

k 	=1

(R1k)
2RkkR12

)

+ 6E

(∑

k

(R1k)
3Rk2

)]

. (3.51)

Clearly,
∣
∣
∣
∣

∑

k 	=1

R11R1kRkkRk2

∣
∣
∣
∣ ≤ |Im z|−4,

∣
∣
∣
∣

∑

k 	=1

(R1k)
2RkkR12

∣
∣
∣
∣ ≤ |Im z|−4, and

∣
∣
∣
∣

∑

k 	=1

(R1k)
3Rk2

∣
∣
∣
∣ ≤ |Im z|−4.

To estimate the term κ4
N2 E(

∑
k 	=1 R11(Rkk)

2R12), we note that by using (3.2–3.3)

∑

k 	=1

E(R11(Rkk)
2)ER12 = O(P8(|Im z|−1)).

We are left with estimating
∑

k 	=1

(
V(R11(Rkk)

2)
)1/2

(VR12)
1/2 ≤ N |Im z|−3 (VR12)

1/2 = O(N1/2P6(|Im z|−1)).

Combining the estimates of all fourth cumulant terms, we observe that the sums in (3.50–

3.51) are bounded by O(
P8(|Im z|−6)

N3/2 ).

To bound the error term, we note that it contains O(N) terms, such that each of them
is at most O( 1

|Im z|5N5/2 ). Thus, the error term is bounded by O( 1
|Im z|5N3/2 ). Lemma 3.3 is

proven. �

This finishes the proof of Proposition 3.1. �

4 Expectation and Variance of Matrix Entries of Regular Functions of Wigner
Matrices

In this section, we estimate the mathematical expectation and the variance of matrix entries
f (XN)ij for regular test functions f . As before, without loss of generality, we can restrict
our attention to the real symmetric case. The proofs in the Hermitian case are very similar.

To extend the results of Proposition 3.1 to the case of more general test functions, we
will exploit the Helffer-Sjöstrand functional calculus (see [15, 20]) that depends on the use
of almost analytic extensions of functions due to Hörmander [21, 22].

We start by proving Proposition 2.1.

Proof Let us first assume that f has compact support and prove (2.19). Using the Helffer-
Sjöstrand functional calculus (see [15, 20]), we can write for any self-adjoint operator X

f (X) = − 1

π

∫

C

∂f̃

∂z̄

1

z − X
dxdy,

∂f̃

∂z̄
:= 1

2

(∂f̃

∂x
+ i

∂f̃

∂y

)
(4.1)

where:
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(i) z = x + iy with x, y ∈ R;
(ii) f̃ (z) is the extension of the function f defined as follows

f̃ (z) :=
(

l∑

n=0

f (n)(x)(iy)n

n!

)

σ(y); (4.2)

here σ ∈ C∞(R) is a nonnegative function equal to 1 for |y| ≤ 1/2 and equal to zero for
|y| ≥ 1.

It should be noted that the r.h.s. of (4.1) does not depend on the choice of l and the cut-off
function σ(y) in (4.2) (see e.g. Theorem 2 in [15]). For X = XN , (4.1) implies

f (XN)ii = − 1

π

∫

C

∂f̃

∂z̄
Rii(z)dxdy. (4.3)

It follows from (3.1) that with l = 6 in (4.2)

Ef (XN)ii = −E
1

π

∫

C

∂f̃

∂z̄
Rii(z)dxdy (4.4)

= − 1

π

∫

C

∂f̃

∂z̄
gσ (z)dxdy − 1

π

∫

C

∂f̃

∂z̄
εii(z)dxdy (4.5)

=
∫

f (x)dμsc(x) − 1

π

∫

C

∂f̃

∂z̄
εii(z)dxdy (4.6)

where

|εii(z)| = |ERii(z) − gσ (z)| ≤ C1

(
1

N

1

|Im(z)|6
)

,

and C1 depends on μ, μ1 and L, where supp(f ) ⊂ [−L,L].
Using the definition of f̃ (see (4.2)) one can easily calculate

∂f̃

∂z̄
= 1

2

(∂f̃

∂x
+ i

∂f̃

∂y

)
(4.7)

= 1

2

(
6∑

n=0

f (n)(x)(iy)n

n!

)

i
dσ

dy
+ 1

2
f (7)(x)(iy)6 σ(y)

6! (4.8)

and derive the crucial bound

∣
∣
∣
∂f̃

∂z̄

∣
∣
∣ ≤ const‖f ‖C7([−L,+L])|y|6, (4.9)

for f ∈ C7
c (R) with supp(f ) ⊂ [−L,L]. Therefore, the second term on the r.h.s. of (4.5)

can be estimated as follows
∣
∣
∣
∣

1

π

∫

C

∂f̃

∂z̄
εii(z)dxdy

∣
∣
∣
∣ (4.10)

≤ 1

π

∫

C

∣
∣
∣
∣
∂f̃

∂z̄
εii(z)

∣
∣
∣
∣dxdy (4.11)
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≤ C1const(L,μ,μ1)‖f ‖C7([−L,+L])
1

N

∫

dxχf (x)

∫

dyχσ (y) (4.12)

where χf and χσ are the characteristic functions of the support of f and of σ respectively.
This proves (2.19) for f ∈ C7

c (R).

To prove (2.20), one has to generalize the estimate (3.1) in Proposition 3.1 to the whole
complex plane. We claim the following bound

|ERii(z) − gσ (z)| = |E trN RN − gσ (z)| ≤ (|z| + M)
P7(|Im z|−1)

N
, (4.13)

uniformly in z ∈ C, Im z 	= 0, where M is some positive constant. The bound (4.13) fol-
lows from (3.16). The proof is identical to the proof of similar bounds given in [12] Propo-
sition 4.2 and [11] Sect. 3.4. Using the Helffer Sjöstrand functional calculus as before, one

proves (2.20) provided f has eight continuous derivatives and (|x| + 1)
dlf

dxl (x), 0 ≤ l ≤ 8,

are integrable on R.

In the case of the off-diagonal entries, one takes l = 5 in (4.2), so

f̃ (z) :=
(

5∑

n=0

f (n)(x)(iy)n

n!

)

σ(y), (4.14)

and proceeds in a similar fashion. The only significant difference is that one has to replace
the estimate (4.9) by

∣
∣
∣
∂f̃

∂z̄
(x + iy)

∣
∣
∣ ≤ const max

(∣
∣
∣
∣
dlf

dxl
(x)

∣
∣
∣
∣, 1 ≤ l ≤ 6

)

|y|5, (4.15)

which together with (3.2) implies (2.21). To prove (2.23), one takes l = 9 in (4.2) and uses
(3.4).

To bound the variance, we write f (XN)ij using (4.3) with

f̃ (z) :=
(

3∑

n=0

f (n)(x)(iy)n

n!

)

σ(y). (4.16)

Then

∂f̃

∂z̄
= 1

2

(∂f̃

∂x
+ i

∂f̃

∂y

)
(4.17)

= 1

2

(
3∑

n=0

f (n)(x)(iy)n

n!

)

i
dσ

dy
+ 1

2
f (4)(x)(iy)3 σ(y)

3! (4.18)

and, in particular,

∣
∣
∣
∂f̃

∂z̄
(x + iy)

∣
∣
∣ ≤ Const max

(∣
∣
∣
∣
dlf

dxl
(x)

∣
∣
∣
∣, 1 ≤ l ≤ 4

)

|y|3. (4.19)

Now we are ready to bound V(f (XN)ij ). We write

V(f (XN)ij ) = V

(

− 1

π

∫

C

∂f̃

∂z̄
Rij (z)dxdy

)
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= 1

π2

∫

C

∫

C

∂f̃

∂z̄

∂f̃

∂w̄
Cov(Rij (z),Rij (w))dxdydudv, (4.20)

where z = x + iy, w = u + iv. We then obtain the following upper bound from (3.3)

V(f (XN)ij ) ≤ 1

π2

∫

C

∫

C

∣
∣
∣
∣
∂f̃

∂z̄

∣
∣
∣
∣

∣
∣
∣
∣
∂f̃

∂w̄

∣
∣
∣
∣
√

V(Rij (z))
√

V(Rij (w))dxdydudv (4.21)

≤ Const

N

(∫

C

∣
∣
∣
∣
∂f̃

∂z̄

∣
∣
∣
∣

1

|Im z|3 dxdy

)2

. (4.22)

Plugging (4.16) in (4.22) and using (4.18), we obtain (2.22). Proposition 2.1 is proven. �

If μ satisfies the Poincaré inequality (2.15), one can generalize the results of Proposi-
tion 2.1. Recall that we defined |f |L,R and |f |L,δ in (2.27–2.28).

Proposition 4.1 Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix
with the marginal distributions μ and μ1 of the matrix entries satisfying the Poincaré in-
equality (2.15) and f : R → R be a Lipschitz continuous function on [−2σ − δ,2σ + δ] for
some δ > 0. Let us assume f satisfy the subexponential growth condition (2.37). Then

P
(|f (XN)ij − E(f (XN)ij )| ≥ t

)

≤ 2K exp

(

−
√

υNt

2|f |L,δ

)

+ (2K + o(1)) exp

(

−
√

υNδ

2

)

, (4.23)

where |f |L,δ is defined in (2.28), K is defined in (2.39), and υ is the constant in the Poincaré
inequality (2.15). If, in addition, f ∈ C7(R) for i = j (f ∈ C6(R) for i 	= j ), then

E(f (XN)ij ) = δij

∫ 2σ

−2σ

f (x)
1

2πσ 2

√
4σ 2 − x2dx + O

(
1

N

)

. (4.24)

If the marginal distributions μ and μ1 satisfy the Poincaré inequality (2.15) and f is a
Lipschitz continuous function on R, then

P
(|f (XN)ij − E(f (XN)ij )| ≥ t

)

≤ 2K exp

(

−
√

υNt

2|f |L,R

)

, (4.25)

where |f |L,R is defined in (2.27).

Proof Let us assume that μ and μ1 satisfy the Poincaré inequality (2.15). Suppose that f (x)

is a Lipschitz continuous function on R with the Lipschitz constant |f |L,R. Then the matrix-
valued function f (X) on the space of N × N real symmetric (Hermitian) matrices is also
Lipschitz continuous with respect to the Hilbert-Schmidt norm ([14], Proposition 4.6(c))
with the same Lipschitz constant. Namely,

‖f (X) − f (Y )‖HS ≤ |f |L,R‖X − Y‖HS, (4.26)
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where

‖X − Y‖HS = (
Tr(|X − Y |2))1/2

. (4.27)

(We note that even though (4.26) was proven in [14] only for real symmetric matrices,
the proof for Hermitian matrices is essentially the same.) Therefore, f (X)ij is a Lipschitz
continuous function of the matrix entries of X with the same Lipschitz constant. Since the
Poincaré inequality tensorizes [2, 18], the joint distribution of the matrix entries {Xii, 1 ≤
i ≤ N,

√
2Xjk, 1 ≤ j < k ≤ N} of XN satisfies the Poincaré inequality with the constant

1
2Nυ. Therefore, for any real-valued Lipschitz continuous function of the matrix entries with
the Lipschitz constant

|G|L := sup
X 	=Y

|G(X) − G(Y)|
‖X − Y‖HS

,

one has (see e.g. [2], Lemma 4.4.3 and Exercise 4.4.5)

P (|G(XN) − EG(XN)| ≥ t) ≤ 2K exp

(

−
√

υN

2|G|L
t

)

, (4.28)

with

K = −
∑

i≥0

2i log(1 − 2−14−i ).

Applying (4.28) to f (XN)ij one obtains (4.25).
Now let us relax our assumptions on f and consider f : R → R Lipschitz continuous

function on [−2σ − δ,2σ + δ] for some δ > 0 that satisfies the subexponential growth
condition (2.37). Let h(x) be a C∞(R) function with compact support that is identically one
in the neighborhood of the support of the Wigner semicircle law, i.e.,

h(x) ≡ 1 for x ∈ [−2σ − δ,2σ + δ], h ∈ C∞
c (R). (4.29)

For non-constant f , we can always choose h in such a way that

|hf |L,R = |f |L,δ . (4.30)

Note that

f (XN)ij = (f h)(XN)ij when ‖XN‖ ≤ 2σ + δ. (4.31)

It follows from the universality results on the distribution of the largest eigenvalues of XN

(see [23] and also [17, 28, 29, 36–39]) that

‖XN‖ = 2σ + O(N−1/2−1/100)

with probability going to 1. Moreover, G(X) = ‖X‖ is a Lipschitz continuous function of
the matrix entries with Lipschitz constant one. Thus, (4.28) implies

P (|‖XN‖ − 2σ | ≥ t) ≤ (2K + o(1)) exp

(

−
√

υN

2
t

)

. (4.32)
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In particular,

P(‖XN‖ > 2σ + δ) ≤ (2K + o(1)) exp

(

−
√

υNδ

2

)

. (4.33)

Then the estimate (4.23) for f (XN)ij follows from the estimate (4.25) for (hf )(XN)ij ,

(4.31), and (4.33). Finally, the estimate (4.24) follows from (2.19) and (2.21) for (hf )(XN)ij ,

(2.37), and (4.32). �

Remark 4.1 Let f (z)(x) = 1
z−x

, where z /∈ [−2σ − δ,2σ + δ] for some δ > 0. Then

|f (z)|L,δ = 1

dist(z, [−2σ − δ,2σ + δ])2
. (4.34)

If z /∈ R, one has

|f (z)|L,R = 1

|Im z|2 . (4.35)

In a similar fashion, for f z,w(x) = 1
z−x

− 1
w−x

, z,w /∈ [−2σ − δ,2σ + δ], one has

|f (z,w)|L,δ ≤ 2
|z − w|

min (dist(z, [−2σ − δ,2σ + δ]),dist(w, [−2σ − δ,2σ + δ]))3 . (4.36)

For z,w /∈ R, one has

|f (z,w)|L,R ≤ 2
|z − w|

min(|Im z|, |Imw|)3
. (4.37)

Remark 4.2 Applying the Poincaré inequality to Rij (z) one can replace the estimate (3.3)
by

V(Rij (z)) = O

(
1

|Im z|4N
)

.

5 Fluctuations of the Resolvent Entries

In this section, we prove Theorems 2.1, 2.2, 2.5, and 2.6. We start with the proof of Theo-
rem 2.1.

Proof of Theorem 2.1 As in Sect. 1, we denote by X(m), W(m), and R(m), the m × m upper-
left corner submatrix of matrices XN,WN, and RN, where m is a fixed positive integer. We
denote by X̃(N−m) the (N − m) × (N − m) lower-right corner submatrix of XN, and by

R̃(z) =
(
zIN−m − X̃(N−m)

)−1
,

the resolvent of X̃(N−m). We will often drop the dependence on z in the notation of R̃ = R̃(z)

if it does not lead to ambiguity. In addition, let us denote by x(1), . . . , x(m) ∈ R
N−m the

vectors such that the components of x(i), 1 ≤ i ≤ m, are given by the last N − m entries of
the i-th column of the matrix XN. Finally, we will denote by B the (N − m) × m submatrix
of XN formed by the vectors (columns) x(i), 1 ≤ i ≤ m, and by B∗ its adjoint matrix.
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Since the fourth moment of μ and the second moment of μ1 are finite, ‖XN‖ converges
to 2σ almost surely [5]. Thus, for fixed z ∈ C \ [−2σ,2σ ], R̃ = (zIN−m − X̃(N−m))−1 exists
with probability 1 for all but finitely many N (obviously, R̃ always exists for Im z 	= 0).
Moreover, the m × m upper-left corner of the resolvent matrix RN(z) = (zIN − XN)−1,

denoted by R(m)(z), can be written as

R(m)(z) =
(
zIm − X(m) − B∗R̃B

)−1 =
(

zIm − 1√
N

W(m) − B∗R̃B

)−1

. (5.1)

Let us denote

T := zIm − 1√
N

W(m) − B∗R̃B, so R(m) = T −1. (5.2)

Write

T = (
z − σ 2gσ (z)

)
Im − 1√

N
�N = 1

gσ (z)
Im − 1√

N
�N(z), (5.3)

where

(�N)ij (z) = �ij (z) = Wij + √
N

(
〈x(i), R̃x(j)〉 − σ 2gσ (z)δij

)
, 1 ≤ i, j ≤ m. (5.4)

We rewrite (5.4) as

�N(z) = W(m) + YN(z), (5.5)

where the entries of the matrix YN(z) are given by

(YN(z))ij = Yij (z) = √
N

(
〈x(i), R̃(z)x(j)〉 − σ 2gσ (z)δij

)
, 1 ≤ i, j ≤ m. (5.6)

Remark 5.1 The Central Limit Theorem for random sesquilinear forms (see below) implies
that the entries of YN(z), and thus the entries of �N(z) as well, are bounded in probability.
Recall that a sequence {ξN }N≥1 of R

M -dimensional random vectors is bounded in probability
if for any ε > 0 there exists L(ε) that does not depend on N such that P(|ξN | > L(ε)) < ε

for all N ≥ 1.

Then,

√
N

(
R(m) − gσ (z)Im

) = g2
σ (z)�N(z) + O

(
1√
N

)

, (5.7)

in probability (i.e. the error term multiplied by
√

N is bounded in probability).

Taking into account (5.4), (5.7), (5.5), and (5.6), we can prove the weak convergence
of the finite-dimensional distributions of ϒN(z), z ∈ C \ [−2σ,2σ ], defined in (2.1), to the
finite-dimensional distributions of ϒ(z), defined in (2.6) by proving the weak convergence
of the finite-dimensional distributions of YN(z) to those of Y (z), defined by (2.7–2.12).

To this end, we use the Central Limit Theorem for random sesquilinear forms due to Bai
and Yao [4] in the form given by Benaych-Georges, Guionnet, and Maida in Theorem 6.4
in [8]. For the convenience of the reader, we give the formulation of this theorem in the
Appendix (Theorem 7.1).

Let p be a fixed positive integer and z1, . . . , zp ∈ C \ [−2σ,2σ ]. To study the joint dis-
tribution of the entries ((RN)(zl))il ,jl , 1 ≤ l ≤ p, 1 ≤ il ≤ jl ≤ m, it is enough to study the
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distribution of their linear combination. Let a
(i)
s,t , b

(i)
s,t , 1 ≤ s ≤ t ≤ m, 1 ≤ i ≤ p, be arbitrary

real numbers and consider

M(s,t)
N =

p∑

i=1

(
a

(i)
s,t Re(R̃(zi)) + b

(i)
s,t Im(R̃(zi))

)
, 1 ≤ s ≤ t ≤ m, (5.8)

where for any linear operator A

Re(A) = A + A∗

2
,

Im(A) = A − A∗

2i
.

Now, we show that the results of Propositions 3.1 and 2.1 and the almost sure convergence
of ‖XN‖ to 2σ imply that the conditions (7.11, 7.12) of Theorem 7.1 are satisfied. First, we
note that as N → ∞,

trN
(
Re(R̃(z))Re(R̃(w))

)
→ ϕ++(z,w), (5.9)

trN
(
Im(R̃(z))Im(R̃(w))

)
→ ϕ−−(z,w), (5.10)

trN
(
Re(R̃(z))Im(R̃(w))

)
→ ϕ+−(z,w), (5.11)

1

N

N∑

i=1

(Re(R̃(z)))ii(Re(R̃(w)))ii → Re(gσ (z))Re(gσ (w)), (5.12)

1

N

N∑

i=1

(Im(R̃(z)))ii(Im(R̃(z)))ii → Im(gσ (z))Im(gσ (w)), (5.13)

1

N

N∑

i=1

(Re(R̃(z)))ii(Im(R̃(w)))ii → Re(gσ (z))Im(gσ (w)), (5.14)

for z,w ∈ C \ [−2σ,2σ ], where ϕ++(z,w),ϕ−−(z,w), and ϕ+−(z,w) are defined in (2.3–
2.5), and the convergence is in probability.

Indeed, (5.9–5.11) follow from the semicircle law (and the convergence can be taken
to be almost sure). In particular, for real z and w, in order to avoid singularities, one can
replace R̃(z), R̃(w) by h(XN)R̃(z), h(XN)R̃(w), where h is defined in (4.29), and use the
fact that ‖XN‖ → 2σ almost surely as N → ∞.

Let us now prove (5.12). The proofs of (5.13–5.14) are similar. We can assume that
Im z 	= 0, Imw 	= 0. Otherwise, one has to replace R̃(z) by h(XN)R̃(z). We write

|(Re(R̃(z)))ii(Re(R̃(w)))ii − Re(gσ (z))Re(gσ (w))|
≤ |(Re(R̃(z)))ii − Re(gσ (z))||(Re(R̃(w)))ii |

+ |Re(gσ (z))||(Re(R̃(w)))ii − Re(gσ (w))|

≤ |(Re(R̃(z)))ii − Re(gσ (z))| 1

|Imw| + 1

|Im z| |(Re(R̃(w)))ii − Re(gσ (w))|.
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Thus, it follows from (3.3) that

E|(Re(R̃(z)))ii(Re(R̃(w)))ii − Re(gσ (z))Re(gσ (w))| ≤
(

1

|Imw| + 1

|Im z|
)

O(N−1/2),

which implies (5.12).
It should be noted that Theorem 7.1 is proven for non-random matrices M(s,t)

N , 1 ≤ s ≤
t ≤ m. Since the convergence in probability does not imply almost sure convergence, an
additional argument is in order. Let M(s,t)

N be defined as in (5.8), and u(i) = x(i), 1 ≤ i ≤ m.

By calculating the second moments of

(√
N

(
〈x(p), M(p,q)

N x(q)〉 − δpq trN(M(p,p)

N )
))

, 1 ≤ p,q ≤ m,

one can show that these random variables are bounded in probability. Therefore, it is enough
to prove convergence for a subsequence Nn → ∞. Since convergence in probability implies
almost sure convergence for a subsequence, we can now apply Theorem 7.1 directly to a
subsequence.

Applying Theorem 7.1, we establish the convergence of the finite-dimensional distribu-
tions of YN(z) and obtain (2.7–2.12). Theorem 2.1 is proven. �

The proof of Theorem 2.5 is very similar to the proof of Theorem 2.1, Theorem 7.1 plays
the central role in our arguments again. We choose

M(s,t)
N =

p∑

i=1

(
a

(i)
s,t Re(R̃(zi)) + b

(i)
s,t Im(R̃(zi))

)
, 1 ≤ s ≤ t ≤ m, (5.15)

where a
(i)
s,t , b

(i)
s,t , 1 ≤ s < t ≤ m, 1 ≤ i ≤ p, are arbitrary complex numbers and

a(i)
s,s , b(i)

s,s , 1 ≤ s ≤ m, 1 ≤ i ≤ p are arbitrary real numbers. Applying Theorem 6.1, we
establish the convergence of the finite-dimensional distributions of YN(z) and obtain (2.42–
2.47).

Now, we prove Theorem 2.2.

Proof of Theorem 2.2 Let μ and μ1 satisfy the Poincaré inequality (2.15). To prove the
functional limit theorem, i.e. the convergence in distribution of the sequence of probability
measures PN on C(D,C

m(m+1)/2), it is now sufficient to prove that the sequence PN is tight
[10]. For this, we need to show that for

ϒN(z) = √
N

(
R(m)(z) − gσ (z)Im

)
, z ∈ C \ [−2σ,2σ ]

the following conditions are satisfied:

(a) for some fixed z0 ∈ D, for each ε > 0, there exist sufficiently large K and N0 such that

P(‖ϒN(z0)‖ ≥ K) ≤ ε for all N ≥ N0, (5.16)

and
(b) for each ε > 0 and α > 0 there exist γ > 0 and N0 such that

P(ωϒN
(γ ) ≥ α) ≤ ε for all N ≥ N0, (5.17)
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where ωϒN
(γ ) denotes the modulus of continuity of YN(z) on D, namely

ωϒN
(γ ) = sup

|z−w|≤γ

‖ϒN(z) − ϒN(w)‖, (5.18)

where the supremum is taken over all z,w ∈ D such that |z − w| ≤ γ.

The property (a) immediately follows from the definition of ϒN and the bounds (3.1–
3.3) in Proposition 3.1. To prove (b), we replace RN(z) by h(XN)RN(z) in the definition of
ϒN(z) (if D ∩ R = ∅, this procedure is not needed), where h is defined in (4.29) in such a
way that supp(h) ∩ D = ∅. We note that RN(z) = h(XN)RN(z) almost surely for all z and
for sufficiently large N.

It then follows from the results of Proposition 4.1 that uniformly in z,w ∈ D,

P (|ϒN(z) − ϒN(w)| ≥ t) ≤ 2K exp

(

−const1
t

|z − w|
)

+ (2K + o(1)) exp

(

−
√

υNδ

2

)

(5.19)
with some const1 > 0. In addition, for any z ∈ D,

P

(∣
∣
∣
∣
d(ϒN)ij (z)

dz

∣
∣
∣
∣ ≥ t

)

≤ 2K exp(−const2t) + (2K + o(1)) exp

(

−
√

υNδ

2

)

, (5.20)

for some const2 > 0. Without loss of generality, we can assume that D is a rectangle with the
sides parallel to the coordinate axes. We then partition D into O(22n) small squares

⊔
i D

(n)
i

of the diameter 2−n, 1 ≤ n ≤ n1 = const log(N)(1 + o(1)), where const > 0 is chosen so
that

const >
log 2

2
. (5.21)

We then estimate the probability of the event that

sn := sup‖ϒN(z) − ϒN(w)‖ ≥ An1002−n, (5.22)

where the supremum in (5.22) is taken over all pairs (z,w) that are the vertices of the same
small square. Using (5.19), one can show that this probability is

O

(

exp

(

−const1A

2
n100

))

+ O

(

exp

(

−
√

υNδ

2

))

uniformly in N. We can also estimate the probability of the event

Sn1 := sup

∥
∥
∥
∥
d(ϒN)(z)

dz

∥
∥
∥
∥ ≥ An100

1 = Aconst100(log(N))100(1 + o(1)), (5.23)

where the supremum in (5.23) is taken over all vertices of the partition
⊔

i D
(n1)

i , by

O

(

exp

(

−const2A

2
n100

1

))

+ O

(

exp

(

−
√

υNδ

2

))

,

uniformly in N.
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Finally, we note that since we choose const > 0 in n1 = const log(N)(1 + o(1)) to be
sufficiently large so that (5.21) is satisfied, we have

∣
∣
∣
∣Sn1 − sup

z∈D

∥
∥
∥
∥
d(ϒN)(z)

dz

∥
∥
∥
∥

∣
∣
∣
∣ ≤ 1, (5.24)

since the second derivatives of the entries of ϒN(z) are trivially bounded by const3

√
N,

where const3 depends on D. Now choosing A sufficiently large, we can make the probability
P(ωYN

(cα| logα|) ≥ α) smaller than ε for a suitable constant c > 0. We leave the details to
the reader. �

6 Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices

We give the proofs in the real symmetric case (Theorems 2.3 and 2.4). The proofs in the
Hermitian case (Theorems 2.7 and 2.8) are very similar. First, we assume that μ and μ1

satisfy the Poincaré inequality (2.15) and prove Theorem 2.4. Then we will extend it to the
case of finite fourth moment and prove Theorem 2.3.

Proof of Theorem 2.4 We start by considering a test function f which is analytic in a neigh-
borhood of [−2σ,2σ ] and takes real values on R. We write

f (XN)ij = 1

2πi

∫

γ

f (z)(RN(z))ij dz, (6.1)

where γ is a clockwise-oriented contour in the domain of analyticity of f that encircles the
interval [−2σ,2σ ]. Then

√
N

(

f (XN)ij − δij

∫ 2σ

−2σ

f (x)
1

2πσ 2

√
4σ 2 − x2dx

)

= 1

2πi

∫

γ

f (z)(ϒN(z))ij dz, 1 ≤ i ≤ j ≤ m. (6.2)

By the functional convergence in Theorem 2.2, the r.h.s. in (6.2) converges in distribution to
the distribution of independent (up from the diagonal) random variables

1

2πi

∫

γ

f (z)ϒij (z)dz =
(

1

2πi

∫

γ

f (z)g2
σ (z)dz

)

Wij + 1

2πi

∫

γ

f (z)g2
σ (z)Yij (z)dz, (6.3)

1 ≤ i ≤ j ≤ m. We evaluate

1

2πi

∫

γ

f (z)g2
σ (z)dz = 1

2πi

∫

γ

f (z)
zgσ (z) − 1

σ 2
dz

= 1

σ 2

1

2πi

∫

γ

f (z)zgσ (z)dz

= 1

σ 2

∫ 2σ

−2σ

xf (x)
1

2πσ 2

√
4σ 2 − x2dx. (6.4)
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The last integral in (6.3) is a real Gaussian random vector with independent entries and
variances

1

2πi

∫

γ

1

2πi

∫

γ

f (z)f (w)
(
E(g2

σ (z)g2
σ (w)Yij (z)Yij (w))

− E(g2
σ (z)Yij (z))E(g2

σ (w)Yij (w))
)
dxdw. (6.5)

Let us first consider the off-diagonal case i 	= j. By (2.10–2.12) and (2.2–2.5), we have

E
(
g2

σ (z)g2
σ (w)Yij (z)Yij (w)

) − E
(
g2

σ (z)Yij (z)
)
E

(
g2

σ (w)Yij (w)
)

= σ 4g2
σ (z)g2

σ (w)ϕ(z,w)

= −σ 4g2
σ (z)g2

σ (w)
gσ (z) − gσ (w)

z − w
= −σ 4gσ (z)gσ (w)

g2
σ (z)gσ (w) − gσ (z)g2

σ (w)

z − w

= −σ 2gσ (z)gσ (w)
zgσ (z)gσ (w) − gσ (w) − wgσ (z)gσ (w) + gσ (z)

z − w

= −σ 2gσ (z)gσ (w)

(

gσ (z)gσ (w) + gσ (z) − gσ (w)

z − w

)

= −σ 2g2
σ (z)g2

σ (w) + (ϕ(z,w) − gσ (z)gσ (w)) .

We note that ϕ(z,w) − gσ (z)gσ (w) = Cov( 1
z−η

, 1
w−η

), where η is distributed according to
the semicircle law (1.7). Then

1

2πi

∫

γ

1

2πi

∫

γ

f (z)f (w)(ϕ(z,w) − gσ (z)gσ (w))dzdw

= 1

2πi

∫

γ

1

2πi

∫

γ

f (z)f (w)Cov

(
1

z − η
,

1

w − η

)

dzdw = V(f (η)).

This together with (6.4), (6.3) proves (2.33), (2.34) for analytic functions.
In the diagonal case i = j, the previously studied terms contribute to

E(g2
σ (z)g2

σ (w)Yij (z)Yij (w)) − E(gσ (z)Yij (z))E(gσ (w)Yij (w))

with a factor of two. In addition, (2.7–2.9) provide one more term κ4(μ)g3
σ (z)g3

σ (w). Eval-
uating

1

2πi

∫

γ

f (z)g3
σ (z)dz = 1

2πi

∫

γ

f (z)
(z2 − σ 2)gσ (z) − z

σ 4
dz

= 1

σ 4

1

2πi

∫

γ

f (z)(z2 − σ 2)gσ (z)dz

= 1

σ 4

∫ 2σ

−2σ

(x2 − σ 2)f (x)
1

2πσ 2

√
4σ 2 − x2dx, (6.6)

we prove (2.30), (2.33) in the analytic case with the centralizing constant
∫ 2σ

−2σ
f (x)dμsc(dx).

It follows from (4.32) that if f satisfies the subexponential growth condition (2.37) on the
real line then we can choose the centralizing constants to be Ef (XN)ij in (2.30), (2.33). To
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extend the results of Theorem 2.3 to a more general class of functions we apply a standard
approximation procedure. If f is Lipschitz continuous on [−2σ − δ,2σ + δ] and satisfies
(2.37), we choose a sequence of analytic functions {fn}, n ≥ 1, such that

fn(0) = f (0), n ≥ 1, and |fn − f |L,δ → 0 as n → ∞,

where |f |L,δ has been defined in (2.28). Let us also choose h in such a way that h : R → R

is a smooth function with compact support, h(x) = 1 for x ∈ [−2σ − δ/2,2σ + δ/2], and
h(x) = 0 for |x| ≥ 2σ + 3

4δ. We observe that for any n ≥ 1

f (XN) 	= (f h)(XN), fn(XN) 	= (fnh)(XN),

with probability exponentially small in
√

N . In addition,

E|(f (1 − h))(XN)ij | = O(exp(−const
√

N)),

E|(fn(1 − h))(XN)ij | = O(exp(−constn
√

N)), n ≥ 1,

where const > 0, constn > 0. We then choose n sufficiently large so that |f h −
fnh|L ≤ ε. As in the proof of Proposition 4.1, we use the fact that for any Lipschitz contin-
uous f , the function f (X)ij is a Lipschitz continuous function of the matrix entries of X.

Therefore, we can show that V(
√

N((f h)(XN)ij − (fnh)(XN)ij )) can be made arbitrary
small (uniformly in N ) for sufficiently large n if we apply the concentration inequality (4.28)
to (f h)(XN)ij − (fnh)(XN)ij . Finally, we observe that ω2(fn) → ω2(f ), α2(fn) → α2(f ),
β2(fn) → β2(f ), d2(fn) → d2(f ) as n → ∞.

It follows from Proposition 2.1 and (4.32) that if f is seven times continuously differen-
tiable on [−2σ − δ,2σ + δ] (six times continuously differentiable on [−2σ − δ,2σ + δ]
in the off-diagonal case i 	= j ) and satisfies (2.37) then one can replace Ef (XN)ij by
δij

∫
f (x)dμsc(dx) in (2.30), (2.33) since

Ef (XN)ij = δij

∫

f (x)dμsc(dx) + O

(
1

N

)

.

Theorem 2.4 is proven. �

Now, we prove Theorem 2.3 assuming only that μ and μ1 have finite fourth moments.
The role of (4.28) will be played by (2.22).

Proof of Theorem 2.3 By Theorem 2.1 and Proposition 3.1, we have the result for finite
linear combinations

f (x) =
k∑

l=1

al

1

zl − x
, zl /∈ [−2σ,2σ ], 1 ≤ l ≤ k, (6.7)

and, more generally, for

f (x) =
k∑

l=1

alhl(x)
1

zl − x
, zl /∈ [−2σ,2σ ], 1 ≤ l ≤ k, (6.8)
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where hl ∈ C∞
c (R), 1 ≤ l ≤ k, satisfy (4.29). Applying the Stone-Weierstrass theorem (see

e.g. [32]), one can show that such functions are dense in C4
c (R). Therefore, we can approx-

imate an arbitrary f ∈ C4
c (R) by such functions h(x)fn(x) in such a way that

supp(f ) ⊂ [−A,A], supp(hfn) ⊂ [−A,A],
for all n and sufficiently large A > 0, and ‖f − hfn‖C4([−A,A]) → 0, as n → ∞. It fol-
lows from (2.22) that V(f (XN)ij − (h(x)fn)(XN)ij ) can be made arbitrary small uniformly
in n provided we choose n to be sufficiently large. Since ω2(hfn) → ω2(f ), α2(hfn) →
α2(f ), β2(hfn) → β2(f ), d2(hfn) → d2(f ) as n → ∞, the result follows. Theorem 2.3 is
proven. �

Appendix

In our analysis, we need to study the expectation of the random matrix entries multiplied
by functions of the random matrix. In order to handle this we use the following decoupling
formula [24]:

Given ξ , a real-valued random variable with p +2 finite moments, and φ a function from
C → R with p + 1 continuous and bounded derivatives then:

E(ξφ(ξ)) =
p∑

a=0

κa+1

a! E(φ(a)(ξ)) + ε. (7.1)

Where κa are the cumulants of ξ , |ε| ≤ C supt

∣
∣φ(p+1)(t)

∣
∣E(|ξ |p+2), C depends only on p.

For any two Hermitian matrices X1 and X2 and non-real z we have the resolvent identity:

(zI − X2)
−1 = (zI − X1)

−1 − (zI − X1)
−1(X1 − X2)(zI − X2)

−1. (7.2)

If X is a real symmetric matrix with resolvent R then the derivative of Rkl with respect
to Xpq , for p 	= q is given by

∂Rkl

∂Xpq

= RkpRql + RkqRpl. (7.3)

If p = q then the derivative is:

∂Rkl

∂Xpp

= RkpRpl. (7.4)

In a similar way, if X is a Hermitian matrix then the derivative of Rkl with respect to
ReXpq, ImXpq , for p 	= q are given by

∂Rkl

∂ ReXpq

= RkpRql + RkqRpl, (7.5)

∂Rkl

∂ ImXpq

= i
(
RkpRql − RkqRpl

)
. (7.6)

When p = q then

∂Rkl

∂Xpp

= RkpRpl. (7.7)
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We will use the following bounds on the resolvent:

‖RN(z)‖ = 1

dist(z, Sp(X))
, (7.8)

where by Sp(X) we denote the spectrum of a real symmetric (Hermitian) matrix X. (7.8)
implies

‖RN(z)‖ ≤ |Im(z)|−1 (7.9)

which also implies all the entries of the resolvent are bounded by |Im(z)|−1. Similarly, we
have the following bound for the Stieltjes transform, g(z), of any probability measure:

|g(z)| ≤ |Im(z)|−1. (7.10)

Below, we state the Central Limit Theorem for random sesquilinear forms of Bai and
Yao in the form given in [8].

Theorem 7.1 Let us fix m ≥ 1 and let, for each N, M(s,t)
N , 1 ≤ s, t ≤ m, be a family of

N × N real (resp. complex) matrices such that for all s, t, M(t,s)
N = (M(s,t)

N )∗ and such that
for all s, t = 1, . . . ,m,

trN
(

M(s,t)
N M(t,s)

N

)
→ σ 2

s,t , as n → ∞, (7.11)

1

N

N∑

i=1

|(M(s,s)
N )ii |2 → γs, as n → ∞. (7.12)

Let u(1), . . . , u(m) be a sequence of i.i.d. random vectors in R
N (resp. C

N ) such that the
N coordinates of u(1) are i.i.d. centered real (resp. complex) centered random variables
distributed according to a probability measure with variance one and finite fourth moment.
In the complex case, we also assume that real and imaginary parts of each coordinate of
u(1) are independent and identically distributed according to a probability measure ν on the
real line.

For each N, define the m × m random matrix

GN :=
(√

N
(
〈u(p), M(p,q)

N u(q)〉 − δpq trN(M(p,p)

N )
))

, 1 ≤ p,q ≤ m. (7.13)

Then the distribution of GN converges weakly to the distribution of a real symmetric (resp.
Hermitian) random matrix G = (gp,q), 1 ≤ p,q ≤ m, such that the random variables

{gp,q, 1 ≤ p,q ≤ m} (resp.{gs,s , 1 ≤ s ≤ m, Regp,q, Imgp,q, 1 ≤ p,q ≤ m})
are independent for all s, gss ∼ N(0,2σ 2

s,s + κ4(ν)γs) (resp. gss ∼ N(0, σ 2
s,s + 1

2κ4(ν)γs)),

and for all p 	= q, gs,t ∼ N(0, σ 2
p,q), (resp.) Regs,t ∼ N(0, 1

2σ 2
p,q), Imgs,t ∼ N(0, 1

2σ 2
p,q),

where κ4(ν) denotes the fourth cumulant of ν.

Remark 7.1 Almost simultaneously with our paper, L. Pastur and A. Lytova posted a
preprint [31] where they extended the technique of [26] and gave another proof of the con-
vergence in distribution for a normalized diagonal entry

√
N(f (XN)11 − E(f (XN)11)) un-

der the conditions that a real symmetric Wigner matrix XN has i.i.d. entries up from the
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diagonal and the cumulant generating function log(EezW12) is entire. Pastur and Lytova re-
quire that a test function f satisfies

∫

R

(1 + |k|)3|f̂ (k)|dk < ∞,

where f̂ (k) is the Fourier transform of f.

References

1. Anderson, G.W., Zeitouni, O.: A CLT for a band matrix model. Probab. Theory Relat. Fields 134, 283–
338 (2006)

2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies
in Advanced Mathematics, vol. 118. Cambridge University Press, New York (2010)

3. Bai, Z.D.: Methodologies in spectral analysis of large-dimensional random matrices, a review. Stat. Sin.
9, 611–677 (1999)

4. Bai, Z.D., Yao, J.: Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri
Poincaré Probab. Stat. 44, 447–474 (2008)

5. Bai, Z.D., Yin, Y.Q.: Necessary and sufficient conditions for the almost sure convergence of the largest
eigenvalue of Wigner matrices. Ann. Probab. 16, 1729–1741 (1988)

6. Bai, Z.D., Wang, X., Zhou, W.: CLT for linear spectral statistics of Wigner matrices. Electron. J. Probab.
14, 2391–2417 (2009)

7. Ben Arous, G., Guionnet, A.: Wigner matrices. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford
Handbook on Random Matrix Theory. Oxford University Press, New York (2011)

8. Benaych-Georges, F., Guionnet, A., Maida, M.: Fluctuations of the extreme eigenvalues of finite rank
deformations of random matrices. Available at arXiv:1009.0145

9. Beran, R.J.: Rank spectral processes and tests for serial dependence. Ann. Math. Stat. 43, 1749–1766
(1972)

10. Billingsley, P.: Convergence of Probability Measures. Willey Series in Probability and Statistics. Wiley,
New York (1999)

11. Capitaine, M., Donati-Martin, C.: Strong asymptotic freeness of Wigner and Wishart matrices. Indiana
Univ. Math. J. 56, 767–804 (2007)

12. Capitaine, M., Donati-Martin, C., Féral, D.: The largest eigenvalue of finite rank deformation of large
Wigner matrices: convergence and non universality of the fluctuations. Ann. Probab. 37(1), 1–47 (2009)

13. Capitaine, M., Donati-Martin, C., Féral, D.: Central limit theorems for eigenvalues of deformations of
Wigner matrices. Available at arXiv:0903.4740

14. Chen, X., Qi, H., Tseng, P.: Analysis of nonsmooth symmetric-matrix-valued functions with applications
to semidefinite complementary problems. SIAM J. Optim. 13, 960–985 (2003)

15. Davies, E.B.: The functional calculus. J. Lond. Math. Soc. 52, 166–176 (1995)
16. Erdös, L.: Universality of Wigner random matrices: a survey of recent results. Available at

arXiv:1004.0861
17. Erdös, L., Yin, J., Yau, H.-T.: Rigidity of eigenvalues of generalized Wigner matrices. Available at

arXiv:1007.4652v3
18. Guionnet, A., Zegarlinski, B.: Lectures on logarithmic Sobolev inequalities. In: Seminaire de Probabil-

ités XXXVI. Lecture Notes in Mathematics, vol. 1801. Springer, Paris (2003)
19. Haagerup, U., Thorbjornsen, S.: A new application of random matrices: Ext(C∗

red(F2)) is not a group.
Ann. Math. 162, 711–775 (2005)

20. Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnetique et equation de Harper. In:
Holden, H., Jensen, A. (eds.) Schrödinger Operators. Lecture Notes in Physics, vol. 345, pp. 118–197.
Springer, Berlin (1989)

21. Hörmander, L.: On the singularities of solutions of partial differential equations. In: Proceedings of the
International Conference, Tokyo, 1969, pp. 31–40. University of Tokyo Press, Tokyo (1970)

22. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. 1. Springer, New York (2003)
23. Johansson, K.: Universality for certain Hermitian Wigner matrices under weak moment conditions.

Available at arXiv:0910.4467v3
24. Khorunzhy, A., Khoruzhenko, B., Pastur, L.: Asymptotic properties of large random matrices with inde-

pendent entries. J. Math. Phys. 37, 5033–5060 (1996)

http://arxiv.org/abs/arXiv:1009.0145
http://arxiv.org/abs/arXiv:0903.4740
http://arxiv.org/abs/arXiv:1004.0861
http://arxiv.org/abs/arXiv:1007.4652v3
http://arxiv.org/abs/arXiv:0910.4467v3


Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices 591

25. Lytova, A., Pastur, L.: Central Limit Theorem for linear eigenvalue statistics of random matrices with
independent entries. Ann. Probab. 37, 1778–1840 (2009)

26. Lytova, A., Pastur, L.: Fluctuations of matrix elements of regular functions of Gaussian random matrices.
J. Stat. Phys. 134, 147–159 (2009)

27. O’Rourke, S., Renfrew, D., Soshnikov, A.: On fluctuations of matrix entries of regular functions of
Wigner matrices with non-identically distributed entries. J. Theor. Probab. (to appear). Available at
arXiv:1104.1663 v.4

28. Péché, S., Soshnikov, A.: Wigner random matrices with non-symmetrically distributed entries. J. Stat.
Phys. 129, 857–884 (2007)

29. Péché, S., Soshnikov, A.: On the lower bound of the spectral norm of symmetric random matrices with
independent entries. Electron. Commun. Probab. 13, 280–290 (2008)

30. Pizzo, A., Renfrew, D., Soshnikov, A.: On finite rank deformations of Wigner matrices. Ann. Inst. Henri
Poincaré B, Probab. Stat. (to appear). Available at arXiv:1103.3731v4

31. Pastur, L., Lytova, A.: Non-Gaussian limiting laws for entries of regular functions of the Wigner matrices.
Available at arXiv:1103.2345

32. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1: Functional Analysis, 2nd edn.
Academic Press, New York (1980)

33. Sevast’yanov, B.A.: A class of limit distributions for quadratic forms of normal stochastic variables.
Theory Probab. Appl. 6, 337–340 (1961)

34. Shcherbina, M.: Central limit theorem for linear eigenvalue statistics of Wigner and sample covariance
random matrices. Available at arXiv:1101.3249v1

35. Shcherbina, M.: Letter from March 1, 2011
36. Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Commun. Math.

Phys. 207, 697–733 (1999)
37. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun.

Math. Phys. 298(2), 549–572 (2010)
38. Tracy, C., Widom, H.: Level spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–

174 (1994)
39. Tracy, C., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177,

727–754 (1996)
40. Whittle, P.: On the convergence to normality of quadratic forms in independent variables. Theory Probab.

Appl. 9, 113–118 (1964)

http://arxiv.org/abs/arXiv:1104.1663
http://arxiv.org/abs/arXiv:1103.3731v4
http://arxiv.org/abs/arXiv:1103.2345
http://arxiv.org/abs/arXiv:1101.3249v1

	Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices
	Abstract
	Introduction
	Formulation of Main Results
	Mathematical Expectation and Variance of Resolvent Entries
	Expectation and Variance of Matrix Entries of Regular Functions of Wigner Matrices
	Fluctuations of the Resolvent Entries
	Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices
	Appendix
	References


