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Abstract Peres and Winkler proved a ‘censoring’ inequality for Glauber dynamics on
monotone spins systems such as the Ising model. Specifically, if, starting from a constant-
spin configuration, the spins are updated at some sequence of sites, then inserting another
site into this sequence brings the resulting configuration closer in total variation to the sta-
tionary distribution. We show by means of simple counterexamples that the analogous state-
ments fail for Glauber dynamics on proper colorings of a graph, and for lazy transpositions
on permutations, answering two questions of Peres. It is not known whether the censoring
property holds in other natural settings such as the Potts model.
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1 Introduction

Peres and Winkler [7] proved the following striking and useful property of Glauber dy-
namics on the Ising model. Consider a finite set of sites with arbitrary ferromagnetic pair
interactions, and let π be the associated stationary distribution on spin configurations. Start-
ing from a constant spin configuration, apply single-site updates at a finite deterministic
sequence of sites, where each update consists of replacing the spin at the chosen site with
a random spin chosen according to its conditional law under π given all other spins. This
results in a random configuration. If an additional site is inserted into the update sequence,
the resulting configuration is no further from π in total variation distance.

The above result has proved to be an invaluable tool in the analysis of mixing time for
the Ising model; see the applications in [1–5]. Peres and Winkler prove their result in the
more general setting of monotone spin systems; that is, those in which the set of spins is
totally ordered and single-site updates stochastically respect this ordering. The purpose of
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this note is to demonstrate that analogous statements fail in two other natural settings: proper
colorings and lazy transpositions.

We first consider colorings. Let G = (V ,E) be a finite simple graph. A (proper) q-
coloring of G is a map from V to {1, . . . , q} that assigns distinct values (colors) to adjacent
vertices. Let μ be a probability measure on the set of q-colorings and let v ∈ V be a vertex.
Define the recoloring operator κ(v) as follows. Let μ · κ(v) be the law of the coloring
obtaining from a coloring with law μ by replacing the color at v with a uniformly random
color from the set of colors absent from v’s neighbors (conditional on the existing coloring).
Let π be the uniform measure on all q-colorings of G. An equivalent interpretation of κ(v)

is that the color at v is replaced with a random color chosen according to its conditional
law under π , given the existing coloring of V \ {v}. Observe also that π is the stationary
distribution of the Markov chain that recolors a random vertex (chosen according to any
distribution with full support) at each step.

Proposition 1 Consider proper 4-colorings of the triangle. Let d be any continuous metric
on the space of probability measures on colorings, and let δ be the point measure on some
fixed coloring. There exist integers 1 ≤ t < m and vertices i1, . . . , im, I such that, writing

μ = δ · κ(i1) · · ·κ(im),

ν = δ · κ(i1) · · ·κ(it )κ(I )κ(it+1) · · ·κ(im),

we have

d(μ,π) < d(ν,π).

In other words, if, starting from a deterministic coloring, a sequence of vertices is re-
colored, then inserting an extra vertex in the sequence can move the resulting distribution
further from π . In particular, the result applies when d is total variation distance, in which
case it answers a question of [6].

Now we turn to permutations. Let μ be a probability measure on the symmetric group
of permutations of V := {1, . . . , n}. For a pair i, j ∈ V , we define the lazy transposition
operator τ(i, j) as follows. Let ρ = (ρ(1), . . . , ρ(n)) be a random permutation with law μ,
and let μ · τ(i, j) be the law of the random permutation obtained from ρ by interchanging
ρ(i) and ρ(j) with probability 1/2 (conditional on ρ), and otherwise leaving ρ unchanged.
Let δ be the point measure on the identity permutation, and let π be the uniform probability
measure on all n! permutations.

Proposition 2 Consider lazy transpositions on V = {1, . . . ,4}. Let d be any continuous
metric on the space of probability measures on permutations. There exist m, t , I , J , i1, j1, . . .

such that, writing

μ := δ · τ(i1, j1) · · · τ(im, jm),

ν := δ · τ(i1, j1) · · · τ(it , jt )τ (I, J )τ (it+1, jt+1) · · · τ(im, jm),

we have

d(μ,π) < d(ν,π).
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2 Proofs

We will first prove Proposition 2, and then deduce Proposition 1.

Proof We will show that, as (M,N) → ∞,

δ · [τ(2,4)τ (3,4)
]M

τ(1,4)τ (2,4)
[
τ(1,4)τ (3,4)

]N → π, (1)

while

δ · [τ(2,4)τ (3,4)
]M

τ(1,4)τ (3,4)τ (2,4)
[
τ(1,4)τ (3,4)

]N → α, (2)

for some α �= π . By the continuity of d , the required inequality then follows by taking M

and N sufficiently large.
We interpret permutations as arrangements of particles, so that in permutation μ, particle

μ(i) is in location i, and τ(i, j) swaps the particles in locations i, j with probability 1/2.
Let π1 be the uniform measure on permutations ρ such that ρ(1) = 1, and note that

δ · [τ(2,4)τ (3,4)
]M → π1 as M → ∞

(by the convergence theorem for irreducible aperiodic Markov chains). Now consider a ran-
dom permutation σ with law

β := π1 · τ(1,4)τ (2,4).

The location σ−1(1) of particle 1 is equal to 2 with probability 1/4, since after the first
transposition τ(1,4) it was 1 or 4 each with probability 1/2. Conditional on the location
of particle 1, the arrangement of particles 2, 3, 4 is still uniform, so σ(2) (the particle in
location 2) is exactly uniform among 1, . . . ,4. Therefore,

β · [τ(1,4)τ (3,4)
]N → π as N → ∞,

since conditional on σ(2), the effect of the additional transpositions is to uniformize the
particles in locations 1, 3, 4 in the limit. The convergence (1) now follows by the continuity
of the transposition operator τ(i, j).

A similar argument gives (2): after applying the extra transposition τ(3,4), particle 1 is
at location 4 with probability 1/4 (and cannot be at 2), therefore after τ(2,4) it is at 2 with
probability 1/8. Thus (2) holds with α the law of some random permutation that has 1 in
location 2 with probability 1/8. �

Proof of Proposition 1 Let the triangle G have vertices 1, 2, 3, and assume without loss of
generality that δ is the point measure on the identity map. We may identify a 4-coloring of G

with a permutation assigning colors 1, . . . ,4 to four vertices 1, . . . ,4, with the color at vertex
4 being the one absent from the coloring of G. For i = 1,2,3, the operator κ(i) corresponds
to the lazy transposition operator τ(i,4). Since the example constructed in the proof of
Proposition 2 uses only transpositions involving 4, the same example applies here. �



1652 A.E. Holroyd

3 Further Remarks

The example in the proof of Proposition 2 was chosen to minimize computations and facil-
itate the proof of Proposition 1. Naturally, many variations are possible. If d is total varia-
tion distance, an explicit computation shows that the required inequality in fact holds with
M = N = 1. As a simpler alternative which does not adapt so readily to coloring, we have

δ · [τ(2,4)τ (3,4)
]M

τ(1,4)τ (2,4)τ (1,3) → π as M → ∞,

while the insertion of τ(3,4) before the last τ(1,3) again gives a different limit. Finally,
if we relax the problem by allowing a “block update” τ(S) (defined so as to uniformly
permute the elements of a set S ⊂ V ), then we may of course do away with limits, replacing
the expressions [ ]M and [ ]N with τ({2,3,4}) and τ({1,3,4}).

We note that our example adapts to the anti-ferromagnetic Potts model. Consider the
4-state Potts model on a triangle, with anti-ferromagnetic interactions (i.e. favoring distinct
spins) of equal strength J along each edge. As J → ∞, the transition probabilities for site
updates approach those of the 4-coloring model. Hence, starting from a configuration where
all 3 vertices have different spins, the example in the proof of Proposition 1 applies here if J

is large enough. Moreover, starting from a constant all-1 configuration and updating vertices
2 and 3 results in a configuration that is asymptotically (as J → ∞) uniform on those where
vertex 1 has spin 1. Hence the same example applies with M = 1.

It is an open question whether extra updates can delay mixing for the ferromagnetic Potts
model starting from a constant spin configuration.
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