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P. Polińska · N. Schulmann · H. Meyer · J. Farago ·
A. Johner · S.P. Obukhov · J. Baschnagel

Received: 21 July 2011 / Accepted: 9 September 2011 / Published online: 7 October 2011
© Springer Science+Business Media, LLC 2011

Abstract It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond the corre-
lation length ξ characterizing the decay of the density fluctuations. Summarizing simulation
results obtained by means of a variant of the bond-fluctuation model with finite monomer ex-
cluded volume interactions and topology violating local and global Monte Carlo moves, we
show that due to an interplay of the chain connectivity and the incompressibility constraint,
both static and dynamical correlations arise on distances r � ξ . These correlations are scale-
free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both
monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.

Keywords Polymer melts · Monte Carlo simulations · Time-dependent properties

1 Introduction

1.1 General Context

Solutions and melts of macromolecular polymer chains are disordered condensed-matter
systems [1] of great complexity and richness of both their physical and chemical proper-
ties [2–8]. Being of great industrial importance and playing a central role in biology and
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biophysics [8, 9], they represent one relatively well-understood fundamental example of the
vast realm of so-called “soft matter” systems [10] comprising also, e.g., colloids [11], liquid
crystals [1] and self-assembled surfactant systems [10].1 The notion “polymer” is not lim-
ited to the hydrocarbon macromolecules of organic polymer chemistry à la H. Staudinger or
W.H. Carothers [15, 16] but refers also to biopolymers such as DNA or corn starch [8, 10]
and various self-assembled essentially linear chain-like supramolecular structures such as,
e.g., acting filaments [9] or wormlike giant micelles formed by some surfactants [10, 17].

Obviously, dense polymeric systems are quite complicated, but since their large scale
properties are dominated by the interactions of many polymers, each of these interactions
should only have a small (both static and dynamical) effect. A sound theoretical starting
point is thus to add up these small effects independently and to correct then self-consistently
for the deviations due to correlations between the interactions [4].2 Obviously, the number of
chains a reference chain interacts with, and thus the success of such a mean-field approach,
depends on the spatial dimension d of the problem considered. Let N be the number of
monomeric repeat units per polymer chain (with N � 100), RN ∼ Nν their typical size,
ρ∗

N ≈ N/Rd
N their self-density (also called “overlap density”) and ν their inverse fractal

dimension [19]. Assuming the monomer number density ρ to be N -independent, a mean-
field theoretical approach may be hoped to be successful if [3]

ρ∗
N

ρ
≈ N

ρRd
N

∼ N1−dν � 1. (1)

For to leading order Gaussian chains (ν = 1/2) this implies that typically ρ/ρ∗
N ∼ Nd/2−1 =√

N � 1 chains interact in d = 3. Hence, dense three-dimensional (3D) polymeric liquids
should be much easier to understand than normal liquids, say benzene and let alone water,
where each molecule has only a few, say ten, directly interacting neighbors [20].

1.2 Coarse-Grained Lattice Models for Polymer Melts

Focusing on the generic statistical properties of flexible and neutral homopolymer melts in
d = 3,3 one of the simplest idealizations consists, as illustrated in Fig. 1, in replacing the in-
tricate chemical chain structure by self-avoiding walks on a periodic lattice [2, 3, 21]. Let us
assume canonical ensemble statistics [22–27] where the total monomer number nmon = Vρ,
the volume V = Ld of the d-dimensional simulation box and the temperature T are imposed.
(Boltzmann’s constant kB is set to unity throughout the paper.) A bond vector li = ri+1 − ri

connecting the monomers i and i + 1 is not necessarily restricted to a step of length l = σ

1A soft matter system may be defined as a fluid in which large groups of the elementary molecules have been
permanently or transiently connected together, e.g. by reversibly bridging oil droplets in water by telechelic
polymers or similar systems of autoassociating polymers [12–14], so that the permutation freedom of the
liquid state is lost for the time window probed experimentally [10]. The thermal fluctuations which dominate
the liquid state must thus coexist with constraints reminiscent of the solid state. Reflecting this solid state
characteristics the dynamic shear-modulus μ(t) thus often remains finite up to macroscopic times t and the
associated shear viscosity η ∼ ∫∞

0 dtμ(t) may become huge. Most soft matter systems behave as liquids for
very long times, i.e. μ(t) → 0 for t → ∞ and η remains finite.
2As seen in Sect. 2, it is, e.g., necessary to “renormalize” [3] the local bond length l to the “effective bond
length” b [4] or the second virial coefficient v2 of the monomers to the “effective bulk modulus” v [18] to
take into account the coupling of a reference chain to the bath.
3Although we focus on 3D bulks the general d-dependence is often indicated since this may help to clarify
the intrinsic structure of the relations. The reader is invited to replace d by d = 3. For similar reasons we
often make explicit the inverse fractal dimension ν. It should be replaced by its value ν = 1/2.
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Fig. 1 (Color online) Two-dimensional sketch of one chain of an idealized polymer melt represented by
self-avoiding walks on a simple cubic lattice (d = 3). As notations we use ri for the position of a monomer i,
li = ri+1 − ri for its bond vector, l for the root-mean-squared bond vector, rnm = rm − rn for the end-to-end
vector of the subchain between the monomers n and m = n+ s and r = |rnm| for its length. Taking advantage
of the translational invariance along long chain contours, subchain properties, such as the 2p-th moment of
rnm , are generally sampled here by averaging over all possible pairs of monomers (n,m). The bond vectors
between monomers are taken from a set of allowed lattice vectors. The compressibility of the melt may be
imposed by means of a Lagrange multiplier ε conjugated to the local density fluctuations (Sect. 2.3). Two
monomers of a chain at a distance r interact through an effective potential ṽ(r) as predicted by Edwards [4]
and further discussed in Sect. 2.4

(with σ being the lattice constant) to the next-nearest lattice site. As in the well-known
bond-fluctuation model (BFM) [28–30] presented in detail in Sect. 3, one may in general
take bonds from a suitably chosen set of allowed lattice vectors to achieve a better represen-
tation of the continuum space symmetries of real polymers [1, 31]. We focus on systems of
high monomer number density ρ ≈ σ−d . In principle, although not in practice as seen be-
low, one could sample the configuration space of such a lattice polymer melt using a Monte
Carlo (MC) algorithm [26, 27] with local hopping move attempts to the 2d next-nearest
neighbor sites on the lattice, as shown for the monomer k in panel (a). The specific local
MC move illustrated is an example for the more general local and global rearrangements of
the monomers [27, 29, 32–37] (respecting the set of allowed bond vectors) one may imple-
ment as discussed in Sect. 3.3. Due to their simplicity and computational efficiency, such
coarse-grained lattice models have become valuable tools for the numerical verification of
theoretical concepts and predictions [2, 21, 30], especially focusing on scaling properties in
terms of the chain length N or the arc-length s = m − n ≤ N − 1 of subchains [3].

1.3 Flory’s Ideality Hypothesis for Polymer Melts

One of the most central concepts of polymer physics is that in a polymer melt all long-
range static and dynamical correlations are generally assumed to be negligible beyond the
screening length ξ (defined properly in Sect. 2.3 and tested numerically in Sect. 4.4) char-
acterizing the decay of the density fluctuations [4]. The polymer chains are thus expected to
adopt random-walk statistics as already stated by Flory in the 1940s [2, 38, 39] and worked
out more systematically in terms of a perturbation theory by Edwards two decades later [4,
40–43]. The (normalized) probability distribution G(r, s) of the end-to-end distance r of a
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subchain of a sufficiently large arc-length s should thus be a Gaussian,

G(r, s) =
(

d

2πb2s

)d/2

exp

(

−d

2

r2

b2s

)

(2)

for ls � r � ξ and N ≥ s � g with b being the “effective bond length” and g the arc-
length spanning the correlation length ξ . Note that in general the effective bond length b

differs for various reasons from the root-mean-squared bond length l between monomers
and ultimately must be fitted as will be shown in Sect. 5.3. One immediate consequence of
(2) is of course that the second moment of G(r, s) must increase linearly,

R2
s ≡ 〈(rm=n+s − rn)

2
〉= b2s for s � g, (3)

and the same holds for the mean-squared total chain end-to-end distance R2
N ≡ 〈(rN − r1)

2〉
with s = N − 1 ≈ N , i.e. ν = 1/2 for the inverse fractal dimension. Since the bond-bond
correlation function P1(s) measures the curvature of the mean-squared subchain size R2

s ,

P1(s) ≡ 〈ln · lm=n+s〉
〈l2

n〉
≈ 1

2l2

d2

ds2
R2

s , (4)

it follows from (3) that P1(s) = 0 for s � g.4 This suggests to test for possible deviations
from R2

s ∼ s by computing directly the bond-bond correlation function P1(s) as we shall do
in Sect. 5.4. That (4) holds follows from the general relation for displacement correlations
(173) demonstrated in Appendix A.5

1.4 Rouse Model Hypothesis for Polymer Melts

Based on Flory’s ideality hypothesis for the chain conformations, the celebrated reptation
model suggested by Edwards and de Gennes [3, 4] provides a widely accepted theoretical
description for the dynamical properties of entangled polymer melts explaining qualitatively
the observed increase of the melt viscosity η with respect to the chain length and other
related observables [45]. The central idea is that chains cannot cross each other and must due
to this topological constraint “reptate” along an effective “primative path” set by their own
contour.6 Using local topology conserving MC moves various authors have thus attempted
in the past to verify the reptation predictions by lattice MC models as the one sketched in

4This lack of memory of the bond orientations may be taken as the defining statement of Flory’s ideality
hypothesis. Using the central limit theorem [11] one immediately gets back to (2).
5It is also common to define the bond-bond (or angular) correlation function as the first Legendre polynomial

P̂1(s) ≡ 〈ên · êm〉 using the normalized tangent vector ên = ln/|ln|. The difference between P1(s) and P̂1(s)

is irrelevant from the scaling point of view and negligible quantitatively for all computational models we have
studied. Higher order angular correlations may be described in terms of general Legendre polynomials P̂i [44]
sampled as a function of the arc-length s between the bond pair or their spatial distance r . The polynomials
P̂2i (r) may be used to characterize the interchain angular correlations, a question out of the scope of the
present study.
6In its original formulation the reptation model is a single chain mean-field theory, the constraints due to
other chains being accounted for by the effective topological tube [4]. Due to density fluctuations generated
by the motion of the chains and the finite compressibility of the elastic mesh, different chains must be cou-
pled, however. As suggested by A.N. Semenov et al. [46, 47], the relaxational dynamics of long reptating
chains (N � N3

e in d = 3) is ultimately “activated”, i.e. the longest relaxation time and the viscosity increase
exponentially with chain length N and not as simple power laws [48, 49].
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Fig. 1 [50–57]. Similar tests have also been performed by means of molecular dynamics
(MD) [24], Brownian dynamics (BD) [22] and MC simulations of various off-lattice bead-
spring models [58–65].7

We remind that reptational motion along the primative path is assumed to be the dominant
relaxational process only for chains much longer than the (postulated) entanglement length
Ne and for times t larger than the entanglement time Te ∼ N2

e [3]. In the opposite limit the
dynamics is thought to be described by the Rouse model proposed in the 1950s, i.e. by a
simple (position) Langevin equation for a single chain with all interactions from the bath
being dumped into a friction term and random uncorrelated forces [3]. Thus the reptation
model “sits on top” of the Rouse model and should the latter model prove not to be sufficient
this must be relevant for long chains in the entangled regime.8

Interestingly, it is relatively easy to construct for the lattice models sketched in Fig. 1 lo-
cal monomer moves switching off the topological constraints without changing the excluded
volume and other interactions and conserving thus all static properties. This has allowed to
demonstrate that topological constraints are paramount for the relaxation process [54, 55].
Since the local MC hopping attempts correspond to the random white forces of the Rouse
model and since all other long-range correlations of the bath are supposed to be negligible
beyond ξ , one generally assumes that such a topology non-conserving lattice model should
be described by the Rouse model for chain lengths N � g. Since the forces acting on the
chain center-of-mass (CM) rN(t) are uncorrelated, the probability distribution of the CM
displacements must be a Gaussian just as (2) with the CM displacement rN(t) − rN(0) re-
placing r , the time t replacing the arc-length s and 2dDN replacing b2. The self-diffusion
coefficient DN and the longest Rouse relaxation time TN of chains of length N should scale
as [4]

DN ≈ b2W/N, TN ≈ R2
N/DN ≈ N2ν+1/W (5)

with W being a convenient local monomer mobility defined properly in Sect. 6.3 [51]. In
analogy to (3), DN may be obtained by fitting the mean-square displacement (MSD) of the
chain CM

hN(t) ≡ 〈(rN(t) − rN(0)
)2〉≈ 2dDNt. (6)

The chain relaxation time TN corresponds to the motion of the CM over the typical chain
size and may be defined by setting hN(t = TN) = R2

N [51]. Note that (6) should hold for all
times t (taken apart very short times corresponding to displacements of order of ξ or the
lattice constant σ ) and not only for t � TN as for reptating chains. In analogy to (4) one
may characterize the CM displacements by a four-point correlation function in time, the
“velocity correlation function” (VCF)

CN(t) ≡
〈
u(t)

δt
· u(0)

δt

〉

≈ 1

2

∂2hN(t)

∂t2
∼ δt0 for t � δt, (7)

7The computational activities have focused recently on the latter off-lattice models, one essential advantage
being that the experimentally relevant shear-stress correlation function μ(t) can be computed directly without
using additional input from theory.
8As a consequence of the “hydrodynamic screening hypothesis” for dense polymer solutions [4], all Zimm-
like long-range correlations are generally regarded to be negligible beyond the static screening length ξ

[66–68]. The monomer momentum is not lost, of course, but transmitted to the bath and for large times and
distances the melt is still described by the Navier-Stokes equation [1]. Although these hydrodynamic effects
are beyond the scope of this paper focusing on lattice MC simulations, a short hint on scale-free corrections
to the hydrodynamic screening hypothesis is given at the end of Sect. 7.2.
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which measures directly the curvature of hN(t) with respect to time with u(t) = rN(t +δt)−
rN(t) being the CM displacement for a time window δt . Since in a MC algorithm there is no
velocity in the sense of an Euler-Lagrange equation, “velocity” refers to the displacement
per time increment δt . As shown in Appendix A, (7) states that CN(t) becomes independent
of δt for t � δt . Since (6) implies that CN(t) must vanish for all times, this begs for a direct
numerical test as will be discussed in Sect. 6. Interestingly, the above statements do not only
hold for the displacement field of the total chain CM rN(t) but also for the displacements
of the CM rs(t) of arbitrary subchains of arc-length s for times t � Ts ≈ s2ν+1/W with
Ts being the Rouse relaxation time of the subchain.9 We can thus state more generally that
according to the Rouse model one expects

Cs(t) = 0 for t � Ts and g � s ≤ N − 1 (8)

with Cs(t) being the VCF associated to the subchain CM displacements u(t) = r s(t + δt) −
r s(t).

1.5 Aim of this Study and Key Results

Summarizing recent theoretical and numerical work made by the Strasbourg polymer the-
ory group but also by other authors [7, 69–79], we address and question in this review the
validity of the general screening assumption for dense polymer solutions and melts both
concerning Flory’s ideality hypothesis for the chain conformations [80–89] and the Rouse
model assumption for the dynamics of systems with irrelevant or switched off topology [90–
93]. We argue that due to the overall incompressibility of the polymer melt both the static
and the dynamical fluctuations of chains and subchains are coupled on scales beyond the
screening length ξ . In d = 3 dimensions this leads to weak but measurable scale-free devia-
tions which do not depend explicitly on the (low but finite) isothermal compressibility κT of
the solution.

The static correlations are made manifest by the finding [80, 84–86] that the intrachain
bond-bond correlation does not vanish as implied by Flory’s hypothesis, but rather decays
analytically in d = 3 dimensions as

P1(s) = cP

s3/2
with cP = c∞cs/8 for g � s � N (9)

the amplitude cP being given by the dimensionless stiffness coefficient c∞ = (b/ l)2 [4] and
the so-called “swelling coefficient” cs =√24/π3/ρb3 [84]. Due to (4) this is consistent with
a typical subchain size

R2
s = b2s(1 − cs/

√
s) for g � s � N, (10)

i.e. R2
s /s approaches the asymptotic limit b2 monotonously from below and the chain con-

formations are thus weakly swollen as shown in Sect. 5.3.2. Note that generalizing (9) as
demonstrated in Appendix B.4 the bond-bond correlation function is predicted to decay in
(effectively) d dimensions as [94–97]

P1(s) = 1

2ω

(
ω

π

)ω
c∞
bdρ

1

sω
with ω = dν (11)

9For times t > Ts a subchain feels the connectivity with the rest of the chain and must follow the typical
monomers motion for t � TN.
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for g � s � N with ρ being the d-dimensional monomer density.10

At variance to (8) the displacement correlation functions CN(t) and Cs(t) of chains and
subchains are observed not to vanish. Instead an algebraic long-time power-law tail

Cs(t) ≈ −b2W

s

1

bdρ
(Wt)−ω with ω = 2 + d

2 + 1/ν
= 5/4 (12)

is found in d = 3 for all s ≤ N and t � Ts [90]. Due to (7) this finding implies for s =
N − 1 that the CM MSD of chains hN(t) takes an additional algebraic contribution which
dominates for short times such that

hN(t) ∼ tβ with β = 2 − ω = 3/4 for t � t∗ ∼ N0 (13)

in qualitative agreement with the anomalous power-law exponent β ≈ 0.8 obtained in vari-
ous numerical [51, 55–57, 59, 61, 62, 98–103] and experimental studies [77–79]. Our theo-
retical and numerical result, (12), may thus help to clarify a long-lasting debate.11

1.6 Outline

We begin this review by summarizing in Sect. 2 a few well-known theoretical concepts from
polymer theory and outline the perturbation calculations which lead, e.g., to (9).

Since the predicted deviations (9) and (12) are rather small in d = 3 dimensions, the key
challenge from the computational side is to obtain high precision data for well-equilibrated
polymer melts containing sufficiently long chains to avoid chain end effects. This review
focuses on numerical results obtained by means of the BFM algorithm with finite excluded
volume interactions [86] and topology violating local and global Monte Carlo moves [84]
as described in Sect. 3.12 Our numerical data for monodisperse melts are crosschecked [81,
83, 87, 88] using systems of annealed size-distribution, so-called “equilibrium polymers”
(EP) [17, 104–113], where chains break and recombine constantly and for this reason the
sampling becomes much faster than for monodisperse quenched chains (Sect. 3.5).

Static properties are discussed in Sects. 4 and 5. In the first section we investigate some
thermodynamic properties of dense BFM solutions such as the chemical potential μN in EP
systems in Sect. 4.6 [88]. We verify in Sect. 4.4 the range of validity of the (static) “Random
Phase Approximation” (RPA) [4] describing the coupling of the total density fluctuations,
encoded by the total structure factor S(q) at wavevector q , with the degrees of freedom of
tagged chains, encoded by the intrachain coherent single chain form factor F(q) [5]. Sec-
tion 5 contains the central part of our work related to conformational intrachain properties
where we demonstrate (9). The deviations from Flory’s ideality hypothesis are also of ex-
perimental relevance, as shown in Sect. 5.7, since the measured form factor F(q) should
differ from the corresponding Gaussian chain form factor F0(q) as [82, 83]

1

F(q)
− 1

F0(q)
= |q|3

32ρ
for 1/RN � q � 1/ξ. (14)

10For d ≤ 2 the range of validity of (11) is further restricted as discussed in Sect. 7.2.1.
11We emphasize that (11) and (12) are both scale-free and do not depend explicitly on the compressibility κT
of the solution. Interestingly, both key findings depend on the subchain length s considered and not on the
total chain size N as long as s �= N .
12To check for caveats due to our lattice model we have verified our results by MD simulation of a standard
bead-spring model with and without topological constraints [80, 82, 84, 85, 91–93]. In order not to overburden
the present summary, this story must be told elsewhere.
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Our work on dynamical correlations in Rouse-like systems without topological con-
straints [90, 91] is summarized in Sect. 6. A simple perturbation theory argument leading
to (12) will be given in Sect. 6.6. This argument uses the “dynamical Random Phase Ap-
proximation” (dRPA) [91, 114, 115] describing the coupling of the degrees of freedom of
the bath (encoded by the dynamical structure factor S(q, t)) to the degrees of freedom of a
tagged test chain (encoded by the dynamical form factor F(q, t)). We shall verify explicitly
this important relation.

We conclude the paper in Sect. 7 where we comment on related computational work fo-
cusing on dimensionality effects (Sect. 7.2.1) [94–96, 116], collective interchain correlations
(Sect. 7.2.2) [18, 117] and long-range viscoelastic hydrodynamic interactions (Sect. 7.2.3)
[92, 93]. Several theoretical issues are relegated to the Appendices A and B.

2 Some Theoretical Considerations

2.1 Introduction

Let us go back to the simple generic lattice model sketched in Fig. 1. Simplifying further, we
begin in Sect. 2.2 by switching off all short- and long-range interactions between chains and
monomers, the only remaining interaction being the connectivity of the monomers along
the chain contours. Translational invariance along these contours is assumed. No particular
meaning is attached to the orientation of the monomer index i.13 To make this toy model
more interesting let us on the other side introduce two additional features: local chain rigid-
ity (Sect. 2.2.1) and polydispersity (Sect. 2.2.2). Reminding some standard properties [3–5,
7, 8] we will then introduce for later reference the intrachain single chain form factor F(q)

(Sect. 2.2.4) and the total monomer structure factor S(q) (Sect. 2.2.4). Since the chains do
not interact we can consider each chain independently. The interaction between chains and
monomers will be switched on again in Sect. 2.3 by means of a Lagrange multiplier ε lim-
iting the density fluctuations (Sect. 2.3.2). Note that assuming Flory’s ideality hypothesis
most intrachain properties discussed in Sect. 2.2 should also hold rigorously in incompress-
ible melts with the effective bond length b being the only fit parameter. The effective en-
tropic correlation hole forces for chains and subchains arising due to the incompressibility
constraint are introduced in Sect. 2.3.4. The generic scaling of the deviations from Flory’s
ideality hypothesis is motivated in Sect. 2.3.6 before we turn to the systematic perturba-
tion calculation in Sect. 2.4. Following Muthukumar and Edwards [43] we argue that the
reference length b0 of the Gaussian reference chain of the calculation (Sect. B.2) should
be renormalized (Sect. 2.4.5). The bond-bond correlation function P1(s) for asymptotically
long chains is presented in Sect. 2.4.6 before we turn finally in Sect. 2.4.7 to finite chain size
effects.

2.2 Connectivity Constraint

2.2.1 Local Rigidity

Keeping only the chain connectivity we switch off all other monomer and chain interactions.
Let us apply a local stiffness energy proportional to the cosine of the bond angle θ , cos(θ) =

13This implies i ↔ −i symmetry with respect to the monomer index i which can be read as a time variable t

as seen in Appendix A. Due to this reversibility the bond-bond correlation function can be expressed in terms
of the non-Gaussian “colored forces” [118] acting on the monomers, (176).
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ên · ên+1, with ên = ln/|ln| being the unit tangent vector. The stiffness energy is assumed to be
not too large to avoid lattice artifacts [52]. Due to the multiplicative loss of any information
transferred recursively along the chain contour the bond-bond correlation function P1(s)

must decay exponentially with arc-length s [2],

P1(s) ≈ exp(−s/sp) (15)

with sp = lp/l being the curvilinear persistence length, i.e. P1(s) ≈ 0 for s � sp. Using (4)
it follows of course that R2

s ≈ b2s for subchains of arc-length s � sp. Assuming (15) this
implies b2 = l2(2sp − 1) for the effective bond length b since more generally it is known
that [29]

b2 = l2

(

2
∞∑

s=0

P1(s) − 1

)

≡ 2llp − l2. (16)

The latter relation is consistent with the more common definition [4]14

b2 ≡ 2da2 ≡ c∞l2 ≡ lim
N→∞

R2
N

N
(17)

using the total chain mean-squared end-to-end distance [4]. We have introduced here a con-
venient monomeric length a allowing to simplify prefactors depending in a spurious man-
ner on the spatial dimension d and have reminded the dimensionless stiffness parameter
c∞ = (b/ l)2.

We note that a good approximation for a “freely rotating chain” with local stiffness po-
tential is given by [4]

c∞ = 1 + 〈cos(θ)〉
1 − 〈cos(θ)〉 ≥ 1, (18)

which has been shown to be useful even for lattice models with discrete bond angles [52].
In summary, a local stiffness energy does not change the scaling of the chain and subchain
size with, respectively, N or s, but merely increases its amplitude. Note that a weak local
chain stiffness with sp ≈ 1 would be generated by disallowing chains to return after, say,
two steps to the same lattice site (so-called “non-reversal random walks” [25]) and similar
local constraints. Since these are the only local stiffness contributions which may occur in
the presented numerical work these small rigidity effects can be safely disregarded below.15

2.2.2 Polydispersity

Let us relax the monodispersity constraint made above and assume a general (normalized)
probability distribution pN for chains of length N . We suppose that the mean chain length
〈N〉 is arbitrarily large and that all moments 〈Np〉 = ∫∞

0 dN Np pN of the distribution exist.
For subchain properties everything remains as before. Let us call R2

N the typical mean-
squared chain size of chains of length N . Since one averages experimentally over chains of

14Definitions based on such “Einstein relations” [119] are generally more robust numerically.
15The only case where the small local chain rigidity qualitatively matters is presented in Sect. 5.4.2 for the
bond-bond correlation function P1(r) for large distances r � r∗ between bonds [87].



1026 J.P. Wittmer et al.

different length this total average depends now on the moment p of the distribution which
is probed,

R2
p ≡ 〈R2

NNp〉
〈Np〉 = b2 〈Np+1〉

〈Np〉 ≡ b2Np, (19)

with Np being the p-averaged chain length. Since for experimentally reasonable distribu-
tions 〈Np〉 ∼ 〈N〉p ∼ N

p
p , we have normally R2

p ∼ b2〈N〉 with numerical coefficients due
to the moment taken. For the properties considered by us, it is the so-called “z-average”
for p = 2 which matters most. The z-average is for instance probed by sedimentation in an
analytical ultracentrifuge or in neutron scattering measurements of the intramolecular form
factor F(q) as further discussed in Sect. 2.2.4 [5]. Note that all standard definitions and
formulas [3, 4] are recovered for a monodisperse length distribution pN = δ(N ′ − N).

For the important case of Flory-distributed polymers with

pN = μ exp(−μN) with 〈N〉 = μ−1 (20)

we have 〈Np〉 = p!〈N〉p and thus R2
p = (p + 1)b2〈N〉. Such a Flory distribution is expected

for systems of EP with an annealed length distribution where a constant finite scission energy
E ≥ 0 has to be paid for the scission of each bond as described in Sect. 3.5. This can be seen
by minimizing the Flory-Huggins free energy functional [9, 17, 109]

F [ρN ] = V
∑

N

ρN

(
T log(ρN) + μN + E + δμN

)
(21)

with respect to the density ρN ≡ ρpN/〈N〉 of chains of length N . The first term on the right
is the usual translational entropy. The second term entails a Lagrange multiplier which fixes
the total monomer density

ρ =
∞∑

N=1

NρN. (22)

All contributions to the chemical potential of the chain μN which are linear in N can be
absorbed within this Lagrange multiplier. The scission energy E characterizes the imposed
enthalpic free energy cost for breaking a chain bond. The last term δμN encodes the remain-
ing non-linear contribution to the chemical potential μN which has to be paid for creating
two new chain ends.16 For non-interacting random walks on the lattice this contribution is
just a (model depending) constant entropic factor which renormalizes the imposed scission
energy to an N -independent effective scission free energy E +δμN [111]. The minimization
of (21) under the density constraint, (22), yields (20) with a mean chain length

μ−1 = 〈N〉 = (〈Np
〉
/p!)1/p ≈√ρ exp(E/T ) (23)

as the reader will readily verify.

2.2.3 Segmental Size-Distribution G(r, s)

Due to the translational invariance in space and along the chain contours, most perturbation
calculations outlined below [83, 84, 87, 88] are more readily performed in reciprocal space.

16As shown in Sect. 4.6 and Sect. B.6, the free energy contribution δμN may depend in general on the chain
length N [6, 7, 108].
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The Fourier transform of a function f (r) is denoted f (q) ≡ F [f (r)] = ∫ drf (r)e−iq·r and

we write f̂ (t) ≡ L [f (s)] = ∫∞
0 f (s)e−st for the Laplace transform of a function f (s) with

t being the Laplace variable conjugated to the arc-length s. We have introduced in Sect. 1.3
the probability distribution G(r, s) of the end-to-end distance r of a subchain of arc-length
s between the monomers n and m = n + s of a chain. The Fourier transform of this two-
point intramolecular correlation function is thus in general G(q, s) ≡ 〈exp(−iq · r)〉 with the
average being taken over all possible subchain vectors r = rm − rn. For (infinite) Gaussian
chains this becomes [4]

G(q, s) = G0(q, s) ≡ exp
(−(aq)2s

)
. (24)

The index 0 has been introduced for the general case where G(q, s) may differ from the
Gaussian propagator G0(q, s) used in our perturbation calculations. Moments of the distri-
bution G(r, s) are readily obtained from derivatives of G(q, s) taken at q = 0 as recalled in
Appendix B.1 [118]. It follows for instance for the 2p-th moment of the distribution that

〈
r2p
〉= (−1)pΔpG0(q, s)|q=0 = (2p + 1)!

p!
(2d)p

6p
spa2p (25)

for Gaussian chains. Gaussianity thus implies

Kp(s) ≡ 1 − p!6p

(2p + 1)!
〈r2p〉
(b2s)p

= 0. (26)

A very closely related characterization of G(r, s) is given by the more standard non-
Gaussianity parameter

αp(s) ≡ 1 − p!6p

(2p + 1)!
〈r2p〉
〈r2〉p (27)

which for Gaussian chains is identical to Kp(s). As further discussed in Sect. 5.5, αp(s) has
computationally the advantage that the effective bond length b must not be known a priori.
Obviously, the general distribution G(r, s) is fully determined by either the dimensionless
moments Kp(s) or αp(s) [118].

In Fourier-Laplace space the Gaussian propagator reads

Ĝ0(q, t) ≡ 1

(aq)2 + t
. (28)

If one needs to average over all bond pairs at a given distance r irrespective of their curvi-
linear distance s, and one has thus to sum over all possible s as in Sect. B.5, this corre-
sponds (for arbitrarily large chains) to setting t = 0 for the corresponding Laplace variable.
The summed up Gaussian propagator for infinite chains is thus Ĝ0(q, t = 0) = (aq)−2. For
Flory-distributed Gaussian chains of finite mean chain length 〈N〉 = 1/μ we have more
generally a summed up Gaussian propagator

G̃(q) ≡ Ĝ0(q, t = 0) = 1

(aq)2 + μ
. (29)

Inverse Fourier transformation yields in d = 3 the density

G̃(r) ≡ Ĝ0(r, t = 0) = 1

4πa2r
e−√

μr/a (30)
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around a tagged reference monomer of all the monomers belonging to the same chain. Ob-
viously, for μ → ∞ one recovers the well-known density

G̃(r) ∼ 1

rd−1/ν
for d > 1/ν (31)

for infinite objects of inverse fractal dimension ν [3, 10].17 This power-law dependence of
the local density means that our random-walk polymer is a fractal set in the sense of Man-
delbrot [19], i.e. the average mass (number of monomers) within a distance r of an arbitrary
point of the set varies as a power of r . The r-dependence of the local density reflects a type
of spatial order that is not connected to translation or rotation symmetries but to the “dilation
transformation” to a magnified system [3]. A structureless, uniform material looks the same
when magnified, provided the magnification is too weak to see the molecular constituents
(“lower cutoff”). The scaling exponent d − 1/ν characterizes the dilation symmetry in the
same way that linear momentum characterizes translational symmetry and angular momen-
tum characterizes rotational symmetry [10].

2.2.4 Intramolecular Coherent Form Factor F(q)

The two-point correlation function G(q, s) may be probed experimentally through the in-
tramolecular form factor F(q) which for monodisperse chains is defined by [4]

F(q) = 1

N

N∑

n,m=1

〈
exp
(−iq · (rn − rm)

)〉
(32)

= 1

N

〈
C2 + S2

〉
(33)

with C =∑N

n=1 cos(q · rn) and S =∑N

n=1 sin(q · rn). The second representation being an
operation linear in N has obvious computational advantages for large chain lengths. In prin-
ciple, the characteristic polymer size may be obtained experimentally from F(q) in the
Guinier regime for small q [5]. Expanding (32) yields F(q) = N(1 − (Rg(N)q)2/d) with
Rg(N) being the gyration radius defined as

R2
g(N) ≡ 1

2N2

N∑

n,m=1

〈
(rn − rm)2

〉
. (34)

For chains following Gaussian statistics (as our lattice chains with switched off interactions)
where R2

s = 〈(rn − rm)2〉 = b2s, it follows by integration of (34) that R2
g(N) = R2

N/6 =
da2N/3. For large wavevectors where the internal fractal chain structure is probed, the form
factor decays as

F(q) = 2

(aq)2
∼ N0 for qRg � 1 (35)

17The reader may verify the indicated scaling by direct integration of (2) with respect to s for monodisperse
chains with N → ∞.



Scale-Free Correlations in Dense Polymer Solutions 1029

Fig. 2 (Color online) Schematic representation of the total structure factor S(q) and the intrachain coherent
form factor F(q) for monodisperse chains (thin line) in double-logarithmic coordinates with g(ε) being
the dimensionless compressibility defined in Sect. 2.3.1 below. For a large Lagrange multiplier ε → ∞ we
have S(q) ≈ g(ε = ∞) � 1 for q � 1/σ (dashed bold line). For finite ε the incompressibility is only felt
for q � 1/ξ(ε) with the screening length ξ(ε) setting the size of the “thermal blob” [3, 4]. As shown in
Sect. 2.4, scale-free corrections to Flory’s ideality hypothesis arise in the intermediate wavevector regime
1/RN � q � min(1/ξ(ε),1/σ) where S(q) is constant

as sketched by the thin line in Fig. 2.18 More generally, the form factor of monodisperse
Gaussian chains is given by F(q) = NfD(x) with x = (qRg(N))2 and the Debye function

fD(x) = 2

x2

(
exp(−x) − 1 + x

)
. (36)

For convenience of calculation, the Debye function is often replaced by the Padé approxi-
mation

F(q) ≈ N

1 + (qRg)2/2
≈ 2

(aq)2 + 2/N
(37)

where the last step holds for d = 3.
For a general mass distribution pN the form factor is defined as [5, 6, 83]

F(q) = 1

〈N〉
∞∑

N=0

pN

N∑

n,m=1

〈
exp
(−iq · (rn − rm)

)〉
. (38)

In practice, (38) corresponds to the computation of the averaged sum over contributions
〈C2 + S2〉 for each chain which one divides finally by the total number nmon of labeled
monomers [83]. In the small-q regime one obtains again a Guinier relation

F(q) ≈ 〈N2〉
〈N〉

(

1 − (Rg,zq)2

d

)

for Rg,zq � 1 (39)

18The power-law scaling is obtained directly by Fourier transformation of (31) which yields F(q) ∼ 1/q1/ν .
This scaling only holds if the fractal object is “open”, i.e. d > 1/ν, and the scattering intensity is not dom-
inated by the Porod scattering at the (possibly fractal) “surface” of a compact object [5, 120]. The latter
Porod scattering becomes relevant, e.g., for self-avoiding polymers in strictly d = 2 dimensions [121, 122]
and for non-Olympic and unknotted rings in d = 3 or thin films of finite width (d = 2+) [120, 123, 124]. In
both cases the polymers adopt compact configurations, 1/ν = d , with a fractal surface of well-defined fractal
surface exponent ds ≤ d . The form factor thus decays as F(q)/N ≈ 1/(RNq)2d−ds [120].
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where Rg,z stands now for the z-averaged gyration radius [6] where the moment p = 2
is taken over the standard radius of gyration R2

g(N), (34). Note that for Flory-distributed
Gaussian chains we have R2

g,z = da2/μ and the form factor becomes [83]

F(q) = 2

(aq)2 + μ
. (40)

Equation (40) reduces to (35) for large wavevectors, as one expects, since in this limit F(q)

must become independent of the length distribution pN. Note that (40) has the same form as
the Padé approximation for monodisperse chains, (37).

2.2.5 Total Monomer Structure Factor S(q)

For non-interacting chains the local monomer density can freely fluctuate being restricted
only by the chain connectivity. The isothermal compressibility κT [1] is thus given by the
osmotic contribution due to the density of chains, i.e. T κT = 1/(ρ/〈N〉) diverges linearly
with the typical chain length 〈N〉. More generally, one may characterize the fluctuations of
the total density ρ(q) =∑nmon

n=1 exp(−iq · rn) in Fourier space by means of the total structure
factor [4]

S(q) = 1

nmon

nmon∑

n,m=1

〈
exp
(−iq · (rn − rm)

)〉

= 1

nmon

〈[∑

n

cos(q · rn)

]2

+
[∑

n

sin(q · rn)

]2〉

(41)

with q being a wavevector commensurate with the simulation box19 and the thermal average
〈. . .〉 being performed over all configurations of the ensemble and all possible wavevec-
tors of length q = |q|. Since we have switched off all monomer interactions, monomers on
different chains are uncorrelated and, hence,

1

S(q)
= 1

F(q)
(42)

as indicated for monodisperse chains by the thin line in Fig. 2. Due to the chain connectivity
the fluctuations of chains (measured by κT) and the fluctuations of monomers (measured by
S(q)) may differ for polydisperse non-interacting systems: While S(q) → 〈N2〉/〈N〉 in the
small-q limit as seen from (39), we have T κTρ = 〈N〉 for the compressibility.20

2.3 Incompressibility Constraint

2.3.1 Dimensionless Compressibility g

Obviously, dense polymer solutions and melts are essentially incompressible, i.e. κT → 0,
and the above assumption that the total density can freely fluctuate is not very realistic. It is

19If we use a cubic simulation box of linear dimension L the smallest possible wavevector is 2π/L.
20The dimensionless compressibility g defined in (43) for asymptotically long chains does not depend on this
ideal chain contribution. Care is needed, however, if g is determined numerically from S(q) for polydisperse
systems of finite 〈N2〉/〈N〉 by extrapolation in analogy to the monodisperse case discussed in Sect. 4.4.
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useful to introduce here a central dimensionless thermodynamic property characterizing the
degree of density fluctuations on large scales, the so-called “dimensionless compressibility”
[83, 84, 86]

g ≡ 1

vρ
≡ lim

〈N〉→∞
(T κTρ) = lim

〈N〉→∞

(
lim
q→0

S(q)
)
. (43)

At standard experimental polymer melt conditions g remains of course finite, say g ≈ 0.1,
but typically well below unity as indicated by the bold dashed line in Fig. 2 [8]. Note that
we have defined g in the limit of asymptotically long chains to take off the trivial compress-
ibility contribution due to the translational invariance of the chains mentioned above. For
later reference we have also introduced in (43) the effective “bulk modulus” v [117]. As
indicated, the dimensionless compressibility can be determined directly in experiments or
in a computer simulation from the low-q limit of the total monomer structure factor S(q).
This point is further elaborated in Sect. 4.4.

2.3.2 Lagrange Multiplier ε

Physically, the incompressibility of dense polymer systems arises of course due to the short-
range repulsion of the monomers, i.e. it depends on non-universal physical and chemical
properties. From the theoretical and computational point of view it is, however, inessen-
tial how the incompressibility at low wavevectors is imposed.21 This constraint could be
achieved, at least in principle, by “simple sampling” [26] of only those configurations re-
specting the chosen g. In this sense it is thus the “throwing away” of configurations from
the extended configuration ensemble containing all possible linear chain paths on the lat-
tice which creates the repulsive forces between chains, subchains and monomers.22 Alter-
natively, one may design intricate local and global MC moves forcing the system through
configuration space along a hyperplane of constant g [27, 29].

A more general and computationally more natural route is to use an extended ensemble
[26] and to impose the incompressibility constraint through an external field with a Lagrange
multiplier ε conjugated to the local monomer density fluctuations. As may be seen in more
detail in Sect. 3.4 for a specific lattice model, this implies in practice that one has to pay an
energy of order ε for the overlap of two monomers. While in the low-ε limit with g(ε) �
〈N〉 the chains do not interact, i.e. S(q) = F(q) for all q , the incompressibility constraint
S(q) ≈ g(ε = ∞) � 1 holds for all wavevectors q up to the monomeric scale (q ≈ 1/σ ) in
the opposite limit ε → ∞. This is shown by the bold dashed line in Fig. 2.

2.3.3 Thermal Blobs of Size ξ

The situation is slightly more complicated for intermediate overlap penalties ε with 1 �
g(ε) � 〈N〉 indicated by the thin dashed line. Since g(ε) is now a well-defined characteristic

21If the goal is to map a computational model onto a real polymer melt aiming to understand macroscopic
properties, the starting point should be, in our opinion, to match the mechanical and thermodynamic properties
in the low-q limit, e.g. the dimensionless compressibility g, rather than to fiddle with S(q) on the monomer
scale.
22The scale-free correlations described in this paper are thus akin to the effective “anti-Casimir forces” which
arise in dense polymer melts due to the throwing away of configurations containing closed loops from an
extended configuration ensemble with both linear chains and rings [18, 117].
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chain length in curvilinear space along the chain contour, it corresponds to a characteristic
scale in real space, the “screening length” ξ(ε) of the density fluctuations defined as [4]

ξ 2 ≡ 1

2
a2g = a2

2vρ
(44)

where we use the effective bulk modulus v = 1/(gρ) following (43).23 Generalizing (42)
to systems with finite compressibility the total structure factor is predicted to follow the
so-called (static) “Random Phase Approximation” (RPA) [3, 4],

1

S(q)
= 1

g
+ 1

F(q)
(45)

≈ 1

g

(
1 + (ξq)2

)
(46)

using (35) in the second step. The Ornstein-Zernike correlation equation [11] (46) justifies
the above definition of the “screening length” ξ , i.e. density fluctuations decay in d = 3
exponentially as [4]

〈
ρ(r)ρ(0)

〉− ρ2 = 3ρ

πb2r
exp(−r/ξ). (47)

We remind that ξ sets the size of the “thermal blob” [3] corresponding to a free energy
due to the effective monomer interaction of order kBT . If one considers short subchains of
arc-length s � g or small distances r � ξ , the (sub)chains behave as if they were barely
interacting, i.e. S(q) ≈ F(q). If on the other side one focuses on the physical properties
beyond the thermal blob scale (s � g, r � ξ , q � 1/ξ ) where the structure factor becomes
constant, S(q) ≈ g(ε), one may renormalize all spatial distances by ξ and all curvilinear
distances by g and in these terms the system should behave as an incompressible packing of
thermal blobs [3].

We emphasize that the perturbation results [4] (45) and (46) are supposed to apply only
as long as the compressibility g is not too small and the screening length ξ remains a re-
spectable length, in any case much larger than the lattice constant σ .24 Formally, this is
expressed by the criterion [4, 83, 84]

Gz ≡ g

ρ(bg1/2)d
≈ (vρ)d/2−1

ρbd
� 1, (48)

with the Ginzburg parameter Gz being the small parameter of the standard perturbation
theory. Note that (48) sets a lower bound to the correlation length ξ � b/(ρbd)1/(d−1).

Please also note that (44), (46) and (48) are consistent with relations given by Ed-
wards [4]. (For instance, (48) corresponds to (5.46) of Ref. [4].) The only difference is
that following [18, 84] we have replaced the second virial coefficient v2 of the monomers by
the effective bulk modulus v and the bond length of the unperturbed chain by the effective
bond length b.

23From the scaling point of view a curvilinear length s � 1 translates quite generally to a spatial distance
r � σ and a wavevector q � 1/σ according to r ∼ 1/q ∼ sν with ν being the inverse fractal dimension.
24We remind that from the thermodynamic point of view the fundamental property characterizing the solution
is the dimensionless compressibility g and not the correlation length ξ .



Scale-Free Correlations in Dense Polymer Solutions 1033

Fig. 3 (Color online) Effective interactions due to the incompressibility constraint: (a) Since the total den-
sity ρ can barely fluctuate, chains of length N are known to repel each other due to an entropic penalty
u∗

N ≈ ρ∗
N/ρ set by the self-density ρ∗

N ≈ N/Rd
N ∼ N1−dν = 1/

√
N in d = 3 dimensions [3]. (b) Self-similar

pattern of nested segmental correlation holes of decreasing strength u∗
s ≈ s/ρRd

s ≈ cs/
√

s aligned along the
backbone of a reference chain. The large dashed circle represents the classical correlation hole of the total
chain (s ≈ N ). This is the input of some recent approaches to model polymer chains as soft spheres [101,
125, 126]. We argue instead that the incompressibility constraint on all length scales s matters—and not just
for s ≈ N—leading to a short distance repulsion u∗

s of their “subchain correlation holes” which increases
with decreasing s

2.3.4 Correlation Hole Effects

Let us for the clarity of the presentation return to monodisperse chains in the large-ε limit,
i.e. let us assume that g � 1 and that thus the total monomer density ρ does not fluctuate.
On the other hand, composition fluctuations of labeled chains or subchains may certainly
occur, however, subject to the total density constraint. Composition fluctuations are therefore
coupled and chains and subchains must feel an entropic penalty when the distance r between
their CM becomes comparable to their typical size [82, 94].

As sketched in Fig. 3(a), let us first remind the well-known “correlation hole” effect
for two test chains of length N in the bath [4, 94]. The scaling of their effective interaction
under the incompressibility constraint is obtained from the potential of mean force u(r,N) ≡
− ln(p(r,N)/p(∞,N)) [119] with p(r,N) being the pair correlation function of the chains,
i.e. the probability distribution to find the CM of the second chain at a distance r assuming
the CM of the first chain at the origin (r = 0). Since the correlation hole is shallow for
large N , expansion of the logarithm leads to

u(r,N) ≈ 1 − p(r,N)

p(∞,N)
≈ 1 − ρ − ρN(r)

ρ
= ρN(r)

ρ
(49)

with ρN(r) being the density distribution of the reference chain around its CM. This distri-
bution scales as

ρN(r) ≈ ρ∗
Nf (r/RN) (50)

with ρ∗
N ≈ N/Rd

N being the chain self-density, (1), and f (x) a universal function which
becomes constant for x � 1 and decays rapidly for x � 1.25 The interaction penalty for two
chains at r/RN � 1 is thus given by

u(0,N) ≈ u∗
N ≡ ρ∗

N/ρ ≡ N/ρRd
N ∼ N1−d/2 (51)

25For (to leading order) Gaussian chains f (x) must also be Gaussian [3] as indicated by the bold line in
Fig. 4.
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Fig. 4 (Color online) Potential of mean force u(r, s) for 3D polymer melts obtained using the classical
BFM algorithm without monomer overlap (ε = ∞) described in Sect. 3.3 for monodisperse chains of length
N = 4096 and volume fraction φ = 0.5 of occupied lattice sites [81]. Data for different s ≤ N are successfully
scaled tracing u(r, s)/u∗

s as a function of r/Rs with u∗
s ≡ s/ρR3

s . The potential is positive and roughly
Gaussian (bold line) for small r/Rs where the (sub)chains repel each other. It becomes weakly attractive for
distances r/Rs ≈ 0.7 (vertical arrow)

which decreases as u∗
N ∼ 1/

√
N in d = 3 [82, 94]. Hence, although the incompressibility

constraint couples the chains, the correlations become rapidly negligible with increasing
chain length N in agreement with our discussion in Sect. 1.1.

Interestingly, the above scaling argument does not only hold for chains (s = N − 1) but
also for the potential of mean force u(r, s) ≡ − ln(p(r, s)/p(∞, s)) obtained in a similar
manner from the pair correlation function p(r, s) of the center-of masses of subchains of
arc-length s ≤ N − 1 [82, 84]. Since

u∗
s

u∗
N

= (N/s)d/2−1 =√N/s � 1 for s � N, (52)

the correlation hole effect strongly increases with decreasing s, albeit it remains always
perturbative in d = 3. Note that the subchain correlation hole potential u∗

s does not depend
explicitly on the bulk compression modulus v. It is dimensionless and independent of the
definition of the monomer unit, i.e. it does not change if λ monomers are regrouped to form
an effective monomer (ρ → ρ/λ, s → s/λ) while keeping Rs fixed.

That the effective correlation hole potential for chains and subchains is more than a
heuristic scaling argument can be seen from Fig. 4. We present here the rescaled poten-
tial of mean force u(r, s) for chains of length N = 4096 obtained using the BFM algorithm
described in Sect. 3.3. The correlation hole potential for the total chains is indicated by the
squares. The predicted scaling is confirmed by the perfect data collapse of u(r, s)/u∗

s plotted
as function of r/Rs. Please note that, strictly speaking, u(r, s) for subchains accounts also for
the attractive interaction between subchains on the same chain and therefore differs slightly
from the effective interaction potential of two independent chains of length N = s + 1. This
leads to the (very weak) attractive contribution to u(r, s) for subchains (barely) visible in
Fig. 4. However, this additional effect does not affect the scaling on short distances, r � Rs,
which matters here.
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2.3.5 Connectivity and Swelling

To connect two test chains of length N to form a chain of length 2N an effective free energy
u∗

N has to be paid and this repulsion will push the two halves apart from each other [94].
We consider next a subchain of length s in the middle of a very long chain. All interactions
between the test subchain and the rest of the chain are first switched off but we keep all
other interactions, especially within the subchain and between the subchain monomers and
monomers of surrounding chains. The typical size Rs of the test subchain remains essen-
tially unchanged from the size of an independent chain of the same strand length. If we now
switch on the interactions between the tagged subchain and monomers on adjacent sub-
chains of same length s, this corresponds to an effective interaction of order u∗

s as before.
(The effect of switching on the interaction to all other monomers of the chain is inessential at
scaling level, since these other monomers are more distant.) Since this repels the respective
subchains from each other, the corresponding subchain is swollen compared to a Gaussian
chain of non-interacting subchains. It is this effect we want to characterize.

2.3.6 Perturbation Approach in Three Dimensions

Let us return to systems of finite dimensionless compressibility g but let us focus on sub-
chains of length s which are larger than the number of monomers g contained in the thermal
blob, i.e. we focus on scales where the incompressibility constraint matters. Interestingly,
when taken at s = g the subchain correlation hole potential becomes

u∗
s=g ≈ g

ρ(bg1/2)d
= Gz (53)

with Gz being the standard Ginzburg parameter already defined in (48). Hence, it follows
for the subchain correlation hole potential that

u∗
s ≈ Gz(g/s)d/2−1 � Gz for d > 2 and s � g. (54)

Although for real polymer melts as for computational systems large values of Gz ≈ 1 may
sometimes be found, u∗

s ∼ 1/
√

s decreases rapidly with s in three dimensions, as illustrated
in Fig. 3(b), and standard perturbation calculations can be successfully performed.

As sketched in Sect. 2.4 these calculations consider dimensionless quantities C [u∗]
which are defined such that they vanish (C [u∗ = 0] = 0) if the perturbation potential u∗

s
is switched off and are then shown to scale, to leading order, linearly with u∗. For instance,
for the quantity Kp(s), defined in (26), characterizing the deviation of the subchain size
from Flory’s hypothesis one thus expects the scaling

Kp

[
u∗

s

]≈ +u∗
s ≈ + s

ρRd
s

. (55)

The +-sign indicated marks the fact that the prefactor has to be positive to be consistent with
the expected swelling of the chains. Consequently, the rescaled mean-squared subchain size,
R2

s /b
2s ≈ 1 − u∗

s , must approach the asymptotic limit for large s from below. For 3D melts
(55) implies that Kp(s) should vanish rapidly as 1/(ρb3√s).26 Apart from prefactors—
which require a full calculation—this corresponds exactly to (10) with a swelling coefficient

26This is different in thin films where u∗
s ≈ Gz decays only logarithmically [94].
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cs ≈ 1/ρb3. Note also that the predicted deviations are inversely proportional to b3, i.e. the
more flexible the chains, the more pronounced the effect. Similar relations C [u∗

s ] ∼ u∗
s may

also be formulated for other quantities and will be tested numerically in Sect. 5.

2.4 Perturbation Calculation

2.4.1 General Approach

We remind that the first-order perturbation calculation of an observable A under a dimen-
sionless perturbation potential U � 1 (defined in units of T ) generally reads [4]

〈A 〉 ≈ 〈A (1 − U)〉0

〈1 − U〉0
≈ 〈A 〉0 + 〈U〉0〈A 〉0 − 〈UA 〉0 (56)

where averages performed over an unperturbed reference system of Gaussian chains are
denoted 〈. . .〉0. Obviously, 〈A 〉 = 〈A 〉0 for U ≡ 0. For the reduced quantity B ≡ A −
〈A 〉0 (56) simplifies to

〈B〉 ≈ −〈UB〉0. (57)

For 〈A 〉0 �= 0 one may introduce the dimensionless observable C = −B/〈A 〉0 which, of
course, also obeys (57). If 〈CU〉0 ≈ 〈U〉0, this is consistent with (55). The observable A
stands, for instance, for the 2p-th moment A = r

2p
nm of the vector rnm = rm − rn between

two monomers n and m = n + s on the tagged chain as shown in Fig. 1 [80, 84] or for
the scalar product A = ln · lm/ l2 of two bond vectors [87, 89]. If, as in the latter case, we
have 〈A 〉0 = 0 for linear chains by construction, one only has to compute 〈A 〉 = 〈B〉 ≈
−〈UB〉0.

In this subsection we use b0 = √
2da0 for the bond length of the unperturbed Gaussian

reference chain which may a priori be different from the effective bond length b = √
2da

defined and measured according to (17). The reference bond length b0 is a parameter which
may be suitably chosen or adjusted in a Hartree-Fock iteration scheme [23] (as shown in
Sect. 5.3.3) for the specific problem and observable considered. If one is, for instance, in-
terested in predicting the effective bond length b for a weakly interacting system, a good
trial value for b0 should be the bond length l of non-interacting chains on the lattice [4].
To be consistent the perturbation potential U must in this case vanish if the interactions
are switched off (v ≡ 0). If on the other side the aim is to characterize the deviations from
Flory’s ideality hypothesis in incompressible melts (g � 1) one may naturally set b0 = b,
i.e. one uses as reference the Gaussian chain which fits the chain on large scales (Sect. 2.4.5).
Obviously, in this case the perturbation potential U must vanish in this low-wavevector limit
such that 〈C 〉 ≈ −〈CU〉0 → 0. The last choice for b0 turns out to be the best one in all cases
where one does not need to predict the effective bond length b but where it can be deter-
mined independently by fitting some large scale intrachain property such as the typical chain
end-to-end distance RN.

The perturbation energy for a tagged test chain of length Nt is given by the potential

U =
∫ Nt

0
dk

∫ k

0
dl ṽ(rkl). (58)

As further discussed in Sect. 2.4.2, the effective interaction ṽ(r) between two monomers of
the test chain arises due to the presence of the bath of surrounding chains which screens the
direct excluded volume interaction vδ(r). The calculations are most readily performed in
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Fourier-Laplace space using definitions given in Sect. 2.2.3. See for instance the calculation
presented in Appendix B.2 for the non-Gaussian contribution δG(r, s) = G(r, s) − G0(r, s)

to the subchain size distribution or Appendix B.4 for the bond-bond correlation function
P1(s).

2.4.2 Effective Interaction Potential

We have still to specify the effective monomer interaction ṽ(q) = F [ṽ(r)] in reciprocal
space with q being the wavevector conjugated to the distance between two monomers n and
m of the tagged chain. Note that in general the test chain length Nt and the mean chain
length 〈N〉 of the bath may differ. Within linear response the effective pair interaction reads
[4, 83]

1

ṽ(q)ρ
= 1

vρ
+ F0(q). (59)

The first term stands here for the bare excluded volume interaction v between monomers.
As we have already stressed above, (43), thermodynamic consistency requires that v is set
by the excess contribution to the isothermal compressibility of the solution: v ≡ 1/gρ [18,
83, 86, 127].27 F0(q) stands for the ideal chain intramolecular form factor of the bath of
chains surrounding the reference chain. According to (38) the effective interaction ṽ(q)

depends thus in general on the length distribution pN of the bath. We remind that for Flory-
distributed melts the form factor is given by (40). Replacing μ by 2/N this corresponds to
the Padé approximation, (37), of the awkward Debye function for monodisperse chains.

Let us first assume that F0(q) � S(q) ≈ g, i.e. we assume q � 1/σ in incompressible
solutions (g � 1) and q � 1/ξ for systems with a well-defined thermal blob (g � 1). The
effective interaction is then given by

ṽ(q)ρ ≈ 1

F0(q)
for q � 1/ξ and q � 1/σ, (60)

i.e. the effective interaction is given alone by the inverse structure factor of the bath and
does not depend explicitly on the compressibility g of the solution.28 According to (39) the
effective potential becomes in the low-wavevector limit

ṽ0 ≡ ṽ(q → 0) = 〈N〉
〈N2〉ρ for q � 1/Rg,z, (61)

i.e. ṽ0 = 2μ/ρ for Flory-distributed melts and ṽ0 = 1/ρN for monodisperse melts. Long
test chains are ruled by ṽ0 which acts as a weak repulsive pseudo-potential with associated

27The bulk modulus v only dominates ṽ(q) for all q in extremely compressible systems where g � F0(0) =
〈N2〉/〈N〉.
28Since we shall set b0 = b at the end of calculation and since the effective bond length b depends on g, the
effective potential ṽ(q) depends implicitly on g.
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Fixman parameter z ∼ ṽ0
√

Nt [4].29 It follows that

z � 1 for Nt �
(〈N〉2/〈N〉)2 ≈ 〈N〉2 (62)

and the chains thus must swell and obey excluded volume statistics [3, 7].30 We note that for
a Flory-distributed bath (60) becomes

ṽ(q)ρ ≈ 1

2

(
(a0q)2 + μ

)
for q � 1/ξ and q � 1/σ (63)

which can also be used within the Padé approximation (μ ≡ 2/N ) for the calculation of
monodisperse systems [80, 84]. More importantly, the effective potential becomes for inter-
mediate wavevectors

ṽ(q)ρ ≈ (a0q)2

2
for 1/Rg,z � q � 1/ξ (64)

and this irrespective of the length distribution pN of the bath. Equation (64) lies at the heart
of the announced power-law swelling of (sub)chains, (9) or (55) [80, 83, 84, 87].

For later reference in Sect. B.4 we note that for a Flory-distributed bath of finite com-
pressibility the pair potential reads

ṽ(q) = v
(a0q)2 + μ

(a0q)2 + (a0/ξ)2
for q � 1/σ and μg � 1 (65)

where ξ 2 ≡ a2
0g/2 = a2

0/2vρ following (44). Allowing to characterize wavevectors below
and above 1/ξ , (65) reduces to (61) for very low wavevectors and to (64) in the intermediate
wavevector range. In the limit of asymptotically long chains (μ → 0) (65) becomes [4]

ṽ(q) = v
q2

q2 + ξ−2
for 1/Rg,z � q � 1/σ (66)

which corresponds in real space to [4]

ṽ(r) = v

(

δ(r) − exp(−r/ξ)

4πξ 2r

)

, (67)

i.e. the effective potential consists of a strongly repulsive part vδ(r) of very short range
(r ≈ σ ), and an attractive part of range ξ stemming from the compression of the reference
chain by the bath chains.31 Using (66) it follows that

∫
dr ṽ(r) = ṽ(q)

∣
∣
∣
∣
q=0

= 0 (68)

29Characterizing the excluded volume interaction free energy of a chain with itself the Fixman parameter of
a chain of length N of excluded volume v may be defined more generally as

z(N) ≡ v
(
N/Rd

N
)2

Rd
N ≈ (v/bd

)
N2−d/2.

Note that for a monodisperse melt of chain length N = g and dimensionless compressibility g = 1/vρ the
Fixman parameter and the Ginzburg parameter become identical, z(N = g) = Gz.
30For this reason an upper bound is indicated, e.g., in (106).
31See Fig. II.1 of de Gennes’ book [3].
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which is commonly taken as a proof that “there is no excluded volume interaction among the
segments whose mean separation is larger than ξ” [4]. Unfortunately, (68) does not imply
mathematically that all other moments, say the integral over ṽ(r)r2p , should also rigorously
vanish. It is thus incorrect to state that all possible correlation functions must be short-
ranged. However, it remains relevant that ṽ(q) ∼ q2 vanishes with decreasing wavevector
and the same applies for the total perturbation U(q) to the Gaussian reference.32

2.4.3 Free Energy for High Compressibilities

For later use in Sect. 4 we reformulate here a perturbation calculation result obtained long
ago by Edwards [4] using (66) which allows to predict thermodynamic properties of melts
with sufficiently large compressibilities g. Integrating twice with respect to the density ρ

the osmotic pressure given by (5.45) or (5.II.5) of [4] one obtains for monodisperse melts
the free energy per monomer

βf (β) = βeself + 1

N
log
(
ρσ 3/N

)+ 1

2
v2ρ − 1

12π

1

ξ 3ρ
with ξ 2 ≡ l2

12v2ρ
(69)

and β = 1/T being the inverse temperature, b0 = l the bond length of the Gaussian refer-
ence chains and v2(β) the second virial coefficient of a solution of unconnected monomers.
The first term βeself is due to the (essentially constant) intrachain self-energy which shall
be discussed in Sect. 4.2. It is due to the reference energy chosen in our numerical model
Hamiltonian and it is normally not accessible experimentally. A similar intrachain energy
contribution to the free energy arises also from (5.43) of [4] if an upper cutoff qmax is in-
troduced for the wavevectors q to avoid the ultra-violet divergence. Such an upper cutoff
is justified by the discreteness of the monomers of real polymers. This leads necessarily
to a non-universal free energy contribution which can be seen as an integration constant
with respect to the integration of a measurable property such as the osmotic pressure or the
compressibility. The second term in (69) represents the translational invariance of monodis-
perse chains of length N (van ’t Hoff’s law). Due to this contribution the compressibilities
depend in general on N as will be discussed in Sect. 4.4.33 The (bare) excluded volume
interaction between the monomers is accounted for by the third term. The underlined term
represents the leading correction to the previous term due to the fact that the monomers are
connected by bonds summing over the density fluctuations to quadratic order. As one ex-
pects [3], the corresponding correlations of the density fluctuations reduce the free energy
by about one kBT per thermal blob of volume ξ 3. Interestingly, according to Edwards [4]
the chain connectivity, i.e. the presence of attractive forces between bonded monomers, does
not change the excluded volume v2—as one would expect naively—but rather gives rise to
an additional term scaling differently with density.34 Various thermodynamic properties are
readily obtained from the quoted free energy and will be compared with our numerical re-
sults in Sect. 4. The underlined density fluctuation contribution to the free energy will be
demonstrated numerically from the scaling of the specific heat cV (Sect. 4.3).

32Hence, 〈C 〉 → 0 in the large-scale limit for an observable C which suggests b0 ≡ b for the Gaussian chain
reference bond length.
33For general polydisperse melts of given partial densities ρN = ρpN/〈N〉 the ideal gas contribution becomes∑

N ρN log(ρN )/ρ.
34A free energy contribution ≈ 1/R3

Nρ ∼ 1/N3/2 may be added to (69) if one insists on taking as refer-
ence for the connectivity contribution to the free energy the limit g → N , i.e. ξ → RN, where the chain
connectivity becomes irrelevant.
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Fig. 5 (Color online) Sketch of relevant interaction diagrams for the perturbation calculation of a long test
chain of length Nt . The dashed lines indicate the effective monomer interaction ṽ(r) between two monomers k

and l on the chain whose distance is weighted using the Gaussian propagator G0(r, |k−l|). (a) The calculation
of the subchain size R2

s requires the computation of four graphs, the dominant contribution stemming from the
interactions of monomers within the subchain. The numerical factors indicate the relative weights contributing
to the 1/

√
s predicted by (10) [80, 84]. (b) The direct calculation of the bond-bond correlation function P1(s)

is simplified by choosing two bonds l1 and l2 outside the s-segment. For symmetry reasons only the graph
Io for the effective interactions between the monomers in the two dangling tails of lengths S1 and S2 gives a
non-vanishing contribution

As the reader might have noticed we have written the free energy in (69) following Ed-
wards assuming v ≡ v2 for the bare monomer interaction and b0 ≡ l for the bond length of
the Gaussian reference chain. As already alluded to above (Sect. 2.4.1), one would nowadays
rather set v ≡ 1/gρ and b0 ≡ b using the imposed or measured dimensionless compressibil-
ity g and the measured effective bond length b. However, the choice of Edwards has a clear
advantage: g and b may not be known with sufficient precision while the second virial coef-
ficient v2 and the bond length l can always be calculated from the given model Hamiltonian.
According to (5.46) of Ref. [4] the stated free energy is supposed to hold in the limit where
Gz � 1 with Gz ∼ 1/

√
g being the Ginzburg parameter. As we shall see in Sect. 4, this re-

stricts the validity of the related predictions to rather weak values of the (reduced) Lagrange
multiplier ε/T applied to control the compressibility. In the range of validity of (69) it turns
out that v2 ≈ 1/gρ and l ≈ b, i.e. the difference between both parameter choices correspond
to irrelevant higher order corrections.

2.4.4 Subchain Size Distribution and Its Moments

We turn now to the perturbation calculation predictions of intrachain conformational prop-
erties which will be compared with our numerical data in Sect. 5. We focus first on the
scale-free wavevector regime for arbitrarily long chains described by the effective interac-
tion potential (66), i.e. effects related to the chain length distribution pN are irrelevant. For
the observable A = r2

nm with 1 � n < m = n+ s � Nt we indicate in Fig. 5(a) the different
interaction graphs one may compute in real space [80]

Ii = 12

π

vξ

b4
0

b2
0s + −45√

24π3b3
0ρ

b2
0

√
s,

I+ = I− = 9√
24π3b3

0ρ
b2

0

√
s,

Io = 3√
24π3b3

0ρ
b2

0

√
s. (70)
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The diagram Ii corresponds to the standard graph computed by Edwards for the total chain
(s = Nt − 1) [4]. Consistent with Edwards its leading Gaussian contribution describes how
the effective bond length is increased from b0 to b under the influence of a small excluded
volume interaction inside the subchain between n and m. Note that all other contributions
proportional to

√
s correspond to the leading non-Gaussian corrections predicted in (10).

They only depend on b0 and ρ but, more importantly, not on v in agreement with the scaling
discussed in Sect. 2.3.6. The relative weights of these four contributions are indicated in
Fig. 5(a) in units of −b2

0

√
s/(

√
24π3b3

0ρ). The dominant correction stems from the interac-
tion Ii within the subchain. The diagrams I+ and I− are obviously identical in the scale-free
limit.35 Summing over all contributions this yields

〈
r2

nm

〉= b2
0s + Ii + I+ + I− + Io = b2s

(

1 − cs√
s

(
b

b0

))

(71)

where we have used the definition cs ≡ √24/π3/ρb3 already mentioned in Sect. 1.5 and
have set

b2 ≡ b2
0

(

1 + 12

π

vξ

b4
0

)

= b2
0

(

1 +
√

12

π
Gz0

)

(72)

with Gz0 ≡ √
vρ/b3

0ρ.
For higher moments of the distribution G(r, s) it is convenient to calculate first the pertur-

bation deviations of the Fourier-Laplace transformation δĜ(q, t) = L [F [δG(r, s)]] with
δG(r, s) = G(r, s) − G0(r, s) and to obtain the moments from the coefficients of the expan-
sion of this “generating function” in terms of the squared wavevector q2. As explained in
detail in the Appendix B.2, this leads to a deviation

δG(r, s) =
(

3

2πb2
0s

)3/2

exp

(

−3

2

r2

b2
0s

)
cs√
s

(
b

b0

)3

f (n) (73)

with n = r/b0
√

s and the universal function

f (n) =
√

3π

32

(

− 2

n
+ 9n − 9

2
n3

)

(74)

which allows to specify all moments of G(r, s) [84].

2.4.5 Adjusting the Bond Length of the Reference Chain

The above perturbation result (72) is of relevance to describe the effect of a weak excluded
volume v on a reference system of ideal polymer melts with bond length b0 = l where all
interactions have been switched off (v = 0). It is expected to give a good estimation for
the effective bond length b only for a small Ginzburg parameter Gz ≈ Gz0 � 1. For the
dense incompressible melts we want to describe the latter condition does not hold and one

35Using (4) it follows that the interactions described by the strongest graph Ii align the bonds ln and lm
while the others tend to reduce the effect [80]. As shown in Fig. 5(b), it is better to place the bond pair
outside the subchain if one computes P1(s) directly (Sect. 2.4.6 and Sect. B.4). For symmetry reasons only
the interaction graph Io between the dangling ends matters for the alignment of the bond pair. Both pictures
are consistent and lead to the same result.
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cannot hope to find a good quantitative agreement with (72). Note also that large wavevec-
tors contribute strongly to the leading Gaussian term. The effective bond length b is, hence,
strongly influenced by local and non-universal effects and is very difficult to predict in gen-
eral (Sect. 5.3).

Our more modest goal is to predict the coefficient of the 1/
√

s-perturbation and to ex-
press it in terms of a suitable variational reference Hamiltonian characterized by a conve-
niently chosen b0 and the measured effective bond length b (instead of (72)). Following
Refs. [43, 84] we argue that for dense melts b0 should be renormalized to b to take into
account higher order graphs.36 Restating thus (73) with b0 ≡ b the subchain size distribution
may be rewritten

δG(r, s)

G0(r, s)
= cs√

s
f (n) (75)

and for the 2p-th moment of distribution this yields

〈
r2p

nm

〉= (2p + 1)!
6pp!

(
b2s
)p
(

1 − 3(2pp!p)2

2(2p + 1)!
cs√
s

)

(76)

which reduces for p = 1 to (10) as stated in the Introduction. As a consequence the non-
Gaussianity parameters Kp(s) and αp(s) defined in Sect. 2.2.3 become

Kp(s) = 3(2pp!p)2

2(2p + 1)!
cs√
s

(77)

and

αp(s) =
(

3(2pp!p)2

2(2p + 1)! − p

)
cs√
s
. (78)

Equation (78) can be obtained from (77) by expanding the second moment (p = 1) in the
denominator of the definition (27).

2.4.6 Bond-Bond Correlation Function

The bond-bond correlation function P1(s) is a central property since it allows to probe di-
rectly the colored forces acting on the reference chain due to the incompressibility con-
straint, (176). Using (4) P1(s) may be obtained by differentiating the second moment R2

s of
the subchain size distribution G(r, s) with respect to the arc-length s. For arbitrarily large
chains and s � g this yields P1(s) = cP /s3/2 with cP = c∞cs/8 as announced in the Intro-
duction.

It is also possible to obtain P1(s) directly by averaging the observable A = ln · lm/ l2.
Since for linear chains 〈A 〉0 = 0 by construction, the task is to compute (57).37 Changing
slightly the notations as indicated in Fig. 5(b), we consider two bonds l1 and l2 outside the

36The general scaling argument discussed in Sect. 2.3.6 states that we have only one relevant length scale in
this problem, the typical subchain size Rs ≈ b

√
s itself. The incompressibility constraint cannot generate an

additional scale. It is this size Rs which sets the strength of the effective interaction which then in turn feeds
back to the deviations of Rs from Gaussianity. Having a bond length b0 in addition to the effective bond
length b associated with Rs would imply a second length scale b0

√
s.

37We remind that for closed cycles the ring closure implies long-range angular correlations even for Gaussian
chains, hence for rings 〈A 〉 ≈ 〈A 〉0 �= 0 to leading order [87].
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s-segment. The lengths of the two tails of the chains are denoted S1 and S2. One of the
tails, say S2 = Nt − s − S1 − 1, may be fixed by the total length of the test chain. Placing
the head of the first bond l1 at the origin we consider the correlation function C1(r) =
〈l1(0) · l2(r)〉/l2 between two bonds separated by the distance r = |r|. Interestingly, it can be
seen by symmetry considerations that C1(r) does only depend on the effective interaction of
the monomers in the first tail with the monomers in the second tail and not on the monomers
in the intermediate strand of length s. Hence, we need only to calculate one interaction
graph as opposed to the four graphs required by the calculation of P1(s) thought R2

s . It is
for this reason we have chosen the indicated positions of heads and tails of the bond vectors.
With B(l) denoting the normalized distribution of the bond vector l of the polymer model
considered, the interaction graph in real space may be written

C1(r) = −
∫

dl1dl2B(l1)B(l2) A (l1, l2)

×
S1∑

s1=0

S2∑

s2=0

∫
dr1dr2G0(r1 + l1, s1)G0(r2 − l2, s2)

× ṽ(r2 + r − r1) (79)

where r1 points from the head of the bond l1 to the monomer s1 in the first tail and r2 from
the tail of the bond l2 to the monomer s2 in the second dangling chain end. As the s-segment
is not implied in the perturbation of C1(r), the constraint which consists in putting the two
points on the same chain and putting a s-strand between them introduces, to lowest order, the
Gaussian propagator G0(r, s). Using Parseval’s theorem the bond-bond correlation function
reads

P1(s) =
∫

dr C1(r)G0(r, s) =
∫ dq

(2π)d
C1(q)G(q, s) (80)

with C1(q) being the Fourier transform of C1(r).38 To simplify the notations we set from
the start b0 = b, i.e. we take the effective bond length as the bond length of the Gaussian
reference chain. Although this is not strictly necessary, the calculation in reciprocal space
may be strongly simplified by assuming the bond vector distribution to be a Gaussian B(l) ≡
G0(l, s = 1) with b2 ≡ 2da2 ≡ l2 ≡ 〈l2〉. This implies that the chain is perfectly flexible, i.e.
c∞ = (b/ l)2 = 1.39 Under these premises a bond vector l may be represented in reciprocal
space as

F
[
lB(l)

]= i∂qB(q) ≈ ia22q = i

d
b2q (81)

38It can be shown that for infinite chains C1(q) = 4ṽ(q)/(bq)2 and, hence,

C1(r) = v

πb2r
exp(−r/ξ) in d = 3,

i.e. C1(r) → 0 for ξ → 0 at fixed distance r . Note that C1(r) is a mere technical intermediate quantity which
should not be confused with the bond-bond correlation function P1(r) discussed in Sect. 5.4.2 and Sect. B.5.
39The complete formula for systems of general rigidity can be recovered by multiplying the final perturbation
calculation result with c∞ as may be seen by scaling considerations [87, 89] or by simply comparing the result
with the bond-bond correlations obtained using R2

s .
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with B(q) = F [B(l)] = exp(−(aq)2) being the Fourier transformed bond vector distri-
bution.40 Let us denote the wavevectors conjugated to the bonds l1 and l2 by q1 and q2,
respectively. The Fourier transform of the observable A (l1, l2) thus reads

A (q1, q2) = − b2

d2
q1 · q2. (82)

Using (82) for the observable and (66) for the interaction potential for Flory-distributed
systems of given compressibility g one may integrate (80) in reciprocal space as shown in
Appendix B.4. In the limit of very long chains (μ → ∞) one obtains in d = 3 dimensions
[86]

P1(s) = cP

g3/2

(
4√
u

− 4
√

2πe2uerfc(
√

2u)

)

(83)

as a function of the reduced arc-length u = s/g with erfc(x) being the complementary error
function [44]. As one expects, (83) reduces to (9) for large u � 1, i.e. irrespective of the
compressibility g the bond-bond correlation function behaves as in the incompressible limit.
In the opposite limit where the structure within the thermal blob is probed (83) corresponds
to the weaker decay

P1(s) ≈ cP

g3/2

4√
u

. (84)

This regime is consistent with the classical expansion result of the chain size in terms of
the Fixman parameter z(s) ≈ v

√
s/b3 [86].41 We therefore refer to this limit as the “Fixman

regime”.

2.4.7 Finite Chain Size Effects

To describe properly finite chain size corrections, (64) must be replaced by the general for-
mula (59). For monodisperse chains (N = 〈N〉 = Nt) the form factor F0(q) is given by
Debye’s function (36). This approximation allows in principle to compute, e.g., the mean-
squared total chain end-to-end distance, A = (rN − r1)

2. One verifies readily (see [4],
(5.III.9)) that the effect of the perturbation may be expressed as

〈A 〉0〈U〉0 − 〈A U〉0 =
∫ dq

(2π)3
ṽ(q)4(a0q)2a2

0

∫ N

0
dss2(N − s) exp

(−(a0q)2
)
. (85)

We take now first the integral over s. In the remaining integral over q small q wavevectors
contribute to the

√
N -swelling while large q renormalize the effective bond length of the

dominant Gaussian behavior linear in N (as discussed above). Since we wish to determine
the non-Gaussian corrections, we focus on small wavevectors q � 1/ξ , i.e. the effective
interaction potential is given by (60). We thus continue the calculation using ṽ(N,x)ρ =
1/(NρfD(x)) with fD(x) being Debye’s function and x = (Rg(N)q)2 = (a0q)2N . This al-
lows us to express the swelling as

1 − 〈(rN − r1)
2〉

b2N
= cs√

N
I (xu). (86)

40For a general bond vector distribution one may expand B(q) at low momentum as indicated in Sect. B.1.
41Omitting all prefactors we remind [4] that to leading order R2

s ≈ b2s(1 + z(s) . . .). Using (4) it follows that
P1(s) ∼ 1/g

√
s.
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We have set here b0 = b in agreement with the renormalization of the reference bond length
discussed above. The numerical integral I (xu) = ∫ xu

0 dx . . . over x is slowly convergent at
infinity. As a consequence the estimate I (∞) = 1.59 may be too large for moderate chain
lengths. In practice, convergence is not achieved for values xu(N) ≈ (b/ξ)2N corresponding
to the screening length ξ .

We remark finally that for various properties numerical integration can be avoided replac-
ing the Debye function by the Padé approximation, (63). This has been done for instance for
the calculation of finite chain size effects for the bond-bond correlation function P1(s,N)

discussed in Sect. 5.4.1.42

3 Bond-Fluctuation Model

3.1 Introduction

The theoretical predictions sketched above should hold in any dense homopolymer solution
assuming that the chains are asymptotically long, i.e. at least N/g � 102 and even better
N/g � 103. The computational challenge is to sample such configurations using as sim-
ple a coarse-grained model for polymer melts as possible [21, 29]. In this study we use
the BFM, an efficient lattice MC algorithm proposed as an alternative to single-site self-
avoiding walk models by Carmesin and Kremer in 1988 [28]. As illustrated in Fig. 6, the
key idea of the model is to increase the size of the monomers which now occupy whole
unit cells on a simple cubic lattice connected by a specified set of allowed bond vectors.
While the multitude of possible bond lengths and angles allows a better representation of
the continuous-space behavior of real polymer solutions and melts, the model remains suf-
ficiently simple retaining thus the computational efficiency of lattice models. The BFM al-
gorithm has been used for a huge range of problems addressing the generic behavior of long
polymer chains of very different molecular architectures and geometries: statics and dy-
namics of linear [49–55, 71, 80, 82–86, 128–133] and cyclic [123, 134, 135] homopolymer
melts, polymer blends [136–140], gels and networks [141], glass transition [142–146], poly-
mers and copolymers at surfaces [147, 148], brushes [149–151], thin films [95, 152–155],
equilibrium polymers [107–109, 156] and other problems related to monomer and chain
self-assembly [157, 158]. For recent reviews on the BFM algorithm see Refs. [29, 30].

Throughout this paper all lengths and densities are given in units of the lattice constant σ ,
time scales are given in units of the Monte Carlo Step (MCS) and Boltzmann’s constant kB

is set to unity. Apart some paragraphs in Sect. 4 we assume a temperature T = 1. If not
specified otherwise the chains are monodisperse of length N .

We define first the classical BFM variant without monomer overlap (ε = ∞) and explain
then how dense configurations may be obtained using a mix of local and global MC moves
(Sect. 3.3). The generalization of the BFM Hamiltonian to finite monomer overlap penalties
ε is presented in Sect. 3.4. Finally, we turn in Sect. 3.5 to polydisperse equilibrium polymer
systems with annealed size distribution.

42It is interesting to compare the numerical value I (∞) ≈ 1.59 obtained for the r.h.s. of (86) with the coeffi-
cients one would obtain by computing (85) either with the effective potential ṽ(q) for infinite chains given by
(66) or with the Padé approximation, (63). Within these approximations of the full linear response formula,
(59), the coefficients can be obtained directly without numerical integration yielding overall similar values.
In the first case we obtain 15/8 ≈ 1.87 and in the second 11/8 ≈ 1.37 [84]. While the first value is clearly not
compatible with the measured end-to-end distances, the second yields a reasonable fit, especially for small
N < 1000.
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Fig. 6 (Color online) The BFM is an efficient lattice MC algorithm for coarse-grained polymer chains where
monomers are represented by cubes on a simple cubic lattice (of lattice constant σ ) connected by a set of
allowed bond vectors. (a) The classical BFM assumes that lattice sites are at most occupied once. The panel
shows the recently proposed variant with finite excluded volume penalty [86]. An energy ε has to be paid
if two cubes totally overlap. A corresponding fraction is associated with the partial monomer overlap, as
sketched for two cube corners. (b) Using local MC jump attempts to the next ( filled circles) and next-nearest
(open circles) neighbors we investigate in Sect. 6 the influence of the incompressibility constraint on the
dynamics of overdamped polymer melts without topological interactions. (c) Using hard and structureless
walls systems of reduced effective dimension d < 3 may be investigated as outlined in Sects. 6.2 and 7.2.1

3.2 Classical BFM Without Monomer Overlap

The classical implementations of the BFM idea do not permit monomer overlap, i.e. each
monomer occupies exclusively a unit cell of 2d lattice sites on a d-dimensional simple cubic
lattice [28–30]. The fraction φ of occupied lattice sites is thus φ = 2dρ with ρ being the d-
dimensional monomer number density. A widely used choice for the allowed bond vectors
for the 3D variant (d = 3) of the BFM introduced by the Mainz condensed matter theory
group around K. Binder [50–53, 128–132] is given by

P
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2
0
0

⎞

⎠ , P

⎛

⎝
2
1
0

⎞

⎠ , P

⎛
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⎞

⎠ , P

⎛
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1

⎞
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⎛

⎝
3
0
0

⎞

⎠ , P

⎛

⎝
3
1
0

⎞

⎠ (87)

where P stands for all the possible permutations and sign combinations of a lattice vector.
This corresponds to 108 different bond vectors l of 5 possible bond lengths (2,

√
5,

√
6,

3,
√

10) and 100 angles between consecutive bonds. The smallest 13 angles do not appear
for the classical BFM because excluded volume forbids the sharp backfolding of bonds. If
only local hopping moves to the 2d = 6 nearest neighbor sites are performed—called “L06
moves” [84]—this set of vectors ensures automatically that polymer chains cannot cross.
(The corresponding “L04 moves” for the 2D variant of the BFM are represented in Fig. 6(b)
by filled circles.) Topological constraints, e.g. in ring polymers [123, 134, 135] or polymer
gels [141], hence are conserved.43

43Following [50, 51] we keep lists of the monomer positions in absolute space, their corresponding lattice
positions and of the indices 1 ≤ i ≤ 108 of the bond vectors connecting the monomers of the chains. Since the
bond vector index can be encoded as a byte, this allows a rather compact storage of the configurations. Pre-
defined tables allow the rapid verification of the excluded volume condition on the periodic lattice. Following
Müller [30, 136] we use a Wigner-Seitz representation of the cubic lattice where a cube is not represented
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Fig. 7 (Color online) Diffusion time TN ≡ R2
N/6DN vs. chain length N for different versions of the BFM

without monomer overlap. All data are for our standard volume fraction φ = 0.5. The BFM version with
topology conserving local “L06 moves” is represented by stars. All other data sets use topology violating local
“L26 moves” [84]. The L26 dynamics (diamonds) is essentially Rouse-like which allows the determination
of DN although the monomers have not yet moved over RN for the largest chains considered. Additional
“slithering snake” (SS) moves increase the efficiency of the algorithm by approximately an order of magnitude
(squares, bold line). A power-law exponent 1.6 ± 0.1 (dashed line) is found if “double bridging” (DB) moves
are included

Consequently, several authors report reptation-type dynamics for chain lengths N �
Ne ≈ 102 at a standard “melt” volume fraction φ = 8ρ = 0.5 [50, 51, 56, 57].44 As may
be seen from the stars indicated in Fig. 7, the relaxation time TN obtained using L06 moves
[84] becomes similar to the reptation theory prediction TN ∼ N3 (dash-dotted line). We have
used here—as elsewhere if not stated otherwise—periodic simulation boxes of linear dimen-
sion L = 256 containing nmon = ρL3 = 220 ≈ 106 monomers. This large system size allows
to eliminate finite-size effects even for the longest chain lengths studied. The relaxation time
TN ≡ R2

N/6DN has been estimated here (for historical reasons) using the self-diffusion coef-
ficient DN obtained either from the monomer MSD h(t) or the chain CM MSD hN(t). Other
operational definitions of TN exist [51, 56] which lead to similar, vertically slightly shifted
results. The last data point for N = 1024 has to be taken with care as usual in computational
as in experimental studies [159]. Being obtained by extrapolation using the expected shape
of hN(t)/t in log-linear coordinates, it corresponds to a lower bound for TN. Note that the
relaxation time appears thus to increase even more strongly with N than the standard rep-
tation theory predicts [4]. We do not pursue this issue here (which has also been observed
in MD simulations) the important point being merely that local topology conserving moves
are too inefficient to equilibrate and sample large-N polymer melts.

by 8 entries on the lattice but just by one variable in the cube center. This variable can be a boolean if we
are only interested in homopolymers or an integer if we deal with a mixture of different monomer types.
Although the Wigner-Seitz representation of the BFM algorithm is about a factor 3 slower than the original
implementation, it has the advantage that the code becomes more compact and can be more readily adapted
to the various polymer architectures or interaction potentials of interest.
44The BFM version by Shaffer [54, 55] assumes a different bond vector set which leads to a higher chain
stiffness c∞ and, hence, to smaller values of the entanglement length Ne. Note that if one applies a local
stiffness potential, as discussed Sect. 2.2, one finds quite generally that topological effects become more
pronounced [52, 123, 135].
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Fig. 8 (Color online) Two-dimensional sketch of the global MC moves used: (a) Monomers move col-
lectively along the chain if a slithering snake move is performed. Effectively, this amounts to removing a
monomer (the striped one on the left), connecting it to the other end of the chain and leaving the middle
monomers unchanged. Therefore, density fluctuations and constraint release only occurs at the chain end. At
higher volume fractions it is thus necessary to add local hopping moves, as shown at the top of the panel to
maintain the computational efficiency [49]. (b) Connectivity altering double bridging (DB) moves are very
useful at high densities allowing us to extend the accessible molecular mass up to N = 8192 [84]. Since
density fluctuations do not couple to DB moves, local moves again must be added

Note that the classical BFM without monomer overlap and using L06 moves is strictly
speaking not ergodic, since some configurations may be easily constructed which are not ac-
cessible starting from an initial configuration of stretched linear chains. Although topology
conservation is irrelevant for the present work (taking apart the preliminary results presented
in Sect. 6.5) we keep the set of allowed bond vectors, (87), for consistency with previous
work.

3.3 Local and Global Topology Violating MC Moves

To equilibrate and sample BFM melts such as the ones presented in Fig. 7, we have replaced
the realistic but very slow L06 moves by a mix of local topology violating so-called “L26
moves” [84] with global “slithering snake” [32, 33, 49] and “double bridging” [29, 36, 37,
73] MC moves as shown in Fig. 8.

3.3.1 Local L26 Moves

Already the use of local moves to the 3d − 1 = 26 next and next-nearest lattice sites sur-
rounding the current monomer position [Fig. 6(b)] dramatically speeds up the relaxation
dynamics, especially for N > 512, as can be seen from the diamonds indicated in Fig. 7.
Since the dynamics is to leading order of Rouse-type, as further discussed in Sect. 6, the
diffusion coefficient DN can readily be estimated from the CM MSD hN(t) even for our
largest chains with N = 8192. As shown in Fig. 7, we find TN ∼ 530N2 for L26 dynamics.
This is, of course, still prohibitive for the longest chains we aim to characterize.

L26 moves yield configurations not accessible with L06 moves. Concerning the static
properties both system classes are practically equivalent. This has been confirmed by count-
ing the number of monomers which become “blocked” (in absolute space or with respect to
an initial group of neighbor monomers) once one returns to the L06 scheme. Typically, we
find about 10 blocked monomers for a system of 220 monomers [84]. While the few blocked
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monomers are irrelevant for static properties they obviously matter if dynamical properties
are probed.45

3.3.2 Slithering Snake Moves

In addition to these local moves one slithering snake move per chain is attempted on average
per MCS corresponding to the displacement of N monomers along the chain backbone,
as sketched in Fig. 8(a). Note that in our units two displacement attempts per MCS are
performed on average per monomer, one for a local move and one for a snake move.46

Interestingly, a significantly larger slithering snake attempt frequency would not be useful
since the relaxation time of snakes without or only few local moves increases exponentially
with mass as shown in [48, 49] due to the correlated motion of snakes expected in analogy
to the activated reptation limit for real polymer melts mentioned in Sect. 1.4 [46, 47]. In
order to obtain an efficient free snake diffusion [with an N -independent curvilinear diffusion
coefficient Dc(N) ∼ N0 and TN ≈ N2/Dc(N) ∼ N2 [33, 49]] it is important to relax density
fluctuations rapidly by local dynamical pathways. As shown in Fig. 7 (squares), we find
a much reduced relaxation time TN ≈ 40N2 which is, however, still inconveniently large
for our longest chains. Note that most of the CPU time is used by the local moves and the
computational load per MCS remains N -independent.

3.3.3 Double Bridging Moves

Double bridging (DB) moves are found to be very useful at high densities and help us to
extend the accessible molecular masses close to N ≈ 104. As for slithering snake moves
we use all 108 bond vectors to switch chain segments between two different chains. Only
chain segments of equal length are swapped to conserve monodispersity. Topological con-
straints are again deliberately violated. Since more than one swap partner is possible for a
selected first monomer, delicate detailed balance questions arise [29]. This is particularly
important for short chains. To avoid the computation of weights [29] one simple solution to
this problem is to refuse all moves with more than one swap partner.47 The configurations
are screened with a frequency fDB for possible DB moves where we scan in random order
over the monomers. The frequency should not be too large to avoid (more or less) immediate
back swaps and monomers should move at least over a couple of lattice constants between
subsequent DB moves. In the example presented in Fig. 7 (spheres) a frequency fDB = 0.1
is used. Empirically it is found that TN ≈ 13N1.6±0.1 using the diffusion coefficient DN ob-
tained from the monomer MSD h(t). For N = 8192 this corresponds to 3 × 107 MCS. This
allowed us even for the largest chains to observe monomer diffusion over several RN within
the 108 MCS which were feasible in 2007 on our XEON-PC processor cluster [84]. The in-
fluence of fDB on the performance has yet not been explored systematically, but preliminary

45The same problems arise if slithering snake or double bridging moves are used to equilibrate the configu-
rations.
46It is computationally more efficient for large N to take off a monomer at one chain end and to paste it at
the other leaving all other monomers unaltered. Before static or dynamical measurements are performed the
original order of the monomers must then be restored.
47Since we have a finite number of possible BFM bonds an even simpler option is to select randomly one
bond vector l for a given first monomer at a lattice position r and to check whether a suitable monomer of
another chain exists at r + l. Obviously, using only one instead of 108 bonds reduces the number of DB
moves performed, but since correlated moves forth and back in topology space are pointless, this is not of
disadvantage.
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Table 1 Various properties for monodisperse BFM melts at volume fraction φ = 0.5: the dimensionless
compressibility g, the root-mean-square bond length l, the effective bond length b, the acceptance rate A,
the local monomer mobility W and the self-diffusion coefficient DN. The dynamical data refer to local L26
moves to the nearest and next-nearest lattice sites which yields essentially Rouse-like dynamics. The values
of the dimensionless compressibility g and the effective bond length b for asymptotically long chains have
been obtained using extrapolation schemes discussed in Sects. 4 and 5, respectively

ε/T g l b A W NDN

0.0 ∞ 2.718 2.72 0.2109 0.032 0.065

0.01 209 2.718 2.80 0.2109 0.030 0.062

0.03 67 2.718 2.85 0.2099 0.028 0.060

0.1 22 2.719 2.92 0.2067 0.024 0.058

0.3 7.1 2.720 3.01 0.1992 0.021 0.050

1 2.4 2.721 3.13 0.1796 0.015 0.040

3 0.85 2.721 3.21 0.1432 0.008 0.024

10 0.32 2.670 3.24 8.8E–02 0.003 0.009

30 0.25 2.638 3.24 7.2E–02 0.0013 0.004

100 0.25 2.636 3.24 6.9E–02 0.0010 0.003

∞ 0.25 2.636 3.24 6.9E–02 0.0010 0.003

results suggest smaller DB frequencies for future studies. The power-law exponent ≈ 3/2
remains robust as is also confirmed by MD simulations of a bead-spring model coupled to
DB moves [84]. This finding begs for a systematic theoretical investigation.

3.3.4 Summary of Static Properties

Some static properties obtained at our reference volume fraction φ = 0.5 assuming no
monomer overlap (ε = ∞) are indicated in Table 1. Averages are performed over all chains
and typically 1000 configurations. Apart from systems with N = 8192, chains are always
much smaller than the linear box size L = 256. In the large N -limit we obtain an aver-
age bond length 〈|l|〉 ≈ 2.604, a root-mean-squared bond length l ≈ 2.636 and an effec-
tive bond length b ≈ 3.24 as will be shown below in Sect. 5.3. This corresponds to a ra-
tio c∞ = (b/ l)2 ≈ 1.52 and, hence, to a persistence length lp = l(c∞ + 1)/2 ≈ 3.32. The
swelling coefficient cs =√24/π3/b3ρ defined in Sect. 1.5 is thus cs ≈ 0.41. Especially, we
find from the zero wavevector limit of the total structure factor S(q) a dimensionless com-
pressibility g ≈ 0.246 (43) which compares well with real experimental melts. From the
measured bulk compression modulus v ≡ 1/g(ρ)ρ ≈ 66 and the effective bond length b one
estimates a Ginzburg parameter Gz = √

vρ/b3ρ ≈ 0.96. Following Ref. [18] the interaction
parameter v is supposed here to be given by the full inverse compressibility and not just by
the second virial coefficient v2 = 27 of the BFM monomers [129].

3.4 BFM with Finite Excluded Volume Penalty

3.4.1 Definition of Hamiltonian

Figure 6 shows how finite energy penalties may be introduced in the BFM algorithm [86].
The overlap of two cube corners on one lattice site (Nov = 1) corresponds to an energy
cost of ε/8, the full overlap of two monomers (Nov = 8) to an energy ε. More generally,
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with Nov being the total number of interacting cube corners the total interaction energy of a
configuration is

E = ε

8
Nov. (88)

With the energies of the final (Ef) and the initial configurations (Ei) we accept a pro-
posed MC move according to the Metropolis criterion with a probability min(1, exp[−(Ef −
Ei)/T ]) [26, 27]. If the overlap penalty is the only energy scale as in the studies presented
here, one may, of course, either vary the overlap parameter ε or the temperature T . For the
presentation of thermodynamic properties in Sect. 4 it will be more naturally to use T as the
control parameter and to fix arbitrarily ε = 1. The inverse temperature β = 1/T and the di-
mensionless overlap strength x = ε/T are thus numerically equal. (Both notations are kept
for dimensional reasons and for future generalization to models with more than one energy
scale.) In other parts of this review, especially Sect. 5 and Sect. 6, it will be more natural to
set temperature to unity, T = 1, using the overlap strength ε as the control parameter.

3.4.2 Second Virial Coefficient

To illustrate this finite excluded volume interaction we indicate the second virial of an im-
perfect gas of unconnected monomers, v2 = ∫ dδ(1 − e−E(δ)/T ), which is shown below to be
useful for roughly characterizing the effective strength of the potential. δ stands for a pos-
sible lattice vector between the centers of two interacting cubes. It is easy to see that there
are 8 vectors corresponding to Nov = 1 as shown in Fig. 6(a), 12 to Nov = 2 (overlap of two
cube corners), 6 to Nov = 4 (overlap of two faces), and 1 to Nov = 8 (full overlap). Setting
x = ε/T this leads to a second virial

v2(x) = 8 × (1 − exp(−x/8)
)+ 12 × (1 − exp(−x/4)

)+ 6 × (1 − exp(−x/2)
)

+ 1 × (1 − exp(−x)
)

(89)

given in units of the lattice cube volume σ 3. We note that the second virial becomes constant,
v2 = 27, for large x � 1 as expected [129]. This second virial coefficient is about half the
effective bulk modulus v ≈ 66 indicated above. In the opposite limit we have

v2(x) ≈ 8x − 27

16
x2 for x � 1. (90)

We shall see in Sect. 4.4 that v2 ≈ v in this limit.

3.4.3 Implementation

Since a lattice site may be occupied now by more than one monomer, it is not possible to
use a compact boolean occupation lattice as for the classical BFM. Instead we have mapped
(88) onto a Potts spin model [26]

E = 1

2

∑

r

S(r)
∑

δ

J (δ)S(r + δ) − 1

2
εnmon (91)

with constant monomer number nmon =∑r S(r)
!= L3ρ. We use the Wigner-Seitz represen-

tation of the BFM on the cubic lattice [30, 136] where an integer spin variable S(r) counts
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the number of BFM monomers (S = 0,1,2, . . .) with cubes centered at a Wigner-Seitz lat-
tice position r . Since we have now to compute the interaction between cube centers instead
of cube corners, the coupling constant J characterizing the interaction between two spins
depends only on the relative distance δ:

J (δ) = ε

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1/8 if δ = P(1,1,1) for cube corners,

1/4 if δ = P(1,1,0) for cube edges,

1/2 if δ = P(1,0,0) for cube faces,

1 if δ = P(0,0,0) for full overlap,

0 otherwise.

(92)

Since the interaction is still short-ranged and the values of J are readily tabulated, this
remains an efficient rendering of the monomer interactions. Note that the first term on the
r.h.s. of (91) contains a constant self-interaction contribution of the nmon monomers with
themselves for δ = 0, which is subtracted by the second term.48

3.4.4 Equilibration and System Properties

As start configurations we have used the equilibrated BFM configurations without monomer
overlap (ε = ∞) described in Sect. 3.2 [84]. As one may expect, the configurational proper-
ties are found essentially unchanged for x � 5 (Table 1). Local L26-moves need to be added
to the snake moves for x ≥ 1. Otherwise the slithering snake motion will become ineffec-
tive [49]. Simple slithering snakes without local moves are sufficient, however, for smaller
penalties. We have crosschecked our results in this regime for N = 2048 and N = 8192 us-
ing boxes of linear size L = 512 by starting our simulations with Gaussian chains at x = 0
and increasing then the penalty. Table 1 present some system properties obtained for our
reference volume fraction φ = 0.5 such as dimensionless compressibility g or the effective
bond length b. Averages are performed over all chains and at least 100 configurations. The
chain lengths N = 64, N = 1024 and N = 2048 have been studied with particular care.
Density effects have been studied more briefly. As will be discussed in Sect. 4.2, we have
sampled weak overlap penalties (x � 1) for N = 8192 to investigate the intrachain contri-
butions to the mean energy. We have also probed various densities for N = 1024 and ε = 10
as summarized in Table 2. This was done to check for density effects on the deviations to
Rouse dynamics as discussed in Sect. 6.4.

3.5 BFM with Annealed Mass Distribution

3.5.1 Motivation and Context

As discussed above (Fig. 7), the equilibration and sampling of strictly monodisperse polymer
melts is a delicate issue. An elegant way to test the computed conformational properties is
given by associating a finite “scission energy” E ≥ 0 to each bond which has to be paid if
a bond is broken [17, 107–111, 156]. Since we are only interested here in linear polymer
melts, the formation of closed cycles and the branching of the chains is not permitted.49

48Attractive interactions similar to the ones used in [136–139] may be easily added to the Potts spin formu-
lation of the soft BFM. The simulation of polymer blends requires additional Potts spin lattices as the two
lattices used to obtain the chemical potential in Sect. 4.5.
49In systems of experimental relevance closed cycles are suppressed by the non-negligible rigidity of the
chains [160–162].
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Table 2 BFM solutions with overlap penalty ε = 10 for different vol-
ume fractions φ = 8ρ. The indicated dynamical properties—acceptance
rate A, local mobility W and self-diffusion constant DN—have been
obtained using local L26-moves for chains of length N = 1024

φ g l b A W NDN

0.5 0.32 2.670 3.24 8.8E–02 0.003 0.009

0.25 1.1 2.709 3.65 0.1455 0.004 0.018

0.125 3.3 2.725 3.95 0.1664 0.004 0.023

0.0625 9.5 2.731 4.38 0.1729 0.004 0.027

0.03125 26 2.733 4.77 0.1749 0.004 0.035

As sketched in Fig. 9, we relax thus the constraint that bonds can never break, i.e. that the
connectivity matrix (defining which monomers are connected by BFM bonds) is quenched,
and allow the polymerization of the chains and their respective monomers to take place under
condition of chemical equilibrium. Such systems of self-assembled EP are not only useful
for computational purposes but are also of high experimental relevance.50 An important
example sketched in Fig. 9(a) is that of some surfactant molecules forming long giant worm-
like micelles which break and recombine constantly at random points along the sequence
[17, 20]. Similar systems of EP are formed by liquid sulfur [104, 105], selenium [106]
and some protein filaments [9]. Although with respect to their static properties EP behave
very much like quenched polymers, the constant reorganization of the chain connectivity
offers an additional relaxation pathway reducing strongly the relaxation times [17, 106, 110,
111]. Obviously, EP are intrinsically polydisperse with an annealed length distribution pN

minimizing the free energy of the system (Sect. 2.2). Since both the bonding energy per
chain −E(N − 1) and all other free energy contributions to the chain chemical potential
μN are extensive with respect to the chain length N—at least according to Flory’s ideality
hypothesis—one expects a Flory distribution decreasing exponentially with chain length N .

3.5.2 Spatial Monomer Moves

The EP systems presented in this study have been obtained with the classical BFM al-
gorithm without monomer overlap (ε = ∞, T = 1) at the standard melt volume fraction
φ = 8ρ = 0.5. Using again the Wigner-Seitz representation we mark (only) the index of each
monomer on the periodic lattice of linear size L = 256. Thus the indices of the monomers
in the neighborhood of a reference monomer are readily obtained which is helpful for the
recombination of bonds described below. Only local L06 or L26 monomer moves have been
used since the breaking and recombination of the chains reduce the relaxation times dramat-
ically compared to monodisperse systems [111]. Additional global MC moves as described
in Sect. 3.3 may be added, however, in future studies.

3.5.3 Connectivity Pointer List

Self-assembled EP are only transient objects and it is thus inefficient to base the data struc-
ture on the chains [107], rather it should be based on the (saturated or unsaturated) bonds of

50In the surfactant literature [17] EP are often referred to as “living polymers” (LP) although this is potentially
confusing since they are distinct from systems that polymerize stepwise, in the presence of a fixed number
of initiators, for which this term has previously been reserved [163]. Since LP are held together by strong
covalent carbon-to-carbon bonds, they do not break in the middle of the polymer chain.
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Fig. 9 (Color online) Self-assembled linear EP: (a) Bead-spring representation of a worm-like micelle as-
suming a finite scission energy E and a finite barrier height B [17]. The scission energy determines the
static properties and fixes the ratio of the scission and recombination rates, ks ∼ exp(−(E + B)/kBT ) and
kr ∼ exp(−B/kBT ). Both energy scales are sketched vs. a generic reaction coordinate q [119]. The forma-
tion of closed rings and the branching of chains are not allowed in the presented studies. (b) Two-dimensional
projection of EP modeled using the classical BFM without monomer overlap [109]. Chains consists of sym-
metrically connected lists of bonds. The pointers of end-bonds point to NIL. The breaking of a saturated
bond ibond requires to set the pointers of the two connected bonds ibond and jbond = pointer(ibond) to NIL.
Setting pointer(−2) = 4 and pointer(4) = −2 connects the two end-monomers imon = 2 and jmon = 4

each monomer [109]. As sketched in Fig. 9(b), this allows via a linear pointer list between
the bonds to avoid all sorting procedures. Using the assumption that no branching of chains
is allowed, the two (possible) bonds of each monomer imon are called ibond = imon and
ibond = −imon. No specific meaning (or direction) is attached to the sign: this is merely a
convenience for finding the monomer from the bond list: imon = |ibond|. Pointers are taken
to couple independently of sign and the bonds are coupled by means of a pointer list in a
completely transitive fashion. Only two simple operations are thus required for breaking or
recombining bonds. Unsaturated bonds at chain ends point to NIL. Only these bonds may
recombine. A minor caveat attached to this data structure arises if the ends of a given chain
are not allowed to bind together as in the presented studies. Since there is no direct chain in-
formation in the data structure we have to check this constraint before every recombination
by working up the pointer list which only adds four lines to the source code.51

3.5.4 Connectivity Altering Moves

As sketched in Fig. 9(a), EP systems are not only characterized by the monomer density
ρ and the finite scission energy E which determine the static properties but also by a bar-
rier height B ≥ 0 which only influences the scission and recombination rates. This barrier is
taken into account by setting an attempt frequency ωB = exp(−B/T ) for choosing randomly
one bond ibond out of the 2nmon bonds of the system. This frequency is a convenient tool for
testing the dynamics of EP at different lifetimes of the chains [110, 111, 164] although for

51For higher E the simulation becomes actually faster per MCS since the number of recombinations goes

down like the squared density of unsaturated end monomers (ρ/〈N〉)2 ∼ exp(−E) [109].
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Table 3 Various properties of
EP obtained by means of the 3D
BFM algorithm without
monomer overlap (ε = ∞) at
volume fraction φ = 8ρ = 0.5:
imposed scission energy E, the
mean chain length 〈N〉, the ratio
F(0) = 〈N2〉/〈N〉 comparing the
first and the second moment of
the number distribution, the
root-mean-squared bond length l,
the z-averaged end-to-end
distance Re,z and radius of
gyration Rg,z obtained using (19)
with p = 2. For all scission
energies we have used periodic
simulation boxes of linear size
L = 256 containing nmon = 220

monomers

E 〈N〉 F(0) l Re,z Rg,z

1 6.4 11.9 2.632 12.6 5.2

2 10.4 19.7 2.633 16.5 6.8

3 16.8 32.4 2.633 21.6 8.8

4 27.5 53.4 2.634 28.1 11.4

5 44.9 87.9 2.634 36.3 14.8

6 73.7 145 2.634 46.9 19.1

7 121 239 2.634 60.7 24.7

8 199 394 2.634 77.9 31.8

9 328 650 2.634 102 41.4

10 538 1075 2.634 129 52.7

11 887 1766 2.634 165 67.7

12 1453 4747 2.634 217 88.1

13 2390 4747 2.634 270 110

14 3911 7868 2.634 348 143

15 6183 12272 2.634 426 184

the static properties discussed the choice of B is irrelevant. The bond ibond corresponds to a
monomer imon = |ibond| at a position r . Depending on whether the bond ibond is saturated
or unsaturated we try to break it or to connect it to a suitable nearby unsaturated monomer.
A delicate detailed balance problem arises [111] if nu > 1 unsaturated monomers are avail-
able for recombination (the no-closed-cycle condition having been verified). If one chooses
now one of these monomers at random, a weight 1/nu has to be taken into account for the
reverse breaking process. Choosing in addition to the reference bond ibond a trial bond vec-
tor l allows to avoid these weights. If ibond is unsaturated one searches for an unsaturated
monomer only at the position r + l (taking into account the periodicity of the lattice). Since
monomer overlap is forbidden there is at most one unsaturated monomer at this position.
If this is the case and if no closed cycle is formed, the recombination is accepted since the
energy change is −E ≤ 0. To satisfy detailed balance a saturated bond can therefore only
be broken if its bond vector is identical to the trial bond l. Applying the Metropolis algo-
rithm [26] a scission is performed whenever the value of a random number between 0 and
1 is smaller than exp(−E/T ). The fact that we only probe one lattice vector l for possible
recombinations and not all possible 108 obviously strongly reduces the number of recombi-
nation and scission events. However, since we are interested in uncorrelated changes of the
connectivity list, a broken monomer must anyway move over a certain distance, say 10σ ,
before a new recombination attempt is made. Otherwise there is a strong chance that the
newly created chain end monomer recombines with its previous partner [110, 111, 164].

3.5.5 Some Computational Results

As summarized in Table 3, we have sampled EP systems with scission energies up to
E = 15, the largest energy corresponding to a mean chain length 〈N〉 ≈ 6183. As for the
athermal classical monodisperse BFM systems we obtain a dimensionless compressibil-
ity g = 0.24, an effective bond length b = 3.244 and a swelling coefficient cs = 0.41. As
discussed in Sect. 2.2.2 one expects EP melts to be Flory distributed (20) if the chemical
potential of the chains is extensive with respect to their mass, μN ∼ N . The main panel of
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Fig. 10 (Color online) Normalized chain length distribution pN of linear EP for different scission energies E

obtained using the classical BFM algorithm without monomer overlap: (a) The main panel demonstrates the
collapse of the rescaled distribution y = pN〈N〉 as a function of x = N/〈N〉. The exponential decay (solid
line) implied by Flory’s ideality hypothesis is (to first order) consistent with our data. (b) First four moments
of the distribution vs. E. (c) Replot of the data of panel (a) in log-linear coordinates focusing on short chains.
The data points are systematically below the exponential decay (solid line) for x � 1

Fig. 10 presents the normalized length distribution pN for different scission energies E as
indicated. A nice data collapse is apparently obtained if pN〈N〉 is plotted as a function of the
reduced chain length x = N/〈N〉 using the measured mean chain length 〈N〉. At first sight,
there is no sign of deviation from the exponential decay indicated by the solid line. The
mean chain length itself is given in panel (b) as a function of E together with some higher
moments 〈Np〉 =∑N NppN of the distribution. As indicated by the dashed line, we find
〈Np〉 ∼ exp(pE/2) as expected from (23) [17, 109]. The data presented in the first two pan-
els of Fig. 10 is thus fully consistent with older computational work [107–113] which has
let us to believe (incorrectly) that Flory’s ideality hypothesis must hold rigorously. Closer
inspection of the histograms reveals, however, deviations for small x � 1. As can be seen
from panel (c), the probability for short chains is reduced with respect to the Flory distri-
bution (solid line). We shall further investigate this depletion in Sect. 4.6. We note finally
that all EP systems presented here have been sampled within 4 months while the sample of
monodisperse configurations for N = 8192 alone required about 3 years on a similar XEON
processor. EP are therefore very interesting from the computational point of view, allowing
for an efficient test of theoretical predictions.

4 Thermodynamic Properties of BFM Melts

4.1 Introduction

To characterize the soft BFM model introduced in Sect. 3.4 we will first investigate thermo-
dynamic properties such as the mean overlap energy per monomer e, the specific heat cV,
the dimensionless compressibility g or the excess chain chemical potential μN as functions
of the reduced overlap strength x = ε/T = εβ . For the small-x limit these properties have
been calculated long ago by Edwards [4] as summarized in (69). Various thermodynamic
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Fig. 11 (Color online) Mean overlap energy per monomer y = e/ε vs. x = ε/T for several chain lengths
N as indicated. The energy decreases monotonously with increasing x. The decay becomes Arrhenius-like
for x � 10 (dash-dotted line). The dashed line indicates the energy predicted from the second virial of soft
BFM beads, (93). The main figure demonstrates the weak chain length dependence on logarithmic scales,
especially for strong excluded volume interactions (x > 1). Inset: Same data plotted with linear vertical axis
emphasizing the higher mean energy for long polymers (N > 64) for x � 1 caused by a self-energy contri-
bution eself/ε ≈ 0.18. The self-energies are indicated by the filled triangles. Equation (95) is represented by
the bold line

properties obtained from the quoted free energy will be compared with our numerical re-
sults [86]. To demonstrate that deviations from Flory’s ideality hypothesis are also present
in thermodynamic properties we will investigate in detail in Sect. 4.6 the chemical potential
in systems of annealed EP using the classical BFM algorithm without monomer overlap.

4.2 Mean Overlap Energy

From the numerical point of view the simplest thermodynamic property to be investigated
here is the mean interaction energy per monomer, e = 〈E〉/nmon, due to the Hamiltonian,
(88). Figure 11 presents the dimensionless energy y = e/ε for BFM melts (φ = 0.5) for
different chain length N . Decreasing the overlap strength x starting from configurations
obtained using the classical BFM (Sect. 3.3), the interaction energy increases first exponen-
tially for large x and levels off for x � 1 where the monomers freely overlap. The data for
unconnected beads (N = 1) represented by the filled spheres and polymer chains (N � 1)
are broadly speaking similar, especially for large overlap penalties, x > 1. Interestingly, the
mean energy of polymer melts increases more strongly for x � 1 as can be seen better from
the log-linear data representation chosen in the inset of Fig. 11. Also shown in the inset is
the mean intrachain self-energy per monomer eself (filled triangles) obtained for the largest
chain length available for a given x. In fact about half of the energy of polymer melts for
all x is due to the self-interactions of the chains [86]. For x � 1 the self-energy becomes
eself/ε ≈ 0.18 which is exactly the observed energy difference between polymer and bead
systems.

Before addressing this point let us consider the energy of soft BFM beads (N = 1) for
which the second virial coefficient v2(x) has been given in (89). Since e = ∂β(βf (β)) the
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Fig. 12 (Color online) Reduced
mean energy e/ε (spheres) and
self-energy eself/ε (triangles) as
functions of the number density
ρ for N = 8192, L = 512 and
x = 0.001. As shown by the
dashed line, e(ρ) is a
superposition of the mean field
energy 4ρ and the (essentially)
constant self-energy
eself/ε ≈ 0.18N0x0ρ0. Inset:
e/ε − 4ρ as a function of chain
length 1/

√
N − 1 for our

reference density ρ = 0.5/8 and
for a single chain (ρ = 0). The
linear slope (bold line) is
expected from the return
probability of Gaussian chains

mean energy becomes to leading order [165]

y(x) ≈ 1

2
ρ

∂v2(x)

∂x
= ρ

2

(
e−x/8 + 3e−x/4 + 3e−x/2 + e−x

)
(93)

corresponding to the first term in the third line of (69). Equation (93) is represented by the
dashed line in Fig. 11. It corresponds to an Arrhenius behavior with y ≈ ρ exp(−x/8)/2
for x � 1 (dash-dotted line) and to y → 1

2 8ρ = 4ρ for x � 1. This simple formula predicts
well the bead data over the entire range of x and also yields a remarkable fit for polymer
chains with larger overlap penalties.

The energy difference between polymer chains and beads for x � 1 is accounted for by
the first free energy contribution indicated in (69). This contribution is further investigated
in Fig. 12 presenting data for such small x that the entropy dominates all conformational
properties. The self-energy of a chain is thus given by the probability p(s, δ) that a random
walk of s BFM bonds returns to a relative position δ with respect to a reference monomer
at r . Hence,

eself = 2

N

∑

δ

N−1∑

s=2

(N − s)J (δ)p(s, δ) (94)

where the first sum runs over all positions with non-vanishing coupling constant J (δ) as
defined in (92). The probability p(s, δ) and the weights J (δ)p(s, δ) can be tabulated in
principle for small s. Since the return probability decreases strongly with s, these model-
specific small-s values dominate the integral, (94). As can be seen from the inset of Fig. 12
for single chains (ρ = 0), eself ≈ 0.18ε for large N . The weak N -dependence visible in the
panel stems from the upper integration boundary over the Gaussian return probability which
leads to a chain length correction linear in t ≡ 1/

√
N − 1 (bold line). Also shown in the

panel are energies for our reference density ρ = 0.5/8. They are shifted vertically by the
mean field energy 4ρ assuming that density fluctuations of different chains do not couple.
The main panel presents the mean energy e and the mean self-energy eself as functions of
the density ρ for chains of length N = 8192. The self-energy (triangles) stays essentially
ρ-independent. The total interaction energy sums over the self-energy and mean-field en-
ergy contributions as shown by the dashed line. The self-energy contribution can only be
neglected for volume fractions larger than unity.
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Fig. 13 (Color online) Specific heat per bead cV vs. x. The dashed line indicates the energy fluctuations
predicted from the second virial, (96), which fits the data of soft BFM beads (N = 1) over six decades.
While the chain length does not matter for strong excluded volume interactions, the energy fluctuations are
found to increase strongly with N for x � 1. For short chains we observe cV ∼ ρN1/2x2 as can be seen for
N = 16 (thin solid line). The chain length effect drops out for large N where cV ≈ ρ1/2x3/2N0 (bold line)
as suggested by (97). Inset: cV/(ρ1/2x3/2) as a function of the reduced chain length u = N/g(x)

Summarizing (69) and (90) the energy should scale to leading order in x as

y ≈ 0.18 + 4ρ − 243/2

π

√
xρ

l3ρ
+ · · · for x � 1 (95)

where the two x-independent contributions have already been discussed above. The under-
lined term stems from the density fluctuation contribution in (69). Equation (95) is indicated
by the bold line in the inset of Fig. 11. It yields a reasonable description for small x. Since
the energy is dominated by the two constant contributions to (95) for x ≤ 0.001 and since
higher expansion terms become relevant for x > 0.1, the predicted

√
x-decay corresponds

unfortunately only to the small-x regime. To show that it is indeed the density fluctuation
term which dominates the temperature dependence for x � 1 we will consider now the
specific heat cV, i.e. the second derivative of the free energy with respect to β .

4.3 Energy Fluctuations

The fluctuations of the interaction energy are addressed in Fig. 13 displaying the enthalpic
contribution to the specific heat per monomer, cV = −β2∂2

β(βf (β)) [165]. Using the second
virial of soft BFM beads, (89), one obtains

cV = ρ

2
x2

(
1

8
e−x/8 + 3

4
e−x/4 + 3

2
e−x/2 + e−x

)

(96)

as represented by the dashed line. In the large-x limit this yields an exponential decay
cV ≈ ρx2 exp(−x/8)/16 (dash-dotted line) while for x � 1 a power-law limiting behavior
is obtained: cV ≈ 27

16ρx2 ∼ x2. Equation (96) predicts the energy fluctuations of BFM beads
for essentially all x, slightly underestimating the maximum of cV at x ≈ 10. Chain length
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Fig. 14 (Color online) Dimensionless compressibility gN(x) ≡ limq→0 S(q,N) vs. x for different N using
the same symbols as in Fig. 13. Main panel: Raw data as obtained from the low-wavevector limit of the
structure factor. Chain length effects become irrelevant for x ≥ 0.1 if N ≥ 64 and for x > 0.001 if N ≥ 2048.
The data are compared to the simple second virial approximation 1/v2(x)ρ (dashed line) which reduces to
1/(8ρx) for x � 1. As one expects, the compressibility levels off for large x and becomes identical to the
value g ≈ 0.25, known for the classical BFM [84] (dash-dotted line). Inset: As suggested by (98) the excess
part of the inverse compressibility 1/gN(x) − 1/N becomes chain length independent, i.e. the data points for
all N collapse. The bold line indicates g(x) = limN→∞ gN(x) from Table 1

effects are small for large x where (96) can be used to fit the specific heats of polymer melts.
Strong N -effects are, however, visible for x � 1 where cV increases monotonously with N .
This can better be seen from the inset where the specific heat is plotted as a function of the
reduced chain length u = N/g with g being the dimensionless compressibility determined
in Sect. 4.4.52 For large chains with u � 1 this increase levels off at an N -independent
envelope

cV ≈ 24
√

6

π

ρ1/2

l3
x3/2N0 + · · · (97)

due to the density fluctuation contribution in (69). In contrast to (95) for the mean energy the
density fluctuation term does now correspond to the leading contribution to the numerically
measured property. This increases the range where the density fluctuation contribution can
be demonstrated to over three decades in x. Equation (97) is indicated by the bold lines in
the main panel and the inset of Fig. 13.

4.4 Compressibility

The key control property characterizing the decree of coupling of the polymer chains due to
the imposed penalty ε is the dimensionless compressibility g(x) ≡ limN→∞ gN(x) of asymp-
totically long chains. As suggested by (43), we compute first the dimensionless compress-
ibility gN(x) ≡ limq→0 S(q,N) from the low-q limit of the total monomer structure factor
for different overlap penalties x and chain lengths N (see below for details). These raw data
are presented in Fig. 14 as a function of x. As one expects, gN(x) decreases monotonously

52Since e and cV correspond to different derivatives of the free energy f with respect to β , there is obviously
no inconsistency in the finding that cV reveals larger chain length effects than e.
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with x. Note that the structure factor S(q, t) measures the complete compressibility, not
just its excess contribution. As can be seen, e.g., from (69) or from the virial expansion of
polymer solutions [3], the compressibility can be written in general as

1

gN(x)
= ρ

∂2(βf (β)ρ)

∂ρ2
= 1

N
+ 1

gex(x,N)
(98)

for all x with gex(x,N) being the excess contribution to the compressibility which may,
at least in principle, depend on N .53 As can be seen from the inset of Fig. 14, all
rescaled compressibilities collapse, however, on one N -independent master curve if one
plots 1/gex(x,N) ≡ 1/gN(x) − 1/N as a function of x, even the compressibilities obtained
for unconnected beads (N = 1). Within numerical accuracy the N -dependence observed for
gN(x) can therefore be attributed to the trivial osmotic contribution and the excess com-
pressibility gex ∼ N0 is thus identical to the compressibility g(x) of asymptotically long
chains. The bold line indicated in the inset presents the best values of g(x) summarized in
Table 1. These values have been obtained from the excess compressibilities for the largest
chain length available for x ≥ 0.001. A precise numerical determination of gex(x) becomes
impossible for even smaller overlap penalties. We thus have used for the smallest x-values
sampled the theoretical prediction

1

g(x)
≈ v2(x)ρ

(

1 − 3
√

3

2π

(v2(x)ρ)1/2

b3(x)ρ
. . .

)

(99)

for x � 1 due to the postulated free energy, (69). The prefactor v2(x)ρ representing the bare
monomer interaction is indicated by the dashed line in the main panel of Fig. 14. Hence,
g(x) ≈ 1/(8xρ) = 2/x for weak interactions. The underlined term is the leading correc-
tion due to the density fluctuation contribution to the free energy. It implies that the excess
compressibilities for polymer melts and unconnected beads cannot be completely identical.
However, the difference is far too small to be measurable in the limit where (99) applies.
Although this result is unfortunate from the theoretical point of view, the data collapse
observed in the inset suggests that it is acceptable to numerically estimate the long chain
compressibility g(x) by computing the structure factors of rather short chains.

We now turn to the total structure factor S(q,N) shown in Fig. 15 to explain how the
compressibilities have been obtained. Only chains of length N = 2048 are presented for
clarity. Since the wavevectors q used for computing S(q) must be commensurate with the
cubic simulation box of linear dimension L, i.e. the smallest possible wavevector is 2π/L,
it thus is important to have a sufficiently large box for a reasonable determination of gN(x).
Note that around and above q ≈ 2 monomer structure and lattice effects become important.
Being interested in universal physical behavior we focus on wavevectors q � 1. For com-
parison, we have also included the single chain form factor F(q) for x = 0.001 (bold line).
Note that the qualitative shape of F(q)—decaying monotonously with q from its maximum
value F(q = 0,N) = N—depends very little on the overlap penalty x (not shown). We
remind that the “random phase approximation” (RPA) formula [3, 4]

1

S(q,N)
= 1

F(q,N)
+ 1

gex(x,N)
(100)

53Small corrections may arise as they do arise for the chemical potential as shown below in Sect. 4.6.
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Fig. 15 (Color online) Total structure factor S(q) as a function of wavevector q for N = 2048 for different
overlap penalties x = ε/T as indicated. For comparison, we have also included the single chain form factor
F(q) for x = 0.001. The low-wavevector limit of the structure factor is used to determine the dimensionless
compressibility gN(x). Only for x ≤ 3 does the structure factor decay monotonously with q as suggested by
the RPA formula, (100). G(q) becomes essentially constant for smaller temperatures except for wavevectors
corresponding to the first sharp diffraction peak. The box size L = 256 allows only a direct and fair determi-
nation of gN(x) for x > 0.1. We have been forced to increase the box size to L = 512 for smaller x as may
be seen for an example with x = 0.1 (dash-dotted line). As shown by the bold dashed line, the RPA formula
is used to improve the estimation of gN(x) for small x

relates the total structure factor to the measured form factor. Equation (100) is of course
consistent with (98) in the q → 0 limit. It allows to directly fit for the excess compressibility
gex(x,N) ≈ g(x) using the measured structure factor S(q,N) and form factor F(q,N), at
least in the x-range where the RPA approximation applies. As may be seen from the fig-
ure, S(q,N) indeed decreases systematically with x, i.e. with decreasing g(x). For x ≤ 3
it also decays monotonously with q , again in agreement with (100). Interestingly, this be-
comes qualitatively different for larger excluded volume interactions (x > 3) where the total
structure factor is essentially constant (in double-logarithmic coordinates), very weakly in-
creasing monotonously with q . The RPA formula apparently does not apply in this limit
in agreement with (48). Fortunately, this is of no concern for our main purpose—to com-
pute g(x)—since in precisely this limit the compressibility is readily obtained from a broad
plateau (even for much smaller boxes) which in addition becomes chain length independent,
as we have already seen from the inset of Fig. 14. Using boxes with L = 256 it is possible to
directly measure the plateau values for x ≤ 0.3. For smaller x we have simulated boxes with
L = 512 containing nmon ≈ 8.4 · 106 monomers and corresponding to a smallest wavevector
q ≈ 0.01. This box size becomes again insufficient for the smallest reduced overlap penal-
ties x we have simulated, as shown in Fig. 15 for x = 0.001 (dashed line). It is for these
values where the RPA formula, (100), allowing to fit the deviation from the (barely visible)
plateau, has been particulary useful.

As already stated in Sect. 2.3, for intermediate wavevectors (where q corresponds to
distances much smaller than the radius of gyration and much larger than the monomer size)
the general RPA (100) may be rewritten as

1

S(q)
= 1

g(x)
+ 1

2
a2(x)q2 = 1

g(x)

(
1 + (qξ)2

)
(101)
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Fig. 16 (Color online) Rescaled
total structure factor S(q)/g(x)

as a function of the reduced
wavevector Q ≡ qξ for chain
length N = 8192 and several
x ≤ 1 as indicated. The screening
length ξ of the thermal blob is
obtained according to (44) using
g(x) and b(x) from Table 1. The
bold line compares the data with
(101). If replotted as indicated in
the inset the data collapse on the
bisection line. Deviations from
the RPA formula become visible
for larger x as shown for x = 1
(crosses)

where we have used that the form factor becomes F(q) ≈ 2/(aq)2 [4]. This assumes that
corrections to Gaussian chain statistics may be ignored [82, 83] and that finite chain size
effects are negligible. From the numerical point of view the approximated RPA (101) has
the disadvantage that the effective bond length b(x) = √

6a(x) needs to be determined first.
As shown in Fig. 16, it has the advantage that it allows for an additional test of the values
of g(x) and b(x) indicated in Table 1. The main panel presents the rescaled structure factor
S(q)/g(x) for chains of length N = 8192 as a function of Q ≡ qξ with ξ being obtained
from g(x) using (44). All data collapse on the master curve 1/(1 + Q2) indicated by the
bold line provided that the wavevector q remains sufficiently small and no local physics is
probed. That the used compressibilities are accurate is emphasized further in the inset where
g(x)/S(q) − 1 is plotted as a function of Q2 using only sufficiently small wavevectors q .
According to (101) all data should collapse on the bisection line in double-logarithmic co-
ordinates if the correct compressibilities are used. This is indeed the case. Please note the
weak deviations visible for x = 1 which are due to the breakdown of the RPA formula for
large x mentioned above.

4.5 Chemical Potential: Gaussian Contribution

According to Flory’s ideality hypothesis the chemical potential μN of polymer melts is ex-
pected to be extensive with respect to their mass [3]. Figure 17 presents the reduced excess
contribution to the chemical potential, y ≡ μN/T N , obtained using thermodynamic inte-
gration (as explained below) for three chain lengths N = 1, 64, and 2048 as functions of
x = ε/T . As one expects, y(x) increases first linearly with x and then levels off. Chain
length effects are again small on the logarithmic scale chosen in the plot. For large x the
chemical potential becomes slightly larger for beads (y ≈ 2.64) than for long chains where
y ≈ 2.1 as shown by the dash-dotted line. That the chemical potential of polymer chains is
reduced compared to unconnected beads is expected due to the (effectively) attractive bond
potential. For x � 1 this reduction should be described by the density fluctuation contribu-
tion to the free energy (69) which corresponds to an excess chemical potential

y(x) = ∂(βf (β)ρ)

∂ρ
≈ v2(x)ρ

(

1 − 3
√

3

π

(v2(x)ρ)1/2

b3(x)ρ
+ · · ·

)

(102)

for x � 1 with v2(x) being the second virial of unconnected beads. The dashed line in
Fig. 17 presents the leading contribution v2(x)ρ for unconnected beads, the bold line in
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Fig. 17 (Color online) Reduced chemical potential y = μN/T N measuring the reversible work for bringing
a test chain of length N into a bath of chains of equal length N at volume fraction φ = 0.5. Increasing linearly
(dashed line) for small x it levels off for large x � 1 (dash-dotted line). The dashed line shows the second
virial approximation y ≈ v2(x)ρ for unconnected beads, fitting successfully the data below x ≈ 1. The bold
line indicates (102). Inset: The chemical potential has been obtained by thermodynamic integration over the
excluded volume interaction of an inserted ghost chain [131]

addition the underlined connectivity contribution in (102). Surprisingly, it turns out that the
simple second virial approximation provides a better fit over the entire x-range than the
full prediction. That the density fluctuation contribution overestimates the reduction of the
chemical potential for x > 1 is in agreement with (48). For x � 1 where (102) applies in
principle the relative correction, scaling as

√
x/ρ, becomes unfortunately too small to allow

a fair test of the theory using the measured chemical potential.
We now explain how the chemical potential presented in Fig. 17 has been obtained. Ob-

viously, the simple insertion method due to Widom [24] becomes rapidly inefficient with
increasing x. Generalizing the method suggested in [131, 132] we have performed the ther-
modynamic integration [24]

βμN =
∫ 1

λ(ε)

dλ
〈Nsg〉

λ
(103)

over discrete values of the affinity λ = exp(−εsgβ/8) characterizing the excluded volume
interaction of a ghost (g) chain that is inserted into an equilibrated system (s). 〈Nsg〉 refers
to the mean number of lattice sites where system and ghost monomer cube corners overlap
at a given interaction λ. Generalizing the Potts spin mapping, (91), of the excluded volume
interactions for homopolymers presented above, we use now two spin lattices, Ss(r) describ-
ing (as before) the interaction of the system monomers and Sg(r) the ghost chain. The spin
lattices are kept at the same temperature T and are both characterized by the same penalty
ε = 1 which has to be paid for a complete overlap of two system monomers or two ghost
monomers. The interaction of both spins is described by

ΔEsg =
∑

r

Ss(r)
∑

δ

Jsg(δ)Sg(r + δ) (104)

with coupling constants Jsg(δ) ∼ εsg defined as in (92) taken apart the energy parameter
ε which is replaced by the tunable interaction energy εsg. Starting with decoupled system
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and ghost configurations at εsg = 0, i.e. λ = 1, we increase the interaction parameter up to
εsg = ε, i.e. λ(ε) = exp(−εβ/8), always keeping the coupled system at equilibrium. Moni-
toring the distribution of the number Nsg of overlaps between system and ghost cube corners
we use multihistogram methods as described in [131, 132] to improve the precision of the
integral. The mean overlap number 〈Nsg〉 is shown in the inset of Fig. 17 as a function of
λ for N = 2048 and two inverse temperatures x = 3 and x = 100. Starting from λ = 1
the overlap number decreases monotonously with increasing coupling between system and
ghost monomers. Interestingly, a power-law behavior

〈Nsg〉/N ≈ λ1/4 (105)

is found empirically for large x � 10 (dashed line). Fitting this power law and integrating
then analytically (103) provides a useful crosscheck of the numerical integration using the
multihistogram analysis. This is a technically important finding, since the multihistogram
analysis requires overlapping distributions of Nsg and hence much more equilibrated inter-
mediate values λ as indicated for x = 100.

4.6 Chemical Potential: Non-extensive Corrections

4.6.1 Theoretical Predictions

We have seen in Sect. 4.5 that the chemical potential μN of a test chain of length N plugged
into a melt of chemically identical monodisperse polymers of the same length increases
essentially linearly with N . Focusing now on classical BFM systems where ε = ∞ and
setting temperature to unity (T = 1), we show how small non-linear deviations may be
captured numerically [88]. More generally, the challenge is to characterize the chemical
potential μn of a test chain of length n immersed into a bath of N -chains of an arbitrary
(normalized) length distribution pN. We remind that according to Flory’s ideality hypothesis
one expects [3],

μn = μn for g � n � 〈N〉2, (106)

with μ > 0 being the effective chemical potential per monomer. The upper boundary 〈N〉2

indicated in (106) is due to the well-known swelling of extremely large test chains where the
bath acts as a good solvent [3, 7]. As we have pointed out in Sect. 1.5, Flory’s hypothesis
has been challenged by the discovery of long-range correlations imposed by the incom-
pressibility constraint. These correlations lead to the systematic swelling of chain segments
as further discussed in Sect. 5 [80, 86]. We question here the validity of Flory’s hypothesis
for an important thermodynamic property, the chemical potential μn of a test chain inserted
into a three-dimensional melt. One expects that the correlation hole potential (Fig. 3) leads
to a deviation

δμn ≡ μn − μn ≈ u∗(n) ∼ +1/
√

n for n � 〈N〉 (107)

that is non-extensive in chain length and this irrespective of the distribution pN of the bath.
Assuming a quenched Flory-size distribution, (20), it can be demonstrated as shown in Ap-
pendix B.6 that

δμn ≈ cμ√
n

(1 − 2μn) for g � n � 〈N〉2 (108)
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Fig. 18 (Color online) Non-extensive deviation of the chemical potential δμn/cμ as a function of the test
chain length n as predicted by perturbation calculation [88]. The reference for the chemical potential μn is
set here by the chemical potential of Gaussian chains of same effective bond length b. Flory-distributed (FD)
melts are indicated by solid lines, monodisperse (MD) melts by dash-dotted lines (Padé approximation). The
bold lines refer to test chains in melts of constant (mean) chain length with 〈N〉 = 100. The deviation changes
sign at n ≈ 〈N〉. The thinner lines refer to test chains of same length as the typical melt chain, n ≡ 〈N〉, where
the asymptotic Gaussian behavior (δμn = 0) is approached systematically from below

where we have set cμ = 3cs/8 using the swelling coefficient cs =√24/π3/ρb3 defined in
the Sect. 1.5. Equation (108) is represented by the bold solid line in Fig. 18. (A corre-
sponding prediction for a monodisperse bath [88] is indicated by the dash-dotted line.) As
anticipated by (107), the first term in (108) dominates for short test chains. The second term
dominates for large test chains with n > 1/(2μ) becoming non-perturbative for n � 1/μ2.
Both contributions to δμn decrease with increasing n.54 Interestingly, while δμn decreases at
fixed 〈N〉, it increases as δμn/cμ = −1/

√
n (thin solid line) for a test chain with n ≡ 〈N〉.

The chemical potential of typical chains of the bath approaches thus the ideal chain limit
from below.

Flory-distributed polymer melts are obtained naturally in systems of self-assembled lin-
ear EP where branching and the formation of closed rings are forbidden [17]. Since the
suggested correction, (108), to the ideal chain chemical potential is weak, the system must
remain to leading order Flory distributed and (108) should thus hold.55 This correction im-
plies for the annealed length distribution of linear EP that (to leading order)

pN ≈ μe−μN−δμN (109)

≈ μe−μN

(

1 − cμ√
N

(1 − 2μN)

)

(110)

54This corresponds to an effective enhancement factor of the partition function quite similar to the δμn =
−(γ − 1) log(n) in the standard excluded volume statistics with γ ≈ 1.16 > 1 being the self-avoiding walk
susceptibility exponent [3].
55The chemical potential of a test chain does depend on the length distribution pN of the bath. However, for
an infinite macroscopically homogeneous systems it is independent on whether this distribution is annealed
or quenched, i.e. if it is allowed to fluctuate or not. This follows from the well-known behavior of fluctuations
of extensive parameters in macroscopic systems: the relative fluctuations vanish as 1/

√
V as the total volume

V → ∞. The latter limit is taken first in our calculations, i.e. we consider an infinite number of (annealed or
quenched) chains. The large-N limit is then taken afterwards.
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where both the lower (g � N ) and the upper limit (N � 〈N〉2) of validity are irrelevant
in the large-〈N〉 limit. Note that (110) is properly normalized, i.e. the prefactor μ of the
distribution remains exact if δμN is given by (108). At given μ the first moment increases
slightly

〈N〉 = μ−1
(
1 + cμ

√
μπ) (111)

and, more generally, one expects for the pth moment

μp〈Np〉
p! − 1 = cμ

√
μ

p!
[
2Γ (p + 3/2) − Γ (p + 1/2)

]
(112)

with Γ (x) being the Gamma function [44]. The non-exponentiality parameter Lp ≡ 1 −
〈Np〉/p!〈N〉p thus scales as

Lp = wpcμ

√
μ with wp ≡ (Γ (p + 1/2) + √

πpp! − 2Γ (p + 3/2)
)
/p! (113)

being a p-dependent geometrical factor.56

4.6.2 Computational Results for EP Melts

Equations (110) and (113) allow us to demonstrate numerically the prediction, (108), from
the observed non-exponentiality of the length distribution of EP melts obtained as described
in Sect. 3.5. As demonstrated in the main panel of Fig. 10 these EP melts are indeed essen-
tially Flory distributed, i.e. the length distribution pN decays to leading order exponentially
with the reduced chain length N/〈N〉. However, deviations for N/〈N〉 � 1 are visible in
Fig. 10(c) in qualitative agreement with the predicted positive deviation of the chemical po-
tential, (107). The curvature of − log(pN) is further analyzed in Fig. 19. Motivated by (109),
we present in panel (a) the functional

V [pN] ≡ − log(pN) − μN + log(μ) (114)

where the second term takes off the ideal contribution to the chemical potential. The last
term is due to the normalization of pN and eliminates a trivial vertical shift depending on
the scission energy E. Consistently with (111), the chemical potential per monomer μ has
been obtained from the measured mean chain length 〈N〉 using

μ ≡ 〈N〉−1
(
1 + cμ

√
π/
√〈N〉). (115)

Note that μ and 1/〈N〉 become numerically indistinguishable for E ≥ 7. If the Gaussian
contribution to the chemical potential is properly subtracted one expects to obtain directly
the non-Gaussian deviation to the chemical potential, δμN ≈ V [pN]. Due to (108) the func-
tional should thus scale as

V [pN]/cμ

√
μ ≈ (1 − 2x)/

√
x (116)

with x = μN as indicated by the bold line in the panel. This is well born out by the data
collapse obtained up to x ≈ 5. Obviously, the statistics deteriorates for x � 1 for all energies

56The polydispersity index I , i.e. the ratio of weight average and number average, becomes I =
〈N2〉/〈N〉2 = 2(1 − w2cμ

√
μ) < 2. In this sense, the distribution becomes narrower just as for dilute good

solvent EP where I = 1 + 1/γ < 2 [109, 166].
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Fig. 19 (Color online) Characterization of pN using the functionals (a) V [pN] ≈ δμN and
(b) W [pN] ≡ 2V [pN] − V [p2N] which should both vanish for perfectly Flory-distributed ideal chains as
indicated by the horizontal lines in the panels. Data points for different scission energies E collapse if
V [pN]/cμ

√
μ and W [pN]/cμ

√
μ(2 − 1/

√
2) are plotted vs. the reduced chain length x = μN . For small

x both functionals decay as 1/
√

x as shown by the dash-dotted lines. The bold lines correspond to the full
predictions (116) and (118) for V [pN] and W [pN], respectively

due to the exponential cutoff of pN. Unfortunately, the statistics of the length histograms
decreases strongly with E and becomes too low for a meaningful comparison for E > 9.
It is for this numerical reason that we use (115) rather than the large-E limit μ = 1/〈N〉
since this allows us to add the two histograms for E = 5 and E = 6 for which high precision
data is available. Otherwise these energies would deviate from (116) for large x due to an
insufficient subtraction of the leading Gaussian contribution.

Since the subtraction of the large linear Gaussian contribution is in any case a delicate
issue we present in panel (b) of Fig. 19 a second functional,

W [pN] ≡ 2V [pN] − V [p2N] = log

[
p2Nμ

p2
N

]

, (117)

where by construction this contribution is eliminated following a suggestion made recently
by Semenov and Johner [94]. The normalization factor μ appearing in (117) eliminates
again a weak vertical scission energy dependence of the data. Obviously, W [pN] ≡ 0 for
perfectly Flory-distributed chains. Following (108) and (109) one expects

W [pN]
cμ

√
μ(2 − 1/

√
2)

≈ 1 − 0.906x√
x

(118)

with x = μN . Equation (118) is indicated by the bold line which compares again rather well
with the presented data.

The functionals presented in Fig. 19 require high-accuracy histograms. That pN is only
approximately Flory distributed can be more readily seen using the “non-exponentiality pa-
rameter” Lp ≡ 1 − 〈Np〉/p!〈N〉p . Obviously, Lp ≡ 0 for rigorously Gaussian chains. As
stated in (113), we expect the non-exponentiality parameter to decay as Lp = wpcμ

√
μ ∼

1/
√〈N〉, i.e. as the correlation hole potential of the typical melt chain. The main panel
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Fig. 20 (Color online)
Non-exponentiality parameter
Lp for different moments p as a
function of mean chain length
〈N〉. Lp is finite decreasing with
chain length as suggested by
(113). The vertical axis has been
rescaled successfully using the
p-dependent weights wp

indicated in the inset

of Fig. 20 presents Lp/wpcμ as a function of 〈N〉 ≈ 1/μ. The predicted power-law decay
is clearly demonstrated by the data. Note that the scaling of the vertical axis with the p-
dependent geometrical factors wp allows to bring all moments on the same master curve.
As can be seen from the inset of Fig. 20, this scaling is significant since wp varies over
nearly a decade. Deviations from the predicted scaling are visible, not surprisingly, for small
〈N〉 < 10. Since the coefficient cμ is known the data collapse on the theoretical prediction
(bold line) has been produced without any free adjustable parameter.

4.7 Summary

In this section we have discussed various thermodynamic properties of BFM melts at our ref-
erence volume fraction φ = 8ρ = 0.5. For large overlap penalties x = ε/T � 1 all thermo-
dynamic properties remain similar to the known values for athermal BFM systems (x = ∞)
[84, 131, 132]. From the computational point of view this is of some interest since it suggests
the equilibration and sampling of configurations at a reasonable cost at overlap penalties be-
tween x = 1 and x = 10 where the slithering snake algorithm is still efficient. Decreasing
the monomer interaction further we have found, as one expects, good agreement with the
prediction by Edwards, (69), for small overlap penalties (x � 1). In this limit the thermo-
dynamics is essentially determined by the second virial contribution, (89). Interestingly,
being the second derivative of the free energy with respect to the inverse temperature the
specific heat cV allows the verification of the predicted scaling of the free energy contribu-
tion −kBT /ξ 3ρ due to the chain connectivity (Fig. 13). The central control parameter of
this work, the dimensionless compressibility g ≡ limN→∞(limq→0 S(q,N)), is discussed in
Sect. 4.4. While the determination of g(x) is numerically trivial for large overlap penalties,
more care is needed for x � 1 (Fig. 14). Note that the static RPA, (45), breaks down in
the opposite limit (x � 1) where the structure factors of beads and polymer melts become
ultimately identical, S(q) ≈ g � 1.

For a test chain of length n = N immersed into a bath of monodisperse chains of length
N we have confirmed by thermodynamic integration in Sect. 4.5 that the chemical potential
μN is essentially extensive with respect to the chain length, as expected from Flory’s ideality
hypothesis. In order to demonstrate that the small deviations predicted by the perturbation
theory [88] exist, we have investigated in Sect. 4.6 essentially Flory-distributed (Fig. 10)
self-assembled EP systems. The detailed analysis of the measured length distribution pN
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(Fig. 19) has allowed us to show the existence of a correction δμn, (108), scaling essentially
as the correlation hole penalty δμn ≈ u∗(n) for n � 〈N〉. The observed deviations for EP
systems [88] beg for an improved numerical verification by means of the thermodynamic
integration method (Sect. 4.5) for test chains immersed into monodisperse melts.57

5 Intramolecular Conformational Properties

5.1 Introduction

We turn now to the description of intrachain conformational properties of BFM melts at
volume fraction φ = 0.5 and temperature T = 1 comparing our numerical results to the the-
oretical predictions announced in Sect. 1.5 and Sect. 2. We discuss first the properties on
monomeric level (Sect. 5.2) and show then how the effective bond length b for asymptoti-
cally long chains can be obtained using the theoretical input developed in Sect. 2. We present
then the bond-bond correlation function as a function of curvilinear distance s (Sect. 5.4.1)
and as a function of the spatial distance r between both bonds (Sect. 5.4.2). Higher moments
of the distribution G(r, s) and its deviations δG(r, s) from Flory’s ideality hypothesis will
be analyzed in Sect. 5.5 and Sect. 5.6, respectively. We turn finally to the characterization of
an experimental relevant observable, the intramolecular form factor F(q).

5.2 Bond Properties

We begin by characterizing local-scale features of the algorithm described in Sect. 3. By
definition of our version of the BFM algorithm the bond length is allowed to fluctuate be-
tween 2 and

√
10. One expects that switching on the overlap penalty ε will suppress large

bonds due to the increasing pressure. The mean bond length is characterized by the root-
mean-square length l. (Other moments yield similar results.) The mean bond length rapidly
becomes (N > 20) chain length independent [50]. As can be seen from Fig. 21, l shows a
monotonous decay between ε ≈ 3 and ε ≈ 20. As other local properties, the bond length be-
comes constant in the small-ε and large-ε limits (dashed lines). The value l(ε = 0) = 2.718
gives the lower bound for the effective bond length b(ε) of asymptotically long chains (stars)
obtained below.

Defining the bond angle θ between two subsequent bonds by the scalar product cos(θ) =
ên · ên+1 of the normalized bond vectors êi = li/|li |, the local chain rigidity may be char-
acterized by 〈θ〉 and 〈cos(θ)〉. Note that 〈θ〉 and 〈cos(θ)〉 can be regarded as chain length
independent, just as the mean bond length. The local rigidity is negligible for ε � 1, i.e.
〈θ〉 ≈ 90◦ and 〈cos(θ)〉 ≈ 0 due to the symmetry of the distribution p(θ) with respect to
90◦. The rigidity then increases around ε ≈ 1 and becomes constant again for large ε where
〈θ〉 ≈ 82.2◦ and 〈cos(θ)〉 ≈ 0.106 [86]. The increase of the local rigidity for larger excluded
volume interactions is of course expected due to the suppression of immediate backfoldings
corresponding to bond angles θ > 143◦ [52]. The distribution p(θ) therefore becomes lop-
sided towards smaller θ (not shown). According to (18) the effective bond length of a “freely

57The presented results for dense polymer solutions may also be of relevance to the chemical potential of
dilute polymer chains at and around the Θ-point which has received attention recently [74, 167]. The reason
for this connection is that (taken apart different prefactors) the same effective interaction potential ṽ(q) ∼ q2

enters the perturbation calculation in the low wavevector limit. A non-extensive correction δμn ∼ +1/
√

n in
three dimensions is thus to be expected.



Scale-Free Correlations in Dense Polymer Solutions 1071

Fig. 21 (Color online) Various
bond properties vs. overlap
penalty ε for volume fraction
φ = 0.5 and temperature T = 1.
The data for the
root-mean-square bond length
l(ε) and the effective bond length
b(ε) ≡ limN→∞ bN(ε) for
asymptotically long chains are
given in Table 1. The dash-dotted
line indicates the effective bond
length as predicted by (120)
assuming b0 = l(ε) for the bond
length of the reference chain. The
bold line shows the fix points
obtained by iteration of (120)

rotating” (FR) chain is given by b(ε) = l(ε)
√

cFR with cFR = (1 + 〈cos(θ)〉)/(1 − 〈cos(θ)〉).
This simple model, indicated by the crosses in Fig. 21, yields a qualitatively reasonable
trend (monotonous increase of the effective bond length at ε ≈ 1) but fails to fit the directly
measured effective bond lengths quantitatively [86].

5.3 Mean-Squared Chain and Subchain Size

5.3.1 Total Chain Size RN

One way to characterize the total chain size RN is to measure the second moment of the chain
end-to-end distance R2

N ≡ 〈(rN − r1)
2〉. We consider the ratio bN(ε) ≡ RN(ε)/

√
N − 1 to

compare the measured chain size with the ideal chain behavior which is commonly taken as
granted [3, 4, 39] and which is the basis of our perturbation calculation (Sect. 2.4). The task
is to extrapolate for the effective bond length b(ε) ≡ limN→∞ bN(ε) of asymptotically long
chains. The ratio bN(ε) for N = 64 and N = 2048 and the asymptotic limit b(ε)—obtained
by extrapolation as described below—are presented in Fig. 21. Obviously, bN(ε) → l(ε = 0)

for all N in the small-ε limit. bN(ε) increases then in the intermediate ε-window before it
levels off at ε ≈ 10. The swelling due to the excluded volume interaction is the stronger the
larger the chain length, i.e. bN(ε) increases monotonously with N . This swelling thus cannot
be attributed to a local rigidity as described, e.g., by the freely-rotating chain model.

The N -effect can be seen better in Fig. 22 where we have plotted bN for several penalties
ε as a function of t = 1/

√
N − 1. The choice of the horizontal axis is motivated by (10)

suggesting the linear relation

b2
N(ε) ≈ b2(ε)

(
1 − c(ε)cs(ε)t

)
for N/g � 1 (119)

with cs ≡√24/π3/ρb3 being the swelling coefficient defined in Sect. 1.5 and c(ε) an addi-
tional numerical prefactor of order unity. This prefactor has been introduced in agreement
with (86). The reason for this coefficient is that the corrections to Gaussian behavior differ
slightly for internal chain segments [as described by (10)] and the total chain size which is
characterized in Fig. 22. We remind that c → I (∞) ≈ 1.59 for N → ∞. However, since
this value corresponds to the limit of a very slowly converging integral [84] it is better to use
(119) as a two-parameter fit for b(ε) and c(ε) and to crosscheck then whether the fitted c is
of order unity. As shown in the figure for three overlap penalties, this method can be used
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Fig. 22 (Color online) Rescaled
end-to-end distance
b2

N(ε) ≡ R2
N(ε)/(N − 1) as a

function of t = 1/
√

N − 1 for
different ε. The chains only
remain Gaussian on all scales and
all N for extremely small ε. For
ε ≥ 0.1 one observes b2

N(ε) to
decay linearly in agreement with
(119). This can be used for a
simple two-parameter fit for the
effective bond length b(ε) as
indicated for ε = 0.1, 1.0 and ∞

reasonably for overlap penalties as low as ε ≈ 0.1, albeit with decreasing ε it systematically
underestimates the “true” b(ε)-values indicated in Table 1. Please note that N/g ≈ 400 for
ε = 0.1 and N = 8192. Chains with N � 8192 would be required to use this method for
even smaller ε. In this limit it is better to use as a first step the value bN(ε) of the largest
chain length simulated as a (rather reasonable) lower bound for b(ε).

5.3.2 Subchain Size Rs

The mean-squared subchain size R2
s is presented in Figs. 23 and 24 where we focus on

melts without monomer overlap (ε = ∞) [84]. We show how the effective bond length b for
asymptotically long chains may be extrapolated from the measured R2

s for finite arc-length
s and finite chain length N using the perturbation prediction (10).

As already remarked by Auhl et al. [73], Fig. 23 shows clearly that the chains are swollen,
i.e. R2

s /s increases systematically and this up to very large arc-length s. In agreement with
(10), the Gaussian behavior (horizontal line) is approached from below and the deviation de-
cays as u∗

s ∼ 1/
√

s. The indicated bold line corresponds to b = 3.244 and cs ≈ 0.41 which
fits nicely the data over several decades in s—provided that chain end effects can be ne-
glected (s � N ). Note that a systematic underestimation of the true effective bond length
would be obtained by taking the largest R2

s /s ≈ 3.232 value available, say, for monodis-
perse chains of length N = 2048. Interestingly, R2

s /s does not approach the asymptotic
limit monotonically [73, 84]. Especially for short chains one finds a non-monotonic behav-
ior for s → N . This means that the total chain end-to-end distance RN shows even more
pronounced deviations from the asymptotic limit. We emphasize that the non-monotonicity
of R2

s /s becomes weaker with increasing N and that, as one expects, the inner distances, as
well as the total chain size, are characterized by the same effective bond length b for large s

or N .58 The non-monotonic behavior may be qualitatively understood by the reduced self-
interactions at the chain ends which lessens the swelling on these scales. Our perturbation
prediction (86) is indicated in Fig. 23 by the dash-dotted line. As already remarked, this

58We note en passant that this is not the case for the compact chain conformations adopted by chains in
strictly 2D melts where the effective bond length associated to the chain ends is smaller than the one for
subchains even for N → ∞ [122].
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Fig. 23 (Color online) Mean-squared subchain size R2
s /s vs. s for different chain length N . Log-linear

coordinates are used to emphasize the power law swelling over several orders of magnitude of s. The data
approach the asymptotic limit (horizontal line) from below, i.e. the chains are swollen. This behavior is well
fitted by (10) for 1 � s � N (bold line). Non-monotonous behavior is found for s → N , especially for small
N [73]. The dashed line indicates the measured total chain end-to-end distances bN showing even more
pronounced deviations. The dash-dotted line compares this data with (86)

Fig. 24 (Color online) Replot of
the mean-squared subchain size
as K1(s) = 1 − Rs

2/b2s vs.
cs/

√
s with cs ≡

√
24/π3/ρb3,

as suggested by (10), for different
trial effective bond lengths b as
indicated. Only chains of length
N = 2048 and ε = ∞ are
considered for clarity. This
procedure is very sensitive to the
value chosen and allows a precise
determination

prediction contains a slowly converging numerical integral of order unity. The dash-dotted
line corresponds to the value c = I (∞) ≈ 1.59 predicted for asymptotically long chains, the
dashed line to the slightly smaller value c = 1.45 fitted in Fig. 22. In summary, it is clear
that one should use the subchain size Rs rather than the total chain size RN to obtain in a
computational study a reliable fit of the effective bond length b.

The representation chosen in Fig. 23 is not the most convenient one for an accurate
determination of b and cs. How precise coefficients may be obtained according to (10) is
addressed in the Fig. 24 for chains of length N = 2048. In a first step R2

s /s should be plotted
as a function of 1/

√
s just as in Fig. 22. This allows for a first rough estimation of b. Since

data for large s are less visible in this representation, we recommend for the fine-tuning
of b to switch then to logarithmic coordinates with a vertical axis K1(s) = 1 − R2

s /b
2s for

different trial values of b. The correct value of b is found by adjusting the axes such that
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K1(s) extrapolates linearly as a function of cs/
√

s to zero for large s.59 We assume for
the fine-tuning that higher order perturbation corrections may be neglected, i.e. we take (10)
literally. The plot shows that this method is very sensitive, yielding a best value b = 3.244 for
ε = ∞ that agrees with the theory over more than one order of magnitude without curvature.
Using this method we have determined the effective bond lengths b(ε) for a broad range of
overlap penalties ε as indicated in Table 1 and shown by the stars in Fig. 21 [86].

5.3.3 Predicting the Effective Bond Length

Up to now, we have used the theoretical results to fit the effective bond length b(ε), rather
than to predict it from the known thermodynamic properties and local model features such
as the bond length l(ε). As reminded in (72) the increase of the effective bond length for
weakly interacting and asymptotically long polymer melts has been in fact calculated long
ago by Edwards [4]. Following a suggestion made by Muthukumar and Edwards [43] this
perturbation result may be rewritten as a recursion relation

b2
i+1 = l2

(

1 +
√

12

π
Gi

)

with Gi ≡ 1√
gb3

i ρ
(120)

with bi being the bond length after the i-th iteration step, g the measured dimensionless
compressibility and Gi(bi, g) the relevant Ginzburg parameter quantifying the strength of
the interaction acting on a chain segment of length s = g. Since Gz ≈ Gi becomes small for
large compressibilities g(ε), one expects good agreement with our data for small ε. If we set
b0 = l(ε) this yields after one iteration (i = 1) the dash-dotted line indicated in Fig. 21, i.e.
a reasonable prediction is only achieved up to ε ≈ 0.01. The predictive power of (120) can
be considerably improved over nearly two decades up to ε ≈ 1 if one applies the formula
iteratively using the effective bond length bi obtained at step i as input for the Ginzburg
parameter for computing bi+1. This recursion converges rapidly as shown by the bold line
indicated in Fig. 21 obtained after 20 iterations.60 Note that Gz < 0.34 for ε < 1 where (120)
fits our data nicely. The fix-point solution of (120) does not capture correctly the leveling
off of b(ε) setting in above ε ≈ 1. Since the Ginzburg parameter becomes there of order
one, this is to be expected. In summary, we have shown that the iteration of (120) allows a
good prediction for b(ε) for Gz(ε) � 1. If reliable values for compressibilities g(ε) � 1 are
available, this is the method of choice if one cannot afford to simulate very long chains.

5.4 Bond-Bond Correlation Function

5.4.1 Bond-Bond Correlation Function P1(s)

As we have seen in Fig. 24, to demonstrate the deviations from Flory’s ideality hypothesis
starting from the subchain size R2

s requires to subtract a large Gaussian contribution b2s.
Unfortunately, this requires as a first step the precise determination of the effective bond
length b(ε) for asymptotically long chains which might not be available. Indeed we have
used in the preceding Sect. 5.3.2 the fact that the scaling of K1(s) critically depends on this

59For the bead-spring model presented in Ref. [84] the empirical swelling coefficient cs is shown to differ for

yet unknown reasons by a few percents from the predicted value
√

24/π3/ρb3.
60Essentially the same result is obtained up to ε ≈ 1 if one sets directly b0 = b using the measured effective
bond length as start value of the iteration.
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Fig. 25 (Color online) The bond-bond correlation function P1(s)/cP as a function of the curvilinear distance
s for a broad range of chain lengths N [80, 84]. Provided that 1 � s � N , all data sets collapse on the power
law slope with exponent ω = 3/2 (bold line) as predicted by (9). The dash-dotted curve P1(s) ≈ exp(−s/1.5)

shows that exponential behavior is only compatible with very small chain lengths. The dashed lines corre-
spond to the theoretical prediction, (121), for short chains with N = 16,32,64 and 128 (from left to right)

accurate value to improve the estimation of b(ε). Hence, it would be nice to demonstrate
directly the scaling implied by our key prediction without any tunable parameter. The trick
to achieve this is similar to our demonstration of the density fluctuation contributions to the
free energy, (69), presented in Sect. 4.3: We consider the curvature of R2

s , i.e. its second
derivative with respect to s. Using (4) this second derivative is obtained directly from the
bond-bond correlation function P1(s) computed by averaging over all pairs of monomers
(n,m = n + s). We remind that P1(s) is generally believed to decrease exponentially as in
(15). This textbook belief is based on the assumption that all long range interactions are
negligible on distances larger than ξ . Hence, only correlations along the backbone of the
chains should matter and it is then straightforward to work out that an exponential cutoff is
inevitable due to the multiplicative loss of any information transferred recursively along the
chain [2].

The bond-bond correlation function P1(s) obtained for monodisperse chains at φ = 0.5
and ε = ∞ is presented in Fig. 25. The power-law decay with exponent ω = 3/2 predicted
by our key perturbation result (9) is perfectly confirmed by the larger chains (N > 256). As
can be seen for N = 16, exponentials are compatible with the data of short chains, however.
This might explain why the power-law scaling has been overlooked in older numerical stud-
ies, since good statistics for large chains (N > 1000) has only become available recently.
However, it is clearly shown that P1(s) approaches systematically the scale-free asymptote
with increasing N . The departure from this limit is fully accounted for by the theory if
chain end effects are carefully considered (dashed lines). Generalizing (9) using the Padé
approximation, (63), perturbation theory yields

P1(s) = cP

s3/2

1 + 3u + 5u2

1 + u
(1 − u)2 (121)

where we have set u = √
s/N [84]. For u � 1 this is consistent with (9). In the limit of large

s → N , the correlation functions vanish rigorously as P1(s) ∝ (1 − u)2. Considering that
non-universal features cannot be neglected for short chain properties and that the theory does
not allow for any free fitting parameter, the agreement found in Fig. 25 is rather satisfactory.
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Fig. 26 (Color online) P1(s) for
different overlap penalties ε [86].
Inset: P1(s) in log-log
coordinates. The data approaches
a power law behavior,
P1(s) ∼ 1/sω , with exponent
ω = 1/2 for small ε (dashed line)
and ω = 3/2 for ε ≥ 1
(dash-dotted line). Main panel:
P1(s)/[cP /g3/2] vs. u = s/g as
suggested by (83). For large u,
where an incompressible packing
of thermal blobs is probed, all
data collapse onto the
dash-dotted line as predicted by
(9), i.e. P1(s) becomes
independent of the
compressibility g(ε)

The bond-bond correlation function P1(s) for different overlap penalties ε is presented
in Fig. 26 for chains of length N = 2048 [86]. As can be seen from the unscaled data shown
in the inset, P1(s) approaches a power law with exponent ω = 1/2 (dashed line) in the limit
of weak overlap penalties in agreement with (84). For ε ≥ 1 our data is compatible with
an exponent ω = 3/2 (dash-dotted line) as suggested by (9). Hence, we have demonstrated
without any tunable parameter that Flory’s ideality hypothesis is systematically violated for
all segment lengths s and all overlap penalties ε. As suggested by (83), the main panel
of Fig. 26 presents P1(s)/(cP /g3/2) as a function of the reduced arc-length u = s/g using
the dimensionless compressibilities g(ε) and effective bond lengths b(ε) from Table 1. The
data collapse is remarkable as long as 1 � s � N . The relation (83) is indicated by the bold
line; it is in perfect agreement with the simulation data.61 The asymptotical behavior with
ω = 1/2 for u � 1 and ω = 3/2 for u � 1 is shown by the dashed and dash-dotted lines,
respectively. As predicted by (9), one recovers the power law P1(s) = cP /s3/2 irrespective
of the blob size g. This suggests that the exponent ω = 3/2 is not due to local physics on
the monomer scale, since for s � g � 1 distances much larger than the monomer or even
the thermal blob are probed.

5.4.2 Distance Dependence of Angular Correlations

We have seen in the previous paragraph that P1(s) decays for s/g � 1 as a power law
with an exponent ω = dν = 3/2. Since the decay of P1(s) resembles the return probabil-
ity of a random walk G0(r → 0, s), it is tempting [74] to attribute the observed effect to
“local self-kicks” at a distance r ≈ σ involving the bonds ln and lm themselves (or their im-
mediate neighbors). Accordingly, the bond-bond correlation function should reveal a δ(r)-
correlation if sampled as a function of the distance r = |r| between bond pairs. This inter-
pretation turns out to be incorrect, however, and we will show that the power law in s simply
translates as [87]

s−ω ⇔ (r/b)−ω/ν = (r/b)−d . (122)

61Equation (83) has also been applied successfully to the P1(s) obtained from single-chain-in-mean-field
simulation [168].
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As demonstrated analytically in Sect. B.5, one expects indeed for incompressible solutions
of infinite chains that

P1(r) ≈ P∞(r) ≡ c∞
12πρr3

for ξ � r � r∗ (123)

as suggested by (122), i.e. the angular correlations are genuinely long-ranged. As discussed
in Sect. B.5.4 the upper cutoff r∗ arises due to the enhanced weight of stretched chain seg-
ments which align bond pairs for distances r � r∗. Unfortunately, this cutoff increases rather
slowly with chain length [87]

r∗ ≈ b〈N〉1/d � RN ≈ b〈N〉ν . (124)

The simulation of computationally challenging chain lengths thus is required to demon-
strate numerically the predicted power-law decay of P1(r). Generalizing (123) for Flory-
distributed EP one obtains according to (220) that

P1(r) = P∞(r)h(x) + c�μ (125)

with h(x) = (1 + 2x)2 exp(−2x) being a scaling function of x = √
μr/2a and c� a phe-

nomenological constant set (in practice) by the finite local chain rigidity. The angular cor-
relation function P1(r) for EP systems is thus predicted to level off for large reduced dis-
tances.62

We present in Fig. 27 numerical results obtained for systems containing Flory-distributed
EP. As indicated in the sketch, P1(r) is obtained by averaging of all intrachain bond pairs
of same distance r . To avoid trivial correlations the second bond lm is outside the subchain
between the monomer n and m defining the vector r [87, 89]. Model-depending physics
not taken into account by theory obviously becomes relevant for short distances correspond-
ing to subchains of a couple of monomers. For clarity, we have thus omitted data points
with r ≤ 5. For small distance r � r∗ the (unscaled) bond-bond correlation function P1(r)

is found to decay strongly as expected from (125). Note that in this limit P1(r) does nei-
ther depend on the mean chain length nor the chain length distribution, i.e. the same be-
havior is observed for monodisperse chains. See Ref. [87] for details. To scale away the
〈N〉-dependence in the large-r limit, we trace in Fig. 27 the rescaled bond-bond correlation
function P1(r)〈N〉 as a function of r/r∗ with r∗ ≡ b〈N〉1/3 using the mean chain lengths
〈N〉 indicated in Table 3. Note that the error bars (not shown) become clearly much larger
than the symbol size for large bond energies E > 12. It is fair to state, however, that all data
points collapse nicely on the one master curve indicated by the thin line predicted by (125).
The asymptotic power law (123) is indicated by the bold line. That P1(r) for EP becomes
constant for r/r∗ � 1 confirms a non-trivial prediction of the theory.63

5.5 Higher Moments

The preceding discussion focused on the second moment of the subchain size distribution
G(r, s) and its derivatives with respect to s. We have also computed higher moments 〈r2p〉

62For monodisperse systems one finds instead P1(r) ≈ (r/N)2 for very large distances r with RN � r ≤ Nl

due to the increasing contribution of stretched bonds [87].
63The clearly visible plateau can be used to determine the coefficient c� . The same coefficient can then be
used for fitting the large-r behavior of monodisperse systems. Note that the best fit value c� = 0.14 is close
to P1(s = 1) = 〈ln · ln+1〉/l2 ≈ 0.10, the independently determined bond-bond correlation between adjacent
bond vectors.
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Fig. 27 (Color online) The angular correlations are characterized by the bond-bond correlation function
P1(r) = 〈ln · lm〉/l2 averaging over all pairs of bonds of a chain of same distance r = |r|. The data shown
has been obtained for EP of a broad range of scission energies E. If P1(r)〈N〉 is traced as a function of
r/r∗ all data points collapse. Confirming the general scaling idea (122) the bold line indicates the predicted
power-law asymptote (123) for r/r∗ � 1, i.e. the bond-bond correlations are truly long-ranged. The plateau
P1(r)〈N〉 = c� = 0.14 seen for r/r∗ � 1 is due the enhanced weight of stretched chain segments [87]. The
complete perturbation prediction (125) given by the thin line interpolates perfectly between the power-law
asymptote (bold line) and the plateau (dashed line)

Fig. 28 (Color online) Test of
(77) where the rescaled moments
Kp(s) are plotted vs. x ∼ cs/

√
s.

Setting b = 3.244 for all
moments, all data sets
extrapolate linearly to zero for
small x. The saturation at large x

is due to the finite extensibility of
subchains. Since this effect
becomes more marked for larger
moments, the fit of b is best
performed for p = 1

with p ≤ 5 [84]. (For clarity we focus here on monodisperse chains.) We compare these
moments in Fig. 28 with (77) tracing the cummulant Kp(s) defined in (26) as a function of

x = 3(2pp!p)2

2(2p + 1)!
cs√
s
. (126)
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Fig. 29 (Color online)
Non-Gaussianity parameter
αp(s) computed vs. cs/

√
s.

Perfect data collapse for all chain
lengths N indicated is obtained
for each p. A linear relationship
over nearly two orders of
magnitude is found as
theoretically expected, (78). The
data curvature for small s

becomes more pronounced for
larger p

All data sets collapse nicely on the prediction (bold line) for small x.64 It is important that
the same effective bond length b is obtained from the analysis of all functions Kp(s) as
illustrated in Fig. 28. Otherwise we would regard equilibration and statistics as insufficient.

The failure of Flory’s hypothesis can also be demonstrated by means of the non-
Gaussianity parameter αp(s) defined in (27) which compares the 2p-th moment with the
second moment (p = 1). In contrast to the related function Kp(s) this has the advantage that
here two measured properties are compared without any tunable parameter, such as b. Fig-
ure 29 presents αp(s) vs. cs/

√
s for three moments. For each p we find perfect data collapse

for all N which confirms the expected linear relationship αp(s) ≈ u∗(s).65 The lines indicate
the theoretical prediction (78). The prefactors 6/5, 111/35 and 604/105 for p = 2, 3 and 4
respectively are nicely confirmed. They increase strongly with p, i.e. the non-Gaussianity
becomes more pronounced with increasing p. Hence, b should be best fitted by the second
moment where the non-Gaussian behavior is the weakest.

Figure 30 presents a similar correlation function which measures the non-Gaussian cor-
relations of different spatial directions. It is defined by Kxy(s) ≡ 1 − 〈x2 y2〉/〈x2〉〈y2〉
for the two spatial components x and y of the vector r as illustrated by the sketch given
at the bottom of Fig. 30. Symmetry allows to average over the three pairs of directions
(x, y), (x, z) and (x, z). Following the general scaling argument given in Sect. 2 we expect
Kxy(s) ≈ u∗(s) ≈ cs/

√
s which is confirmed by the perturbation result

Kxy(s) = K2(s) = 6

5

cs√
s
. (127)

This is nicely confirmed by the linear relationship found (bold line) on which all data from
both simulation models collapse perfectly. The different directions of subchains are there-
fore coupled. As explained at the end of Appendix B.1, Kxy(s) and α2(s) must be identical
if the Fourier transformed subchain size distribution G(q, s) can be expanded in terms of
q2 and this irrespective of the values the expansion coefficients take. Figure 30 confirms,

64The curvature of the data at small s is due to the finite extensibility of the subchains which becomes more
marked for higher moments.
65If one plots αp(s) as a function of the r.h.s. of (78) all data points for all moments and even for too small s

collapse on one master curve just as in Fig. 28.
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Fig. 30 (Color online) Plot of Kxy(s) = 1 − 〈x2y2〉/〈x2〉〈y2〉 averaged over all pairs of monomers
(n,m = n + s) and three different direction pairs as a function of cs/

√
s. As indicated by the sketch at the

bottom of the figure, Kxy(s) measures the correlation of the components of the subchain vector r . All data
points collapse and show again a linear relationship Kxy ≈ u∗

s . Different directions are therefore coupled! No
curvature is observed over two orders of magnitude confirming that higher order perturbation corrections are
negligible. Noise cannot be neglected for large s > 100 and finite subchain-size effects are visible for s ≈ 1

Fig. 31 (Color online) Deviation
δG(r, s) = G(r, s) − G0(r, s) of
the measured subchain size
distribution from the Gaussian
behavior G0(r, s) for several
s � N and N = 2048. As
suggested by (75), we have
plotted
y = (δG(r, s)/G0(r, s))/(cs/

√
s)

as a function of n = r/b
√

s. The
data collapse confirms that the
deviation scales linearly with
u∗

s ≈ cs/
√

s. The bold line
indicates the universal function
f (n) predicted by (74)

hence, that our computational systems are perfectly isotropic and tests the validity of the
general analytical expansion. The correlation function Kxy is of particular interest since
the zero-shear viscosity should be proportional to 〈σ 2

xy〉 ∼ 〈x2y2〉 = 〈x2〉〈y2〉(1 − Kxy(s))

where we assume following Edwards [4] that only intrachain stresses contribute to the shear
stress σxy . Hence, our results suggest that the classical calculations [4]—assuming incor-
rectly Kxy = 0—should be revisited.

5.6 Corrections to the Subchain Size Distribution

We turn finally to the subchain size distribution G(r, s) itself which is presented in Fig. 31.
From the theoretical point of view G(r, s) is the most fundamental property from which
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all others can be derived. The normalized histograms G(r, s) are computed by counting the
number of subchain vectors between r − dr/2 and r + dr/2 with dr being the width of
the bin and one divides then by the spherical bin volume. Since the BFM model is a lat-
tice model, this volume is not 4πr2dr but given by the number of lattice sites the subchain
vector can actually point to for being allocated to the bin. Incorrect histograms are obtained
for small r if this is not taken into account. Averages are taken over all (sub)chains, just
as before. Clearly, non-universal physics must show up for small vector length r and small
curvilinear distance s and we concentrate therefore on values r � σ and s ≥ 31. When plot-
ted in linear coordinates as in Fig. 11 of [84], G(r, s) compares roughly with the Gaussian
prediction G0(r, s) given by (2), but presents a distinct depletion for small subchain vectors
with n ≡ r/b

√
s � 1 and an enhanced regime for n ≈ 1. To analyse the data it is better to

consider instead of G(r, s) the relative deviation δG(r, s)/G0(r, s) = G(r, s)/G0(r, s) − 1
which should further be divided by the strength of the subchain correlation hole, cs/

√
s. As

presented in Fig. 31 this yields a direct test of the relation (75) derived in Appendix B.2.
The figure demonstrates nicely the scaling of the data for all s. It shows further a good col-
lapse of the data close to the universal function f (n) predicted by theory (bold line). Note
that the depletion scales as 1/n for small subchain vectors (dashed line). The agreement of
simulation and theory is by all standards remarkable. Obviously, error bars increase strongly
for n � 1 where G0(r, s) decreases strongly. The regime for very large n where the finite
extensibility of subchain matters has been omitted for clarity. We emphasize that this scaling
plot depends very strongly on the value b which is used to calculate the Gaussian reference
distribution.66

5.7 Intramolecular Form Factor F(q)

The form factor F(q) defined in Sect. 2.2.4 is an important property since it allows to make
a connection between theory and simulation on the one hand and experiments of real sys-
tems on the other hand [5]. Figure 32 presents the (unscaled) form factors obtained for four
different scission energies E for our EP model at φ = 0.5. The three different q-regimes are
indicated. Details of the length distribution pN matter in the Guinier regime which probes the
total coil size. Non-universal contributions to the form factor arise in the “Bragg regime” at
large wavevectors. Obviously, the larger E the wider the intermediate Kratky regime where
chain length, polydispersity and local physics do not contribute much to the deviations of
the form factor from ideality. A very similar plot has been obtained for monodisperse poly-
mers (not shown). Not surprisingly, it demonstrates that the form factors of both system
classes become indistinguishable for large wavevectors. Note that the F(q) obtained for EP
of different E can be brought to collapse by tracing F(q)/F (0) as a function of Q ≡ qRg,z

with F(0) = 〈N2〉/〈N〉 and Rg,z the measured z-averaged radius of gyration as indicated in
Table 3 [83]. A similar plot can again be obtained for monodisperse chains using F(0) = N

and Q = qRg(N).
Interestingly, a careful inspection of Fig. 32 reveals that (40) overestimates systemati-

cally the data in the Kratky regime. This can be seen more clearly in the Kratky represen-
tation given in Fig. 33 in linear coordinates.67 We present here the systems with the longest

66As shown in Ref. [84], a similar plot can be achieved which does not require a precise value of b if the
reduced deviation y is plotted as a function of r/Rs using the measured subchain size Rs.
67Such “Kratky plots” are commonly used to represent neutron scattering experiments and to test Flory’s
ideality hypothesis. In applications, the existence of a Kratky plateau appears to be elusive [5]. Possible
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Fig. 32 (Color online) Intramolecular form factor F(q) vs. wavevector q for EP of various scission energies
E [83]. The ideal chain form factor for Flory-distributed polymers, (40), is indicated by the solid line. In the
Kratky regime between the total chain and monomer sizes the form factor expresses the fractal dimension of
the Gaussian coil, (35), as shown by the dashed line. Experimentally, this is the most important regime since
it is, e.g., not affected by the (a priori unknown) polydispersity. The computational data reveal an additional
regime at large wavevectors corresponding to the monomer structure (“Bragg regime”) which is not treated
by the theory

Fig. 33 (Color online) Kratky
representation of F(q)q2 vs. q

for monodisperse quenched
polymers (crosses) and
equilibrium polymers (open
symbols). The non-monotonous
behavior predicted by the theory
is clearly demonstrated. The ideal
chain form factor (thin line),
overpredicts the dip of the form
factor at q ≈ 0.7 by about 20%.
The bold line indicates the
prediction for infinite chains,
(14). The data is fitted assuming
the effective bond length
b ≈ 3.244

masses currently available for both monodisperse (N = 4096 and N = 8192) and EP sys-
tems (E = 14 and E = 15) [83]. The non-monotonous behavior is in striking conflict with
Flory’s hypothesis. The difference between the ideal Gaussian behavior (thin line) and the
data becomes up to 20%. This difference is qualitatively expected from the perturbation the-
ory result, (14), derived in Appendix B.3. The predicted scaling can be easily understood by
means of a simple scaling relation following the discussion in Sect. 2.3.6. As the arc-length

causes for deviations are effects of chain stiffness and finite chain thickness. In special cases, the scattering
signals from chain stiffness and thickness may compensate one another, leading fortuitously to an extended
Kratky plateau [169, 170]. Apparently, “Kratky plots have to be interpreted with care” [5].
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Fig. 34 (Color online) Scaling attempt of the non-Gaussian deviations for monodisperse polymers in terms
of the measured radius of gyration Rg(N). As suggested by (14), the difference 1/F (q) − 1/F0(q) of the
measured and the ideal chain Debye form factor has been rescaled by the factor Nρ/ρ∗

N and plotted as a
function of Q = qRg. We obtain perfect data collapse for all chain lengths included. (Obviously, data points

in the Bragg limit q ≈ 1 do not scale.) Note that the power law slope, m(Q) = Q3/32, predicted by (14), can
be seen over more then one order of magnitude. In the Guinier regime, the difference increases more rapidly,
m(Q) ∼ Q4 (dashed line), as one expects from a standard analytic expansion in Q2

s is related to the wavevector q and the ideal form factor F0(q) by s(q) ∼ 1/|q|2 ∼ F0(q),
it follows for the difference of measured and ideal form factors that [82]

δ

(
1

F(q)

)

= 1

F0(q)
×
(

F0(q)

F (q)
− 1

)

≈ 1

s
× u∗

s ≈ |q|d
ρ

(128)

which agrees with (14).68 The important feature of this |q|3-correction is that it depends nei-
ther on the strength of the excluded volume interaction nor on the effective bond length b.
Hence, it must be generally valid, even for semidilute solutions.69 The prediction for infi-
nite N , (14), cannot capture the decrease of the form factor for small q leading to the Guinier
regime where F(q) is determined by the finite size of the simulated chains. A clearer evi-
dence for the theory should thus be obtained by a different comparison between theory and
simulation, which accounts for the finite-N effects.

This is achieved in Fig. 34 which focuses on deviations δ(1/F (q)) = 1/F (q) − 1/F0(q)

for monodisperse systems with F0(q) being the Debye formula. As above in our discussion
of the subchain distribution G(r, s) and its moments one should avoid to use as Gaussian
reference the ideal chain form factor F0(q) expressed in terms of the effective bond length
b since the latter property might not be sufficiently accurate. A variation of a few percents
breaks the scaling and leads to qualitatively different curves [83] as in Fig. 24 for the mo-
ment K1(s). Since such a precision is normally not available (neither in simulation nor in

68This is the same scaling dependence which leads to P1(r) ≈ 1/ρ|r|d ≈ 1/ρ(bs1/2)d ≈ P1(s) for the bond-
bond correlation function as a function of r or s as investigated in Sect. 5.4.1.
69It applies then for q � 1/ξ with ξ being the semidilute blob length [3]. We have checked that the result
from the renormalization group theory for semidilute solutions [7, 71] takes the same form as (14) with an
amplitude 0.03124 that is within 0.03% of our 1/32 [83].
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experiment) it is of interest to seek for a more robust representation of the form factor de-
viations which does not rely on b. The reference chain size is thus set in Fig. 34 by the
measured radius of gyration Rg(N) which is used for rescaling the axis and, more impor-
tantly, to compute F0(q). (A virtually indistinguishable plot has been obtained for EP.) The
scaling of the vertical axis is suggested by (14) which predicts the difference of the inverse
form factors to be proportional to N0q3. Without additional parameters (Rg is known to high
precision) we confirm the scaling of

m(Q) ≡
(

N

F(q)
− N

F(0)(q)

)
ρ

ρ∗
N

(129)

as a function of Q = qRg(N) with ρ∗
N ≡ N/R3

g being the self-density. Importantly, our
simulations allow us to verify for Q � 5 the fundamentally novel Q3 behavior of the master
curve predicted by (14) and this over more than an order of magnitude! In this representation
we do not find a change of sign for the form factor difference (δF (q) is always negative) and
all regimes can be given on the same plot in logarithmic coordinates. In the Guinier regime
we find now m(Q) ∝ Q4 which is readily explained in terms of a standard expansion in Q2

since the first two terms in Q0 and Q2 must vanish by construction because of the definition
of Rg(N), (39).

5.8 Summary

In this section we have investigated various intrachain static properties of polymer melts
comparing our numerical data to the predicted deviations with respect to Flory’s ideality
hypothesis. From the computational side the most important point is discussed in Sect. 5.3.2
where we show how the effective bond length b for asymptotically long chains should be
extrapolated from subchains of finite arc-length with g � s � N . That the deviations are
indeed due to long-range interactions has been demonstrated from the scaling of the bond-
bond correlation function P1(r) ∼ 1/r3 in Sect. 5.4.2.

The most important finding from the experimental side concerns the scale-free devia-
tions demonstrated for the form factor F(q), (14). We have shown that the Kratky plot
does not exhibit the plateau expected for Gaussian chains in the intermediate wavevector
range. These deviations should be measurable by neutron scattering experiments of flexible
chains. Unfortunately, finite persistence length effects may mask the predicted behavior if
the chains are not sufficiently long. An experimental verification—e.g. following the lines
of the promising recent study [170]—would be of great fundamental interest; it could also
delineate the conditions where the predicted conformational corrections to ideality are rele-
vant in real polymer systems and must be considered in understanding their structure, phase
behavior and equilibrium dynamics. It is to the latter point we turn now our attention.

6 Scale-Free Dynamical Correlations in Polymer Melts

6.1 Introduction

6.1.1 Prelude: Overdamped Colloids

Dense, essentially incompressible simple liquids with conserved momentum are known to
exhibit long-range correlations of the particle displacement field [11, 171]. As first shown
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Fig. 35 (Color online) The displacement auto-correlation function C(t) of dense overdamped colloids is
known to reveal a negative algebraic long-time tail due to long-range dynamical interactions caused by the
weak compressibility of the solution [11]: If a particle ( filled sphere) is displaced at time t = 0 by a dis-
tance u(0) along the x-axis, this creates a density dipole (bold peaks) decaying in time by cooperative dif-
fusion (dashed line). The gradient of the chemical potential associated to the decaying field generates a drag
pulling the particle (open sphere) back to its original position. We argue [90] that a related mechanism causes
scale-free correlations of the displacements of (sub)chains in dense polymer solutions without topological
constraints

in the MD simulations by Alder and Wainwright [171], the coupling of displacement and
momentum fields manifests itself by an algebraic decay of the VCF,

C(t) ≡ 〈v(t) · v(0)
〉∼ +1/ξd(t)

d ∼ +1/tαd , (130)

with v(t) being the particle velocity at time t and ξd(t) ∼ tα the typical particle displacement
with exponent α = 1/2.70 Interestingly, even if the momentum conservation is dropped, as
justified for overdamped dense colloidal suspensions [11], scale-free albeit much weaker
correlations are to be expected due to the incompressibility constraint [11, 172]. As illus-
trated in Fig. 35, the motion of a tagged colloid is coupled to the collective density dipole
field,71

δρ(r, t) ≈ 1

ξd
d (t)

u(0) · r
ξ 2

d (t)
exp
[−(r/ξd(t)

)2]
for t > 0, (131)

created by the colloid’s own displacement u(0) at t = 0. After averaging over the typical
displacements of the test particle and assuming a Cahn-Hilliard response proportional to
the gradient ∇μ(r) of the chemical potential μ(r) of the density field [1], this leads to a
negative algebraic decay

C(t) ∼ −1/ξd(t)
d+2 ∼ −1/tω with ω = (d + 2) α, (132)

e.g., ω = 5/2 in d = 3 dimensions. This phenomenological scaling picture agrees with more
systematic mode-coupling calculations [11, 172, 173]. It has been confirmed computation-
ally by means of Lattice-Boltzmann simulations [173], MD simulations [174] and even MC
simulations with local moves [90] as demonstrated in Sect. 6.2.72

70The discussion is strongly simplified. Strictly speaking, it is not the particle diffusion which sets the dy-
namical length scale but the diffusive propagation of the transverse momentum [171].
71Prefactors are omitted for simplicity. Especially, we do not distinguish between the self diffusion of the
particle and the collective diffusion of the field characterized by rather different coefficients [11].
72Interestingly, the same power-law exponent ω = (d + 2)/2 is also seen in Brownian dynamics simulations
of the Lorentz model [175].
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6.1.2 Polymer Melts Without Topological Constraints

The finding of long-range static correlations in dense polymer solutions discussed in Sect. 5
begs the question of whether a similar interplay of chain connectivity and incompressibility
leads to similar scale-free and g-independent dynamical correlations. To avoid additional
physics we focus on model systems where hydrodynamic [92] and topological constraints
may be considered to be negligible, as in the pioneering work by Paul et al. [50, 51], or
are deliberately switched off [54, 55, 84]. As we have summarized in Sect. 1.5, deviations
from Rouse-type dynamics have been reported for such systems in various numerical and
experimental studies. The effective exponent β ≈ 0.8 characterizing the short-time CM dif-
fusion, (13), is of course inconsistent with the key assumption of the Rouse model that the
random forces acting on the chains are uncorrelated. We attempt here to clarify this problem
using the BFM variant with topology non-conserving local L26-moves described in Sect. 3.
Obviously, it would not be possible to equilibrate BFM configurations with chain lengths
up to N = 8192 using local moves. Taking thus advantage of the configurations obtained
using global MC moves we demonstrate that the VCF CN(t) associated to the chain CM
displacements does not vanish, but instead decays as [90]

CN(t) ≈ −
(

RN

TN

)2
ρ∗

N

ρ
f (t/TN) (133)

with f (x) being a universal scaling function. Note that the postulated (133) does not de-
pend explicitly on the compressibility of the solution. The squared characteristic “velocity”
(RN/TN)2 arises for dimensional reasons. The second prefactor ρ∗

N/ρ stems from the in-
teraction of chains and subchains imposed by the incompressibility constraint.73 As one
expects from (132), the scaling function decays for x � 1 as f (x) ∼ 1/xω with an exponent
ω = (d + 2)/2. More importantly, it will be shown that this long-time behavior is preceded
for x � 1 by a much weaker algebraic decay with

ω = (d + 2)α = 5/4 for d = 3 (134)

due to the much slower relaxation (α = 1/4) of the collective dipole field of subchains which
was generated by the initial displacement of the tagged subchain at t = 0. The gradient of
the chemical potential ∇μ(r) pulling the reference subchain back to its original position is
of course not only due to the density fluctuation of the subchain density field but also to
the tensional forces along the chains caused by the displacement. However, since subchain
density fluctuations and tensions are coupled, their free energy contributions cause chemical
potential gradients of the same order kBT s0N0 and are thus identical from the scaling point
of view [90, 91].

6.1.3 Outline

Reminding first how a VCF may be defined and determined in a Monte Carlo simulation
[176], we confirm in Sect. 6.2 that (132) holds for dense BFM beads. Section 6.3 focuses
then on polymer melts demonstrating the dynamical coupling of (sub)chains. Excluded vol-
ume and density effects are discussed in Sect. 6.4. Preliminary simulation data for melts

73That the effect is proportional to the correlation hole penalty, u∗
N ≈ ρ∗

N/ρ, may be guessed from the static
correlations we have discussed in Sect. 5. The fact that the polymers behave as weakly interacting colloids
for large times t/TN � 1 confirms this scaling.
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Fig. 36 (Color online) Diffusion of BFM beads (N = 1) without monomer overlap (ε = ∞) in d = 1+ ,
d = 2+ and d = 3 dimensions obtained using L26-moves at the reference “melt density” (φ = 0.5) [176].
Inset: Although the bead diffusion is essentially free, small deviations are visible if h(t)/(2dDt) is plotted in
log-linear coordinates. Main panel: Collapse of displacement correlation functions C(t, δt) for d = 1+ and
various time increments δt (open symbols). The “final” function C(t) is obtained by adding the first decade of
data for each δt and logarithmic averaging. The cummulants for each effective dimension agree nicely with
the predicted power-law exponent ω = (d + 2)/2, (132)

with topological constraints presented in Sect. 6.5 indicate that the early-time behavior,
CN(t) ∼ −N−1t−(d+2)/4 for t � TN, is preserved before entanglement effects set in. A per-
turbation calculation prediction for this time window is outlined in Sect. 6.6. In demonstrat-
ing (133) and (134) our study focuses on one mechanism explaining the striking deviations
from the Rouse behavior observed in the literature. See Refs. [92, 93, 101, 177, 178] for
related theoretical studies. We stress that the presented MC simulations [90] are necessarily
incomplete since important additional dynamical correlations arise due to the incomplete
screening of hydrodynamic interactions mentioned briefly in Sect. 7.2.3 [92, 93].

6.2 Diffusion of Dense BFM Beads

Since in MC simulations there is no “monomer mass”, no (conserved or non-conserved)
“monomer momentum” and not even an instantaneous velocity, it might at first sight appear
surprising that a well-posed “velocity correlation function” (VCF) can be defined and mea-
sured. To illustrate that this is indeed the case is the first purpose of this subsection. The
second is to verify that the negative analytic decay of the VCF expected for overdamped
colloids, (132), is also of relevance for dense BFM beads (N = 1) diffusing through con-
figuration space by means of local hopping moves on the lattice as shown in Fig. 6(b). The
systems presented in Fig. 36 correspond to three different effective dimensions d . The ef-
fectively 1D systems (d = 1+) have been obtained by confining the beads to a thin capillary
of square cross-section, the effectively 2D systems (d = 2+) by confining the beads to a thin
slit as shown in Fig. 6(c). The distance H = 4 between parallel walls was chosen to allow
the free crossing of the beads. (For the 1D case this is important, of course, since ordering
the beads along the capillary alters dramatically the dynamics.) The data has been obtained
for beads without monomer overlap (ε = ∞) by means of L26-moves on a 3D cubic lattice
with half of the available lattice sites being occupied (φ = 0.5). We average over the 220

beads contained in each configuration.
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One standard measure characterizing the monomer displacements is the mean-square
displacement (MSD) h(t) ≡ 〈(r(t) − r(0))2〉 displayed in the inset of Fig. 36 (with r(t)

being the particle position at time t ). As one expects, the monomer displacements become
uncorrelated for t � 1, i.e. h(t) ≈ 2dDt with D being the monomer self-diffusion constant:
D = 0.0187 for d = 1+, D = 0.0154 for d = 2+, D = 0.0382 for d = 3. The typical dis-
placement ξd(t) ≡ h1/2(t) thus scales as ξd(t) ∼ tα with α = 1/2. However, small deviations
are clearly visible for short times if h(t)/(2dDt) is plotted in log-linear coordinates. The
deviations are particular strong for d = 1+. The effective random forces acting on the beads
are thus not completely white. Obviously, one might try to characterize these deviations by
fitting various polynomials to the measured MSD. However, since one needs to subtract the
rather large free diffusion contribution from the measured signal to characterize tiny devia-
tions this is a numerically difficult if not impossible route.

In analogy to the bond-bond correlation function P1(s) ∼ ∂2
s R2

s discussed in Sect. 5.4
allowing to make manifest deviations from the Gaussian chain assumption, it is numeri-
cally much better to directly compute the second derivative of h(t) with respect to time
to avoid this large, but trivial contribution. How this can be done is illustrated in the
main panel of Fig. 36. We sample equidistant series of configurations at time intervals
δt = 1,10,100, . . . as indicated by the open symbols. Each time series contains 104 con-
figurations. Averaging over all possible pairs of configurations (t0, t0 + t) we compute
C(t, δt) ≡ 〈u(t0 + t) · u(t0)〉t0/δt2, i.e. a four-point correlation function of the monomer tra-
jectories with u(t) = r(t + δt) − r(t) being the monomer displacement vector at time t in a
time interval δt . By construction C(t, δt) ≡ 0 if both displacement vectors are uncorrelated.
According to (173) one expects

C(t, δt) ≈ 1

2
∂2

t h(t)δt0 for t � δt. (135)

As can be seen for BFM beads in d = 1+ dimensions, the δt -dependence indeed drops out
for t/δt > 1 and we thus avoid the second index δt writing C(t) for the displacement (or
velocity) correlation function. Obviously, the statistics deteriorates for very large t/δt where
fewer configuration pairs contribute to the average (taking apart that the signal itself decays).
It is for this reason that a hierarchy of time series of different δt is needed. Taking for each δt

only the first decade of data (2 ≤ t/δt < 20), these data sets are pasted together and averaged
logarithmically. The exponents ω = 3/2 (thin line), ω = 2 (dashed line) and ω = 5/2 (bold
line) predicted by (132) for d = 1, d = 2 and d = 3, respectively, compare well with our data
over several orders of magnitude in time, especially for d = 1+. Note that if one is satisfied
with less orders of magnitude it is sufficient to check the exponents using just a time window
δt = 1 as may be seen from the open spheres. The superposition of data from different time
series is just a numerical trick which reduces the number of configurations to be stored and
the number of configuration pairs to be computed for a given time t .

6.3 Polymer Melts Without Topological Constraints

6.3.1 Mean-Square Displacements

Having shown that scale-free dynamical correlations exist for dense BFM beads as expected
for overdamped colloids (Fig. 35), we turn now our attention to 3D melts of long and flexible
homopolymers. As described in Sect. 3.4, we focus on systems with finite overlap penalty
ε = 10 and volume fraction φ = 0.5 which we sample using local topology non-conserving
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Fig. 37 (Color online) Various MSD for chains of lengths N = 64 and N = 8192 [90]. The open symbols
refer to the monomer MSD h(t), the filled symbols to the MSD hN(t) of the CM of chains, the crosses to
the MSD hs(t) of the CM of subchains of arc-length s = 64 of total chains of length N = 8192. The dashed
line indicates the monomer MSD expected for Rouse chains for t � TN, the thin solid lines the free diffusion
limit. As emphasized by the bold lines corresponding to the exponent β = 0.8 suggested by (13), correlations
are visible for the short-time behavior of the CM motion. The stars indicate (141) using c = 1, i.e. the time
window t � t∗ ≈ 103 is described by an exponent β = 3/4

L26-moves. As can be seen in Fig. 37 for chains of length N = 64 and N = 8192, these sys-
tems are essentially of Rouse-type. The monomer MSD h(t) is indicated by the open sym-
bols.74 As expected from Rouse dynamics we obtain the N -independent short-time asymp-
totics [4]

h(t) = b2(Wt)1/2N0 for 10 � t � TN ≈ N2/W (136)

indicated by the dashed line (2α = 1/2). As can be seen for N = 64, the monomers diffuse
again freely with a power-law slope 1 (thin lines) for times larger than the Rouse time TN.
We remind that it was neither computationally feasible nor our goal to sample for our larger
chains (N > 1000) over the huge times needed to make this free diffusion regime accessible.
Following Paul et al. [51], the short-time power law, (136), can be used to determine the
effective monomer mobility. We obtain W(ε = 10) = 0.003 for our main working point.
Mobilities for other penalties are listed in Table 1. As may be seen from Fig. 38, W(ε)

decays with increasing excluded volume just as the acceptance rate A(ε) (spheres) of the
Monte Carlo attempts, but the decay is even more pronounced for W(ε), i.e. increasingly
more accepted monomer moves do not contribute to the effective motion [51].

The full symbols displayed in Fig. 37 refer to the MSD hN(t) = 〈(rN(t) − rN(0))2〉 of
the CM rN(t) of chains of length N . As one expects for Rouse chains, the amplitude of
hN(t) decreases inversely with N and the diffusion appears to be Fickian (hN(t) ∼ t ) at
least for times t � t∗ ≈ 103N0 as indicated by the vertical arrow. Obviously, hN(t) and h(t)

merge for times beyond the Rouse time (t � TN). Fortunately, since hN(t) becomes linear
for t∗ � TN, it is possible for all N to measure the self-diffusion coefficient DN by plotting
NhN(t)/6t vs. time t . For our main working point we obtain NDN(ε = 10) ≈ 0.009. Values

74For the large N sampled here it is inessential whether this average is performed over all monomers or only
over a few monomers in the center of chains at i ≈ N/2 as in [50, 51, 56].
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Fig. 38 (Color online)
Acceptance rate A, effective
local mobility W and
self-diffusion coefficient NDN
vs. the monomer overlap
penalty ε. The data has been
obtained using L26-moves at
volume fraction φ = 0.5 [90]. All
dynamical properties decrease
monotonously with the
interaction penalty but become
essentially constant above our
main working point at ε = 10.
The dashed line corresponds to
the diffusion coefficient
according to (137) and assuming
the indicated mobilities W

for other ε are again given in Table 1 and are represented in Fig. 38 (diamonds). These
values compare nicely with the Rouse model prediction [4]

NDN = π

2
a2W (137)

shown by the dashed line in Fig. 38. Similarly, it is possible (at least for our shorter chains)
to measure the longest Rouse relaxation time TN by an analysis of the Rouse modes and to
compare it with the Rouse model prediction [4] TN = 4N2/π3W . We obtain again a nice
agreement between directly and indirectly computed relaxation times (not shown).

Up to now we have insisted on the fact that our systems are to leading order of Rouse
type and we have characterized them accordingly. However, deviations from the Rouse pic-
ture are clearly revealed for short times, especially for hN(t).75 In agreement with (13) the
short-time CM motion may be characterized by a power-law exponent β ≈ 0.8 (bold lines).
Since in our BFM version topological constraints are irrelevant, this shows that the devia-
tions obtained for the classical BFM algorithm with topological constraints [51] cannot be
attributed alone to precursor effects to reptational dynamics (which indeed exist as shown in
Fig. 44).

Before we turn to the more precise numerical characterization of these deviations by
means of the associated displacement correlation function, let us ask whether the observed
colored forces acting for short times on the CM of the entire chain are also relevant on the
scale of subchains of arc-length s (1 � s ≤ N ). To answer this question we compute the
MSD hs(t) = 〈(r s(t) − r s(0))2〉 associated to the subchain CM r s(t) as shown in Fig. 37 for
subchains of length s = 64 in the middle of total chains of length N = 8192 (crosses). Since
for short times the subchain does not “know” that it is connected to the rest of the chain, one
expects it to behave as a total chain of the same length (s = N ). This is indeed borne out by
our data which are well described by

shs(t) ≈ NhN(t) for t � Ts ≈ s2/W (138)

for all chain length N and subchain length s studied. The subchains reveal thus for suffi-
ciently short times the same colored forces as the total chain as can be clearly seen from the

75That the monomer MSD h(t) also deviates for very short times is due to the trivial lower cut-off associated
to the discretization.
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Fig. 39 (Color online) VCF
CN(t, δt) for two chain lengths,
N = 16 (top) and N = 8192
(bottom), obtained using
L26-moves [90]. We only
indicate for each δt the data
window which is used to
construct (by logarithmic
averaging) the final VCF CN(t).
The bold lines represent the
exponent ω = 5/4 which is
generally observed for times
10 � t � TN. For N = 16 we
also indicate the exponent
ω = 5/2 (dashed line) expected
for larger times where the
polymer coils behave according
to (132)

example given in Fig. 37. For larger times the subchain becomes “aware” that it is connected
to the rest of the chain and gets enslaved by the monomer MSD, i.e. as expected from the
Rouse model we observe

hs(t) ≈ h(t) ≈ b2(Wt)1/2s0N0 for Ts � t � TN (139)

and, obviously, hs(t) ≈ hN(t) ≈ h(t) ≈ 6DNt for even larger times t � TN.

6.3.2 Locality and Relevant Exponent α

Two comments are in order here. First, it should be noticed that (138) expresses the fact that
the effective forces acting on the N/s subchains of length s in a chain of total length N

add up independently to the forces acting on the total chain. In this sense (138) states that
the deviations from the Rouse picture must be local. We will explicitly verify this below
(Fig. 41).76 Second, if one chooses following (135) an arbitrary time window δt to character-
ize the displacement correlations, this corresponds to dynamical blobs containing s ≈ √

Wδt

adjacent monomers, which must move together due to the chain connectivity. Equation (139)
implies now that the dipole field77 associated with the CM of these s-subchains and created
at t = 0 by a tagged s-subchain must decay according to a typical displacement ξd(t) ∼ tα

with α = 1/4. It is this exponent α which is mentioned in (134). Since this exponent is
smaller than for colloids (α = 1/2), the subchain field must decay more slowly and one thus
expects a much weaker decay of the associated VCF.

6.3.3 Center-of-Mass Velocity Correlation Function

Following the numerical strategy presented in Sect. 6.2, we characterize now more precisely
the correlations seen for the chain MSD hN(t) and the subchain MSD hs(t) by computing

76The “locality” of the correlations described by (138) or (143) does not imply that the displacements of
subchains around the reference subchain displaced at t = 0 are δ(r)-correlated.
77We remind that, strictly speaking, it is not the dipole field associated to the density of the subchain center-
of-masses, but to their chemical potential. The use of the imprecise notion “density dipole field” might be
excused by the fact that both fields are supposed to decay similarly with time t , chain length N and subchain
length s.
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Fig. 40 (Color online) Scaling
of VCF CN(t) for different N

[90]: (a) Rescaled VCF
y = −CN(t)(b3ρ)/(WDN) vs.
reduced time x = Wt . For times
t � TN the VCF thus clearly
scales as CN(t) ∼ 1/N , i.e. the
correlations must be due to ∼ N

local independent events. The
exponent ω = 5/4 (bold line) is
observed over up to five orders of
magnitude in time. (b) Collapse
of y = CN(t)/CTN with

CTN ∼ 1/N7/2 as a function of
x = t/TN confirming (133). The
large time behavior (x � 1) is
described by an exponent
ω = 5/2 (dashed line). The
exponent ω = 5/4 (bold line) for
x � 1 is demonstrated over eight
orders of magnitude

directly their second derivative with respect to time t , i.e. the associated correlation functions
CN(t) ≈ ∂2

t hN(t)/2 and Cs(t) ≈ ∂2
t hs(t)/2.

The VCF CN(t, δt) = 〈u(t + t0) · u(t0)〉t0/δt2 for the displacement vector u(t) = rN(t +
δt)−rN(t) of the chain CM rN(t) is shown in Fig. 39 for two chain lengths, N = 16 (top) and
N = 8192 (bottom). Averages are again performed over all configuration pairs (t0, t + t0) in
the set of 104 configurations sampled for each δt . As in Sect. 6.2 we find that CN(t, δt) ∼ δt0

for t � δt . For clarity, only the data subset is indicated for each δt which is used to construct
the final VCF CN(t) (as shown below in Fig. 40). The bold lines represent the predicted
short-time exponent ω = 5/4 which can be observed for N = 8192 over nearly five orders
of magnitude. For N = 16 we also indicate the exponent ω = 5/2 (dashed line) for t � TN

where the polymers should behave as colloids according to (132). Note that the magnitude
of the signal decreases strongly with N , which together with the fact that fewer chains per
box are available, makes the determination of CN(t) increasingly more delicate.

The N -dependence of the VCF CN(t) is further analyzed in Fig. 40. The rescaled VCF
y = −CN(t)(b3ρ)/(WDN) is traced in panel (a) as function of the reduced time x = Wt

using the monomer mobility W = 0.003 and the diffusion coefficient DN = 0.009/N deter-
mined above (Table 1). This scaling makes the axes dimensionless and rescales the vertical
axis by a factor N . As shown by the successful data collapse for chain lengths ranging from
N = 16 up to N = 8192 on the slope indicated by the bold line, the VCF scales exactly
as CN(t) ∼ 1/N for t � TN. This confirms the already stated “locality” of the correlations,
(138), i.e. the forces acting on subchains add up independently to the forces acting on the
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entire chain. We have still to motivate the precise scaling used for the axes. According to
(133) the VCF scales as a function of the reduced time t/TN. Substituting the typical chain
size RN ≈ bN1/2 and relaxation time TN ≈ R2

N/DN ≈ N2/W this reduces for ω = 5/4 to

y ≡ −CN(t)
(
b3ρ
)
/(WDN) = c(Wt)−5/4N0 for t � TN (140)

with c being a dimensionless constant. The bold slope indicated in the plot corresponds to a
value c = 1. Interestingly, since CN(t) ≈ ∂2

t hN(t)/2, it follows from (140) that

hN(t) = 6DNt

(

1 + 16c

9b3ρ
(Wt)−1/4

)

. (141)

As may be seen in Fig. 37 (stars) for N = 8192, (141) with c = 1 provides an excellent
fit of the measured hN(t). We also note that the second term in (141) dominates the short-
time dynamics for t � t∗ ≡ W−1(16c/9b3ρ)4 N0 ≈ 103. This is indicated by the vertical
arrow in Fig. 37. Hence, for t � t∗ the stars correspond to a power-law slope with exponent
β = 2 − ω = (6 − d)/4 = 3/4. This is close to the phenomenological exponent β = 0.8
from the literature. The central advantage of computing the VCF CN(t) lies in the fact that it
allows us thus to make manifest that (negative algebraic) deviations from the Rouse behavior
exist for all times and not just for t � t∗.

Returning to our discussion of Fig. 40(a) we emphasize that the VCF of shorter chains
decay more rapidly for large times following roughly the exponent ω = 5/2 expected for
effective colloids. We verify explicitly in Fig. 40(b) that the bending down of the data is con-
sistent with the announced scaling in terms of a reduced time x = t/TN and a vertical axis
y = CN(t)/CTN using the amplitude CTN ≡ CN(t = TN) ≈ −(RN/TN)2ρ∗

N/ρ ∼ −1/N7/2

stated in (133). The successful data collapse confirms that the only relevant time scale in
this problem is the relaxation time TN for which the deviations for short (ω = 5/4) and long
times (ω = 5/2) match. It is worthwhile to emphasize that the general scaling (133) together
with the locality of the deviations, CN(t) ∼ 1/N , immediately imply the exponent ω. This
can be seen by counting the powers of the chain length N ,

−1
!= (1/2 − 2)2 + (1 − d/2) + 2ω, (142)

thus ω = (d + 2)/4 = 5/4 in agreement with (134) and the numerically observed time de-
pendence. Assuming that (133) holds, the exponents for N and t thus contain the same
information.

The VCF Cs(t) for subchains of arc-length s ≤ N is presented in Fig. 41. The subchain
VCF Cs(t) is obtained as the total chain VCF CN(t), the only difference being that the
CM r s(t) of the subchain defines now the displacement vector u(t) = r s(t + δt) − r s(t).
The data presented in the main panel is rescaled as in Fig. 40(a) with Ds = 0.009/s setting
now the relevant diffusion constant used for the vertical axis. At short times the data for
all s collapses on the same power-law slope with exponent ω = 5/4 (bold line) as in (140).
Confirming (12) and (138) we obtain the scaling

Cs(t)

WDs
≈ CN(t)

WDN
∼ −(Wt)−(d+2)/4 for t � Ts, (143)

i.e. the colored forces acting on subchains add up independently to the colored forces acting
on the total chain.
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Fig. 41 (Color online) Cs(t) for subchains obtained for chains of length N = 1024 using an overlap penalty
ε = 10 and L26-moves [90]. Main panel: For t � Ts the subchains scale as the total chains in agreement with
(12) as shown by the bold line. For intermediate times Ts � t � TN the subchain displacements (1 � s � N )
follow the monomer MSD and thus Cs(t) ∼ s0(bW)2(Wt)1/2−2 (dash-dotted line). Inset: The latter regime
can be better seen by setting Ts = s2/W and CTs = −(bW)2s−3 and plotting y = Cs(t)/CTs as a function
of x = t/Ts. The dashed slope corresponds to y = 1/8x3/2 for x � 1

6.3.4 Dynamic Coherent Form Factor

Neither the MSD nor the VCF of the (sub)chain CM can be measured directly in a real ex-
periment. We discuss now how the exponent β = 2 −ω = 3/4 may be tested experimentally
by means of the dynamical coherent form factor [4, 5]

F(q, t) = N
〈
ρl(q, t)ρl(q,0)

〉
(144)

= 1

N

N∑

n,m=1

〈
exp
(
iq · (rn(t) − rm(0)

))〉
(145)

where ρl(q, t) =∑N

n=1 exp(−iq · rn) stands for the Fourier transform of the density of a
labeled chain. For t = 0 the dynamical form factor F(q, t) reduces to the static form factor
F(q) discussed in Sect. 5.7. In the Guinier regime F(q, t) probes the overall chain motion
which allows to determine quite generally hN(t) using the expansion [4]

y ≡ 1 − F(q, t)

F (q,0)
≈ 1 − exp

(

−hN(t)q2

4

)

≈ hN(t)q2

4
, (146)

at least if sufficiently precise small angle data are available [78, 79]. Thus, y ∼ tβ for t � t∗.
Obviously, (146) also holds for our numerical data (not shown).

Larger wavevectors (1/RN � q � 1/ξ ) are experimentally more readily accessible [5].
Since in this regime the dynamical form factor probes the MSD of subchains of arc-length
s ∼ 1/q2 with hs(t) replacing hN(t) in (146) [179], it is of relevance to verify whether it
is possible in practice to confirm the exponent β = 3/4 using the numerically computed
dynamical form factor. We remind that since in this wavevector regime F(q, t) becomes
independent of N , the Rouse model implies the scaling

F(q, t)

F (q,0)
= f̃ (x) with x = q4Γ t (147)
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Fig. 42 (Color online) Reduced dynamical coherent form factor F(q, t)/F (q,0) as a function of reduced
time x = q4Γ t for several wavevectors q as indicated. The data has been obtained for BFM melts (φ = 0.5,
ε = 10, Γ = 0.0072) of chain length N = 1024 with radius of gyration Rg = 32.7. Main panel: Although the
Rouse model scaling (147) holds for sufficiently small q , deviations are clearly visible for large wavevectors
q ≥ 2π/8. The dashed line indicates the numerical solution of (149) for the intermediate wavevector regime.
Inset: The double-logarithmic representation of y(x) ≡ 1 − F(q,0)/F (q,0) reveals for large wavevectors
and small times (x � 1) an exponent β = 3/4 (bold line)

being the scaling variable and

Γ = a2

2

T

ζ
= π

4
a4W (148)

a rescaled monomer mobility [4]. Using the directly measured mobility W we have Γ =
0.0072 for the BFM data presented in Fig. 42. As can be seen from the main panel, a satisfac-
tory data collapse is indeed obtained if sufficiently large subchains are probed (q ≤ 2π/8).
This is consistent with the fact that our systems are to leading order of Rouse-type, espe-
cially if large times are probed. The scaling function f̃ (x) indicated by the dashed line has
been obtained by integrating numerically the Rouse model prediction [4]

f̃ (x) =
∫ ∞

0
du exp

[−u − x1/2h
(
ux−1/2

)]

with h(u) = 2

π

∫ ∞

0
dx

cos(xu)

x2

(
1 − exp

(−x2
))

.

(149)

Considering that there is no adjustable parameter this fit is satisfactory. Expansion of (149)
for small x yields78

f̃ (x) = 1 − x + x3/2 4
√

2

3
√

π
+ · · · for x � 1. (150)

78Note that the approximation f̃ (x) = exp(−2
√

x/π) given in [4] is unfortunately wrong. Effective mobil-
ities W determined using this formula are therefore also incorrect [52]. A better approximation taking into
account the fluctuations around the saddle point is given by f̃ (x) ≈ (π3x/4)1/4 exp(−2

√
x/π).
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Thus, according to the Rouse model one expects the rescaled dynamical form factor y(x) =
1 −F(q, t)/F (q,0) traced in the inset of Fig. 42 to increase (to leading order) as y(x) ∼ xβ

with β = 1 (dashed line). Instead we find for larger wavevectors a power-law increase with
exponent β = 3/4 (bold line) in agreement with the scaling relation

y ≈ q2hs(t) ≈ q2t3/4/s ≈ q4t3/4 (151)

for t � t∗ � Ts (141).79 In other words, an experimental observation of a power law slope
of the reduced dynamical structure factor with β ≈ 3/4 would thus confirm scale-free CM
displacement correlations with ω = 2 − β ≈ 5/4.

6.4 Compressibility Effects

Up to now we have focused on one working point at overlap penalty ε = 10 and volume
fraction φ = 0.5, i.e. all data corresponds to the same static properties, especially to the
same dimensionless compressibility g = 0.32. It is natural to ask how the observed scaling
changes with the compressibility of the solution. Our key scaling relation (133) correspond-
ing to an incompressible packing of blobs does in fact only depend implicitly on g. This
suggest that (140) for times t � TN should also remain valid if one uses for rescaling of the
axes the effective bond length b, the mobility W and the diffusion constant DN measured
independently for the given operational parameters ε and φ. This is in fact borne out for
the asymptotic behavior of the rescaled VCFs displayed in Fig. 43(a) for different overlap
penalties ε at φ = 0.5 and in Fig. 43(b) for different volume fraction φ at ε = 10. (We only
display chains with N = 1024 to avoid the colloidal regime for t � TN.) The values used
for the rescaling of the axes are listed in Table 1 for the variation of the overlap penalty
and in Table 2 for different volume fractions. The scaling collapse for long times presented
in panel (b) demonstrates explicitly that CN(t) ∼ 1/b3ρ if one scales out the additional
variation of the monomer mobility W(φ). We remind that this density dependence stems
originally from the factor ρ∗

N/ρ in (133) due to the correlation hole forces setting the repul-
sion between chains and subchains which drive the dynamical correlations. That the data
deviates for short time from (140) is to be expected qualitatively since the incompressibility
constraint is only felt by the chains if the dynamics is probed on a scale corresponding to
the static screening length. As we have seen in Sect. 5.4, a similar crossover is observed for
static properties such as the angular correlation function [86]. At present we are still lacking
a detailed description for the short time dynamical behavior and how to match it with the
correlated motion of incompressible blobs at long times.

6.5 L06-Moves and Effects of Topological Constraints

Up to now we have deliberately tuned our model to avoid topological constraints. Obviously,
these constraints are expected to matter for the dynamics of real 3D polymer melts [3, 4]. It
is thus of interest to see how the presented picture changes if topology conservation is again
switched on using the L06-moves of the classical BFM [50, 51, 56].

Obviously, for small penalties the dynamics remains of Rouse-type as can be seen from
Fig. 44(a) for the same static conditions (φ = 0.5, ε = 10) as in Sect. 6.3. One determines

79That with decreasing wavevector the data approaches systematically the Rouse prediction β = 1 is expected

(i) since for the same value x = q4Γ t a smaller wavevector q corresponds to a larger time t and (ii) since for
t � t∗ ∼ s0N0 the colored noise becomes masked by the white forces, (141).
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Fig. 43 (Color online)
Robustness of the scaling of
CN(t) [90]. Data obtained for
N = 1024 using L26-moves is
shown for (a) various overlap
penalties ε at volume fraction
φ = 0.5 and (b) various volume
fractions φ at overlap penalty
ε = 10. For sufficiently large
times (but still t � TN) all data
appears to collapse on the same
asymptotic power-law exponent
ω = 5/4 (bold line) for
incompressible polymer
solutions. The statistics
deteriorates with decreasing ε

and ρ and additional physics is
visible at short times

readily a local mobility W = 0.002 and a self-diffusion coefficient DN = 0.007/N , i.e. the
dynamics is slightly slower than for the larger L26-moves. If using these parameters CN(t)

is rescaled as shown in Fig. 40(a), all data sets collapse perfectly on the same slope as for
L26-moves (bold line). This is consistent with the idea that the scaling (140) only depends
implicitly on the specific MC moves used.

Preliminary data comparing L26-moves and L06-moves for chains of length N = 8192
and higher overlap penalties is presented in Fig. 44(b). With increasing ε the crossing of the
chains gets more improbable for L06-moves and the topological constraints become more
relevant. This can be seen for ε = 30 and even more for ε = 100. The latter data set ap-
proaches the slope 1/2 (dashed line) expected from reptation theory for times larger than
the entanglement time Te [4]. The vertical arrow indicates a value for Te obtained from an
analysis of the monomer displacements h(t) [56]. Apart from the much larger chain length
N = 8192 used, the data for ε = 100 is consistent with the results obtained using the classi-
cal BFM (ε = ∞) [51, 56]. As in Fig. 37 the bold line represents the exponent β = 0.8 [51,
79]. Superficially, it does a better job for systems with conserved topology due to the broad
crossover to the entangled regime. The VCF CN(t) plotted in the inset reveals, however, that
the fit β = 0.8 is misleading. For short times all systems with and without topology con-
servation are well-described by the same exponent ω = 5/4 (bold line) in agreement with
the proposed deviations from the Rouse model, (134). Note that the last points given for
ε = 100 decay slightly more rapidly. Unfortunately, the length of the analyzed time series
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Fig. 44 (Color online)
Dynamical correlations for 3D
BFM melts at volume fraction
φ = 0.5 obtained using
L06-moves: (a) VCF CN(t) for
ε = 10 focusing on larger chains
with N ≥ 256. Using W = 0.002
and DN = 0.007/N we rescale
the data as in Fig. 40(a). This
allows to collapse the data on the
same power-law slope (bold line)
as obtained using L26-moves,
(140). (b) Topology induced
additional correlations for chains
of length N = 8192. Main panel:
MSD hN(t) vs. time t comparing
L26-moves for ε = 10 (spheres)
to L06-moves for different
overlap penalties ε. Topological
constraints become important for
L06-moves with ε � 10 and, as
expected from reptation theory
for times larger than the
entanglement time Te ≈ 105 [4],
the data bends towards a
power-law exponent 1/2 (dashed
line). Inset: The reduced VCF
−CN(t)N confirms that for all
system classes the short-time
dynamics is described by the
power-law exponent ω = 5/4
(bold line)

does currently not allow us to verify whether our data become consistent with the decay

CN(t) ≈ − 1

N

(
de

Te

)2(
t

Te

)−3/2

for t � Te (152)

expected for reptating chains with de ∼ Te
1/2 being the tube diameter [3]. Much longer

time series, just as for the L26-moves with ε = 10 we have focused on, are currently un-
der production to clarify this issue. The numerical demonstration is challenging, since the
difference between the exponents, 3/2 − 5/4 = 1/4, is rather small and several orders of
magnitude in time are needed to discriminate the power laws. In any case it is thus due to
the dynamical correlations first seen in the BFM simulations of Paul et al. [51, 79] that the
crossover between Rouse and reptation regimes becomes broader and more difficult to de-
scribe than suggested by the standard Rouse-reptation theory [3, 4] which does not take into
account the (static and dynamical) correlations imposed by the incompressibility constraint.

6.6 Perturbation Calculation Predictions

6.6.1 Colored Collective Forces

Focusing now on the short-time correlations (t � TN) in d-dimensional polymer melts with-
out topological constraints, we present now a linear response calculation to describe the
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coupling between the degrees of freedom of a tagged test chain and the degrees of freedom
of the collective bath characterized, respectively, by the dynamical form factor F(q, t) and
the dynamical structure factor S(q, t) at equilibrium. The underlying physics is that the dis-
placement of a test chain at t = 0 creates a free energy perturbation of the bath which decays
by collective diffusion but survives at intermediate times. The collective force f c(t) asso-
ciated with the perturbation of the molecular field pushes the test chain towards its original
position at t = 0− causing thus the anomalous diffusion of the CM motion demonstrated
numerically above. We remind first that the forces acting on the CM rN(t) of an a priori
Rouse chain may be written [4]

Nζ
drN(t)

dt
= f t(t) = f r(t) + f c(t), (153)

i.e. in addition to the random white force f r(t) of the standard Rouse model we have to
account for the force f c(t) from the molecular field. The friction coefficient ζ may be ob-
tained using (148) from the effective monomer mobility W . According to the relation (176)
given in Appendix A, the VCF CN(t) of the chain CM is given by

CN(t) = − 1

(Nζ)2

〈
f c(t) · f c(0)

〉
for t > 0, (154)

i.e. our task is to compute the correlation of the collective force f c(t) due to the molecular
field surrounding the reference chain. The negative sign corresponds to the fact that the
collective forces push the reference chain back towards its original position, just as for the
overdamped colloids.

6.6.2 Dynamical Random Phase Approximation

As already discussed in Sect. 6.3.4, the degrees of freedom of the test chain are encoded by
the dynamical form factor F(q, t), (145). As seen from the main panel of Fig. 42, the scal-
ing F(q, t) = F(q,0)f̃ (x) with x = q4Γ t is nicely obeyed for not too large wavevectors,
although deviations from the Rouse prediction are visible for small x. Since these deviations
are small, it is justified in the spirit of a perturbation calculation to assume that (149) holds
for all wavevectors q � 1/RN and times t � TN.

The degrees of freedom of the bath are described by the dynamical collective structure
factor

S(q, t) = 〈ρ(q, t)ρ(q,0)
〉
/(ρV ) (155)

with ρ(q, t) =∑nmon
n=1 exp(−iq ·rn(t)) being the Fourier transform of the collective monomer

density. For t = 0 (155) reduces to the static structure factor S(q) analyzed in Sect. 4.4. The
dynamical structure factor cannot be devised using the Rouse theory alone, for S(q, t) en-
codes the collective behavior of the chains, a cooperativity destroyed by the assumptions
underlying the Rouse approach. Fortunately, to deal with this question the “dynamical Ran-
dom Phase Approximation” (dRPA) is a valuable tool which provides sensible predictions
for S(q, t) [91, 114, 115]. Similarly to the static RPA discussed in Sect. 4.4, the dRPA is
based on a self-consistent closure of a mean-field theory: upon a perturbation by an external
field, the response of a polymer is assumed to be the combination of a direct response to
the field plus a response mediated by the environment of other chains, which are also sub-
jected to the external field. This autocoherent reasoning leads to a prediction for Ŝ(q, z), the
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Fig. 45 (Color online) Scaling of the dynamical collective structure factor S(q, t) characterizing the degrees
of freedom of the bath surrounding the test chain. Data obtained from BFM simulations (open symbols)
are compared to the theoretical prediction, (158), indicated by the bold line [91]. In agreement with theory
we find a good scaling collapse if y(x) = S(q, t)F (q)/S2(q) is plotted as a function of the reduced time
x = q4Γ t with Γ obtained independently from the monomer mobility W , (148). Deviations from the Rouse
model prediction are visible for small x, i.e. for short times t � t∗, in agreement with Fig. 42

Laplace transform of S(q, t), given by [91]

zŜ(q, z) − S(q) = zF̂ (q, z) − F(q)

1 + ρvF(q)[F(q) − zF̂ (q, z)] (156)

with v = 1/ρg being the effective monomer excluded volume and F̂ (q, z) the Laplace trans-
form of the dynamical form factor F(q, t). For z = 0, i.e. by summing over all times t , this
equation yields of course the static RPA S(q)−1 = F(q)−1 +vρ discussed in Sect. 4.4. Using
this limit one may rewrite (156) which yields the dRPA formula

Ŝ(q, z)

S(q)
= F̂ (q, z)/F (q)

1 + ρvF(q)[1 − zF̂ (q, z)/F (q)] . (157)

Focusing on incompressible systems (g � 1), large wavevectors (1/RN � q � 1/ξ ) and
short times t � TN, (157) can be further simplified. As shown in [91]

S(q, t)

S(q)
≈ S(q)

F (q)
s̃(x) with ŝ(z) = f̂ (z)

1 − zf̂ (z)
(158)

where f̂ (z) and ŝ(z) stand, respectively, for the Laplace transform of the scaling functions
f̃ (x) and s̃(x). Assuming for f̃ (x) the Rouse model prediction, (149), this yields for y(x) ≡
S(q, t)F (q)/S2(q) the bold line presented in Fig. 45. Apart from deviations for small x, i.e.
for small times, we obtain a nice scaling collapse for the BFM data presented in Fig. 45,
especially considering that there is no free fit parameter available. We note finally that since
for the wavevectors used S(q) ≈ g = 1/(vρ), it follows from (158) that

(vρ)2S(q, t)F (q, t) = 2

(aq)2
f̃ (x)s̃(x) (159)
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for sufficiently low wavevectors at fixed compressibility or for sufficiently small compress-
ibilities at fixed wavevector.

6.6.3 Lowest-Order Perturbation

A collective density fluctuation δρ corresponds to a molecular field vδρ driving the mono-
mers of the test chain with a force −T v∇δρ. The lowest order force correlation corresponds
to the following mechanism: the test chain interacts with the collective field at time 0 and
again at time t . Using the densities ρl(q, t) and ρ(q, t) of the test chain and the bath in
Fourier space defined above, the collective force f c(t) may be rewritten as

f c(t) = T v
∫

ddq

(2π)d
(iq)ρl(q, t)ρ(q, t). (160)

The correlation 〈f c(t) · f c(0)〉 for t > 0 becomes thus after lowest-order factorization

T

V

∫
ddq

(2π)d
v2q2

〈
ρl(q,0)ρl(q, t)〉〈ρ(q,0)ρ(q, t)

〉
. (161)

Using the dynamical form and structure factors, (145) and (155), this yields

〈
f c(t) · f c(0)

〉= T 2Nρ

∫
ddq

(2π)d
v2q2F(q, t)S(q, t). (162)

Using (154) and (159) the VCF becomes

CN(t) = − T 2

Nζ 2ρ

∫
ddq

(2π)d
q2s̃(x)f̃ (x). (163)

Since f̃ (x) and s̃(x) decrease rapidly for x � 1, the integral is well-behaved. After substi-
tuting the friction coefficients ζ and Γ by W , (148), this may be rewritten as

CN(t) = −cd

WDN

bdρ
(Wt)−ω with ω = (d + 2)/4. (164)

Hence, (164) confirms finally the scaling announced in (133) and (134). The coefficient cd

is given by

cd = √
π(4d/

√
π)d/2

∫
ddx

(2π)d
x2f̃ (x)s̃(x) (165)

which may be computed numerically [91]. For 3D melts (d = 3) we find c3 ≈ 0.42. This is
of the same order but slightly lower as the empirical coefficient c ≈ 1 estimated from Fig. 40.
Where this small difference comes from is currently still an unresolved question. One possi-
bility is that the single loop approximation presented here—especially assuming (149) and
(158) for small x—is not sufficient and higher order terms should be considered. Another
(physically more appealing) option is that only about half of the free energy is stored in the
longitudinal composition fluctuations and that the transverse stress due to the shearing of
the bath at constant density generates an additional contribution to the correlations of same
magnitude [91, 93].
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6.7 Summary

Focusing on a variant of the BFM algorithm with topology non-conserving moves we in-
vestigated the effective dynamical forces acting on the chains and subchains imposed by the
incompressibility constraint. Sampling chain lengths up to N = 8192 allowed us to carefully
check the N -dependence of deviations with respect to the Rouse model. Such deviations are
visible from the short-time scaling of the CM MSD hN(t) in agreement with the litera-
ture, however, a more precise characterization can be achieved by means of the CM VCF
CN(t) ≈ ∂2

t hN(t)/2 which allows to probe directly the correlated random forces, (154). How
such a VCF can be computed within a MC scheme has been first illustrated for dense BFM
beads (Fig. 36) confirming the negative algebraic decay expected for overdamped colloids,
(132). The observed exponent ω = (d + 2)α with α = 1/2 can be understood by the cou-
pling of a tagged colloid to the gradient of the collective density field decaying in time. As
shown in Fig. 40(b), the same exponents are relevant for polymer chains for large times
(t � TN) where the chains behave as effective colloids. More importantly, the short-time de-
viations for hN(t) have been traced back to the negative analytic decay CN(t) ∼ −N−1t−ω

for t � TN with an exponent ω ≈ 5/4. That CN(t) decays inversely with mass shows that
the process is local, i.e. the displacement correlations of subchains of arc-length s add up
independently (Fig. 41). Assuming according to the postulated scaling relation (133) the
chain relaxation time TN to be the only characteristic time scale, both asymptotic regimes
can be brought to a successful data collapse. The ω-exponents for short times proposed in
(134) are consistent with the crossover scaling, (133), and the locality of the correlations
(CN(t) ∼ 1/N ) which implies ω = (d + 2)/4. This scaling can be understood by the gen-
eralization of the above-mentioned correlation experienced by overdamped colloids to the
displacement field of subchains of length s ∼ δt1/2 with δt being the (arbitrary) time window
used to define the displacements. Since subchains repel each other due to the incompress-
ibility constraint, a tagged subchain is pulled back to its original position by the subchain
dipole field. Since for times δt � t � TN the relevant dipole field decays much slower than
for colloids (α = 1/2 → 1/4), the correlations are much more pronounced. That our scaling
relations for t � TN do not depend explicitly on the compressibility of the solution, as stated
by (133), has been checked by the systematic variation of excluded volume penalty ε and
volume fraction φ [90]. As shown for melts with topological constraints the early-time be-
havior, CN(t) ∼ −N−1t−5/4, is preserved before entanglement effects set in which leads to
a broad crossover between Rouse and reptation regimes. As shown in Sect. 6.6, our scaling
approach is consistent with a standard linear response calculation. En passant we have ver-
ified the so-called “dynamical Random Phase Approximation” for the collective dynamical
response of the bath surrounding the reference chain (Fig. 45) [91].

7 Conclusion

7.1 Summary

Until very recently it has been generally assumed that all long-range static and dynami-
cal correlations are negligible in dense 3D solutions of flexible homopolymers beyond the
excluded volume screening length ξ ∼ g1/2 which characterizes the decay of the density
fluctuations [2–4, 8]. For static properties this general screening assumption leads to Flory’s
ideality hypothesis (Sect. 1.3) [2, 4] stating that the chains must obey Gaussian chain statis-
tics. For the equilibrium dynamics it implies Rouse model dynamics (Sect. 1.4) if in addition
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momentum conservation (“hydrodynamic screening”) and topological constraints [4] may
be neglected or are deliberately switched off as one can readily do in a computer experiment
using local MC hopping moves (Sect. 3.3.1).

That some deviations from Flory’s ideality hypothesis must exist has been suggested in
earlier work by de Gennes [3, 116], Obukhov [69], Duplantier [180], Schäfer et al. [7, 71]
or Semenov and Johner [94]. For instance, it has been known for a long time [3] that due
to the incompressibility constraint an entropic penalty u∗

N ≈ ρ∗
N/ρ set by the correlation

hole self-density ρ∗
N ≈ N/Rd

N has to be paid for bringing two chains of length N close
to each other (Fig. 3). In the large-N limit this effect must become negligible in d = 3,
however. That the dynamics of polymer melts without relevant topological interactions may
deviate from the Rouse model has been pointed out in various theoretical, computational
and experimental studies by Schweizer [177], Guenza et al. [101] or Paul et al. [51, 77] as
summarized in Ref. [79]. However, since topological and hydrodynamical effects have not
been systematically separated from the incompressibility constraint [101]—with the notable
exception of the BFM simulations of Shaffer [54, 55]—it has been difficult to pinpoint the
precise physical origin of the key finding observed for the MSD hN(t) of the chain CM,
(13).

Summarizing recent theoretical and computational results we have argued in the present
contribution that due to the incompressibility constraint both static [80–89] and dynamical
[90, 91] correlations of the composition fluctuations, i.e. of the density and displacement
fields of marked chains and subchains, must arise for distances r � ξ and for correspond-
ing arc-lengths s � g. Since the applied constraint is scale-free, the resulting correlations
are also scale-free—taken apart the usual upper and lower cutoffs set by the chain and the
monomer size—and do not depend explicitly on the dimensionless compressibility g of the
solution (Sect. 2.3). The central point stressed by us [81] is that not only chains but also sub-
chains of arbitrary length s must repel each other due to the incompressibility constraint and
this with a penalty u∗

s ≈ s/ρRd
s being for s � N much larger than the penalty u∗

N between
the chains (Fig. 4). Since subchains repel each other and this with a strength decreasing with
s in d = 3, the chains become weakly swollen as discussed in Sect. 5. Our study shows that
a polymer in dense solutions should not be viewed as one soft sphere (or ellipsoid) [101,
125, 126], but as a hierarchy of nested segmental correlation holes of all sizes aligned and
correlated along the chain backbone [Fig. 3(b)].80 The effective interaction between sub-
chains has also dynamical consequences since a subchain displaced at t = 0 causing thus a
perturbation of the subchain density field (Fig. 35) will be slightly pushed back by the bath
to its original position (Sect. 6).

In this review we have focused on numerical results obtained by means of a BFM variant
with finite monomer interactions without topological constraints (Fig. 6). Since this “soft
BFM” is fully ergodic (in contrast to the classical BFM) and very efficient due to its imple-
mentation as a Potts spin model [86], it may be an interesting alternative to various popular
coarse-grained simulation approaches with self-consistently calculated effective pair inter-
actions [101, 125, 126, 168, 182]. Our study has not been limited to monodisperse polymers
but we have also investigated (essentially) Flory-distributed EP [81, 83, 87, 88]. Since in
these systems chains break and recombine constantly (Fig. 9) equilibration and sampling
become much faster than for their monodisperse counterparts. This is computationally of
interest since the numerical demonstration of the various theoretical predictions requires the
sampling of large chain lengths to avoid additional chain end effects.

80Similar deviations from Flory’s ideality hypothesis have been reported recently for polymer gels and net-
works [141, 181].
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The deviations from the screening assumption are indeed scale-free as made manifest
by the numerical observation of the analytic decay of various correlation functions. As
announced by (11), it has been shown in Sect. 5 that the bond-bond correlation function
P1(s) ∼ ∂2

s R2
s decays as P1(s) ∼ +1/sd/2 for s � N and d = 3. That these correlations are

long-ranged is made explicit by the power-law decay of the bond-bond correlation function
P1(r) ∼ +1/rd as a function of the monomer distance r (Sect. 5.4.2). As a second key re-
sult of this study, the displacement correlation function CN(t) ≈ ∂2

t hN(t) is shown to reveal
for short times t � TN a negative algebraic decay according to NCN(t) ∼ −1/t(d+2)/4 as
predicted by scaling arguments and perturbation theory (Sect. 6). As stated by (12), this
analytic decay holds more generally for the displacement correlation function Cs(t) of sub-
chains of length s ≤ N and times t � Ts ≈ s2/W , Fig. 41, which shows that the correlations
of different subchains add up independently to the correlations of the total chain (“locality”).

Note that earlier computational studies have focused on (second and higher) moments
of the generalized displacement field under consideration such as the mean-squared size R2

s
of subchains of arc-length s [73] or the CM MSD hN(t) [51] and have thus only probed
indirectly the respective colored forces, (176), corresponding to the deviations from the
general screening assumption.81 Computing numerically correlation functions such as P1(s)

or CN(t), rather than twice their integral, allows to probe directly the colored forces, (176),
without having to subtract first the white noise and the local physics which contribute both
to R2

s and hN(t). As a consequence, this allows to demonstrate that the deviations from the
screening assumption are not due to (non-universal) physics at the lower cutoff but, in fact,
are present for all arc-length s (Fig. 25) and all times t (Fig. 40).

7.2 Related Questions and Outlook

7.2.1 Confined Polymer Melts

In the presented numerical work we have focused on 3D polymer bulks (d = 3). It has been
shown that even the deviations with respect to the general screening assumption are well-
described by means of one-loop perturbation calculations (Sects. 2, 6.6) and this for arbitrar-
ily long chains and subchains. As already noted in Sect. 1.1, the success of the mean-field
approach is expected due to the scaling of the (sub)chain self-density ρ∗

s /ρ ∼ s1−dν , i.e. the
number of subchains a reference subchain interacts with increases as ρ/ρ∗

s ∼ √
s � 1 in

d = 3. Due to the increasing experimental interest on mechanical and rheological properties
of nanoscale systems in general [183] and on polymer melts confined to surfaces, thin slits
(d = 2) or capillaries (d = 1) in particular [184–192] one is naturally led to question theo-
retically such mean-field calculations for systems of reduced (effective) dimension [94, 96,
116, 180, 193–195]. Especially, the perturbations to chain dynamics due to geometric con-
straints remain a challenge of significant technological relevance with opportunities ranging
from tribology to biology [184, 185, 187, 189].

Note that for ideal chain systems with d ≤ 1/ν = 2 the self-density ρ∗
s ultimately exceeds

the density ρ at a characteristic chain length g� which depends on the specific problem con-
sidered. For (sub)chains larger than this length g� one expects the chains to adopt compact
and segregated conformations, i.e. Flory’s exponent ν is given by the spatial dimension,
ν = 1/d [19]. Since these compact structures arise ultimately due to the scale-free incom-
pressibility constraint, their surfaces are expected not to be ruled by a finite surface tension

81In line with Appendix A we view here the bond vectors li of a chain conformation as displacement vectors
with the monomer index i playing the role of time.
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(which would imply a length scale) [94, 120] but to be also scale-free and described by a
fractal surface exponent ds ≤ d [19]. In most cases of interest the surface exponent becomes
ds = d − θ2 [120], i.e. it is set by the well-known contact exponent θ2 describing the scaling
of the distribution G(r, s) ∼ rθ2 for short distances r � Rs between two monomers n and
m = n + s on a chain. (Obviously, θ2 = 0 for Gaussian chains, (2).) According to the gen-
eralized Porod law the intramolecular structure factor F(q) of such compact objects scales
as

F(q)/N ≈ 1/(RNq)2d−ds (166)

in the intermediate range of the wavevector q [5, 120, 196]. If ds < 2d − 2, i.e. θ2 > 2 − d ,
the standard Kratky representation reveals thus a much more pronounced non-monotonous
behavior as for the 3D melts discussed in Sect. 5.7.82

Strictly 1D and 2D self-avoiding polymer melts (ε = ∞) are known to become compact
and segregated with g� ≈ 1 and are thus not Gaussian beyond the monomer scale. While the
1D case is trivial, it should be noted that for strictly 2D melts compactness means ν = 1/d =
1/2 [3]. This does of course not imply ideal chain behavior since other critical exponents
characterizing the chain conformations differ from those of non-interacting Gaussian chains
as shown in the pioneering work by Duplantier [180]. For instance, since θ2 = 3/4 [180] this
implies that the compact 2D chains have a fractal perimeter of dimension ds = d − θ2 = 5/4
[94]. This theoretical prediction has been verified numerically [120–122] from the scaling
of the chain perimeter (determined by “box counting” [19]) and of the form factor shown to
be consistent with (166).

Self-avoiding melts in strictly one and two dimensions correspond to rather specific uni-
versality classes [94, 96, 194, 195]. Since systems of strictly one monomer layer thickness
at high volume fractions remain experimentally a challenge [186, 190], it is of interest to
relax the non-crossing constraint by either allowing some finite monomer overlap penalty ε

(Sect. 3.4) or by considering chains confined to capillaries or slits between parallel walls of
finite distance H as in Fig. 6(c). Note that g� ≈ (aH 2ρ)2 ∼ H 4 for melts confined to a 1D
capillary of finite width H as already shown by Brochard and de Gennes in 1979 [116] and
g� is known to increase even exponentially with H for essentially 2D ultrathin films [94].
Since g� becomes thus rapidly large, perturbation results, such as the scaling of the bond-
bond correlation function P1(s) stated in (11), must become relevant for finite (sub)chain
lengths. A lower limit of validity g� of the d-dimensional perturbation calculation is set for
systems with finite overlap penalty by g� ≈ g and (sub)chains confined to capillaries or slits
of finite width should be larger than g� ≈ H 2, otherwise the chains do not “feel” the wall
constraint and behave as in the 3D bulk.

Let us focus now on effectively 2D films of width H [95, 97, 138, 139] as shown in
Fig. 46. Note that all properties considered here are the 2D projection of the 3D observables.
The relevant density is, e.g., the projected number density ρ2 = Hρ = 0.25 and the indicated

82Incidentally, melts of non-concatenated rings in d = 3 have been argued to become “marginally compact”

with ν = 1/d = 1/3 and ds → d = 3, i.e. the form factor is predicted to scale as F(q)q2 ∼ 1/q [120, 197] in
the large-N limit. That the rings should adopt compact configurations is expected due to the mutual repulsion
caused by the topological constraints [120, 123, 124, 134, 135, 170, 197–202]. Since there is no obvious
reason for a finite surface tension, the surface must become fractal which may be determined both in exper-
iment as in a computer simulation by the generalized Porod law of the form factor. A marginally compact
structure allows to keep all monomers evenly exposed to the topological constraints imposed by other rings,
i.e. all subsegments of the rings are thus ruled in a self-similar manner by the same statistics. Such behavior
is known for various biological systems, such as the lungs of mammals, attempting to maximize the surface
at constant overall embedding volume [203].



1106 J.P. Wittmer et al.

Fig. 46 (Color online) Polymer melts confined to ultrathin films of width H = 4 for volume fraction φ = 0.5,
projected 2D density ρ2 = Hρ = 0.25, overlap penalty ε = 10 and several chain lengths N as indicated. Inset:
Bond-bond correlation function P1(s) compared to the power-law exponent ω = d/2 = 1 predicted by (11).
Main panel: VCF CN(t) using a similar representation as in Fig. 40(a). The exponent ω = (d + 2)/2 = 2
expected for large times, (132), is represented by the dashed line, the short-time exponent ω = (d + 2)/4 = 1
predicted by (133) by the bold line. A perfect data collapse is observed for t � TN, i.e. CN(t) ∼ 1/N

bond length b = 2.65 is the projection of the effective bond length of the 3D melt. Since the
width H = 4 used here is much smaller than the typical subchain size Rs considered, i.e.
s � g� ≈ 1, these systems can be regarded as effectively d = 2+ dimensional for all s and
N . (We write d = 2+ to stress that monomer overlap and chain crossings are allowed.)
Since also g� � s one expects the perturbation result for the bond-bond correlation function
P1(s) ∼ 1/sω with ω = d/2 = 1 to yield a reasonable fit to the measured data for all s � N .
This is indeed borne out nicely for the data presented in the inset. According to (4) this
implies that R2

s /s and R2
N/N must increase logarithmically with, respectively, s and N .

This can be checked directly as seen in Ref. [95]. The same paper also investigates the
form factor F(q) for different H . It is shown that q2F(q) becomes systematically more
non-monotonous with decreasing width H , i.e. the more ρ∗

N/ρ increases.
We turn now to the dynamics of BFM melts confined to thin slits of width H = 4 sampled

using local topology non-conserving L26-moves as in Sect. 6.3 [97]. It can be demonstrated
that to leading order the dynamics remains consistent with the Rouse model, especially (5).83

As before, we obtain from the monomer MSD h(t) a local mobility, W ≈ 0.002. That the
self-diffusion coefficient scales as DN ≈ 0.005/N can be seen by tracing NhN(t)/2dt in
log-linear coordinates. (Note that W and DN are consistent with (137).) Systematic devia-
tions are again revealed by the short-time behavior of the MSDs hN(t) and hs(t) of chains
and subchains (not shown). These deviations are, however, much more pronounced than in
3D and are visible over time scales up to the total chain relation time TN. A more precise
characterization of the colored forces acting on the chains is again achieved by means of the
VCF CN(t) which is represented in the main panel of Fig. 46. The representation chosen is
similar to Fig. 40(a) for the bulk case; the factor b3ρ being replaced by b2ρ2. The faster de-
cay observed for the shorter chains at t � TN is described by the exponent ω = (2+d)/4 = 2
(dashed line) expected for 2D overdamped colloids, (132). As may be seen from the collapse

83Since in thin films the ratio R2
N/N diverges logarithmically with N [94, 95, 156] and since TN ≈ R2

N/DN
still holds, there are some (rather weak) logarithmic corrections to (5) as discussed in [97].
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for short times (t � TN), the VCF scales again as CN(t) ∼ 1/N , i.e. the colored forces are
again local.84 In agreement with (134) or (142) the VCF is observed to decay algebraically
with an exponent ω = (d + 2)/4 = 1 (bold line). Since CN(t) ≈ ∂2

t hN(t)/2 it follows that
hN(t)/t is not constant but must increase logarithmically for all times t � TN. In analogy to
(141) for the bulk case this thus explains the observed deviations from the Rouse model.

We note finally that qualitatively similar results consistent with (11) and (134) are also
found in preliminary BFM simulations of polymer melts confined to thin capillaries with a
square-section of width H = 8 � RN and a broad range of overlap penalties ε.

7.2.2 Interchain Correlations and Anti-Casimir Forces

The presented work has focused on intrachain properties such as the bond-bond correla-
tion function P1(s). The main reason for this is that the power-law exponents associated
to the intrachain static and dynamical deviations due to the incompressibility constraint are
not too large being thus numerically still accessible with reasonable computational effort.
In fact, similar correlations have been predicted theoretically also for interchain properties
[18, 117] which for macroscopic thermodynamic and mechanical properties may even be
more relevant. Note that for these interchain correlations it is not only the incompressibil-
ity constraint which matters but in addition the constraint that closed loops are disallowed
and must be eliminated from an extended grand-canonical ensemble containing both linear
chains and rings, as shown by Obukhov and Semenov [18, 117]. The “throwing-away” of
configurations is argued to generate additional entropic forces repelling, e.g., two large col-
loids immersed in a linear-chain polymer melt. Unfortunately, these “anti-Casimir forces”
correspond to such strong exponents as a function of distance r or wavevector q (similar
to the standard van der Waals forces [20]) that, at present, it has turned out to be elusive
to verify them numerically although a brave attempt has been made by means of off-lattice
MC simulations [204]. Following this recent work, we sketch in Fig. 47 two possibilities
which might allow to probe correlations due to the no-loop constraint by means of EP melts
confined to thin slits. The use of EP instead of monodisperse chains should speed up the
sampling of independent configurations while confining the monomers reduces the expo-
nents of the various analytic scaling relations predicted. For instance, the second Legendre
polynomial P2(r), measuring the orientation of the bonds at a distance r from a small region
where an external field weakly aligns the bond vectors, should decay as P2(x) ∼ r−ζ with
δ = 2 for d = 2+ as illustrated in panel (a) of Fig. 47. If successful these simulations may
stimulate real micro-mechanical experiments using optical tweezers aligning bond vectors
and repelling thus nearby colloids.

7.2.3 Dynamical Properties Beyond MC Stochastics

We have checked by means of MD simulations of a bead-spring model [91, 92] that CN(t) ≈
−N−1t−5/4 for t � TN holds as long as a large friction constant γ is used for the Langevin
thermostat applied [24]. Concerning the power-law amplitude it should be noted, however,
that the coefficient c determined from the data using (140) is much larger for these MD
simulations (c/c3 ≈ 20) compared to our BFM result (c/c3 ≈ 2). As we have pointed out

84Note that a different scaling, CN(t) ∼ 1/
√

N , has been reported in a study of strictly 2D polymer melts
sampled by MD simulation using a standard Langevin thermostat [179]. The correlations of the CM motion
are argued to become non-local in this special limit due to the “constant area constraint” of the compact and
segregated subchains.
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Fig. 47 (Color online) The presented studies focused on intrachain properties which are numerically
more readily accessible than the long-range interchain correlations associated to the “anti-Casimir” forces
[18, 117]. The two panels indicate two possibilities to probe such correlations for EP melts confined to thin
slits: (a) A weak external field conjugated to the bond direction is applied to the bonds in a thin slap of
width δ: The second Legendre polynomial P2(r) characterizing the orientation of the bonds with respect to
the direction perpendicular to the slap and the force f (r) experienced by a colloid placed at a distance r

should decay analytically with not too large exponents. (b) EP in grand-canonical contact with a large bath:
The difference of, e.g., the densities of the confined system and the bath decays analytically with H

in Sect. 6.6, small differences of order one to the predicted value c3 = 0.42 are expected
due to the approximations made in the one-loop perturbation theory, especially since the
forces associated to the shear stress may not be properly accounted for [91]. However, the
much larger ratio c/c3 found for our MD simulations points to additional physics related to
the screening of the monomer momentum in these strongly interacting viscoelastic systems
[92, 93].85 Since our BFM and MD simulations correspond to different model systems, it
is currently not possible to clarify this issue. In the future we plan to address this problem
using a generic (off-lattice) bead-spring Hamiltonian with soft beads and large springs such
as, e.g., the model used by Spenley [68] since we require a model which is (i) essentially
incompressible (g � 1), (ii) without having too much useless local structure (as for the
Lennard-Jones beads used in [91–93]), (iii) does not conserve topology and (iv) can be used
for different dynamical methods such that we can compare the melt dynamics under the
same static conditions. For such a model one should then compare the dynamics obtained
by means of

• MD simulation with a strong Langevin thermostat [24];
• local MC moves of the monomers [26];
• BD simulation in the sense of a “position Langevin equation” where the momentum vari-

ables are dropped from the equations of motion [22, 205].

The BD method has the advantage that one needs not to inject strong random forces as for
MD to get rid of the momentum to get closer to the overdamped motion assumption implicit
to theory [91]. We expect to obtain for the MC and BD simulations similar ratios c/c3 ≈ 2
as for our BFM study.

Interestingly, much stronger dynamical correlations are revealed [92] in MD simulations
using a weak Langevin thermostat (γ → 0) or a momentum conserving “Dissipative Parti-
cle Dynamics” (DPD) thermostat [24, 206]. As expected from the hydrodynamic screening
assumption [4], the chains are described to leading order by the Rouse model, i.e. (136),

85The beads bounce into each other on time scales much shorter than 1/γ . Kicks due to conservative or
random forces can thus propagate through the system before the thermostat has time to do its job.
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(137) or (149) hold. However, it is shown that some long-range correlations arise due to
an intricate coupling of hydrodynamics (momentum conservation) and the (transverse) vis-
coelastic response of the bath following the displacement of a reference chain.86 As a con-
sequence, even the VCF Cs(t) of subchains for t � Ts depends now explicitly on the total
chain length N , i.e. the correlations are non-local with CN(t) ∼ 1/

√
N as suggested by the

Zimm model. Since the scaling is still described by (133) this implies an exponent ω = 3/2
for short times. Hence,

CN(t) ≈ −
(

RN

TN

)2
ρ∗

N

ρ
(TN/t)ω ∼ 1√

Nt3
(167)

which is the central formula real experimental data should be compared with. Although the
VCF decays now more rapidly in time, it is stronger than the VCF for perfectly overdamped
melts, since the N -dependence in (167) is weaker. Note that at t ≈ TN both mechanisms
become of the same magnitude: CN(TN) ∼ 1/N7/2. Using the same bead-spring model men-
tioned above it would now be of high interest to sample the dynamical response using

• a DPD thermostat following the work by Spenley [68].

Obviously, these issues are clearly outside the realm of standard MC based stochastics which
shows their limitations.
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Appendix A: Displacement Correlations

Let x(n) denote a (real valued) stochastic variable in some vector space with n being a
discrete or continuous index characterizing this variable. Examples are the position ri of the
monomers of a given chain as a function of the monomer index i (Fig. 1)87 or the center-
of-mass (CM) position rN(t) of a chain of length N as a function of a time t measured by
the discrete number of Monte Carlo Steps (MCS). We assume translational invariance of
ensemble averaged properties with respect to n, i.e. properties such as the “mean-square
displacement” (MSD)

h(n) ≡ h(n1 = n0 + n,n0) ≡ 〈(x(n1) − x(n0)
)2〉

(168)

only depend on the difference n = n1 − n0 ≥ 0 and not on the absolute indices n0 or n1.
Taking advantage of the translational invariance, the ensemble average 〈. . .〉 is often sam-
pled over all available pairs of indices (n1 = n0 + n,n0) for a given n. Examples for MSDs
obtained as “gliding averages” are the typical segment size R2

s presented in Sect. 5.3.2 or

86Note the analogy to the static excluded volume screening discussed in Sect. 2. Although the chains are
essentially described in d = 3 by Gaussian chain statistics, not all long-range correlations vanish.
87This monomer index i may be either a discrete (as in our study) or a continuous variable as, e.g., in
Refs. [168, 182].
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the MSD h(t) of BFM beads (N = 1) discussed in Sect. 6.2. In this review we consider
essentially Fickian stochastic processes where the associated generalized MSDs are to lead-
ing order proportional to time n, (3) or (6). Since the deviations with respect to the Fickian
behavior are small, it is important to sample directly correlation functions corresponding to
higher derivatives of h(n) with respect to time.

Since we have to deal with indices n which may be either discrete or continuous, let us
introduce the (forward) difference operator Δn [44] defined by Δnf (n) = f (n+ δn)−f (n)

with f (n) being a function of our vector space and δn an arbitrary (typically) small shift
of n. Let us define the “velocity vector”

v(n) ≡ Δnx(n)

δn
≡ u(n)

δn
≡ x(n + δn) − x(n)

δn
(169)

associated to x(n) and the “velocity correlation function” (VCF)

C(n) ≡ C(n1 = n0 + n,n0) ≡ 〈v(n1 = n0 + n) · v(n0)
〉

(170)

which measures the correlations of two velocities v(n0) and v(n1). C(n) automatically van-
ishes if both vectors are uncorrelated. Note that C(n) is a four-point correlation function
with respect to n depending in general on the shift δn of the index. If δn > n both displace-
ments become trivially correlated and we have limn→0 C(n) = h(δn)/δn2 > 0. To see how
h(t) and C(n) are related for n � δn let us apply twice the difference operator to (168).
This yields

Δn1Δn0

〈(
x(n1) − x(n0)

)2〉= −2
〈
v(n1) · v(n0)

〉
δn2 (171)

where we have used that the difference operator and the averaging procedure commute.
Since the MSD h(t) can be assumed to be mathematically well behaved and using the trans-
lational invariance it follows on the other hand side that

Δn1Δn0h(n1 − n0) ≈ −∂2
nh(n) δn2 for n � δn. (172)

Altogether this demonstrates that

C(n) ≈ 1

2
∂2

nh(n) for n � δn (173)

in agreement with (4) for the bond-bond correlation function P1(s) and with (7) for the
chain velocity correlation function. Note that since h(n) does not depend on δn, C(n) does
not depend on δn either in the limit n � δn.

The stochastic variables of interest in this review are described by a position Langevin
equation of form [118]

ζ
dx(n)

dn
≈ ζv(n) = ft(n) = fr(n) + fc(n) (174)

with ζ being the “friction constant” and ft(n) the total “force” acting on x(n) which may
be decomposed in a random white force contribution fr(n) and a colored force fc(n) stem-
ming from the remaining (non-white) interactions of the degree of freedom under consider-
ation with the bath and its constraints. Perfectly Fickian behavior would be obtained if only
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the white force contribution were present (fc(n) ≡ 0).88 For x(n) being the position of a
monomer or the CM of a chain as a function of time t , (174) corresponds to an overdamped
motion as discussed in Sect. 6.2 for MC beads or in Sect. 6.3 for Rouse-like chains in the
melt, (153). From (174) it follows for the displacement correlation function that

C(n) = 〈v(n) · v(0)
〉= ζ−2

〈
ft(n) · ft(0)

〉
. (175)

The total force correlation function 〈ft(n) · ft(0)〉 at n > 0 decomposes now into four con-
tributions:

(a) 〈fr(n) · fr(0)〉 = 0 since fr(n) is a white force,
(b) 〈fr(n) · fc(0)〉 = 0 since future white forces cannot be anticipated,
(c) 〈fc(n) · fc(0)〉 and
(d) 〈fc(n) · fr(0)〉 = −2〈fc(n) · fc(0)〉 due to the odd n-symmetry of the velocity v(n) =

−v(−n) [207].89

Summing up over all contributions and using (175) it follows

C(n) = −ζ−2
〈
fc(n) · fc(0)

〉
for n > 0, (176)

i.e. the displacement correlation function probes directly the correlations of the colored force
fc(n). This general result is used in Sect. 6.6 for the motion of the chain CM with time t but
does also apply for the monomer position ri as a function of the monomer index i where
the bond-bond correlation function P1(s) measures the colored forces acting on the chain.
It should be stressed, however, that in this case the forces noted in (174) do not correspond
directly to the standard forces acting on the monomers in real time.

Appendix B: Static Properties

B.1 Moments and Generating Function

Higher moments of the segmental size distribution G(r, s) can be systematically obtained
from its Fourier transform G(q, s) = F [G(r, s)] which is in this context sometimes called
the “generating function” [118]. For ideal Gaussian chains the generating function is given
by G0(q, s) = exp(−s(aq)2) where we have used a2 = b2/2d to simplify the notation. Mo-
ments of the size distribution are given by proper derivatives of G(q, s) taken at q = 0. For
example,

〈
r2p
〉= (−1)pΔpG(q, s)|q=0 (177)

with Δ being the Laplace operator with respect to the wavevector q . A moment of order
2p is, hence, linked to only one coefficient A2p in the systematic expansion, G(q, s) =∑

p=0 A2pq2p , of G(q, s) around q = 0. For our example this implies

〈
r2p
〉= (−1)p(2p + 1)!A2p (178)

88While fr(n) and fc(n) are both of zero mean, one may add in addition an external force fe which allows
to determine the friction constant from the drift velocity: ζ 〈v(n)〉 = fe.
89Since v(n) = −v(−n) this implies ft(n) = −ft(−n) for the total force which in turn yields 〈ft(n) ·
fc(0)〉 = −〈ft(−n) · fc(0)〉. The identity (d) is then obtained by substituting 〈ft(n) · fc(0)〉 = 〈fc(n) · fc(0)〉
(due to (b)) and 〈ft(−n) · fc(0)〉 = 〈fc(n) · ft(0)〉 = 〈fc(n) · fr(0)〉 + 〈fc(n) · fc(0)〉.
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Fig. 48 Interaction diagrams used in reciprocal space for the calculation of δG(q, t) in the scale free limit.
There exist three nonzero contributions to first-order perturbation, the first involving two points inside the
segment (first two lines of (182)), the second one point inside and one outside the segment (third line of
(182)) and the third one point on either side of the segment (last line of (182)). Momentum q flows from one
correlated point to the other. Integrals are performed over the momentum k. Dotted lines denote the effective
interactions v(k) given by (66), bold lines the propagators which carry each a momentum q or q − k as
indicated

in general and more specifically for a Gaussian distribution 〈r2p〉0 = (2p+1)!
p! spa2p . The non-

Gaussian parameters read, hence,

αp(s) ≡ 1 − 6pp!
(2p + 1)!

〈r2p〉
〈r2〉p = 1 − p!A2p

A
p

2

, (179)

which implies (by construction) αp = 0 for a Gaussian distribution. As various moments of
the same global order 2p are linked to the same A2p they differ by a multiplicative constant
independent of the details of the (isotropic) distribution G(q, s). For example, 〈r2〉 = 6|A2|,
〈r4〉 = 120A4, 〈x2〉 = 〈y2〉 = 2|A2|, 〈x2y2〉 = 8A4 with x and y denoting the spatial compo-
nents of the segment vector r . Using (179) for p = 2 it follows that

Kxy(s) ≡ 1 − 〈x2y2〉
〈x2〉〈y2〉 = 1 − 2

A4

A2
2

= α2(s), (180)

i.e. the properties α2(s) and Kxy(s) discussed in Figs. 29 and 30 must be identical in general
provided that G(q, s) is isotropic and can be expanded in q2.

B.2 Deviations of the Segmental Size Distribution

We turn now to specific properties of G(q, s) computed for formally infinite polymer chains
in the melt. In practice, these results are also relevant for small segments in large chains,
N � s � 1, and, especially, for segments located far from the chain ends. These chains are
nearly Gaussian and the generating function can be written as G(q, s) = G0(q, s)+δG(q, s)

where according to (56) we have a small perturbation δG(q, s) = −〈UG〉0 + 〈U〉0〈G〉0

due to the effective interaction potential ṽ(q) given by (66). In this paragraph we use b2
0 =

6a2
0 for the bond length of the Gaussian reference chain of the perturbation calculation and

b2 for the measured effective bond length, (17). To compute the different integrals it is
more convenient to work in Fourier-Laplace space (q, t ) with t being the Laplace variable
conjugate to s:

δĜ(q, t) =
∫ ∞

0
dsδG(q, s)e−st . (181)

As illustrated in Fig. 48, there are three contributions to this perturbation: one due to in-
teractions between two monomers inside the segment (left panel), one due to interactions
between an internal monomer and an external one (middle panel) and one due to interac-
tions between two external monomers located on opposite sides (right panel). In analogy to
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the derivation of the form factor described in Ref. [83] this yields:

δĜ(q, t) = − 1

Q2

v

4πa3
0

(
√

Q − √
t)

+ 1

Q2

v

4πqa2
0ξ

2

(

Arctan

[
qa0

a0/ξ + √
t

]

− qa0

a0/ξ + √
Q

)

− 1

Q

2v

4πqa4
0

(

Arctan

[
qa0

a0/ξ + √
t

]

− qa0

a0/ξ + √
Q

)

− vξ 2

4πqa6
0

(

Arctan

[
qa0√

t

]

− qa0√
Q

)

(182)

where we have set Q = (a0q)2 + t . The graph given in the left panel of Fig. 48 corre-
sponds to the first two lines, the middle panel to the third line and the right panel to the
last one. Seeking for the moments we expand δĜ(q, t) around q = 0. Having in mind chain
strands counting many monomers (s � 1), we need only to retain the most singular terms
for t → 0. Defining the two dimensionless constants c = (3π3/2a3

0ρ)−1 =√24/π3/b3
0ρ and

e = vξ/3πa4
0 = 12vξ/πb4

0 this expansion can be written as

δĜ(q, t) = − 1

1!
Γ (2)

t2
e(a0q)2 + 1

1!
Γ (3/2)

t3/2
c(a0q)2 + · · ·

+ 2

2!
Γ (3)

t3
e(a0q)4 − 1

2!
16

5

Γ (5/2)

t5/2
c(a0q)4 + · · ·

− 3

3!
Γ (4)

t4
e(a0q)6 + 1

3!
216

35

Γ (7/2)

t7/2
c(a0q)6 + · · ·

+ · · · (183)

where we have used Euler’s Gamma function Γ (α) [44]. The first leading term at each
order in q2—being proportional to the coefficient e—ensures the renormalization of the
effective bond length b0 → b. The next term scaling with the coefficient c corresponds
to the leading finite strand size correction. Performing the inverse Laplace transformation
Γ (α)/tα → sα−1 and adding the Gaussian reference distribution G0(q, s) this yields the
A2p-coefficients for the expansion of G(q, s) around q = 0:

A0 = 1,

A2 = −a2
0s

(

1 + e − c√
s

)

,

A4 = 1

2
a4

0s
2

(

1 + 2e − 16

5

c√
s

)

,

A6 = −1

6
a6

0s
3

(

1 + 3e − 216

35

c√
s

)

,

A8 = · · · . (184)

More generally, one finds

A2p = (−1)p

p!
(
sa2

0

)p
(

1 + pe − 3(2pp!p)2

2(2p + 1)!
c√
s

)

. (185)
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From this result and using (178) one immediately verifies that

〈
r2p
〉= (2p + 1)!

6pp!
(
b2s
)p
(

1 − 3(2pp!p)2

2(2p + 1)!
cs√
s

(
b0

b

)2p−3)

(186)

where we have defined

b2 ≡ b2
0

(

1 + 12

π

vξ

b4
0

)

= b2
0

(

1 +
√

12

π
Gz0

)

(187)

for the effective bond length with Gz0 ≡ √
vρ/b3

0ρ. We remind that b0 refers here to the
bond length of the Gaussian reference chain while b is the effective bond length for asymp-
totically long chains. Since our key interest is not as for Edwards to predict b [4, 43] but to
describe the deviations for finite s from the Gaussian limit for s → N which sets the rele-
vant reference length scale. Setting thus b0 = b this leads to (76) with b being a fit parameter.
Using (179) one justifies similarly (78) for the Gaussianity parameter αp .

The moments (186) completely determine the segmental distribution G(r, s) which is
indicated in (73). While at least in principle this may be done directly by inverse Fourier-
Laplace transformation of the correction δĜ(q, t) to the generating function it is helpful to
simplify further (182). We observe first that δĜ(q, t) does diverge for strictly incompressible
systems (v → ∞) and one must keep v finite in the effective potential whenever necessary to
ensure convergence (actually everywhere but in the diagram corresponding to the interaction
between two external monomers). Since we are not interested in the wave vectors larger than
1/ξ we expand δĜ(q, t) for ξ → 0 which leads to the much simpler expression

δĜ(q, t) ≈ − vξq2

3πa2
0Q

2
+ vξ 2

4πa6
0

a0
√

t(3(a0q)2 + t)

Q2

− vξ 2

4πa6
0

Arctan[ a0q√
t
]

q
+ O

(
vξ 3
)

(188)

with Q = (a0q)2 + t . The first term diverges as
√

v for diverging v. It renormalizes the
effective bond length in the zero order term which is indicated in the first line of (73). The
next two terms scale both as v0. Subsequent terms must all vanish for diverging v and can
be discarded. It is then easy to perform an inverse Fourier-Laplace transformation of the two
relevant v0-terms. This yields

δG(x, s) = G0(x, s)
c√
s

3
√

π

4

(

− 2

x
+ 3x

2
− x3

8

)

(189)

with x = r/a0
√

s = √
6n. This is consistent with the expression given in (73).

B.3 Intramolecular Form Factor F(q)

The deviation δF (q) = F(q) − F0(q) of the intramolecular form factor from the Gaussian
reference F0(q) can be readily obtained from the deviation δĜ(q, t) of the subchain size
distribution in Fourier-Laplace space. Since G(q, s) = 〈exp(−iq · r)〉 we have for asymptot-
ically long chains

δF (q) = 2
∫

dsδG(q, s) = 2δĜ(q, t = 0) (190)
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where we focus on the intermediate scale-free wavevector regime which does not depend on
the chain length distribution pN. Using (188) derived in Appendix B.2 one obtains

δF (q) ≈ −2
vξ 2

4πa6

π/2

q
= −9

4

1

b3ρ

1

bq
, (191)

where only the third term of (188) contributes.90 Note that b = √
6a stands now for both

the measured effective bond length and the bond length of the Gaussian reference chain. It
follows from (191) that within first-order perturbation theory

F(q) = F0(q) + δF (q) ≈ F0(q)

(

1 − 3

8

bq

b3ρ

)

(192)

which is equivalent to the prediction (14) made in the Introduction. Note that this perturba-
tion result is consistent with the renormalization group calculations of semidilute solutions
by Schäfer [7, 71]. This is of course expected since semidilute solutions may be considered
as incompressible melts of (semidilute) blobs [3].

B.4 Angular Correlations P1(s)

We present here the direct perturbation calculation of the bond-bond correlation function
P1(s) of Flory-distributed linear chains in reciprocal space following the discussion in
Sect. 2.4.6. As sketched in panel (b) of Fig. 5, one only needs to compute the interaction
diagram between the monomers of the two dangling tails if the two bonds l1 and l2 are
placed outside the subchain of length s connecting the head of the first bond l1 with the
tail of the second bond l2. To simplify the notations we set immediately b0 = b and a0 = a

and do not distinguish between the bond l of the computer model connecting the monomers
and the effective Gaussian bond length b, i.e. we set c∞ = (b/ l)2 = 1. Restating (80) the
relevant interaction diagram Io(s) reads91

P1(s) = Io(s) = (−1)

∫ dq

(2π)d
G0(q, s)A (q, q)ṽ(q)w(q). (193)

The negative sign in front of the integral is due to the negative sign of the general perturba-
tion calculation formula (57). The first factor G0(q, s) = exp(−(aq)2s) in the integral over
the wavevector q stands for the Fourier transformed Gaussian propagator G0(r, s) between
the two bonds indicated in Fig. 5(b). Using (82) the scalar product of the bond vectors in
real space is represented by the scalar product of the wavevectors flowing through the bonds.
Note that the momentum flows in the same direction as the two bonds and the operator thus
reads A (q, q) = −(bq/d)2. We assume that chains are Flory-distributed and that the effec-
tive interaction ṽ(q) between two monomers in the two dangling ends is described by (65).

90The first term in (188) must be discarded as before since it only renormalizes the effective bond length and
would also contribute to the reference form factor F0(q).
91The diagram Io(q) = (−1)G0(q, s)A (q, q)ṽ(q)w(q) in reciprocal space is very similar to the diagram (l)

indicated in Fig. 49 for the calculation of the bond-bond correlation function P1(r) as a function of distance r .
Since for P1(s) we want to sample at constant s between the bond pairs irrespective of the distance between
the bonds no momentum needs to be injected in the diagram and the momentum flowing along the diagram
is constant everywhere.
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The combinatorics between the interacting monomers—corresponding to the second line in
(79)—leads using (29) to an additional weight factor

w(q) = 1

((aq)2 + μ)2
(194)

for the two Flory-distributed dangling tails. The task is thus to compute

P1(s) =
∫ dq

(2π)d
e−(aq)2s

(
bq

d

)2 1

gρ

1

((aq)2 + μ)((aq)2 + 2/g)
(195)

where we have used that ξ 2 = a2g/2 = a2/2vρ, (44). Rewriting the last factor in (195) as

g

2
× 1

1 − μ g/2
×
(

1

(aq)2 + μ
− 1

(aq)2 + 2/g

)

(196)

and defining the integral

A(x) =
∫

exp(−v2)

v2 + x
v2 dv

(2π)d
(197)

one may rewrite the interaction integral as

P1(s) = 1

dρad

1

sd/2

1

1 − μg/2

[
A(x = μs) − A(x = 2s/g)

]
. (198)

We remind that the integral A(x) takes the asymptotics

lim
x→0

A(x) = 1

(4π)d/2
and lim

x→∞A(x) ∼ lim
x→∞ 1/x = 0. (199)

Considering thus the limit of infinite Flory-distributed polymers (x = μs → 0) and incom-
pressible solutions (x = 2s/g → ∞), (198) reduces to

P1(s) = 1

dρad

1

sd/2

[
1

(4π)d/2
− 0

]

= 1

2ω

(
ω

π

)ω 1

bdρ

1

sω
(200)

with ω ≡ d/2 in agreement with (11). Evaluating the integral A(x) over the wavevector in
d = 3 dimensions one obtains for general x

A(x) = 1

8π3/2

(
1 − 2x + 2

√
πx3/2ex erfc(

√
x)
)

(201)

with erfc(x) being the complementary error function [44]. Setting cP ≡√24/π3/8(b3ρ) in
agreement with the power-law amplitude indicated in (9) and using u = s/g for the reduced
subchain length it follows from (198) that

P1(s) = cP

g3/2

1

1 − μg/2

[
4√
u

(1 − μg/2)

− 4
√

2πe2u erfc(
√

2u) + 2(μg)3/2√πeμs erfc(
√

μs)

]

. (202)
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Fig. 49 (Color online) Sketch of interaction diagrams in reciprocal space used for the computation of the
bond-bond correlation function P1(r) summing over all intrachain bond pairs at constant r = |r|. The injected
wavevector q is conjugated to the distance r . The bold vertical arrows represent the bond vectors in reciprocal
space, (81), dashed lines the effective monomer interactions ṽ(q), and the thin lines the Fourier-Laplace
transformed Gaussian propagators Ĝ(q, t) with t being conjugated to the curvilinear distance s. Cyclic rings
are described by the diagram (r), the behavior of asymptotically long linear chains by the diagrams (l). The
last diagram (�) describes the finite-size corrections for P1(r) relevant for large distances r � r∗

Since implicit to the effective interaction potential (65) we have μg/2 � 1 and since we
focus on short subchains with μs = s/〈N〉 � 1, this further simplifies to

P1(s) = cP

g3/2

[
4√
u

− 4
√

2πe2u erfc(
√

2u) + 2
√

π(μg)3/2

]

. (203)

For large chains, μ → 0, the last term in the bracket decays rapidly as 1/〈N〉3/2 and can
be omitted for reasonable (mean) chain lengths. This leads to (83) which we have checked
numerically in Fig. 26 for monodisperse chains. The first term in the bracket dominates only
for small u when the structure within a (very) large thermal blob is probed. The bracket
reduces to 4/

√
u − (4/

√
u − 1/u3/2 + · · ·) ≈ 1/u3/2 in the opposite large-u limit as may be

seen by expanding the error function [44]. Equation (203) thus reduces to (200) for d = 3.
This thus confirms the key relation (9) for the power-law decay of the bond-bond correlation
function for all g on scales larger than the thermal blob (s/g � 1).

B.5 Distance Dependence of Angular Correlations

B.5.1 Interaction Diagrams

We focus now on the low-wavevector regime where the melt can be considered as incom-
pressible (at least in terms of thermal blobs) and assume a Flory-distributed bath of a given
inverse mean chain length μ. The corresponding results for infinite chains may be obtained
by setting μ = 0. The bond-bond correlation function P1(r) = 〈l1 · l2〉/l2 is obtained by
averaging over all intrachain pairs of bonds l1 and l2 at a given distance r = |r| irrespective
of their curvilinear distance s. Setting thus t = 0 for the Laplace variable conjugated to s,
the summed up Fourier-Laplace propagator becomes according to (29)

G̃(k) ≡ Ĝ0(k, t)|t=0 = 1

(ak)2 + μ
. (204)

Using (60) and (63) the effective interaction potential thus reads [87]

ṽ(k)G̃(k) = G̃(k)

F0(k)ρ
= 1

2ρ
(205)
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on large scales k � 1/σ and k � 1/ξ . The momentum q inserted in the interaction diagrams
shown in Fig. 49 is conjugated to the distance r between both bonds. Momentum is a con-
served quantity flowing from one correlated point to the other. The wavevector associated
with the first bond at the origin is called q1, the wavevector through the second bond q2.
As may be better seen from the sketch included in Fig. 27, the first bond is now within the
s-subchain while the second bond is chosen to be outside. Putting both bonds within the
subchain leads to trivial correlations even for Gaussian chains, putting both bonds outside
the subchain leads to a vanishing correlation for ξ → 0 as already remarked in Footnote 38
for the correlation function C1(r) [89]. The first two diagrams in Fig. 49 for closed rings (r)

and linear chains (l) are given by the convolution integrals

Ir(q) =
∫

q1

+q2 = qG̃(q1)A (q1,−q2)G̃(q2), (206)

Il(q) = (−1)

∫

q1

+q2 = qG̃(q1)A (q1,−q2)G̃(q2)ṽ(q2)G̃(q2). (207)

We remind that for closed cycles the bond-bond correlation function does not vanish even
for perfect Gaussian statistics and it is the corresponding zero order average 〈A 〉 ≈ 〈A 〉0

which is computed by the first integral. The minus sign in front of the second integral for
linear chains stems from the minus sign implied by the first order perturbation, (57). Using
(82) and assuming (205) the integrals simplify considerably

Il(q) = − 1

2ρ
Ir(q) (208)

= − (b/d)2

2ρ

∫

q1+q2=q

q1G̃(q1) · q2G̃(q2). (209)

Using the well-known theorem for the (inverse) Fourier transformation of convolutions and
that F [∂rf (r)] = iqf (q), the inverse Fourier transforms are thus

Il(r) = − 1

2ρ
Ir(r) (210)

= (b/d)2

2ρ

(
∂rG̃(r)

)2
(211)

with G̃(r) being the probability distribution to find another monomer of the chain around a
reference monomer as given by (30). Interestingly, up to a constant prefactor the integrals Ir

and Il are thus equal on large scales (r � ξ ).

B.5.2 Normalization and Bond-Bond Correlations

Focusing from now on the 3D case the bond-bond correlation function of closed rings Pr(r)

is obtained from Ir(r) after normalization with G̃(r). Using (30) this yields

Pr(r) = Ir(r)

G̃2(r)
= −

(
b

3r

)2

(1 + 2x)2 (212)

with x = √
μr/2a comparing the distance r to the typical (z-averaged) size Rg,z ≈ a

√〈N〉
of Flory-distributed chains. The reason for the normalization factor G̃2(r) is that for Pr(r)
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both bonds are known to be bonds of the same polymer ring while the interaction integral
(206) corresponds only to a probability G̃(r) for both bonds being in the same chain times
a probability G̃(r) that this chain is closed. That Pr(r) is negative is of course due to the
closure constraint which corresponds to an entropic spring force bending the second bond
back to the origin. For large chain lengths the factor (1 + 2x)2 can be neglected and the
bond-bond correlation function Pr(r) becomes a scale-free power law.

For linear chains it follows immediately from (211) that

P1(r) = Il(r)

G̃(r)
= P∞(r)h(x) with P∞(r) ≡ 1

12π

1

ρr3
(213)

being the limit for asymptotically long chains and using the scaling function h(x) = (1 +
2x)2 exp(−2x) for the finite-μ corrections. The normalization factor G̃(r) is due to the
fact that for P1(r) both bonds are known to belong to the same chain while the interaction
integral (207) corresponds only to a probability G̃(r) for both bonds to be on the same chain.
As compared to the closed cycles the correlation has the opposite sign since the attractive
spring of the ring closure indicated by G̃(q1) in (208) has been replaced by the effective

repulsion indicated by −G̃(q1)ṽ(q1)G̃(q1) = −G̃(q1)/2ρ in (209). This repulsion bends
the second bond away from the origin increasing thus the bond-bond correlation function.

B.5.3 Sum Rule and Geometrical Interpretation

Interestingly, the perturbation result, (210), for Flory-distributed chains may be rewritten as

P1(r) + G̃(r)

2ρ
Pr(r) = 0 (214)

where we have used the normalization factors mentioned above. This “sum rule” suggests a
geometrical interpretation of the observed relation between infinite linear chains and closed
cycles which may remain valid beyond the one-loop approximation used here.92 The idea
is that in an hypothetical ideal melt containing both linear chains and closed cycles all cor-
relations disappear (on distances much smaller than the typical chain sizes) when summed
up over the contributions of both architectures. The weight (G̃(r)/2)/ρ corresponds to the
fraction of bond pairs in closed loops.93 Since the orientational correlations in ideal cycles
are necessarily long-ranged due the ring closure (212), it follows, assuming the sum rule,
that the same applies to bond pairs of linear chains. Since bonds in closed cycles are anti-
correlated (Pr(r) < 0), they must be aligned (P1(r) > 0) for linear chains. Interestingly, if

92A similar sum rule is obtained for the bond-bond correlation function P1(s) as a function of arc-length s.
One verifies readily that Il(s) = −Ir(s)/2ρ and thus

P1(s) + G̃(s)

2ρ
Pr(s) = 0

with Pr(s) ∼ −1/s and G̃(s) ∼ s1−dν being the density of chains of length N > s in a Flory-distributed bath
which would return after N steps to the origin. This is the most elegant way to demonstrate that P1(s) ∼
1/sdν .
93Note that G̃(r) is the density of the monomers of both strands the reference monomer is connected to. We
know for linear chains as for cycles that both bonds are connected by a first strand. The probability for both
bonds to be in a closed loop is given by the density G̃(r)/2 of the second strand. The factor 1/2 is thus needed
to avoid counting the same ring twice.
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one turns the argument around assuming the sum rule (rather than deriving it as we did) this
imposes (205) and, hence, the effective intrachain potential ṽ(k) = ((ak)2 + μ)/2ρ for a
Flory-distributed linear chain bath.

B.5.4 Finite Chain Size Effects for Flory-Distributed Chains

We emphasize that the diagram (l) shown in Fig. 49 is not sufficient to characterize P1(r)

for larger distances since the last diagram (�) corresponding to the convolution integral

I�(q) = (−1)

∫
dk

(2π)3
G(q)A (q,−k) G̃(q − k)ṽ(k)G̃(k) (215)

provides, as we shall see, the actual cutoff of the power law in this limit. Using again (82)
and (205) the integral factorizes

I�(q) = −1

2ρ

∫
dk

(2π)3
G̃(k) × G̃(q)

(bq)2

9
(216)

≡ −c� × (aq)2G̃(q) (217)

where we have introduced in the last line the convenient dimensionless constant

c� = (b/a)2

18ρa3

∫
dk

(2π)3
a3G̃(k) (218)

in which we dump local physics at large wavevector k. Before evaluating the angular cor-
relations in real space it is important to clarify the physics described by the diagram. The
underlined second factor in (216) characterizes the alignment of the bond vectors of the
monomers n1 and n2 − 1 at a fixed distance r of the monomers n1 and n2 = n1 + s as shown
by the sketch included in Fig. 27. Obviously, even for Gaussian chains these two bonds
become more and more aligned if the distance r = |r| gets larger than bs1/2, i.e. when the
chain segment becomes stretched. For perfectly Gaussian chains the bonds l1 and l2 at n1

and n2 would still remain uncorrelated, however, since the second bond is outside the chain
segment on which we have imposed the distance constraint. As indicated by the dashed line
in the diagram, it is then due to the effective interaction between the monomers within the
stretched segment (n < n2) and the monomers outside (n > n2) that the bonds at n2 − 1 and
n2 get aligned and then in turn the two bonds at n1 and n2. We note that, strictly speaking, c�

depends on the mean chain length 〈N〉, since G̃(k) is a function of μ. However, one checks
readily that this effect can be neglected for reasonable mean chain lengths. We also note that
the constant c� is finite, since the UV divergence which formally arises for large k (where
c� ∼ k) may be regularized by local and, hence, model dependent physics.94 We determine
c� numerically from our simulations of self-assembled linear EP in Sect. 5.4.2.

Assuming a finite and chain length independent coefficient c� in (217) and inserting the
propagator (204) we obtain by inverse Fourier transformation

I�(r) = c�

(
μG̃(r) − δ(r)

)
(219)

94For soft melts with weak bare excluded volume v = 1/gρ, i.e. ξ � b, it can be shown that an upper

cutoff wavevector kc ≈ 1/ξ regularizes the integral over k. The coefficient becomes c� = 1/2πρb2ξ . Using
b = 3.244 and ξ = 0.5 for ρ = 0.5/8 this gives c� ≈ 0.48. This is not that far off the best fit value c� ≈ 0.14
considering that for small ξ ≤ b one expects c� to be rather determined by the model-depending stiffness
between adjacent bonds.
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for the interaction integral in real space. Normalizing I�(r) as before with G(r) and sum-
ming over both diagrams for linear chains this yields

P1(r) = P∞(r)h(x) + c�μ (220)

for r � ξ > 0. Comparing both terms in (220) one verifies that a crossover occurs at
r∗ ≈ b〈N〉1/3 in agreement with (124) stated in the main text. The bond-bond correlation
function P1(r) of an incompressible solution of Flory distributed polymers becomes thus
constant for r � r∗. This remarkable result is essentially due to the polydispersity. This al-
lows to find for all distances r pairs of bonds l1 and l2 stemming from segments which are
slightly stretched by an energy of order μ � 1 and which are, hence, slightly shorter than
a unstretched segment of length s ≈ (r/b)2. Since there are more shorter chains and chain
segments this just compensates the decay of the weight due to the weak stretching. Although
the number of such slightly stretched segments decays strongly with distance, their relative
effect with respect to the typical unstretched segments, eμ − 1 ≈ μ, remains constant for
all r . It is for this reason that the chemical potential appears in the second term of (220).
Please note that bond pairs from strongly stretched segments (corresponding to an energy
much larger than μ) are, however, still exponentially suppressed and can be neglected. As
explained in detail in Ref. [87], this is qualitatively different for monodisperse chains where
strongly stretched chain segments contribute increasingly to the average for large distances.

B.6 Non-extensivity of the Chemical Potential

We take again as a reference for the perturbation calculation a melt of Gaussian chains where
the bond length b is set by the effective bond length of asymptotically long chains. Averages
performed over this unperturbed reference system are labeled by an index 0. The task is now
to compute the ratio Q(n)/Q0(n) of the perturbed to the unperturbed partition function of
the test chain of length n plugged into the bath of N -chains,

1 − Q(n)

Q0(n)
= 1 − 〈e−un

〉
0
≈ 〈un〉0 =

n∑

s=0

(n − s)

∫
dr G0(r, s)ṽ(r) (221)

with the perturbation potential un being the sum of the effective monomer interactions ṽ(r)

of all pairs of monomers of the test chain. The factor n − s in (221) counts the number
of equivalent monomer pairs separated by an arc-length s. The deviation δμn from Flory’s
hypothesis is then given by the contribution to 〈un〉0 which is non-linear in n. The calculation
of (221) in d dimensions is most readily performed in Fourier-Laplace space with q being
the wavevector conjugated to the monomer distance r and t the Laplace variable conjugated
to the chain length n. The Laplace transformed averaged perturbation potential reads

ut ≡
∫ ∞

n=0
dn〈un〉0e

−nt =
∫

ddq

(2π)d
G0(q, t)ṽ(q)w(t) (222)

where G0(q, t) represents the Fourier-Laplace transformed Gaussian propagator G0(r, s)

as given in (28) and the weight factor w(t) = 1/t2 accounts again for the combinatorics
between the interaction monomers—just as in (193).

The effective interaction potential ṽ(q) being given by (59) one realizes that the naive
perturbation calculation using (222) is formally diverging at high wavevectors in three di-
mensions (becoming only regular below d = 2). This is due to monomer self-interactions
which must be first subtracted. Using (64) instead of (59) even makes things worse due to an
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additional divergency associated with the self-interactions of the blobs whose size was set
to zero (g → 0). However, since we are not interested in (possibly diverging) contributions
linear in the length of the test chain or independent of it, we can freely subtract linear terms
(i.e., terms ∼ 1/t2 in Laplace space) or constant terms (i.e., terms ∼ 1/t ) to regularize and
to simplify ut . Such a transformation leads to

ut =
∫

ddq

(2π)d

1

t2

2F−1
0 − (aq)2 − t

(aq)2 + t

v

2(vρ + F−1
0 )

+ · · · (223)

where “. . .” stands for the linear and constant contributions we do not compute. This con-
verges now for incompressible melts in d < 2 dimensions. Applying (223) to incompressible
Flory-distributed melts, i.e. assuming (40), this yields

ut = 1

2ρ

μ − t

t2

∫
ddq

(2π)d
G(q, t) + · · · (224)

= 1

2ρ

(
μ/t2 − 1/t

)
G(r = 0, t) + · · · (225)

where we have read (224) as an inverse Fourier transform taken at r = 0. Remembering
that a factor 1/t in t -space stands for an integral

∫ n

0 ds in n-space, the inverse Laplace
transform of ut can be expressed in terms of integrals of the return probability G(r = 0, s) =
(4πsa2)−d/2. We obtain, hence, in n-space

δμn = 1

(d − 2)(4π)d/2

1

ρad

(

n1−d/2 − μ
n2−d/2

2 − d/2

)

(226)

where δμn stands for the non-extensive contribution to 〈un〉0. Note that the first term in the
brackets scales as the correlation hole in d dimension. Its marginal dimension is d = 2. The
second term characterizes the effective two-body interaction of the test chain with itself. As
one expects [3], its marginal dimension is d = 4. Although (226) is formally obtained for
d < 2 it applies to higher dimensions by analytic continuation. In three dimensions (226)
becomes

δμn = 1

(4π)3/2

1

ρa3

(
n−1/2 − 2μn1/2

)
(227)

which demonstrates finally the non-extensive correction to the ideal polymer chain chemical
potential announced in (108) and represented by the solid lines in Fig. 18. The chemical
potential for monodisperse chains is obtained from (108) within the Padé approximation,
(37), where μ is replaced by 2/N . This result is indicated by the dash-dotted lines in Fig. 18.
A more precise calculation for monodisperse chains using the full Debye function is given
in Ref. [88].
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176. Wittmer, J.P., Johner, A., Obukhov, S.P., Polińska, P., Benzerara, O., Meyer, H., Baschnagel, J.: Eur.

Phys. E (2011, in preparation)
177. Schweizer, K.: J. Chem. Phys. 91, 5802 (1989)
178. Chong, S., Aichele, A., Meyer, H., Fuchs, M., Baschnagel, J.: Phys. Rev. E 76, 051806 (2007)
179. Wittmer, J.P., Meyer, H., Johner, A., Kreer, T., Baschnagel, J.: Phys. Rev. Lett. 105, 037802 (2010)
180. Duplantier, B.: J. Stat. Phys. 54, 581 (1989)
181. Svaneborg, C., Grest, G., Everaers, R.: Europhys. Lett. 72, 760 (2005)
182. Müller, M., Smith, G.D.: J. Polym. Sci., Part B, Polym. Phys. 43, 934 (2005)
183. Meyer, E., Overney, R., Dransfeld, K., Gyalog, T.: Nanoscience: Friction and Rheology on the Nanome-

ter Scale. World Scientific, Singapore (1998)
184. Frank, B., Gast, A., Russel, T., Brown, H., Hawker, C.: Macromolecules 29, 6531 (1996)
185. Jones, R., Kumar, S., Ho, D., Briber, R., Russel, T.: Nature 400, 146 (1999)
186. Maier, B., Rädler, J.O.: Phys. Rev. Lett. 82, 1911 (1999)
187. Granick, S., Kumar, S., Amis, E., et al.: J. Polym. Sci., Prat B 41, 2755 (2003)
188. Shin, K., Xiang, H., Moon, S., Kim, T., MacCarthy, T., Russel, T.: Science 306, 76 (2004)
189. O’Connell, P., McKenna, G.: Science 307, 1760 (2005)
190. Gavranovic, G.T., Deutsch, J.M., Fuller, G.G.: Macromolecules 38, 6672 (2005)
191. Sun, F., Dobrynin, A., Shirvanyants, D., Lee, H., Matyjaszewski, K., Rubinstein, G., Rubinstein, M.,

Sheiko, S.: Phys. Rev. Lett. 99, 137801 (2007)
192. Shin, K., Obukhov, S., Chen, J.T., Huh, J., Hwang, Y., Mok, S., Dobriyal, P., Thiyagarjan, P., Russell,

T.: Nat. Mater. 6, 961 (2007)
193. Eisenriegler, E.: Polymers Near Surfaces. World Scientific, Singapore (1993)
194. Jacobson, J.L., Read, N., Saleur, H.: Phys. Rev. Lett. 90, 090601 (2003)
195. Ikhlef, Y., Jacobson, J., Saleur, H.: J. Stat. Mech. Theory Exp. 5, P05005 (2007)
196. Wong, P.Z., Bray, A.J.: Phys. Rev. Lett. 60, 1344 (1988)
197. Halverson, J.D., Lee, W., Grest, G., Grosberg, A., Kremer, K.: J. Chem. Phys. 134, 204904 (2011)
198. Cates, M., Deutsch, J.: J. Phys. 47, 2121 (1986)
199. Obukhov, S., Rubinstein, M., Duke, T.: Phys. Rev. Lett. 73, 1263 (1994)
200. Hur, K., Winkler, R.G., Yoon, D.Y.: Macromolecules 39, 3975 (2006)
201. Suzuki, J., Takano, A., Deguchi, T., Matsushita, Y.: J. Chem. Phys. 131, 144902 (2009)
202. Hur, K., Jeong, C., Winkler, R., Lacevic, N., Gee, R., Yoon, D.: Macromolecules 44, 2311 (2011)
203. West, G.B., Brown, J.H., Enquist, B.J.: Science 284, 1677 (1999)
204. Milchev, A.: Eur. Phys. J. E 8, 531 (2002)
205. Ermak, D.: J. Chem. Phys. 62, 4189 (1975)
206. Groot, R., Warren, P.: J. Chem. Phys. 107, 4423 (1997)
207. Semenov, A.N.: Phys. Rev. Lett. 80, 1908 (1998)

http://dx.doi.org/10.1063/1.1477454

	Scale-Free Static and Dynamical Correlations in Melts of Monodisperse and Flory-Distributed Homopolymers
	Abstract
	Introduction
	General Context
	Coarse-Grained Lattice Models for Polymer Melts
	Flory's Ideality Hypothesis for Polymer Melts
	Rouse Model Hypothesis for Polymer Melts
	Aim of this Study and Key Results
	Outline

	Some Theoretical Considerations
	Introduction
	Connectivity Constraint
	Local Rigidity
	Polydispersity
	Segmental Size-Distribution G(r,s)
	Intramolecular Coherent Form Factor F(q)
	Total Monomer Structure Factor S(q)

	Incompressibility Constraint
	Dimensionless Compressibility g
	Lagrange Multiplier epsilon
	Thermal Blobs of Size xi
	Correlation Hole Effects
	Connectivity and Swelling
	Perturbation Approach in Three Dimensions

	Perturbation Calculation
	General Approach
	Effective Interaction Potential
	Free Energy for High Compressibilities
	Subchain Size Distribution and Its Moments
	Adjusting the Bond Length of the Reference Chain
	Bond-Bond Correlation Function
	Finite Chain Size Effects


	Bond-Fluctuation Model
	Introduction
	Classical BFM Without Monomer Overlap
	Local and Global Topology Violating MC Moves
	Local L26 Moves
	Slithering Snake Moves
	Double Bridging Moves
	Summary of Static Properties

	BFM with Finite Excluded Volume Penalty
	Definition of Hamiltonian
	Second Virial Coefficient
	Implementation
	Equilibration and System Properties

	BFM with Annealed Mass Distribution
	Motivation and Context
	Spatial Monomer Moves
	Connectivity Pointer List
	Connectivity Altering Moves
	Some Computational Results


	Thermodynamic Properties of BFM Melts
	Introduction
	Mean Overlap Energy
	Energy Fluctuations
	Compressibility
	Chemical Potential: Gaussian Contribution
	Chemical Potential: Non-extensive Corrections
	Theoretical Predictions
	Computational Results for EP Melts

	Summary

	Intramolecular Conformational Properties
	Introduction
	Bond Properties
	Mean-Squared Chain and Subchain Size
	Total Chain Size  RN
	Subchain Size  Rs
	Predicting the Effective Bond Length

	Bond-Bond Correlation Function
	Bond-Bond Correlation Function P1(s)
	Distance Dependence of Angular Correlations

	Higher Moments
	Corrections to the Subchain Size Distribution
	Intramolecular Form Factor F(q)
	Summary

	Scale-Free Dynamical Correlations in Polymer Melts
	Introduction
	Prelude: Overdamped Colloids
	Polymer Melts Without Topological Constraints
	Outline

	Diffusion of Dense BFM Beads
	Polymer Melts Without Topological Constraints
	Mean-Square Displacements
	Locality and Relevant Exponent alpha
	Center-of-Mass Velocity Correlation Function
	Dynamic Coherent Form Factor

	Compressibility Effects
	L06-Moves and Effects of Topological Constraints
	Perturbation Calculation Predictions
	Colored Collective Forces
	Dynamical Random Phase Approximation
	Lowest-Order Perturbation

	Summary

	Conclusion
	Summary
	Related Questions and Outlook
	Confined Polymer Melts
	Interchain Correlations and Anti-Casimir Forces
	Dynamical Properties Beyond MC Stochastics


	Acknowledgements
	Appendix A: Displacement Correlations
	Appendix B: Static Properties
	Moments and Generating Function
	Deviations of the Segmental Size Distribution
	Intramolecular Form Factor F(q)
	Angular Correlations P1(s)
	Distance Dependence of Angular Correlations
	Interaction Diagrams
	Normalization and Bond-Bond Correlations
	Sum Rule and Geometrical Interpretation
	Finite Chain Size Effects for Flory-Distributed Chains

	Non-extensivity of the Chemical Potential

	References


