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Abstract We analyze how an observer synchronizes to the internal state of a finite-state
information source, using the ε-machine causal representation. Here, we treat the case of
exact synchronization, when it is possible for the observer to synchronize completely after a
finite number of observations. The more difficult case of strictly asymptotic synchronization
is treated in a sequel. In both cases, we find that an observer, on average, will synchronize
to the source state exponentially fast and that, as a result, the average accuracy in an ob-
server’s predictions of the source output approaches its optimal level exponentially fast as
well. Additionally, we show here how to analytically calculate the synchronization rate for
exact ε-machines and provide an efficient polynomial-time algorithm to test ε-machines for
exactness.
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1 Introduction

Synchronization and state estimation for finite-state sources is a central interest in several
disciplines, including information theory, theoretical computer science, and dynamical sys-
tems [1–5]. Here, we study the synchronization problem for a class of finite-state hidden
Markov models known as ε-machines [6, 7]. The latter are routinely used to analyze infor-
mation processing embedded in a range of physical systems, including spin systems [8, 9],
complex low-dimensional materials [10, 11], and the conformational dynamics of single
molecules [12]. For complex materials, synchronization properties determine how much of
a material must be scanned in order to know the underlying crystalline or fault structure. For
single molecule dynamics, they determine how long a fluorescence signal need be observed
so that the hidden conformational states can be detected.

Mathematically, ε-machines are also convenient for studying synchronization since they
are unifilar sources. That is, the next machine state is completely determined by the current
state and next output symbol generated. This property ensures that if an observer is ever
able to synchronize to the machine’s internal state, it remains synchronized forever using
continued observations of the output.

Additionally, synchronization analysis can also be important for prediction with ε-
machines. Since the future output of the machine is a function of its current state, better
knowledge of the state tends to allow better predictions of the output. For us, this is one of
the primary motivations for studying the synchronization question.

2 Background

This section provides the necessary background for our results, including information-
theoretic measures of prediction for stationary information sources and formal definitions of
ε-machines and synchronization. In particular, we identify two qualitatively distinct types
of synchronization: exact (synchronization via finite observation sequences) and asymptotic
(requiring infinite sequences). The exact case is the subject here; the nonexact case is treated
in a sequel [13].

2.1 Stationary Information Sources

Let A be a finite alphabet, and let X0,X1, . . . be the random variables (RVs) for a sequence
of observed symbols xt ∈ A generated by an information source. We denote the RVs for

the sequence of future symbols beginning at time t = 0 as
−→
X = X0X1X2 . . . , the block of

L symbols beginning at time t = 0 as
−→
XL = X0X1 . . .XL−1, and the block of L symbols

beginning at a given time t as
−→
XL

t = XtXt+1 . . .Xt+L−1. A stationary source is one for

which Pr(
−→
XL

t ) = Pr(
−→
XL

0 ) for all t and all L > 0.
We monitor an observer’s predictions of a stationary source using information-theoretic

measures [14], as reviewed below.

Definition 1 The block entropy H(L) for a stationary source is:

H(L) ≡ H [−→XL] = −
∑

{−→x L}
Pr(−→x L) log2 Pr(−→x L).

The block entropy gives the average uncertainty in observing blocks
−→
XL.
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Definition 2 The entropy rate hμ is the asymptotic average entropy per symbol:

hμ ≡ lim
L→∞

H(L)

L

= lim
L→∞

H [XL|−→XL].

Definition 3 The entropy rate’s length-L approximation is:

hμ(L) ≡ H(L) − H(L − 1)

= H [XL−1|−→XL−1].

That is, hμ(L) is the observer’s average uncertainty in the next symbol to be generated after
observing the first L − 1 symbols.

For any stationary process, hμ(L) monotonically decreases to the limit hμ [14]. However,
the form of convergence depends on the process. The lower the value of hμ a source has,
the better an observer’s predictions of the source output will be asymptotically. The faster
hμ(L) converges to hμ, the faster the observer’s predictions reach this optimal asymptotic
level. If we are interested in making predictions after a finite observation sequence, then the
source’s true entropy rate hμ, as well as the rate of convergence of hμ(L) to hμ, are both
important properties of an information source.

2.2 Hidden Markov Models

In what follows we restrict our attention to an important class of stationary information
sources known as hidden Markov models. For simplicity, we assume the number of states is
finite.

Definition 4 A finite-state edge-label hidden Markov machine (HMM) consists of

1. a finite set of states S = {σ1, . . . , σN },
2. a finite alphabet of symbols A, and
3. a set of N by N symbol-labeled transition matrices T (x), x ∈ A, where T

(x)
ij is the prob-

ability of transitioning from state σi to state σj on symbol x. The corresponding overall
state-to-state transition matrix is denoted T = ∑

x∈A T (x).

A hidden Markov machine can be depicted as a directed graph with labeled edges. The
nodes are the states {σ1, . . . , σN } and for all x, i, j with T

(x)
ij > 0 there is an edge from state

σi to state σj labeled p|x for the symbol x and transition probability p = T
(x)
ij . We require

that the transition matrices T (x) be such that this graph is strongly connected.

A hidden Markov machine M generates a stationary process P = (XL)L≥0 as follows.
Initially, M starts in some state σi∗ chosen according to the stationary distribution π over
machine states—the distribution satisfying πT = π . It then picks an outgoing edge accord-
ing to their relative transition probabilities T

(x)

i∗j , generates the symbol x∗ labeling this edge,
and follows the edge to a new state σj∗ . The next output symbol and state are consequently
chosen in a similar fashion, and this procedure is repeated indefinitely.

We denote S0, S1, S2, . . . as the RVs for the sequence of machine states visited and
X0,X1,X2, . . . as the RVs for the associated sequence of output symbols generated. The se-
quence of states (SL)L≥0 is a Markov chain with transition kernel T . However, the stochastic
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Fig. 1 A hidden Markov
machine (the ε-machine) for the
Even Process. The transitions
denote the probability p of
generating symbol x as p|x

Fig. 2 A hidden Markov
machine (the ε-machine) for the
Alternating Biased Coins Process

process we consider is not the sequence of states, but rather the associated sequence of out-
puts (XL)L≥0, which generally is not Markovian. We assume the observer directly observes
this sequence of outputs, but does not have direct access to the machine’s “hidden” internal
states.

2.3 Examples

In what follows, it will be helpful to refer to several example hidden Markov machines
that illustrate key properties and definitions. We introduce five examples, all with a binary
alphabet A = {0,1}.
2.3.1 Even Process

Figure 1 gives a HMM for the Even Process. Its transitions matrices are:

T (0) =
(

p 0
0 0

)
, T (1) =

(
0 1 − p

1 0

)
. (1)

The support for the Even Process consists of all binary sequences in which blocks of
uninterrupted 1s are even in length, bounded by 0s. After each even length is reached, there
is a probability p of breaking the block of 1s by inserting a 0. The hidden Markov machine
has two internal states, S = {σ1, σ2}, and a single parameter p ∈ (0,1) that controls the
transition probabilities.

2.3.2 Alternating Biased Coins Process
Figure 2 shows a HMM for the Alternating Biased Coins (ABC) Process. The transitions
matrices are:

T (0) =
(

0 1 − p

1 − q 0

)
, T (1) =

(
0 p

q 0

)
. (2)

The process generated by this machine can be thought of as alternately flipping two coins
of different biases p �= q .

2.3.3 SNS Process

Figure 3 depicts a two-state HMM for the SNS Process which generates long sequences of
1s broken by isolated 0s. Its matrices are:

T (0) =
(

0 0
1 − q 0

)
, T (1) =

(
p 1 − p

0 q

)
. (3)

Note that the two transitions leaving state σ1 both emit x = 1.
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Fig. 3 An HMM for the SNS
Process

Fig. 4 An HMM for the Noisy
Period-2 Process

Fig. 5 A hidden Markov
machine (the ε-machine) for the
ANP2 Process

2.3.4 Noisy Period-2 Process

Figure 4 depicts a nonminimal HMM for the Noisy Period-2 (NP2) Process. The transition
matrices are:

T (0) =

⎛

⎜⎜⎝

0 0 0 0
0 0 1 − p 0
0 0 0 0

1 − p 0 0 0

⎞

⎟⎟⎠ , T (1) =

⎛

⎜⎜⎝

0 1 0 0
0 0 p 0
0 0 0 1
p 0 0 0

⎞

⎟⎟⎠ . (4)

It is clear by inspection that the same process can be captured by a hidden Markov ma-
chine with fewer states. Specifically, the distribution over future sequences from states σ1

and σ3 are the same, so those two states are redundant and can be merged. The same is also
true for states σ2 and σ4.

2.3.5 Alternating Noisy Period-2 Process

Finally, Fig. 5 gives a HMM for the Alternating Noisy Period-2 (ANP2) Process. The tran-
sition matrices are:

T (0) =

⎛

⎜⎜⎝

0 0 0 0
0 0 1 − p 0
0 0 0 0

1 − q 0 0 0

⎞

⎟⎟⎠ , T (1) =

⎛

⎜⎜⎝

0 1 0 0
0 0 p 0
0 0 0 1
q 0 0 0

⎞

⎟⎟⎠ . (5)

This machine is a variant of the non-minimal NP2 machine of Fig. 4 in which the non-
deterministic outputs from states σ2 and σ4 occur with different probabilities p �= q . Unlike
the non-minimal NP2 machine, however, this machine cannot be simplified by merging state
pairs.
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2.4 ε-Machines

We now introduce a class of hidden Markov machines that has a number of desirable prop-
erties for analyzing synchronization.

Definition 5 A finite-state ε-machine is a finite-state edge-label hidden Markov machine
with the following properties:

1. Unifilarity: For each state σk ∈ S and each symbol x ∈ A there is at most one outgoing
edge from state σk labeled with symbol x.

2. Probabilistically distinct states: For each pair of distinct states σk, σj ∈ S there exists
some finite word w = x0x1 . . . xL−1 such that:

Pr(
−→
XL = w|S0 = σk) �= Pr(

−→
XL = w|S0 = σj ).

The hidden Markov machines given above for the Even Process and ABC process are
both ε-machines. The SNS machine of example 2.3.3 is not an ε-machine, though, since
state σ1 is not unifilar. The NP2 machine of example 2.3.4 is also not an ε-machine, since it
does not have probabilistically distinct states, as noted before. However, the ANP2 machine
of example 2.3.5 is an ε-machine. Although states σ2 and σ4 have the same set of allowed
future sequences, the probability distribution over future sequences from states σ2 and σ4 is
distinct. The same is true of states σ1 and σ3.

ε-Machines were originally defined in Refs. [6] as hidden Markov machines whose
states, known as causal states, were the equivalence classes of infinite pasts (or histories) ←−

x

with the same probability distribution over futures −→
x . This history ε-machine definition is,

in fact, equivalent to the generator ε-machine definition presented above in the finite-state
case. Although, this is not immediately apparent. Formally, it follows from the synchroniza-
tion results established here and in Ref. [13].

It can also be shown that an ε-machine M for a given process P is unique up to iso-
morphism [6]. That is, there cannot be two different finite-state edge-label hidden Markov
machines with unifilar transitions and probabilistically distinct states that both generate the
same process P . Furthermore, ε-machines are minimal unifilar generators in the sense that
any other unifilar machine M ′ generating the same process P as an ε-machine M will have
more states than M . Note that uniqueness does not hold if we remove either condition 1 or
2 in Def. 5.

2.5 Synchronization

Assume now that an observer has a correct model M (ε-machine) for a process P , but is
not able to directly observe M’s hidden internal state. Rather, the observer must infer the
internal state by observing the output data that M generates.

For a word w of length L generated by M let φ(w) = Pr(S|w) be the observer’s belief
distribution as to the current state of the machine after observing w. That is,

φ(w)k = Pr(SL = σk|−→XL = w)

≡ Pr(SL = σk|−→XL = w, S0 ∼ π).

And, define:
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u(w) = H [φ(w)]
= H [SL|−→XL = w],

as the observer’s uncertainty in the machine state after observing w.
Denote L(M) as the set of all finite words that M can generate, LL(M) as the set of all

length-L words it can generate, and L∞(M) as the set of all infinite sequences −→
x = x0x1 . . .

that it can generate.

Definition 6 A word w ∈ L(M) is a synchronizing word (or sync word) for M if u(w) = 0;
that is, if the observer knows the current state of the machine with certainty after observ-
ing w.

We denote the set of M’s infinite synchronizing sequences as SYN(M) and the set of
M’s infinite weakly synchronizing sequences as WSYN(M):

SYN(M) = {−→x ∈ L∞(M) : u(
−→
x L) = 0 for some L}, and

WSYN(M) = {−→x ∈ L∞(M) : u(
−→
x L) → 0 as L → ∞}.

Definition 7 An ε-machine M is exactly synchronizable (or simply exact) if Pr(SYN(M)) =
1; that is, if the observer synchronizes to almost every (a.e.) sequence generated by the ma-
chine in finite time.

Definition 8 An ε-machine M is asymptotically synchronizable if Pr(WSYN(M)) = 1; that
is, if the observer’s uncertainty in the machine state vanishes asymptotically for a.e. se-
quence generated by the machine.

The Even Process ε-machine, Fig. 1, is an exact machine. Any word containing a 0 is a
sync word for this machine, and almost every −→

x it generates contains at least one 0. The
ABC Process ε-machine, Fig. 2, and ANP2 Process ε-machine, Fig. 5, are not exact, but
they are both asymptotically synchronizable.

Remark If w ∈ L(M) is a sync word, then by unifilarity so is wv, for all v with wv ∈ L(M).
Once an observer synchronizes exactly, it remains synchronized exactly for all future times.
It follows that any exactly synchronizable machine is also asymptotically synchronizable.

Remark If w ∈ L(M) is a sync word then so is vw, for all v with vw ∈ L(M). Since any
finite word w ∈ L(M) will be contained in almost every infinite sequence −→

x the machine
generates, it follows that a machine is exactly synchronizable if (and only if) it has some
sync word w of finite length.

Remark It turns out all finite-state ε-machines are asymptotically synchronizable; see
Ref. [13]. Hence, there are two disjoint classes to consider: exactly synchronizable machines
and asymptotically synchronizable machines that are nonexact. The exact case is the subject
of the remainder.

Finally, one last important quantity for synchronization is the observer’s average uncer-
tainty in the machine state after seeing a length-L block of output [19].
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Definition 9 The observer’s average state uncertainty at time L is:

U (L) ≡ H [SL|−→XL]
=

∑

{−→x L}
Pr(−→x L) · H [SL|−→XL = −→

x L]. (6)

That is, U (L) is the expected value of an observer’s uncertainty in the machine state after
observing L symbols.

Now, for an ε-machine, an observer’s prediction of the next output symbol is a function of
the probability distribution over machine states induced by the previously observed symbols.
Specifically,

Pr(XL = x|−→XL = −→
x L) =

∑

{σk}
Pr(x|σk) · Pr(SL = σk|−→XL = −→

x L). (7)

Therefore, better knowledge of the current state tends to allow an observer to make better
predictions of the next output symbol. And, on average, if the state uncertainty U (L) is small
then the prediction uncertainty hμ(L) tends to be close to the entropy rate. As such, the rate
of convergence of hμ(L) to hμ for an ε-machine is closely related to the average rate of
synchronization.

3 Exact Synchronization Results

This section provides our main results on synchronization rates for exact machines and
draws out consequences for the convergence rates of U (L) and hμ(L).

The following notation will be used throughout:

• SYNL = {w ∈ LL(M) : w is a sync word for M}.
• NSYNL = {w ∈ LL(M) : w is not a sync word for M}.
• SYNL,σk

= {w ∈ LL(M) : w synchronizes the observer to state σk}.
• L(M,σk) = {w : M can generate w starting in state σk}.
• For words w,w′ ∈ L(M), we say w ⊂ w′ if there exist words u,v (of length ≥ 0) such

that w′ = uwv.
• For a word w ∈ L(M,σk), δ(σk,w) is defined to be the (unique) state in S such that

σk

w→ δ(σk,w).
• For a set of states S ⊂ S , we define:

δ(S,w) = {σj ∈ S : σk

w→ σj for some σk ∈ S}.
3.1 Exact Machine Synchronization Theorem

Our first theorem states that an observer synchronizes (exactly) to the internal state of any
exact ε-machine exponentially fast.

Theorem 1 For any exact ε-machine M , there are constants K > 0 and 0 < α < 1 such
that:

Pr(NSYNL) ≤ KαL, (8)

for all L ∈ N.
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Proof Let M be an exact machine with sync word w ∈ L(M,σk). Since the graph of M is
strongly connected, we know that for each state σj there is a word vj such that δ(σj , vj ) =
σk . Let wj = vjw, n = maxj |wj |, and p = minj Pr(wj |σj ). Then, for all L ≥ 0, we have:

Pr(w ⊂ −→
Xn+L|w �⊂ −→

XL) ≥ Pr(w ⊂ −→
Xn

L|w �⊂ −→
XL)

≥ min
j

Pr(w ⊂ −→
Xn

L|SL = σj )

≥ p. (9)

Hence,

Pr(w �⊂ −→
Xn+L|w �⊂ −→

XL) ≤ 1 − p, (10)

for all L ≥ 0. And, therefore, for all m ∈ N:

Pr(NSYNmn) ≤ Pr(w �⊂ −→
Xmn)

= Pr(w �⊂ −→
Xn) · Pr(w �⊂ −→

X2n|w �⊂ −→
Xn) · · ·Pr(w �⊂ −→

Xmn|w �⊂ −→
X(m−1)n)

≤ (1 − p) · (1 − p) · · · (1 − p)

= (1 − p)m

= βm, (11)

where β ≡ 1 − p. Or equivalently, for any length L = mn (m ∈ N):

Pr(NSYNL) ≤ αL, (12)

where α ≡ β1/n. Since Pr(NSYNL) is monotonically decreasing, it follows that:

Pr(NSYNL) ≤ 1

αn
· αL = KαL, (13)

for all L ∈ N, where K ≡ 1/αn. �

Remark In the above proof we implicitly assume that Pr(NSYNL) > 0 for all L, which
implies β �= 0. If Pr(NSYNL) = 0 for some finite L, then the conclusion follows trivially.

3.2 Synchronization Rate

Theorem 1 states that an observer synchronizes (exactly) to any exact ε-machine exponen-
tially fast. However, the sync rate constant:

α∗ = lim
L→∞

Pr(NSYNL)1/L (14)

depends on the machine, and it may often be of practical interest to know the value of
this constant. We now provide a method for computing α∗ analytically. It is based on the
construction of an auxiliary machine M̃ .

Definition 10 Let M be an ε-machine with states S = {σ1, . . . , σN }, alphabet A, and tran-
sition matrices T (x), x ∈ A. The possibility machine M̃ is defined as follows:
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1. The alphabet of M̃ is A.
2. The states of M̃ are pairs of the form (σ,S) where σ ∈ S and S is a subset of S that

contains σ .
3. The transition probabilities are:

Pr((σ,S)
x→ (σ ′, S ′)) = Pr(x|σ)I (x, (σ,S), (σ ′, S ′)),

where I (x, (σ,S), (σ ′, S ′)) is the indicator function:

I (x, (σ,S), (σ ′, S ′)) =
{

1 if δ(σ, x) = σ ′ and δ(S, x) = S ′
0 otherwise.

A state of M̃ is said to be initial if it is of the form (σ,S) for some σ ∈ S . For simplicity we
restrict the M̃ machine to consist of only those states that are accessible from initial states.
The other states are irrelevant for the analysis below.

The idea is that M̃’s states represent states of the joint (ε-machine, observer) system.
State σ is the true ε-machine state at the current time, and S is the set of states that the ob-
server believes are currently possible for the ε-machine to be in, after observing all previous
symbols. Initially, all states are possible (to the observer), so initial states are those in which
the set of possible states is the complete set S .

If the current true ε-machine state is σ , and then the symbol x is generated, the new true
ε-machine state must be δ(σ, x). Similarly, if the observer believes any of the states in S are
currently possible, and then the symbol x is generated, the new set of possible states to the
observer is δ(S, x). This accounts for the transitions in M̃ topologically. The probability of
generating a given symbol x from (σ,S) is, of course, governed only by the true state σ of
the ε-machine Pr(x|(σ,S)) = Pr(x|σ).

An example of this construction for a 3-state exact ε-machine is given in Appendix A.
Note that the graph of the M̃ machine there has a single recurrent strongly connected compo-
nent, which is isomorphic to the original machine M . This is not an accident. It will always
be the case, as long as the original machine M is exact.

Remark If M is an exact machine with more than 1 state the graph of M̃ itself is never
strongly connected. So, M̃ is not an ε-machine or even an HMM in the sense of Def. 4.
However, we still refer to M̃ as a “machine”.

In what follows, we assume M is an exact machine with at least two states. If M has only
a single state then there is no synchronization question to address, and α∗ is always 0.

We denote the states of M̃ as S̃ = {q1, . . . , qÑ }, its symbol-labeled transition matri-
ces T̃ (x), and its overall state-to-state transition matrix T̃ = ∑

x∈A T̃ (x). We assume the
states are ordered in such a way that the initial states (σ1,S), . . . , (σN,S) are, respectively,
q1, . . . , qN . Similarly, the recurrent states (σ1, {σ1}), (σ2, {σ2}), . . . , (σN , {σN }) are, respec-
tively, qn+1, qn+2, . . . , qÑ , where n = Ñ − N . The ordering of the other states is irrelevant.
In this case, the matrix T̃ has the following block upper-triangular form:

T̃ =
(

B B ′
O T

)
, (15)

where B is a n × n matrix with nonnegative entries, B ′ is a n × N matrix with nonnegative
entries, O is a N × n matrix of all zeros, and T is the N × N state-to-state transition matrix
of the original ε-machine M .
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Let π̃ = (π1, . . . , πN,0, . . . ,0) denote the length-Ñ row vector whose distribution over
the initial states is the same as the stationary distribution π for the ε-machine M . Then,
the initial probability distribution φ̃0 over states of the joint (ε-machine, observer) system is
simply:

φ̃0 = π̃ , (16)

and, thus, the distribution over states of the joint system after the first L symbols is:

φ̃L = π̃ T̃ L. (17)

If the joint system is in a recurrent state of the form (σk, {σk}), then to the observer the only
possible state of the ε-machine is the true state, so the observer is synchronized. For all other
states of M̃ , the observer is not yet synchronized. Hence, the probability the observer is not
synchronized after L symbols is simply the combined probability of all nonrecurrent states
qi in the distribution φ̃L. Specifically, we have:

Pr(NSYNL) =
n∑

i=1

(φ̃L)i

=
n∑

i=1

(π̃ T̃ L)i

=
n∑

i=1

(πBBL)i

= ‖πBBL‖1, (18)

where πB = (π1, . . . , πN ,0, . . . ,0) is the length-n row vector corresponding to the distribu-
tion over initial states π . The third equality follows from the block upper-triangular form
of T̃ .

Appendix B shows that:

lim
L→∞

(‖πBBL‖1

)1/L = r, (19)

where r = r(B) is the (left) spectral radius of B:

r(B) = max{|λ| : λ is a (left) eigenvalue of B}. (20)

Thus, we have established the following result.

Theorem 2 For any exact ε-machine M (with at least two states), α∗ = r .

3.3 Consequences

We now apply Thm. 1 to show that an observer’s average uncertainty U (L) in the machine
state and average uncertainty hμ(L) in predictions of future symbols both decay exponen-
tially fast to their respective limits: 0 and hμ. The decay constant α in both cases is essen-
tially bounded by the sync rate constant α∗ from Thm. 2.
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Proposition 1 For any exact ε-machine M , there are constants K > 0 and 0 < α < 1 such
that:

U (L) ≤ KαL, for all L ∈ N. (21)

Proof Let M be any exact machine. By Thm. 1 there are constants C > 0 and 0 < α < 1
such that Pr(NSYNL) ≤ CαL, for all L ∈ N. Thus, we have:

U (L) =
∑

w∈LL(M)

Pr(w)u(w)

=
∑

w∈SYNL

Pr(w)u(w) +
∑

w∈NSYNL

Pr(w)u(w)

≤ 0 +
∑

w∈NSYNL

Pr(w) log(N)

≤ log(N) · CαL

= KαL, (22)

where N is the number of machine states and K ≡ C log(N). �

Let hk ≡ H [X0|S0 = σk] and hw ≡ H [X0|S0 ∼ φ(w)] be the conditional entropies in the
next symbol given the state σk and word w.

Proposition 2 For any exact ε-machine M :

hμ = H [X0|S0] ≡
∑

k

πkhk (23)

and there are constants K > 0 and 0 < α < 1 such that:

hμ(L) − hμ ≤ KαL, for all L ∈ N. (24)

Remark The hμ formula (23) has been known for some time, although in slightly different
contexts. Shannon, for example, derived this formula in his original publication [15] for a
type of hidden Markov machine that is similar (apparently unifilar) to an ε-machine.

Proof Let M be any exact machine. Since we know hμ(L) ↘ hμ it suffices to show there
are constants K > 0 and 0 < α < 1 such that:

∣∣∣∣∣hμ(L) −
∑

k

πkhk

∣∣∣∣∣ ≤ KαL, (25)

for all L ∈ N. This will establish both the value of hμ and the necessary convergence.
Now, by Thm. 1, there are constants C > 0 and 0 < α < 1 such that Pr(NSYNL) ≤ CαL,

for all L ∈ N. Also, note that for all L and k we have:

πk =
∑

w∈LL(M)

Pr(w) · φ(w)k
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≥
∑

w∈SYNL,σk

Pr(w) · φ(w)k

= Pr(SYNL,σk
). (26)

Thus,
∑

k

(πk − Pr(SYNL,σk
)) · hk ≥ 0 (27)

and
∑

k

(πk − Pr(SYNL,σk
)) · hk ≤

∑

k

(πk − Pr(SYNL,σk
)) · log |A|

= log |A| ·
(

∑

k

πk −
∑

k

Pr(SYNL,σk
)

)

= log |A| · (1 − Pr(SYNL))

= log |A| · Pr(NSYNL)

≤ log |A| · CαL. (28)

Also, clearly,

∑

w∈NSYNL

Pr(w) · hw ≥ 0 (29)

and
∑

w∈NSYNL

Pr(w) · hw ≤ log |A| · Pr(NSYNL)

≤ log |A| · CαL. (30)

Therefore, we have for all L ∈ N:

∣∣∣∣∣hμ(L + 1) −
∑

k

πkhk

∣∣∣∣∣ =
∣∣∣∣∣∣

∑

w∈LL(M)

Pr(w)hw −
∑

k

πkhk

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

w∈NSYNL

Pr(w)hw +
∑

w∈SYNL

Pr(w)hw −
∑

k

πkhk

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

w∈NSYNL

Pr(w)hw +
∑

k

Pr(SYNL,σk
)hk −

∑

k

πkhk

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

w∈NSYNL

Pr(w)hw −
∑

k

(πk − Pr(SYNL,σk
))hk

∣∣∣∣∣∣

≤ C log |A|αL. (31)
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The last inequality follows from (27)–(30), since |x − y| ≤ z for all nonnegative real
numbers x, y, and z with x ≤ z and y ≤ z.

Finally, since:

∣∣∣∣∣hμ(L + 1) −
∑

k

πkhk

∣∣∣∣∣ ≤ C log |A|αL, (32)

for all L ∈ N, we know that:
∣∣∣∣∣hμ(L) −

∑

k

πkhk

∣∣∣∣∣ ≤ KαL , (33)

for all L ∈ N, where K ≡ (log |A|/α) · max{C,1}. �

Remark For any α > α∗ there exists some K > 0 for which (8) holds. Hence, by the con-
structive proofs above, we see that the constant α in Props. 1 and 2 can be chosen arbitrarily
close to α∗: α = α∗ + ε.

4 Characterization of Exact ε-Machines

In this section we provide a set of necessary and sufficient conditions for exactness and an
algorithmic test for exactness based upon these conditions.

4.1 Exact Machine Characterization Theorem

Definition 11 States σk and σj are said to be topologically distinct if L(M,σk) �= L(M,σj ).

Definition 12 States σk and σj are said to be path convergent if there exists w ∈ L(M,σk)∩
L(M,σj ) such that δ(σk,w) = δ(σj ,w).

If states σk and σj are topologically distinct (or path convergent) we will also say the pair
(σk, σj ) is topologically distinct (or path convergent).

Theorem 3 An ε-machine M is exact if and only if every pair of distinct states (σk, σj )

satisfies at least one of the following two conditions:

(i) The pair (σk, σj ) is topologically distinct.
(ii) The pair (σk, σj ) is path convergent.

Proof It was noted above that an ε-machine M is exact if and only if it has some sync word
w of finite length. Therefore, it is enough to show that every pair of distinct states (σk, σj )
satisfies either (i) or (ii) if and only if M has some sync word w of finite length.

We establish the “if” first: If M has a sync word w, then every pair of distinct states
(σk, σj ) satisfies either (i) or (ii).

Let w be a sync word for M . Then w ∈ L(M,σk) for some k. Take words vj , j =
1,2, . . . ,N , such that δ(σj , vj ) = σk . Then, the word vjw ≡ wj ∈ L(M,σj ) is also a sync
word for M for each j . Therefore, for each i �= j either wj �∈ L(M,σi) or δ(σi,wj ) =
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δ(σj ,wj ). This establishes that the pair (σi, σj ) is either topologically distinct or path con-
vergent. Since this holds for all j = 1,2, . . . ,N and for all i �= j , we know every pair of
distinct states is either topologically distinct or path convergent.

Now, for the “only if” case: If every pair of distinct states (σk, σj ) satisfies either (i) or
(ii), then M has a sync word w.

If each pair of distinct states (σk, σj ) satisfies either (i) or (ii), then for all k and j (k �= j )
there is some word wσk,σj

such that one of the following three conditions is satisfied:

1. wσk,σj
∈ L(M,σk), but wσk,σj

�∈ L(M,σj ).
2. wσk,σj

∈ L(M,σj ), but wσk,σj
�∈ L(M,σk).

3. wσk,σj
∈ L(M,σk) ∩ L(M,σj ) and δ(σk,wσk,σj

) = δ(σj ,wσk,σj
).

We construct a sync word w = w1w2 . . .wm for M , where each wi = wσki
,σji

for some ki

and ji , as follows.

• Let S0 = {σ 0
1 , . . . , σ 0

N0
} ≡ S = {σ1, . . . , σN }. Take w1 = wσ 0

1 ,σ 0
2
.

• Let S1 = {σ 1
1 , . . . , σ 1

N1
} ≡ δ(S0,w1). Since w1 = wσ 0

1 ,σ 0
2

satisfies either condition (1), (2),
or (3), we know N1 < N0. Take w2 = wσ 1

1 ,σ 1
2
.

• Let S2 = {σ 2
1 , . . . , σ 2

N2
} ≡ δ(S1,w2). Since w2 = wσ 1

1 ,σ 1
2

satisfies either condition (1), (2),
or (3) we know N2 < N1. Take w3 = wσ 2

1 ,σ 2
2
.

.

.

.

Repeat until |Sm| = 1 for some m. Note that this must happen after a finite number of
steps since N = N0 is finite and N0 > N1 > N2 > · · · .

By this construction w = w1w2 . . .wm ∈ L(M) is a sync word for M . After observing w,
an observer knows the machine must be in state σm

1 . �

4.2 A Test for Exactness

We can now provide an algorithmic test for exactness using the characterization theorem
of exact machines. We begin with subalgorithms to test for topological distinctness and
path convergence of state pairs. Both are essentially the same algorithm and only a slight
modification of the deterministic finite-automata (DFA) table-filling algorithm to test for
pairs of equivalent states [16].

Algorithm 1 (Test States for Topological Distinctness)

1. Initialization: Create a table containing boxes for all pairs of distinct states (σk, σj ). Ini-
tially, all boxes are blank. Then,

Loop over distinct pairs (σk, σj )
Loop over x ∈ A

If {x ∈ L(M,σk) but x �∈ L(M,σj )} or {x ∈ L(M,σj ) but x �∈ L(M,σk)},
then mark box for pair (σk, σj ).

end
end

2. Induction: If δ(σk, x) = σk′ , δ(σj , x) = σj ′ , and the box for pair (σk′ , σj ′) is already
marked, then mark the box for pair (σk, σj ). Repeat until no more inductions are pos-
sible.
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Algorithm 2 (Test States for Path Convergence)
This algorithm is identical to Algorithm 1 except that the if-statement in the initialization
step is replaced with the following:

If x ∈ L(M,σk) ∩ L(M,σj ) and δ(σk, x) = δ(σj , x), then mark box for pair (σk, σj ).

With Algorithm 1 all pairs of topologically distinct states end up with marked boxes.
With Algorithm 2 all pairs of path convergent states end up with marked boxes. These facts
can be proved, respectively, by using induction on the length of the minimal distinguishing
or path converging word w for a given pair of states. The proofs are virtually identical to the
proof of the standard DFA table-filling algorithm, so the details have been omitted.

Note also that both of these are polynomial-time algorithms. Step (1) has run time
O(|A|N2). The inductions in Step (2), if done in a reasonably efficient fashion, can also
be completed in run time O(|A|N2). (See, e.g., the analysis of DFA table filling algorithm
in Ref. [16].) Therefore, the total run time of these algorithm is O(|A|N2).

Algorithm 3 (Test for Exactness)

1. Use Algorithm 1 to find all pairs of topologically distinct states.
2. Use Algorithm 2 to find all pairs of path convergent states.
3. Loop over all pairs of distinct states (σk, σj ) to check if they are either (i) topologically

distinct or (ii) path convergent. By Thm. 3, if all distinct pairs of states satisfy (i) or (ii)
or both, the machine is exact, and otherwise it is not.

This, too, is a polynomial-time algorithm. Steps (1) and (2) have run time O(|A|N2).
Step (3) has run time O(N2). Hence, the total run time for this algorithm is O(|A|N2).

5 Conclusion

We have analyzed the process of exact synchronization to finite-state ε-machines. In partic-
ular, we showed that for exact machines an observer synchronizes exponentially fast. As a
result, the average uncertainty hμ(L) in an observer’s predictions converges exponentially
fast to the machine’s entropy rate hμ—a phenomenon first reported for subshifts estimated
from maps of the interval [17]. Additionally, we found an efficient (polynomial-time) algo-
rithm to test ε-machines for exactness.

In Ref. [13] we similarly analyze asymptotic synchronization to nonexact ε-machines. It
turns out that qualitatively similar results hold. That is, U (L) and hμ(L) both converge to
their respective limits exponentially fast. However, the proof methods in the nonexact case
are substantially different.

In the future we plan to extend these results to more generalized model classes, such as to
ε-machines with a countable number of states and to nonunifilar hidden Markov machines.

Acknowledgements NT was partially supported on a VIGRE fellowship. The work was partially supported
by the Defense Advanced Research Projects Agency (DARPA) Physical Intelligence project via subcontract
No. 9060-000709. The views, opinions, and findings here are those of the authors and should not be in-
terpreted as representing the official views or policies, either expressed or implied, of the DARPA or the
Department of Defense.
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Fig. 6 A three-state ε-machine M with alphabet A = {a, b, c}

Fig. 7 The possibility machine M̃ for the three-state ε-machine M of Fig. 6. The state names have been
abbreviated for display purposes: e.g., (σ1, {σ1, σ2, σ3}) → (1,123)

Appendix A

We construct the possibility machine M̃ for the three-state ε-machine shown in Fig. 6. The
result is shown in Fig. 7, and the corresponding state-to-state transition matrix T̃ is given in
Fig. 8.
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 p12 0 p11 0 p13 0 0 0 0
p21 0 0 0 0 p23 0 0 0 0

0 0 p33 p31 0 0 0 0 0 0
0 0 0 0 p12 p13 0 p11 0 0
0 0 0 p21 0 0 0 0 0 p23
0 0 0 p31 0 0 p33 0 0 0
0 0 0 0 0 p33 0 p31 0 0

0 0 0 0 0 0 0 p11 p12 p13
0 0 0 0 0 0 0 p21 0 p23
0 0 0 0 0 0 0 p31 0 p33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 8 The state-to-state transition matrix T̃ for the possibility machine M̃ of Fig. 7. For visual clarity, we
have inserted dividing lines to explicitly partition the matrix T̃ into its 4 block subcomponents B (upper left),
B ′ (upper right), O (lower left), and T (lower right). The state ordering used is as follows: q1 = (1,123),
q2 = (2,123), q3 = (3,123), q4 = (1,13), q5 = (2,23), q6 = (3,13), q7 = (3,23), q8 = (1,1), q9 = (2,2),
and q10 = (3,3). The ijth component of the matrix T̃ is the probability that state qi transitions to state qj

Appendix B

We prove (19) in Sec. 3.2. (Restated here as Lemma 1.)

Lemma 1 For any exact ε-machine M (with two or more states),

lim
L→∞

‖πBBL‖1/L

1 = r(B). (B.1)

In what follows A denotes an arbitrary m × m matrix and −→v and −→w denote row m-
vectors. Unless otherwise specified, the entries of matrices and vectors are assumed to be
complex.

Definition 13 The (left) matrix p-norms (1 ≤ p ≤ ∞) are defined as:

‖A‖p = max{‖−→v A‖p : ‖−→v ‖p = 1}. (B.2)

The following facts will be used in our proof.

Fact 1 If A is a matrix with real nonnegative entries and −→v = (v1, . . . , vm) is a vector with
real nonnegative entries, then:

‖−→v A‖1 =
m∑

k=1

‖(vk
−→
e k)A‖1, (B.3)

where −→
e k = (0, . . . ,1, . . . ,0) is the kth standard basis vector.

Fact 2 Let A be a matrix with real nonnegative entries, let −→v = (v1, . . . , vm) be a vector
with complex entries, and let −→w = (w1, . . . ,wm) = (|v1|, . . . , |vm|). Then:

‖−→v A‖1 ≤ ‖−→w A‖1. (B.4)
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Fact 3 For any matrix A = {aij }, the matrix 1-norm is the largest absolute row sum:

‖A‖1 = max
i

m∑

j=1

|aij |. (B.5)

Fact 4 For any matrix A, L ∈ N, and 1 ≤ p ≤ ∞:

‖AL‖p ≤ ‖A‖L
p. (B.6)

Fact 5 For any matrix A and 1 ≤ p ≤ ∞:

lim
L→∞

‖AL‖1/L
p = r(A), (B.7)

where r(A) is the (left) spectral radius of A:

r(A) = max{|λ| : λ is a (left) eigenvalue of A}. (B.8)

(This is, of course, the same as the right spectral radius, but we emphasize the left eigenval-
ues for the proof of Lemma 1 below.)

Fact 1 can be proved by direct computation, and Fact 2 follows from the triangle in-
equality. Fact 3 is a standard result from linear algebra. Facts 4 and 5 are finite-dimensional
versions of more general results established in Ref. [18] for bounded linear operators on
Banach spaces.

Using these facts we now prove Lemma 1.

Proof By Fact 5 we know:

lim sup
L→∞

‖πBBL‖1/L

1 ≤ r(B). (B.9)

Thus, it suffices to show that:

lim inf
L→∞

‖πBBL‖1/L

1 ≥ r(B). (B.10)

Let us define the B-machine to be the restriction of the M̃ machine to its nonrecurrent
states. The state-to-state transition matrix for this machine is B . We call the states of this
machine B-states and refer to paths in the associated graph as B-paths. Note that the rows of
B = {bij } are substochastic:

∑

j

bij ≤ 1, (B.11)

for all i, with strict inequality for at least one value of i.
By the construction of the B-machine we know that for each of its states qj there exists

some initial state qi = qi(j) such that qj is accessible from qi(j). Define lj to be the length
of the shortest B-path from qi(j) to qj , and lmax = maxj lj . Let cj > 0 be the probability,
according to the initial distribution πB , of both starting in state qi(j) at time 0 and ending in
state qj at time lj :

cj = (πi(j)
−→
e i(j)B

lj )j .

Finally, let C1 = minj cj .
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Then, for any L > lmax and any state qj we have:

‖πBBL‖1 ≥ ‖πi(j)
−→
e i(j)B

L‖1 (B.12)

= ‖(πi(j)
−→
e i(j)B

lj )BL−lj ‖1 (B.13)

≥ ‖cj
−→
e jB

L−lj ‖1 (B.14)

≥ C1‖−→e jB
L−lj ‖1 (B.15)

≥ C1‖−→e jB
L‖1. (B.16)

(B.12) follows from Fact 1. The decomposition in (B.13) is possible since L > lmax ≥ lj .
(B.14) follows from Fact 1 and the definition of cj . (B.15) follows from the definition of C1.
Finally, (B.16) follows from Fact 3, Fact 4, and (B.11).

Now, take a normalized (left) eigenvector −→
y = (y1, . . . , yn) of B whose associated

eigenvalue is maximal. That is, ‖−→y ‖1 = 1, −→
y B = λ

−→
y , and |λ| = r(B). Define −→

z =
(z1, . . . , zn) = (|y1|, . . . , |yn|). Then, for any L ∈ N:

n∑

k=1

zk‖−→e kB
L‖1 = ‖−→z BL‖1 (B.17)

≥ ‖−→y BL‖1 (B.18)

= ‖λL−→
y ‖1 (B.19)

= |λ|L · ‖−→y ‖1 (B.20)

= r(B)L, (B.21)

where (B.17) follows from Fact 1 and (B.18) from Fact 2. Therefore, for each L we know
there exists some j = j (L) in {1, . . . , n} such that:

zj (L)‖−→e j (L)B
L‖1 ≥ r(B)L

n
. (B.22)

Now, r(B) may be 0, but we can still choose the j (L)’s such that zj (L) is never zero. And,
in this case, we may divide through by zj (L) on both sides of (B.22) to obtain, for each L:

‖−→e j (L)B
L‖1 ≥ r(B)L

n · zj (L)

≥ C2 · r(B)L, (B.23)

where C2 > 0 is defined by:

C2 = min
zj �=0

1

n · zj

.

Therefore, for any L > lmax we know:

‖πBBL‖1 ≥ C1 · ‖−→e j (L)B
L‖1 (B.24)

≥ C1 · (C2 · r(B)L
)

(B.25)

= C3 · r(B)L, (B.26)
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where C3 ≡ C1C2. (B.24) follows from (B.16) and (B.25) follows from (B.23). Finally, since
this holds for all L > lmax , we have:

lim inf
L→∞

‖πBBL‖1/L

1 ≥ lim inf
L→∞

(
C3 · r(B)L

)1/L

= r(B). (B.27)

�
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