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Abstract We investigate the relationship between the mixing times of the Glauber dynamics
of a statistical mechanical system with its thermodynamic equilibrium structure. For this we
consider the mean-field Blume-Capel model, one of the simplest statistical mechanical mod-
els that exhibits the following intricate phase transition structure: within a two-dimensional
parameter space there exists a curve at which the model undergoes a second-order, continu-
ous phase transition, a curve where the model undergoes a first-order, discontinuous phase
transition, and a tricritical point which separates the two curves. We determine the interface
between the regions of slow and rapid mixing. In order to completely determine the region
of rapid mixing, we employ a novel extension of the path coupling method, successfully
proving rapid mixing even in the absence of contraction between neighboring states.

Keywords Path coupling · Mixing times · Glauber dynamics · Large deviations ·
Blume-Capel model · Aggregate path coupling

1 Introduction

The notion of mixing times is fundamental in the study of stochastic processes and their
applications. In addition to its purely theoretical value, mixing times are widely used in
computational and physical sciences. In computer science, mixing times represent running
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times for randomized algorithms such as Metropolis-Hastings that are responsible for pro-
viding high accuracy solutions to a large class of problems where classical algorithms have
impractical running times. In physics, one important use of mixing times is to determine the
feasibility of simulating statistical mechanical systems via so-called Glauber dynamics.

An important question of mixing times for statistical mechanical models is its relation-
ship with the thermodynamic phase transition structure of the system. More specifically, as
a system undergoes an equilibrium phase transition with respect to some parameter; e.g.
temperature, how do the corresponding mixing times behave? This question has been well
studied with recent rigorous results for one class of statistical mechanical models, namely
those that undergo second-order, continuous phase transitions like the famous Ising model
[9, 15, 16]. For these models, it has been shown that the mixing times undergo a transi-
tion at precisely the thermodynamic phase transition point. However, for models that exhibit
the other type of phase transition: first-order, discontinuous; e.g. Potts model with q > 2
[8, 17] and the Blume-Capel model [1, 2, 5–7, 12] with weak interaction, as far as we know,
this question has not been previously addressed. In this paper, we prove that the mixing
time transition does not coincide with the thermodynamic equilibrium phase transition for a
model that exhibits a first-order, discontinuous phase transition.

First-order, discontinuous phase transitions are more intricate than their counterparts,
which makes rigorous analysis of these models traditionally more difficult. Furthermore, the
more complex phase transition structure causes the models to fall outside the scope of stan-
dard mixing time techniques including the so-called ‘path coupling’ method [3]. The path
coupling argument is a powerful tool used to prove rapid mixing for various Markov chains,
including the Glauber dynamics for statistical mechanical models that exhibit a second-
order, continuous phase transition. However, due to the intricacy of a first-order, discontin-
uous phase transition, the standard path coupling argument cannot be applied in all cases
because contraction between couplings of all neighboring states does not exist.

In this paper we prove the mixing time rates for the mean-field Blume-Capel (BC) model
[1, 2, 5–7], a statistical mechanical spin model ideally suited for the analysis of the relation-
ship between the thermodynamic equilibrium behavior and mixing times due to its intricate
phase transition structure. Specifically, the phase diagram of the BC model includes a curve
at which the model undergoes a second-order, continuous phase transition, a curve where the
model undergoes a first-order, discontinuous phase transition, and a tricritical point which
separates the two curves.

As mentioned above, in a subset of the first-order, discontinuous phase transition region
of the BC model, the standard path coupling method does not apply as it does throughout
the second-order, continuous phase transition region. Therefore, we apply an innovative new
method we call aggregate path coupling in order to prove rapid mixing for the BC model in
the entire first-order, discontinuous phase transition region. While the standard path coupling
method assumes contraction between every pair of states, our extended approach loosens this
condition and requires contraction for only certain pairs of states. This new method is not
restricted to only the BC model and can be applied to other statistical mechanical models
that undergo a first-order, discontinuous phase transition and moreover is general enough to
be a new tool in the theory of mixing times.

The paper is organized as follows. The mean-field Blume-Capel model is introduced
in Sect. 2. There we describe the equilibrium phase transition structure of the model and
state the large deviation principle of the magnetization. In Sect. 3, we define the Glauber
dynamics for the BC model and the notion of mixing times of Markov chains. In Sect. 4,
we introduce the path coupling for the BC model and prove the form of the mean coupling
distance. In Sect. 5, we use the standard path coupling to prove rapid mixing in the single
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phase region where the BC model undergoes a second-order, continuous phase transition. In
Sect. 6, we modify the path coupling argument to prove rapid mixing in the region where the
BC model undergoes a first-order, discontinuous phase transition. The slow mixing results
are stated and proved in Sect. 7.

2 Mean-Field Blume-Capel Model

Statistical mechanical models are defined in terms of the Hamiltonian function. For the
mean-field Blume-Capel model, the Hamiltonian function on the configuration space �n =
{−1,0,1}n is defined by

Hn,K(ω) =
n∑

j=1

ω2
j − K

n

(
n∑

j=1

ωj

)2

for configurations ω = (ω1, . . . ,ωn). Here K represents the interaction strength of the
model. Then for inverse temperature β , the mean-field Blume-Capel model is defined by
the sequence of probability measures

Pn,β,K(ω) = 1

Zn(β,K)
exp

[−βHn,K(ω)
]

where Zn(β,K) = ∑
ω∈�n exp[−βHn,K(ω)] is the normalizing constant called the partition

function.
In [12], using large deviation theory [11], the authors proved the phase transition structure

of the BC model. The analysis of Pn,β,K was facilitated by expressing it in the form of a
Curie-Weiss (mean-field Ising)-type model. This is done by absorbing the noninteracting
component of the Hamiltonian into the product measure Pn that assigns the probability 3−n

to each ω ∈ �n, obtaining

Pn,β,K(dω) = 1

Z̃n(β,K)
· exp

[
nβK

(
Sn(ω)

n

)2]
Pn,β(dω). (1)

In this formula Sn(ω) equals the total spin
∑n

j=1 ωj , Pn,β is the product measure on �n with
identical one-dimensional marginals

ρβ(dωj ) = 1

Z(β)
· exp(−βω2

j ) ρ(dωj ), (2)

Z(β) is the normalizing constant
∫

�
exp(−βω2

j )ρ(dωj ) = 1 + 2e−β , and Z̃n(β,K) is the
normalizing constant [Z(β)]n/Zn(β,K).

Although Pn,β,K has the form of a Curie-Weiss (mean-field Ising) model when rewritten
as in (1), it is much more complicated because of the β-dependent product measure Pn,β

and the presence of the parameter K . These complications introduce new features to the BC
model described above that are not present in the Curie-Weiss model [10].

The starting point of the analysis of the phase-transition structure of the BC model is
the large deviation principle (LDP) satisfied by the spin per site or magnetization Sn/n with
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respect to Pn,β,K . In order to state the form of the rate function, we introduce the cumulant
generating function cβ of the measure ρβ defined in (2); for t ∈ R this function is defined by

cβ(t) = log
∫

�

exp(tω1) ρβ(dω1) = log

[
1 + e−β(et + e−t )

1 + 2e−β

]
.

We also introduce the Legendre-Fenchel transform of cβ , which is defined for z ∈ [−1,1]
by

Jβ(z) = sup
t∈R

{tz − cβ(t)}

and is finite for z ∈ [−1,1]. Jβ is the rate function in Cramér’s theorem, which is the LDP
for Sn/n with respect to the product measures Pn,β [10, Theorem II.4.1] and is one of the
components of the proof of the LDP for Sn/n with respect to the BC model Pn,β,K . This
LDP is stated in the next theorem and is proved in Theorem 3.3 in [12].

Theorem 2.1 For all β > 0 and K > 0, with respect to Pn,β,K , Sn/n satisfies the large
deviation principle on [−1,1] with exponential speed n and rate function

Iβ,K(z) = Jβ(z) − βKz2 − inf
y∈R

{Jβ(y) − βKy2}.

In other words, for any closed subset F ,

lim sup
n→∞

1

n
logPn,β,K{Sn/n ∈ F } ≤ −Iβ,K(F ) (3)

and for any open subset G,

lim inf
n→∞

1

n
logPn,β,K{Sn/n ∈ G} ≥ −Iβ,K(G) (4)

where Iβ,K(A) = infz∈A Iβ,K(z).

The LDP in the above theorem implies that those z ∈ [−1,1] satisfying Iβ,K(z) > 0 have
an exponentially small probability of being observed as n → ∞. Hence we define the set of
equilibrium macrostates by

Ẽβ,K = {z ∈ [−1,1] : Iβ,K(z) = 0}.

For z ∈ R we define

Gβ,K(z) = βKz2 − cβ(2βKz) (5)

and as in [13] and [14] refer to it as the free energy functional of the model. The calcula-
tion of the zeroes of Iβ,K—equivalently, the global minimum points of Jβ,K(z) − βKz2—is
greatly facilitated by the following observations made in Proposition 3.4 in [12]:

(1) The global minimum points of Jβ,K(z)−βKz2 coincide with the global minimum points
of Gβ,K , which are much easier to calculate.

(2) The minimum values minz∈R{Jβ,K(z) − βKz2} and minz∈R{Gβ,K(z)} coincide.
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Fig. 1 The free-energy functional Gβ,K for β ≤ βc

Item (1) gives the alternate characterization that

Ẽβ,K = {z ∈ [−1,1] : z minimizes Gβ,K(z)}. (6)

The free energy functional Gβ,K exhibits two distinct behaviors depending on whether
β ≤ βc = log 4 or β > βc . In the first case, the behavior is similar to the Curie-Weiss (mean-
field Ising) model. Specifically, there exists a critical value K(2)

c (β) defined in (7) such that
for K < K(2)

c (β), Gβ,K has a single minimum point at z = 0. At the critical value K =
K(2)

c (β), Gβ,K develops symmetric non-zero minimum points and a local maximum point
at z = 0. This behavior corresponds to a continuous, second-order phase transition and is
illustrated in Fig. 1.

On the other hand, for β > βc , Gβ,K undergoes two transitions at the values denoted by
K1(β) and K(1)

c (β). For K < K1(β), Gβ,K again possesses a single minimum point at z = 0.
At the first critical value K1(β), Gβ,K develops symmetric non-zero local minimum points
in addition to the global minimum point at z = 0. These local minimum points are referred
to as metastable states and we refer to K1(β) as the metastable critical value. This value is
defined implicitly in Lemma 3.9 of [12] as the unique value of K for which there exists a
unique z > 0 such that

G′
β,K1(β)(z) = 0 and G′′

β,K1(β)(z) = 0.

As K increases from K1(β) to K(1)
c (β), the local minimum points decrease until at K =

K(1)
c (β), the local minimum points reach zero and Gβ,K possesses three global minimum

points. Therefore, for β > βc , the BC model undergoes a phase transition at K = K(1)
c (β),

which is defined implicitly in [12]. Lastly, for K > K(1)
c (β), the symmetric non-zero mini-

mum points drop below zero and thus Gβ,K has two symmetric non-zero global minimum
points. This behavior corresponds to a discontinuous, first-order phase transition and is il-
lustrated in Fig. 2.

In the next two theorems, the structure of Ẽβ,K corresponding to the behavior of Gβ,K

just described is stated which depends on the relationship between β and the critical value
βc = log 4. We first describe Ẽβ,K for 0 < β ≤ βc and then for β > βc . In the first case
Ẽβ,K undergoes a continuous bifurcation as K increases through the critical value K(2)

c (β)

defined in (7); physically, this bifurcation corresponds to a second-order phase transition.
The following theorem is proved in Theorem 3.6 in [12].

Theorem 2.2 For 0 < β ≤ βc , we define

K(2)
c (β) = 1

2βc′′
β(0)

= eβ + 2

4β
. (7)
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Fig. 2 The free-energy functional Gβ,K for β > βc

For these values of β , Ẽβ,K has the following structure.

(a) For 0 < K ≤ K(2)
c (β), Ẽβ,K = {0}.

(b) For K > K(2)
c (β), there exists z(β,K) > 0 such that Ẽβ,K = {±z(β,K)}.

(c) z(β,K) is a positive, increasing, continuous function for K > K(2)
c (β), and as

K → (K(2)
c (β))+, z(β,K) → 0. Therefore, Ẽβ,K exhibits a continuous bifurcation at

K(2)
c (β).

For β ∈ (0, βc), the curve (β,K(2)
c (β)) is the curve of second-order critical points. As we

will see in a moment, for β ∈ (βc,∞) the BC model also has a curve of first-order critical
points, which we denote by (β,K(1)

c (β)).
We now describe Ẽβ,K for β > βc. In this case Ẽβ,K undergoes a discontinuous bifurcation

as K increases through an implicitly defined critical value. Physically, this bifurcation cor-
responds to a first-order phase transition. The following theorem is proved in Theorem 3.8
in [12].

Theorem 2.3 For all β > βc , Ẽβ,K has the following structure in terms of the quantity
K(1)

c (β) defined implicitly for β > βc on page 2231 of [12].

(a) For 0 < K < K(1)
c (β), Ẽβ,K = {0}.

(b) There exists z(β,K(1)
c (β)) > 0 such that Ẽ

β,K
(1)
c (β)

= {0,±z(β,K(1)
c (β))}.

(c) For K > K(1)
c (β) there exists z(β,K) > 0 such that Ẽβ,K = {±z(β,K)}.

(d) z(β,K) is a positive, increasing, continuous function for K ≥ K(1)
c (β), and as

K → K(1)
c (β)+, z(β,K) → z(β,K(1)

c (β)) > 0. Therefore, Ẽβ,K exhibits a discontinu-
ous bifurcation at K(1)

c (β).

The phase diagram of the BC model is depicted in Fig. 3. The LDP stated in Theorem 2.1
implies the following weak convergence result used in the proof of rapid mixing in the first-
order, discontinuous phase transition region. It is part (a) of Theorem 6.5 in [12].
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Fig. 3 Equilibrium phase
transition structure of the
mean-field Blume-Capel model

Theorem 2.4 For β and K for which Ẽβ,K = {0},
Pn,β,K{Sn/n ∈ dx} �⇒ δ0 as n → ∞.

We end this section with a final result that was not included in the original paper [12]
but will be used in the proof of the slow mixing result for the BC model. The result states
that not only do the global minimum point of Gβ,K and Iβ,K coincide, but so do the local
minimum points.

Lemma 2.5 In the case where Gβ,K and Iβ,K are strictly convex at their minimum points, a
point z̃ is a local minimum point of Gβ,K if and only if it is a local minimum point of Iβ,K .

Proof Assume that z̃ is a local minimum point of Gβ,K . Then z̃ is a critical point of Gβ,K

which implies that z̃ = c′
β(2βKz̃). By the theory of Legendre-Fenchel transforms, J ′

β(z) =
(c′

β)−1(z) and thus

I ′
β,K(z̃) = J ′

β(z̃) − 2βKz̃ = (c′
β)−1(z̃) − 2βKz̃ = 0.

Next, since z̃ is a local minimum point of Gβ,K ,

G′′
β,K(z̃) > 0 ⇐⇒ c′′

β(2βKz̃) <
1

2βK
.

Therefore,

I ′′
β,K(z̃) = J ′′

β (z̃) − 2βK = 1

c′′
β(2βKz̃)

− 2βK > 0

and we conclude that z̃ is a local minimum point of Iβ,K . The other direction is obtained by
reversing the argument. �

3 Glauber Dynamics and Mixing Times

The Markov chain for statistical mechanical models studied in this paper is called the
Glauber dynamics, one of the most commonly used physical dynamics for these models.
See [4] for more on Glauber dynamics. For the BC model, the Glauber dynamics evolve by
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selecting a vertex i at random and updating the spin at i according to the distribution Pn,β,K ,
conditioned to agree with the spins at all vertices not equal to i. If the current configuration
is ω and vertex i is selected, then the chance of the spin at i is updated to +1 is equal to

p+1(ω, i) = e2βKS̃(ω,i)/n

e2βKS̃(ω,i)/n + eβ−(βK)/n + e−2βKS̃(ω,i)/n
(8)

where S̃(ω, i) = ∑
j �=i ωj is the total spin of the neighboring vertices of i. Similarly, the

probabilities of i updating to 0 and −1 are

p0(ω, i) = eβ−(βK)/n

e2βKS̃(ω,i)/n + eβ−(βK)/n + e−2βKS̃(ω,i)/n
(9)

and

p−1(ω, i) = e−2βKS̃(ω,i)/n

e2βKS̃(ω,i)/n + eβ−(βK)/n + e−2βKS̃(ω,i)/n
. (10)

p+1(ω, i) is increasing with respect to S̃(ω, i), p−1(ω, i) is decreasing with respect to
S̃(ω, i), and p0(ω, i) is decreasing for S̃(ω, i) > 0 and increasing for S̃(ω, i) < 0.

The mixing time is a measure of the convergence rate of a Markov chain to its stationary
distribution and is defined in terms of the total variation distance between two distributions
μ and ν defined by

‖μ − ν‖T V = sup
A⊂�

|μ(A) − ν(A)| = 1

2

∑

x∈�

|μ(x) − ν(x)|.

Given the convergence of the Markov chain, we define the maximal distance to stationary to
be

d(t) = max
x∈�

‖P t(x, ·) − π‖T V

where P t(x, ·) is the transition probability of the Markov chain starting in configuration x

and π is its stationary distribution. Then, given ε > 0, the mixing time of the Markov chain
is defined by

tmix(ε) = min{t : d(t) ≤ ε}.
In general, rigorous analysis of mixing times is very difficult and the proof of exact mixing
time asymptotics of even some basic chains remain elusive. See [15] for a detailed survey
on the theory of mixing times.

Rates of mixing times are generally categorized into two groups: rapid mixing which
implies the mixing time exhibits polynomial growth with respect to the system size, and
slow mixing which implies that the mixing time grows exponentially with the system size.
Determining where a model undergoes rapid mixing is of major importance, as it is in this
region that the application of the dynamics is physically feasible.

A classical tool in proving rapid mixing for Markov chains defined on graphs, including
the Glauber dynamics of statistical mechanical models, is the path coupling technique [3].
It will be shown that this technique can be directly applied to the BC model in the second-
order, continuous phase transition region but fails in a subset of the first-order, discontinuous
phase transition region. For the latter region, we develop an extension of the path coupling
method we call aggregate path coupling to prove rapid mixing. The path coupling method
for the BC model is introduced in the next section.
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4 Path Coupling

The basis to the path coupling argument used to prove rapid mixing is the following variation
of the coupling inequality.

Lemma 4.1 Let μ and ν be two probability distributions on �. Then

‖μ − ν‖T V = inf{P {X �= Y } : (X,Y ) is a coupling of μ and ν}.

This lemma implies that the total variation distance to stationarity of the Glauber dynam-
ics Markov chain of the BC model can be bounded above by the probability P (Xt �= Yt )

for a coupling chain (Xt , Yt ) starting at some (X0, Y0) = (σ, τ ). The path coupling method
is used to prove rapid mixing in the situations when probability P (Xt �= Yt ) contracts with
each time step regardless of (σ, τ ).

The idea of the path coupling method is to view a coupling that starts in configurations σ

and τ as a sequence of couplings that start in neighboring configurations (xi, xi+1) such that
(σ = x0, x1, x2, . . . , xr = τ). Then the contraction of the original coupling distance can be
obtained by proving contraction between neighboring configurations which is often easier
to show. See [15] for more on path coupling.

We begin by setting up the coupling rules for the Glauber dynamics of the mean-field
Blume-Capel model. Define the path metric ρ on �n = {−1,0,1}n by

ρ(σ, τ ) =
n∑

j=1

1{σj �= τj }, (11)

the number of sites at which the configurations σ and τ differ.
Let σ and τ be two configurations with ρ(σ, τ ) = 1; i.e. σ and τ are neighboring con-

figurations. The spins of σ and τ agree everywhere except at a single vertex i. Assume that
σi < τi . We next describe the path coupling (X,Y ) of one step of the Glauber dynamics
starting in configuration σ with one starting in configuration τ . Pick a vertex k uniformly
at random. We use a single random variable as the common source of noise to update both
chains, so the two chains agree as often as possible. In particular, let U be a uniform random
variable on [0,1] and set

X(k) =
⎧
⎨

⎩

−1 if 0 ≤ U ≤ p−1(σ, k),

0 if p−1(σ, k) < U ≤ p−1(σ, k) + p0(σ, k),

+1 if p−1(σ, k) + p0(σ, k) < U ≤ 1

and

Y (k) =
⎧
⎨

⎩

−1 if 0 ≤ U ≤ p−1(τ, k),

0 if p−1(τ, k) < U ≤ p−1(τ, k) + p0(τ, k),

+1 if p−1(τ, k) + p0(τ, k) < U ≤ 1.

Set X(j) = σj and Y (j) = τj for j �= k.
Since σi < τi , for all j �= i, S̃(σ, j) < S̃(τ, j) and thus

p+1(τ, k) > p+1(σ, k) and p−1(τ, k) < p−1(σ, k).
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The path metric ρ on the coupling above takes on the following possible values,

ρ(X,Y ) =
⎧
⎨

⎩

0 if k = i,

1 if k �= i and both chains updates the same,

2 if k �= i and the chains update differently.

The application of the path coupling technique to prove rapid mixing is dependent
on whether the mean coupling distance with respect to the path metric ρ, denoted by
Eσ,τ [ρ(X,Y )], contracts over all pairs of neighboring configurations.

In the lemma below and following corollary, we derive a working form for the mean
coupling distance.

Lemma 4.2 Let ρ be the path metric defined in (11) and (X,Y ) be the path coupling of one
step of the Glauber dynamics of the mean-field Blume-Capel model where X and Y start in
neighboring configurations σ and τ . Define

ϕβ,K(x) = 2 sinh(
2βK

n
x)

2 cosh(
2βK

n
x) + eβ− βK

n

. (12)

Then

Eσ,τ [ρ(X,Y )] = n − 1

n
+ (n − 1)

n
[ϕβ,K(Sn(τ )) − ϕβ,K(Sn(σ ))] + O

(
1

n2

)
.

Proof Let n−1, n0 and n+1 denote the number of −1,0 and +1 spins, respectively, in con-
figuration σ , not including the spin at vertex i, where the configurations differ. Note that
n−1 + n0 + n+1 = n − 1.

Define ε(−1) to be the probability that X and Y update differently when the chosen
vertex k �= i is a −1 spin. Similarly, define ε(0) and ε(+1). Then the mean coupling distance
can be expressed as

Eσ,τ [ρ(X,Y )] = n−1

n
(1 − ε(−1)) + n0

n
(1 − ε(0)) + n+1

n
(1 − ε(+1))

+ 2
[n−1

n
ε(−1) + n0

n
ε(0) + n+1

n
ε(+1)

]

= n − 1

n
+ n−1

n
ε(−1) + n0

n
ε(0) + n+1

n
ε(+1).

The probability that X and Y update differently when the chosen vertex k �= i is a −1 spin
is given by

ε(−1) = [
p−1(σ, k) − p−1(τ, k)

] + [
(p−1(σ, k) + p0(σ, k)) − (p−1(τ, k) + p0(τ, k))

]

= [p+1(τ, k) − p+1(σ, k)] + [
p−1(σ, k) − p−1(τ, k)

]

= [p+1(τ, k) − p−1(τ, k)] + [
p−1(σ, k) − p+1(σ, k)

]

= 2 sinh(
2βK

n
(Sn(τ ) + 1))

2 cosh(
2βK

n
(Sn(τ ) + 1)) + eβ− βK

n

− 2 sinh(
2βK

n
(Sn(σ ) + 1))

2 cosh(
2βK

n
(Sn(σ ) + 1)) + eβ− βK

n
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= ϕβ,K((Sn(τ ) + 1)) − ϕβ,K((Sn(σ ) + 1))

= ϕβ,K(Sn(τ )) − ϕβ,K(Sn(σ )) + O

(
1

n2

)
.

Similarly, we have

ε(0) = ϕβ,K(Sn(τ )) − ϕβ,K(Sn(σ ))

and

ε(+1) = ϕβ,K((Sn(τ ) − 1)) − ϕβ,K((Sn(σ ) − 1)) = ϕβ,K(Sn(τ )) − ϕβ,K(Sn(σ )) + O

(
1

n2

)

and the proof is complete. �

For cβ defined in (3), we have

ϕβ,K(x) = c′
β

(
2βK

n
x

)
(1 + O(1/n))

which yields the following corollary.

Corollary 4.3 Let ρ be the path metric defined in (11) and (X,Y ) be the path coupling
where X and Y start in neighboring configurations σ and τ . Then

Eσ,τ [ρ(X,Y )] = n − 1

n
+ (n − 1)

n

[
c′
β

(
2βK

Sn(τ)

n

)
− c′

β

(
2βK

Sn(σ )

n

)]
+ O

(
1

n2

)
.

By the above corollary, we conclude that the mean coupling distance of a coupling start-
ing in neighboring configurations contracts; i.e. Eσ,τ [ρ(X,Y )] < ρ(σ, τ) = 1, if

[
c′
β

(
2βK

Sn(τ)

n

)
− c′

β

(
2βK

Sn(σ )

n

)]

≈ 2βK

[
Sn(τ )

n
− Sn(σ )

n

]
c′′
β

(
2βK

Sn(σ )

n

)
<

1

n − 1
.

Since σ and τ are neighboring configurations and Sn(τ ) > Sn(σ ), this is equivalent to

c′′
β

(
2βK

Sn(σ )

n

)
<

1

2βK
. (13)

Therefore, contraction of the mean coupling distance, and thus rapid mixing, depends on
the concavity behavior of the function c′

β . This is also precisely what determines the type
of thermodynamic equilibrium phase transition (continuous, second-order versus discon-
tinuous, first-order) that is exhibited by the mean-field Blume-Capel model. We state the
concavity behavior of c′

β in the next theorem which is proved in Theorem 3.5 in [12]. The
results of the theorem are depicted in Fig. 4

Theorem 4.4 For β > βc = log 4 define

wc(β) = cosh−1

(
1

2
eβ − 4e−β

)
≥ 0. (14)
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Fig. 4 Behavior of c′
β(w) for large and small β

The following conclusions hold.

(a) For 0 < β ≤ βc , c′
β(w) is strictly concave for w > 0.

(b) For β > βc , c′
β(w) is strictly convex for 0 < w < wc(β) and c′

β(w) is strictly concave
for w > wc(β).

By part (a) of the above theorem, for β ≤ βc , c′′
β(x) ≤ c′′

β(0) = 1/(2βK(2)
c (β)). There-

fore, by (13), the mean coupling distance contracts between all pairs of neighboring states
whenever K < K(2)

c (β).
By contrast, for β > βc , we will show that rapid mixing occurs whenever K < K1(β)

where K1(β) is the metastable critical value introduced in Sect. 2 and depicted in Fig. 2.
However, since the supremum sup[−1,1] c′′

β(x) > 1
2βK1(β)

, the condition K < K1(β) is not
sufficient for (13) to hold. That is, K < K1(β) does not imply the contraction of the mean
coupling distance between all pairs of neighboring states. However, we prove rapid mixing
for all K < K1(β) in Sect. 6 by using an extension to the path coupling method that we refer
to as aggregate path coupling.

We now prove the mixing times for the mean-field Blume-Capel model, which varies
depending on the parameter values (β,K) and their position with respect to the thermody-
namic phase transition curves. We begin with the case β ≤ βc where the model undergoes a
continuous, second-order phase transition and K ≤ K(2)

c (β) which corresponds to the single
phase region.

5 Rapid Mixing for Continuous Phase Transition Region

We begin by stating the standard path coupling argument used to prove rapid mixing for the
mean-field Blume-Capel model in the continuous, second-order phase transition region. The
result is proved in Corollary 14.7 of [15].

Theorem 5.1 Suppose the state space � of a Markov chain is the vertex set of a graph
with path metric ρ. Suppose that for each edge {σ, τ } there exists a coupling (X,Y ) of the
distributions P (σ, ·) and P (τ, ·) such that

Eσ,τ [ρ(X,Y )] ≤ ρ(σ, τ )e−α for some α > 0.
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Then

tmix(ε) ≤
⌈− log(ε) + log(diam(�))

α

⌉
.

In this section, we assume β ≤ βc which implies that the BC model undergoes a con-
tinuous, second-order phase transition at K = K(2)

c (β) defined in (7). By Theorem 4.4, for
β ≤ βc , c′

β(x) is concave for x > 0. See the first graph of Fig. 4 as reference. We next state
and prove the rapid mixing result for the mean-field Blume-Capel model in the second-order,
continuous phase transition regime.

Theorem 5.2 Let tmix(ε) be the mixing time for the Glauber dynamics of the mean-field
Blume-Capel model on n vertices and K(2)

c (β) the continuous phase transition curve defined
in (7). Then for β ≤ βc = log 4 and K < K(2)

c (β),

tmix(ε) ≤ n

α
(logn + log(1/ε))

for any α ∈ (0,
K

(2)
c (β)−K

K
(2)
c (β)

) and n sufficiently large.

Proof Let (X,Y ) be a coupling of the Glauber dynamics of the BC model that begin in
neighboring configurations σ and τ with respect to the path metric ρ defined in (11). By
Corollary 4.3 of Lemma 4.2,

Eσ,τ [ρ(X,Y )] = 1 −
(

1

n
− (n − 1)

n

[
c′
β

(
2βK

Sn(τ)

n

)
− c′

β

(
2βK

Sn(σ )

n

)])
+ O

(
1

n2

)
.

Observe that c′′
β is an even function and that for β ≤ βc, supx c′′

β(x) = c′′
β(0). Therefore, by

the mean value theorem and Theorem 2.2,

Eσ,τ [ρ(X,Y )] ≤ 1 − [1 − (n − 1)(2βK/n)c′′
β(0)]

n
+ O

(
1

n2

)

≤ exp

{
−1 − 2βKc′′

β(0)

n
+ O

(
1

n2

)}

= exp

{
1

n

(
K(2)

c (β) − K

K
(2)
c (β)

)
+ O

(
1

n2

)}

< e−α/n

for any α ∈ (0,
K

(2)
c (β)−K

K
(2)
c (β)

) and n sufficiently large. Thus, for K < K(2)
c (β), we can apply

Theorem 5.1, where the diameter of the configuration space of the BC model �n is n, to
complete the proof. �

6 Rapid Mixing for Discontinuous Phase Transition Region

Here we consider the region β > βc , where the mean-field Blume-Capel model undergoes
a first-order discontinuous phase transition. In this region, the function c′

β(x) which deter-
mines whether the mean coupling distance contracts (Corollary 4.3) is no longer strictly
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concave for x > 0 (Theorem 4.4). See the second graph in Fig. 4 for reference. We will
show that rapid mixing occurs whenever K < K1(β) where K1(β) is the metastable critical
value defined in Sect. 2 and depicted in Fig. 2.

As shown in Sect. 4, in order to apply the standard path coupling technique of Theo-
rem 5.1, we need the inequality (13) to hold for all values of Sn(σ ) and thus sup[−1,1] c′′

β(x) <
1

2βK
. However since sup[−1,1] c′′

β(x) > 1
2βK1(β)

, the condition K < K1(β) is not sufficient for
the contraction of the mean coupling distance between all pairs of neighboring states which
is required to prove rapid mixing using the standard path coupling technique stated in The-
orem 5.1.

In order to prove rapid mixing in the region where β > βc and K < K1(β), we take ad-
vantage of the result in Theorem 2.4 which states the weak convergence of the magnetization
Sn/n to a point-mass at the origin. Thus, in the coupling of the dynamics, the magnetization
of the process that starts at equilibrium will stay mainly near the origin. As a result, for two
starting configurations σ and τ , one of which has near-zero magnetization (Sn(σ )/n ≈ 0),
the mean coupling distance of a coupling starting in these configurations will be the ag-
gregate of the mean coupling distances between neighboring states along a minimal path
connecting the two configurations. Although not all pairs of neighbors in the path will con-
tract, we show that in the aggregate, contraction between the two configurations still holds.

In the next lemma we prove contraction of the mean coupling distance in the aggregate
and then the rapid mixing result for the mean-field Blume-Capel model is proved in the
theorem following the lemma by applying the new aggregate path coupling method.

Lemma 6.1 Let (X,Y ) be a coupling of one step of the Glauber dynamics of the BC model
that begin in configurations σ and τ , not necessarily neighbors with respect to the path
metric ρ defined in (11). Suppose β > βc and K < K1(β). Then for any α ∈ (0,

K1(β)−K

K1(β)
)

there exists an ε > 0 such that, asymptotically as n → ∞,

Eσ,τ [ρ(X,Y )] ≤ e−α/nρ(σ, τ ) (15)

whenever |Sn(σ )| < εn.

Proof Observe that for β > βc and K < K1(β),

|c′
β(x)| ≤ |x|

2βK1(β)
for all x.

We will show that for a given α′ ∈ ( 1
2βK1(β)

, 1−α
2βK

), there exists ε > 0 such that

c′
β(x) − c′

β(x0) ≤ α′(x − x0) whenever |x0| < ε (16)

as c′
β(x) is a continuously differentiable increasing odd function and c′

β(0) = 0.
In order to show (16), observe that c′′

β(0) = 1

2βK
(2)
c (β)

< 1
2βK1(β)

, and since c′′
β is continu-

ous, there exists a δ > 0 such that

c′′
β(x) < α′ whenever |x| < δ.

The mean value theorem implies that

c′
β(x) − c′

β(x0) < α′(x − x0) for all x0, x ∈ (−δ, δ).
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Now, let ε = α′−1/(2βK1(β))

α′+1/(2βK1(β))
δ < δ. Then for any |x0| < ε and |x| ≥ δ,

|c′
β(x) − c′

β(x0)| ≤ |x| + |x0|
2βK1(β)

≤ (1 + ε/δ)|x|
2βK1(β)

= |x − x0|
2βK1(β)

· 1 + ε/δ

|1 − x0/x|

≤ |x − x0|
2βK1(β)

· 1 + ε/δ

1 − ε/δ

= α′|x − x0|.

Without loss of generality suppose that Sn(σ ) < Sn(τ ). Let (σ = x0, x1, . . . , xr = τ) be
a path connecting σ to τ and monotone increasing in ρ such that (xi−1, xi) are neighboring
configurations. Here r = ρ(σ, τ ). Then by Corollary 4.3 of Lemma 4.2 and (16), we have
for |Sn(σ )| < εn and asymptotically as n → ∞,

Eσ,τ [ρ(X,Y )] ≤
r∑

i=1

Exi−1,xi
[ρ(Xi−1,Xi)]

= (n − 1)

n
ρ(σ, τ ) + (n − 1)

n

[
c′
β

(
2βK

n
Sn(τ )

)
− c′

β

(
2βK

n
Sn(σ )

)]

+ ρ(σ, τ ) · O
(

1

n2

)

≤ (n − 1)

n
ρ(σ, τ ) + (n − 1)

n
(Sn(τ ) − Sn(σ ))

2βKα′

n
+ ρ(σ, τ ) · O

(
1

n2

)

≤ ρ(σ, τ )

[
1 −

(
1 − 2βKα′

n

)
+ O

(
1

n2

)]

≤ e−α/nρ(σ, τ ).

This completes the proof. �

Theorem 6.2 Let tmix(ε) be the mixing time for the Glauber dynamics of the mean-field
Blume-Capel model on n vertices and K1(β) be the metastable critical point. Then, for
β > βc and K < K1(β),

tmix(ε) ≤ n

α
(logn + log(2/ε))

for any α ∈ (0,
K1(β)−K

K1(β)
) and n sufficiently large.

Proof Let (Xt , Yt ) be a coupling of the Glauber dynamics of the BC model such that

Y0
dist= Pn,β,K , the stationary distribution. For a given α ∈ (0,

K1(β)−K

K1(β)
), let ε be as in

Lemma 6.1. For sufficiently large n,
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‖P t(X0, ·) − Pn,β,K‖T V ≤ P {Xt �= Yt }
= P {ρ(Xt , Yt ) ≥ 1}
≤ E[ρ(Xt , Yt )]
= E[E[ρ(Xt , Yt ) |Xt−1, Yt−1]]
≤ E[E[ρ(Xt , Yt ) |Xt−1, Yt−1] | |Sn(Yt−1)| < εn]

· P {|Sn(Yt−1)| < εn} + nP {|Sn(Yt−1)| ≥ εn}.
By iterating (15), it follows that

‖P t(X0, ·) − Pn,β,K‖T V ≤ e−α/n
E[ρ(Xt−1, Yt−1) | |Sn(Yt−1)| < εn]

· P {|Sn(Yt−1)| < εn} + nP {|Sn(Yt−1)| ≥ εn}
≤ e−α/n

E[ρ(Xt−1, Yt−1)] + nP {|Sn(Yt−1)| ≥ εn}
...

...

≤ e−αt/n
E[ρ(X0, Y0)] + n

t−1∑

s=0

P {|Sn(Ys)| ≥ εn}

= e−αt/n
E[ρ(X0, Y0)] + ntPn,β,K{|Sn/n| ≥ ε}

≤ ne−αt/n + ntPn,β,K{|Sn/n| ≥ ε}.
We recall the result in Theorem 2.4 that for β > βc and K < K1(β)

Pn,β,K{Sn/n ∈ dx} �⇒ δ0 as n → ∞.

Moreover, for any γ > 1 and n sufficiently large, the LDP stated in Theorem 2.1 implies
that

‖P t(X0, ·) − Pn,β,K‖T V ≤ ne−αt/n + ntPn,β,K{|Sn/n| ≥ ε}
< ne−αt/n + tne

− n
γ Iβ,K (ε)

.

For t = n
α
(logn + log(2/ε)), the above right-hand side converges to ε/2 as n → ∞. �

7 Slow Mixing

We complete our mixing time analysis of the mean-field Blume-Capel model by determining
the slow mixing region of the (β,K) parameter space for both the continuous, second-order
and discontinuous, first-order phase transition regions. To prove slow mixing for the BC
model, we use the bottleneck or Cheeger constant argument which we state in the theorem
below. The theorem is an application of Theorem 7.3 in [15] to the BC model.

Theorem 7.1 For two configurations ω and τ , define the edge measure Q as follows:

Q(ω, τ) = Pn,β,K(ω)P (ω, τ) and Q(A,B) =
∑

ω∈A,τ∈B

Q(ω, τ).
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Here P (ω, τ) is the transition probability corresponding to the Glauber dynamics of the
mean-field Blume-Capel model. The bottleneck ratio of the set S is defined by

�(S) = Q(S,Sc)

Pn,β,K(S)
and �∗ = min

S:Pn,β,K (S)≤ 1
2

�(S).

Under these assumptions, we have

tmix = tmix(1/4) ≥ 1

4�∗
.

The next lemma states that bottlenecks, and thus slow mixing, occurs for the BC model
whenever the free energy functional Gβ,K has a positive minimum point.

Lemma 7.2 Suppose the free energy functional Gβ,K defined in (5) has a positive minimum
(either local or global) point. Then there exists a positive constant b and a strictly positive
function r(β,K) such that

tmix ≥ ber(β,K)n.

Proof Suppose Gβ,K has a minimum (either local or global) point at z̃ > 0. Let z′ be the
corresponding local maximum point of Gβ,K such that 0 ≤ z′ < z̃. Define the bottleneck set

A =
{
ω : z′ <

Sn(ω)

n
≤ 1

}
.

Since z′ ≥ 0, by the symmetry of Gβ,K , Pn,β,K(A) ≤ 1
2 . With respect to the Glauber dy-

namics of the BC model, in order to leave the set A in one step of the chain, the current
configuration must lie in one of the two boundary sets

A1 =
{
ω : Sn(ω)

n
= z′ + 1

n

}
or A2 =

{
ω : Sn(ω)

n
= z′ + 2

n

}
.

We take n sufficiently large so that z′ + 2/n < z̃.
For any γ > 1, the large deviations upper bound (3) implies that the edge measure Q for

the bottleneck set A satisfies

Q(A,Ac) ≤ Pn,β,K(A1) + Pn,β,K(A2) < e
− n

γ Iβ,K (z′+ 2
n )

for n large enough. Moreover, since the LDP implies that Pn,β,K(A) > e−nγ Iβ,K (z̃), the bot-
tleneck ratio satisfies

�(A) < 2e−n[γ −1Iβ,K (z′+ 2
n )−γ Iβ,K (z̃)],

all for a given γ > 1 and n large enough. Lastly, by Lemma 2.5 z̃ is a local minimum point
of Iβ,K since it is a local minimum point of Gβ,K , and thus Iβ,K(z′) > Iβ,K(z̃) and the proof
is complete by Theorem 7.1. �

Next we state the slow mixing result for the mean-field Blume-Capel model. The result
follows from Lemma 7.2 and the region in the (β,K) parameter space at which the free-
energy functional Gβ,K possesses a positive minimum point. These regions were determined
in [12] and depicted in Figs. 1 and 2.
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Fig. 5 Mixing times and
equilibrium phase transition
structure of the mean-field
Blume-Capel model

Corollary 7.3 Let tmix = tmix(1/4) be the mixing time for the Glauber dynamics of the mean-
field Blume-Capel model on n vertices. For (a) β ≤ βc and K > K(2)

c (β), and (b) β > βc and
K > K1(β), there exists a positive constant b and a strictly positive function r(β,K) such
that

tmix ≥ ber(β,K)n.

We summarize the mixing time results for the mean-field Blume-Capel model and its re-
lationship to the model’s thermodynamic phase transition structure in Fig. 5. As shown in the
figure, in the second-order, continuous phase transition region (β ≤ βc) for the BC model,
the mixing time transition coincides with the equilibrium phase transition. This is consis-
tent with other models that exhibit this type of phase transition. However, in the first-order,
discontinuous phase transition region (β > βc) the mixing time transition occurs below the
equilibrium phase transition at the metastable critical value.
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