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Abstract We consider a system of N bosons interacting through a two-body potential with,
possibly, Coulomb-type singularities. We show that the difference between the many-body
Schrodinger evolution in the mean-field regime and the effective nonlinear Hartree dynamics
is at most of the order 1/N, for any fixed time. The N-dependence of the bound is optimal.
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1 Introduction

A system of N bosons in three dimensions is described by ¥y € L2 (R*Y,dx, ...dxy),
the subspace of LZ(R3, dx; ...dxy) consisting of functions which are invariant with re-
spect to permutations of the N particles (the invariance w.r.t. permutation expresses the
bosonic symmetry; fermionic systems are described by antisymmetric wave functions). We
always assume 1y to be normalized so that |¥y o =1 (Jy(x1, ..., xy)|* is interpreted
as the probability density for finding particles close to (xy, ..., xy)). We consider Hamilton
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operators with two-body interactions, having the form

N N
HN,X:Z_AX_,-"‘)‘ZV(XI'_XJ) (l])
j=1

i<j

and acting as self-adjoint operators on the Hilbert space L2(R*M,dx; ...dxy). In (1.1), the
sum of the Laplacians is the kinetic energy of the N particles, A € R is a coupling constant,
and the sum of V (x; — x;) over all pairs of particles describes the potential energy of the
system (V (x; — x;) acts as a multiplication operator); appropriate conditions on V will be
specified below.

The evolution of the system is governed by the N particle Schrodinger equation

10N, =Hy¥n,:- (L.2)

The solution of the Schridinger equation can be obtained by applying the unitary group
generated by Hy ; to the initial wave function ¥y ,—¢; in other words, (1.2) is always solved
by ¥y, = e Nt ¥ .0. In this sense, establishing existence and uniqueness of solutions of
(1.2) is not an issue. What makes the study of (1.2) challenging is the fact that, in systems
of interest in physics, the number of particles N involved in the evolution is typically huge
(N ranges from values of the order 10* in extremely dilute samples of Bose-Einstein con-
densates, up to values of the order 10%? in chemical samples). For such values of N, the
expression Yy, = e~ N1y ¢ is not useful if one is interested in establishing quantitative
or even qualitative properties of the dynamics. For this reason, one of the main goals of
quantum statistical mechanics is the derivation of effective evolution equations which, on
the one hand, can be approached by numerical methods (in contrast with (1.2)), and, on the
other hand, approximate the solution of (1.2) in the interesting regimes.

One of the simplest regimes where effective evolution equations can be used to approx-
imate the full many-body evolution is the so-called mean field limit, which is characterized
by a large number of very weak collisions among the particles. To realize the mean field
limit, we consider large values of N (many collisions) and small values of the coupling
constant A (weak interactions). A non-trivial effective dynamics can only emerge when the
many collisions produce a total force of order one on each particle; in other words, when N
is of order one. To study the mean-field regime, we set therefore A = 1/N and we consider
the evolution generated by the Hamiltonian

N N
1
Hy = E _A)fi—"ﬁ E V(xi —x;) (1.3)
—

i<j

in the limit of large N. In particular, we are interested in the evolution of factorized ini-
tial wave functions of the form ¥y = @V (here, we use the notation =V (x{, ..., xy) =
]—[j.vzl @(x;)). Because of the interaction, factorization is not preserved by the time-evolution.
However, since collisions are very weak, we may still expect that factorization is approxi-
mately preserved in the limit of large N. In other words, we may expect that, for large N,
the solution vy ; = e~'F¥4y of the Schrodinger equation can be approximated (in a sense
to be made precise later), by

Y=g (1.4)

for a suitable one-particle wave function ¢,. Assuming (1.4) to be correct, it is simple to
derive a self-consistent equation for the one-particle orbital ¢;. In fact, (1.4) implies that, at
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time ¢ € R, particles are distributed in space, independently of each other, with probability
density |¢,|%. This means that the potential experienced by a particle at x € R* can be ap-
proximated by the average, mean field, potential (V * |¢,|?)(x) and therefore, that ¢, must
satisfy the nonlinear Hartree equation

i = =Ag 4 (V * 1o *) 0 (1.5

with initial data ¢;—g = ¢.

In which sense can we expect the solution of the N-particle Schrodinger equation ¥y ;
to be approximated by the factorized wave function on the r.h.s. of (1.4)? It turns out that
one cannot expect convergence in norm (see, however, the recent works [9, 10] where sec-
ond order corrections to the mean-field dynamics are taken into account to obtain a norm
approximation of the full dynamics). Instead, (1.4) has to be understood on the level of
the reduced density matrices. Let |y ;) (¥ | denote the orthogonal projection onto ¥y ;.
Then, for k =1, ..., N we define the k-particle reduced density matrix by taking the partial
trace of |y ;) (¥n | over the degrees of freedom associated with the last N — k particles,
that is

VA = Tregprn VN (Wl

In other words, ylf,ki is defined as the non-negative trace class operator on L2Z(R*,
dx; ...dx;) with the kernel

yli,/f),(xk; x}() =/dxk+1 e dXN N (R Xkt 1y - - - s xN)EN,,(x,’(, Xkdlsens xN) (1.6)

where we set x; = (xy, ..., x;) and, similarly, X, = (x{, ..., x;). From the normalization
l¥n .|l = 1, we conclude that Tr y,i,ki =1 forall 1 <k < N and all + € R. Observe that,

for 1 <k < N, the k-particle reduced density ylf,ki does not contain the full information

about the N-particle system. Nevertheless, knowledge of y}f,k), is sufficient to compute the
expectation of k-particle observables, that is of observables of the form O® @ 1%V which
only act non-trivially on k particles. In fact,

(%v,u (O(k) ® 1(N—k))wNJ) = TryN,[(O(k) ® 1(N7k)) — Trl’zilk,)zo(k)-

It turns out that the reduced density matrices are the right quantities to understand (1.4). For
a large class of potentials V, one can show that the reduced density matrices associated with
¥y, converge, in the limit of large N, to the reduced density matrices associated with the
factorized wave function (p,®N . In other words, one can show that, for any fixed ¢ € R,

ey ) — |90 (@]] = 0 (1.7)

as N — oo. Observe that convergence of the one-particle density towards a rank-one pro-
jection immediately implies convergence of higher order reduced densities as well; for any
fixed k € N and ¢ € R, it follows from (1.7) that y,(vk), — @) (@ |®* as N — oo in the trace
norm topology (see Remark 1 below).

The convergence (1.7) has first been established by Spohn in [18] for bounded potentials.
In [5], Erdos and Yau extended the techniques of Spohn to prove (1.7) for potentials with a
Coulomb-type singularity V (x) = £1/|x| (partial results in this direction were also obtained
in [1]). In [17], (1.7) was established again for potentials with Coulomb singularities. In
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contrast with the previous results, the bound obtained in [17] gives an explicit estimate on
the rate of the convergence. For factorized initial data, it is shown in [17] that

a CeKt
Trlyy) — lo(el] < 75 (1.8)

for constants C, K depending only on the initial one-particle wave function ¢. The approach
used in [17] is based on techniques first introduced by Hepp in [13] and then extended by
Ginibre and Velo in [11, 12] for the study of the related problem of the classical limit of
quantum mechanics. More recently, bounds of the form (1.8) on the rate of convergence
of the Schrodinger evolution towards the Hartree dynamics were obtained by Knowles and
Pickl in [14], for potential with singularities of the form |x|™%, for @ < 5/2 (the bound on
the rate of convergence obtained in [14] deteriorates, compared to (1.8), for potentials of the
form |x|~%, with « > 3/2). In [3, 14, 15], the convergence (1.7) was established for particles
with a relativistic dispersion (the kinetic energy —A,; is replaced by \/T— A, , for j =
1,..., N) and with Coulomb type interaction V (x) = %X /|x| (this situation is physically
interesting because it describes systems of gravitating bosons, so called boson stars, and the
related phenomenon of stellar collapse). In order to describe the dynamics of Bose-Einstein
condensates, it is interesting to consider, in (1.3), two-body potentials which scale with the
number of particles N, and tend to a delta-function in the limit of large N. In this regime,
the many-body quantum dynamics is approximated by the Gross-Pitaevskii equation; this
problem has been studied in [6-8, 16].

In this paper, we extend the techniques developed in [17], and we improve the bound
(1.8) on the rate of convergence towards the Hartree dynamics. For interaction potentials
with Coulomb type singularities and for factorized initial wave functions, we show that the
difference between the reduced one-particle density associated with the solution of the N-
particle Schrodinger equation and the orthogonal projection onto the solution of the Hartree
equation (1.5) is at most of the order 1/N, for any fixed time # € R. The N-dependence of
this bound is expected to be optimal. Note that the same bound on the rate of convergence
was obtained in [4], for bounded potentials, and, more recently, in [2] under the condition
that V € L3(R?) + L*®(RR?), which excludes a Coulomb type singularity. The main result of
this paper is the following theorem.

Theorem 1.1 Suppose that the potential V (x) satisfies the operator inequality
V()?=D(1-Ay) (1.9)

for some constant D > 0. Let ¢ € H'(R®) with ||¢|» = 1, and let ¢, be the solution of the
Hartree equation

100 =—Ag + (V x| (1.10)

with initial data ¢,—g = . Let ¥y ; = eV o®N and yli,l; be the one-particle reduced den-

sity associated with ¥y ,, as defined in (1.6). Then, there exist constants C and K, depending
only on ||@|| g1 and D, such that

Kt
1)

C
Trly ) =l e | < fv

(1.11)

Remark 1 The same techniques used to show (1.11) can be extended to prove an analogous
bound for higher order reduced densities; for any fixed k € N, one can show the existence of
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constants Cy, K; such that

CkeKkt
N

Tr|ya) — o) (|| <

Note that, if one is satisfied with a slower rate of convergence for higher order reduced
densities, a simple argument, outlined in Sect. 2 of [14], shows that, for any k € N,

Ckl/ZeKIt\

N

Trly®) — oot < 2y 26 Trly i) — 1) (ol =
for constants C, K independent of k.

Remark 2 With exactly the same techniques used to prove Theorem 1.1, one can also con-
sider mean-field Hamiltonians with external potential Ve, (x) acting on the N particles. The
requirements on V., are minimal (the conditions to make sure that the dynamics exists).

As in [2, 17], the main challenge to prove Theorem 1.1 consists in controlling the fluc-
tuations around the mean-field dynamics. After second quantization, the evolution of these
fluctuations is described by a two parameter group of unitary transformations U(¢; s) (see
(4.5)). It turns out that the growth of the fluctuations can be bounded by comparing first
U(t; s) with a simpler approximate dynamics U,(¢; s) having a quadratic generator £;,(¢)
(see (4.10) and (4.11)). A similar approach was already used in [17]; to get the optimal
bound on the fluctuations, however, we need to consider here, similarly to [2], a different ap-
proximate dynamics. The problem reduces then to estimating the difference between the two
evolutions U(t; s) and U (t; s). While in [2] this difference was bounded using Strichartz-
type estimates (requiring V € L3(R?) + L>®(R?) and therefore excluding Coulomb-type
singularity), in the present paper we make use of an a-priori bound on the growth of the
kinetic energy with respect to the approximate dynamics U (¢; s). This allows us to control
the growth of the potential energy (to be more precise, its square), and thus the difference
between the two dynamics. Here, there is a small technical caveat. To control the square
of the potential energy with the kinetic energy, we need an upper bound on the number of
(quantized) fluctuations around the mean-field dynamics. Although we have strong bounds
for the growth of the expectation of the number of fluctuations with respect to U (¢; s) (see
Sect. 5), there will always be a small probability to have large fluctuations. To handle this
complication, we have to introduce a small, N-dependent, cutoff oy in the interaction V;
for sufficiently small oy, we show that the error due to the cutoff decays faster than 1/N
and can therefore be absorbed in the right hand side of (1.11).

The paper is organized as follows. First, in Sect. 2, we show that the many body
Schrodinger evolution with cutoffed potential remains close to the Schrodinger evolution
with full potential V (and, similarly, that the Hartree dynamics with regularized interaction
remains close to the full Hartree dynamics), if the cutoff tends to zero sufficiently fast as
N — o0. Hence, Theorem 1.1 follows by proving the corresponding bound for the differ-
ence between the regularized Schrodinger evolution and the regularized Hartree dynamics;
this crucial bound is stated in Proposition 2.1. In Sect. 3, we define the bosonic Fock space
and we recall some of its properties. In Sect. 4, we reformulate the convergence problem on
the Fock space, and we prove Proposition 2.1 making use of a series of estimates (in par-
ticular, the a-priori bound for the growth of the kinetic energy, which follows by combining
Lemma 6.1 and Lemma 6.2) deferred to Sects. 5-8.
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2 Regularization of the Interaction

For an arbitrary sequence ay > 0, we set

V(x) = sgn(V (x)) - min{|V (x)

Loy 2.1

where sgn(V (x)) denotes the sign of V (x). We also define the regularized Hamiltonian

N N

~ 1 ~

Hy=) =0+ 5 Vi —x). 22)
j=1 i<j

Note that, by definition V)| < a,;l. Moreover, (1.9) implies the operator inequality
V@) <D= Ay, 2.3)

Instead of proving directly Theorem 1.1, we show that it is enough to prove the corre-
sponding statement for the dynamics generated by the regularized Hamiltonian (2.2), if oy
converges to zero sufficiently fast. First, we bound the difference between the evolution of
the initial N-particle wave function {5 w.r.t. Hy and w.r.t. the regularized Hamiltonian Hy.

Eemma 2.1 Letyy = @®N for some ¢ € H' (R®) with ||| = 1. Let ¥y, = e~ "Ny and
VY., = e Nty Then there exists a constant C > 0 such that

IWn: — ¥nll> < CNaylt] 2.4)

forall N e N, t e R.

Proof We consider the derivative

dnvf Unil? = —2R dwf Vi)
—_— _ = — e — ,
dt N,t N,t dt N,t N,t

= ZIm((HN - ﬁN)‘//N,Ia JN,t>

2 o 9 ~
=5 ZIm((V(xi —x;) = V(& = x))¥n.e Una)- (2.5

i<j
Observe that the definition (2.1) of 1% implies that
V=VI<IVI-1(IVI 2 ay') < IV ay. (2.6)

Hence, from (2.5), we obtain (using also the assumption (1.9))

d ~ ~ ~
EH‘PN,: —YnalP| S CNJ((V = x2) = VI — x2)) ¥, Y|

12

< CNay(Ywi (1= A )W) [T, = ADTw) 0 27)

Next, we note that, again from (1.9),

N{¥n.e. (1= A Un.) < CUn. (Hy + N) Yy )
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< C(p®N, (Hy + N)p®")
< CNllgll3,.

Similarly, from (2.3),

N(Ww.es (1= AP < CNIlgl.

Therefore (2.7) implies that

d oo
— N —¥nill?| SCNay.
dt
The lemma follows after integrating over ¢. ]

As a consequence, we obtain a bound on the difference between the marginal densities
associated with ¥y, and ¥y ;.
Corollary 2.1 Forany k € N, let y(k) and 77,{,"1 be the k-particle reduced densities associ-

ated with Yy, = e~ N o®N and ry , = e N o®N _Suppose ay < N3 in the definition
(2.1). Then there exists a constant C > 0, independent of k, such that

N C t 1/2
Tely® — 59| < | |
Proof We have
Tr|y) — | = sup [Tr 0% (rvr = 7| 2.8)
lo®wj<1

where the supremum is taken over all compact operators O® over L2(R*, dx; ...dxy),
with operator norm ||O® || < 1. Observe that

Tro(l\)(y(ki N(k)) <1/IN ts (O(k) ® 1)‘//N t> <$N,r, (O(k) ® 1)&N,f>
=((Wn. — Uno), (0P @ 1)y.)

+(Un.s (0P @ 1) Wy — Uv0)). 2.9)
Taking absolute value, we find
ITr 0 (ys) = 78| < 21w — Fwal (2.10)

for all observables O® with |O®| < 1. The corollary follows then from Lemma 2.1. [J

Finally, we estimate the distance between the solutions of the nonlinear Hartree equations
with the full potential V and with the regularized potential V.

Lemma 2.2 Let ¢ € H'(R?). Let ¢, be the solution of the Hartree equation (1.10) and @,
the solution of the Hartree equation

10,9, = —A% + (V%137 2.11)
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with regularized potential V, with Qi—0 = @r—0 = @. Then
lgr — @il < C/ayeX. (2.12)

Therefore
Tr|lg) (e — 180 (@1 | < 2kllg, — @11l < ChJaye " (2.13)
for any k € N.

Proof From (1.9) and (2.3) it is easy to check that ||g, || 41, |&; || ;1 < C, for a constant C
which only depends on ||¢|| ;1. We compute

d - ~ o~
il G =2Im{g,, [V = o> = V % |5,1*]@1)
=2Im{g,, [(V = V) x |¢,*] 1)
+2Im{gy, [V * (lo: > =13 1%)] @ — 1)) (2.14)

where, in the last line, we used the fact that

m(g;, (V * (Io:* — 137)) @) = 0. (2.15)
Using (2.6) we find, taking the absolute value,
d ~
‘E”% —%IIZ‘
~ 2
<2ay|l@ I, |l sup / dyVi(x —y)|e, ()|

+2llg; — @l supfdyW(x AR A AR A))
<Cay +Cllg: — &> (2.16)

In the last inequality we used that, from (2.3),

fdyW(x =Moo = &M (|e: ] + @ ()])

12 - 1/2
< (/ dyle:(y) — ¢,<y>|2) (f dyV*(x = ) (Je: )] + |’<ﬁ,(y>|)2)

<Clie: = @l (el gt + 18N a1 )- (2.17)
From (2.16) we obtain (by Gronwall)
e — @i ll> < Cay (e = 1) (2.13)

which concludes the proof of (2.12). To show (2.13), we write

k

|<Pt><§0t|®k - |(Zt)<$t|®k = Z |</)t><‘ﬂt|®(jil> ® (|(ﬂt>(§0t| - |(Zt)($t|) ® |5:>(<E|®(k*") (2.19)
j=l1
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and we use the fact that

Tr| o) (e — 1@ (@ | <20l — @)l (2.20)

O

As a consequence of Corollary 2.1 and of Lemma 2.2, Theorem 1.1 follows from the next
proposition, which only involves regularized dynamics (regularized N-particle evolution
and regularized Hartree dynamics).

Proposition 2.1 Let Vbeasin (2.1) with some ay > N for some r € N. Let ¢ € H' (RY),

7lﬁNl

yN . ) the one-particle reduced density associated with e ©®N and @, the solution of the

regularlzed Hartree equation
10, =—Ag + (V%16 °)@ (221)

with initial data ¢,—o = ¢. Then, there exist constants C and K such that

Kt

<
- N

O = 18)(@ | (2.22)

Tr|VN[ — o ){e1]

The proof of this proposition is given in Sect. 4. It makes use of a representation of the
problem on the bosonic Fock space, which we introduce in the next section.

3 Fock Space Representation

The bosonic Fock space over L2(R?, dx) is defined as the Hilbert space

F=P LR dx)®" =Co P LI (R™ dx, ...dx,).

n>0 n>1

Here Lf(R3”,dx1...dxn) denotes the subspace of L2(R*',dx;...dx,) consisting of
functions symmetric with respect to any permutation of the n variables x,...,x,. In
other words, F contains sequences ¥ = {y™},~o of n-particle wave functions ™ ¢
LX(R*,dx; ...dx,). For yr, yr, € F, we define the scalar product

<WI, ¢2> = Z( " Wzn)>Lz(R3n)

n=>0

0 0
y© “+Z/dx1 g™ G 1)U (et ).

n>1

A sequence {0,...,0, w("’),O,...} describes a state with exactly m particles. We will
denote by F the m-particle sector of F, which is spanned by vectors of the form
{0,...,0,%,0,...}. The vector 2 ={1,0,0,...} € F is known as the vacuum and spans
the zero-particle sector F© .

The number of particles operator N is defined on the Fock space F by (N )™ = ny ™,
For f € L*(R?, dx) we define the creation operator a*(f) and the annihilation operator
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a(f) by

1 n
@ OW) " @) === FEDY X X 1 X e )
N ; j j j+ 3.0)

(@ HY)" @ x) =+ 1 /dxf(—x)w*”(x, Xiyenos Xp).

For any f € L*(R?, dx), the operators a*(f) and a(f) are unbounded, densely defined,
closed operators. The creation operator a*( f) is the adjoint of the annihilation operator a(f)
(note that by definition a( f) is anti-linear in f), and they satisfy the canonical commutation
relations; for any f, g € L>(R3, dx),

[a(f). a" (@] = (/. &) 2w), [a(f),a(@)] =[a"(f),a*(&)] =0 (32

For every f € L?(R?, dx), we introduce the self adjoint operator

o(f)=a*(f)+a(f). (3.3)

It is interesting to note that the n-particle product state {0, ...,0, £®*,0,...} can be pro-
duced starting from the vacuum 2 by applying the creation operator a*(f) for n times.
More precisely, we have
a* (f)ll

0,...,0, f®,0,...} = Q. (3.4

{ b=
The normalization can be easily checked using the canonical commutation relations. We
will be interested in the time evolution of these product states.

We will also make use of operator valued distributions a} and a, (x € R?), defined so

that

& (f) = / dxf (),
(3.5)

a(f) = [ dxFGa,
for every f € L>(R?, dx). The canonical commutation relations take the form
[ax,a;‘,]:(S(x—y), [ax,ay]:[a;‘,a;]zo.

For an operator J acting on the one-particle space L>(R?, dx), we define the second
quantization dI"(J) of J as the operator on F whose action on the n-particle sector is given
by

(@) = 1™

j=1

where J; =1®---®1®J®1®---®1 is the operator J acting only on the j-th variable. As
an example, the number operator is the second quantization of the identity, i.e. N'=dT'(1).
If the one-particle operator J has a kernel J (x; y), then the second quantization dI"(J) can
be written in terms of the operator valued distributions a., aj as

darJ) :/dxdy](x; y)aia,.
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882 L. Chen et al.

For example, we have

N:/dxa;‘ax.

The following lemma provides useful bounds to control creation and annihilation opera-
tors as well as operators of the form dT"(J) in terms of the number of particle operator N

Lemma 3.1 Fora >0, let DIN®) ={y € F: )., n**|[Yy™|* < oo} denote the domain
of the operator N*. For any f € L*(R?, dx) and any y € D(N''/?), we have

la(Hrv || <IFIN 2],
a*(Hv| < LAV + D2
leH¥| <201V + D2y .

Moreover, for any bounded one-particle operator J on L>*(R?, dx) and for every yr € D(N),
we find

(3.6)

lar Dy | <IN Y| (3.7

Proof These bounds are standard. A proof of (3.6) can be found, for example, in Lemma 2.1
of [17]. As for (3.7), it is enough to observe that

lar(w | =33 (5@ 1y @) < Y IRy P = 11V P

n>1i,j=1 n>1
because, clearly, ||J;|| = || /| foralli =1,...,n. O

Given ¢ € F, we define the one-particle density ylzl) associated with i as the positive
trace class operator on L*(R?, dx) with kernel given by

vy (x5 y) = ———(v, ala,p). (3.8)

(¥, Nlﬂ)

By definition, yd(,l) is a positive trace class operator on L>(R3, dx) with Tr yd(,l) = 1. For an
arbitrary N -particle state {0, ..., 0, ¥y, 0, ...} itis simple to check that (3.8) coincides with
the definition (1.6) given in the introduction.

On F, we define the Hamilton operator Hy by (Hy¥)® = H% %™, with

HY = ZA+ ZV(x,— ,

i<j

where V denotes the regularized potential introduced in (2.1). Using the distributions a,, a},
‘Hy can be rewritten as

1 ~
Hy =/dexa;“anx + ﬁ/dxdyV(x — y)a;a;ayax. (3.9

ItN is clear that, on the N-particle sector, the operator Hy coincides with the Hamiltonian
Hy defined in (2.2). To study the dynamics generated by the Hamiltonian Hy on the Fock
space, coherent states will be useful.
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Rate of Convergence Towards Hartree Dynamics 883

For f € L?(R?, dx), we define the Weyl-operator

W(F) = exp(a*(f) —a(f)) = exp ( [ax(rwa; - ?m)). (3.10)

The coherent state with one-particle wave function f is the vector W ( f)£2. Notice that

W(HQ=e 123" %Q = P23 %{o, 0,200} (B
n.

n>0 . n>0

Hence, if P, denotes the projection onto the n-particle sector 7™, we have, comparing with
(3.4),

PW(f)Q=e 112

a*(f)" e~ If12/2
Q =

n! vn!

We will use this formula with n = N to write the initial product state ¢®V as the projection

onto the N-particle sector of an appropriately chosen coherent state. Equation (3.11) is a
consequence of the expression

{o,....,0, f®,0,...}. (3.12)

exp(a*(f) —a(f)) = e V12 exp(a*(f)) exp(—a(f))

which follows from the fact that [a(f),a*(f)] = || f||*> commutes with a(f) and a*(f).
It implies that coherent states are superpositions of states with different number of parti-
cles (the number of particles is a random variable with Poisson distribution having average
|| £11%). In the next lemma we list some key facts about Weyl operators and coherent states.

Lemma 3.2 Let f, g € L*(R3, dx).
(1) The Weyl operators satisfy the relations

W(HIW() =W(@W(fle M8 = W(f + g)e /e,

(i) W(f) is a unitary operator and
W) =W =W(=1).
(iii) We have
W*(NaW(f)=a+ f(x), and W*(Ha;W(f)=a;+ f(x).

(iv) From (iii) we see that coherent states are eigenvectors of annihilation operators

ay (=) = a@v ()= v

(v) The expectation of the number of particles in the coherent state Y (f) is given by || f||%,
that is

(WO NED)= 1112

Also the variance of the number of particles in \ (f) is given by || f ||* (the distribution
of N is Poisson), that is

(W () N2 () = (W (), N (HY = I I
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(vi) Coherent states are normalized but not orthogonal to each other. In fact

(W (). w(g)) = e FUPHE 200 o |(y(f), Yr(g))| = e 2V —s1,

4 Proof of Proposition 2.1

Formulating the problem on the Fock space F, the one-particle density associated with the
evolution e "Ny of the initial product state ¥y = ¢®" has the kernel

Pvavix) =

* N * N
i<a (§0) Q,eiHNt * —iHNfMQ>_ (41)

a. a.e
N\ JN! A VN!

Here we used (3.4), (3.8) and the fact that, on the N-particle sector, Hy|rw) = ﬁN. Now,
using (3.12), we write

a* ()N 9 VN!

i = NN/ze,N/ZPNW(VN‘P)Q=dNPNW(VN‘/’)Q 4.2)
where we defined
V' N! .
_ /4
dy = SNANN <CN'", 4.3)

Thus, we obtain

N\ VNI e VNI
d * N ) )
WN<a (jz])‘ Q, e a*a,e N Py, W(\/Nga)§2>

d * N ) .
= <a ((i])‘ Q,PNe’HN'a;‘ayef’HN’W(\/Ngo)Q>

_dy a*(‘/’)NQ N g g o TN (N o) Q2 4.4
=N i ,e aiaye W Np)Q). “4.4)

Following, similarly to [17], an idea first introduced by Hepp in [13], we define the
unitary evolution

- 1 * N ) . * N

N

U(t; s) = e EIWH(VNG)e IV W (VNG) (4.5)
with the phase factor
N [! ~ -
w(r;s)=5/ drfdx(V*|<pf|2><x>|<p,<x)|2.
Lemma 3.2 implies that
U*(1; 0)a,U(t; 0) = W*(VN@)e ™™ (ay, — VNG, (1)) e "' W(V/Ngp). (4.6
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Moreover, U(¢; s) satisfies the Schrodinger equation
. d .
IEU([; s)=L@EU(t;s), withl(s;s)=1
with the time dependent generator
L) = /deXa;‘anx +/dx(v * |$[|2)(x)a;fax
+/dxdy‘7(x —yata, g, (x)g,(y)
1 a4 ~ ~ ~ =
+ E/dxdyV(x — (@ aG () () + axa, @, ()@, ()
1 7 *( ok~ ~
+ ﬁ dXdyV(x —)’)ax(ay%(y) +ay¢7t(y))ax
1 ~
+ N / dxdyV(x — y)a;fa;fayax. 4.7

From (4.4) and (4.6), we obtain

~ dy [a*(@)N
val,i(y;x)=—N< d

N

N Q,WHENeU*(t;0)(al + VNG, () (ay + VNG (»)Ut; O)Q>

o~ = dN a*((ﬂ)N
= (Yo, (x) + W< i
<a*(<p)N

VNI
dy. a*(e)"
VN VNI

Integrating against the kernel J (x; y) of a compact hermitian one-particle operator J (her-
miticity implies that J(y; x) = J(x; y)), we find

Q, W/ No)u*(t; 0)a*a,U(t; 0)Q>

+ d_;vva(x) Q. W(VNU* (t; 0)a,U(t; 0)Q>

N

_|._

& <y>< Q, W NoU*(1; 0)a*U(r; 0)9>. (4.8)

Te J (7)) — 13)(@1]) = / dxdyJ (x; ») (7 (v; %) = B ()F, ()

_dy[a* (@)
"N\ UM
d_N<a*(§0)N
VN\ VN!

where we used the definition (3.3). To bound the second term on the r.h.s. of (4.9), we write

Q, W/ No)U*(t; 0)dT (HU(t; O)Q>

Q, W NoU*(1; 0)¢ (JGU(t; 0)9> 4.9)

d_N<a*(§0)N
VN\ VN!
_d_N<a*(<.0)N

- VN\ VN

Q, W/ No)U*(1; 0)p (JP U1 0)Q>

Q, W(/'No)Us (t; 0)p (J ) Us (1 0)9>
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" Jﬁ<¢((zpv—)
< a*(p)
J/N!

where we compared the fluctuation dynamics U (¢; 0) with the dynamics U4 (¢; 0) defined by
the equation

Q, W/ No) (U (t; 0) — u;(t;0>)¢(Jat>uz<t;0>sz>

VN

QW NeU*(t;0)¢ (JG) (Ut; 0) — Uz(f;o))9>

d
iauz(t; §) = Lo()Ur(t;s), withlh(s;s)=1 (4.10)
and with the quadratic generator
Lo(f) = /dexa;‘anx +/dx(\7* 18:1?) (x)ata,
+/dXdy‘7(x - y)a;ayat(x)gt(y)
1 7 * ok~ ~ ~ ~
T3 /dxdyV(x — (ara; @ )@ () + a:a, @, ()G, (). (4.11)

The existence of the evolution U4 (¢; s) has been established in [11, 12]. Taking absolute
value in (4.9), we find

| Trd () = 13)(@ )|

Y
=N

0w N g |-+ 1 s o s 0]

+ W*(«/ﬁ@a*(‘p)NQ U (1 0) (J 5 ) (£ 0) Q2
m s Uy by 1)U\,

@V
J_v

4 <W* Q, (U3 (15.0) — U™ (15 0))¢<J<75,>uz(r;0)sz>’

4D <W VNg)Z "o (t; 00 (J &) (Ua (1 0) — U(t;O))Q>‘. 4.12)

J_

The first term on the r.h.s. can be bounded, using Lemma 7.1, Proposition 5.1, and
Lemma 3.1, by

Il A+ 1P W (VN ) (‘p)

H [N + D720 (15, 0)dT () (e; 0) 2|

< %e’? O + D2 DU 02|

< C'}'\IJ” KW+ Due; 0|

||J|| 21?|z\”(N+ 1)7Q|| < C|1|\}]||6K\tI.
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The second term on the r.h.s. of (4.12) vanishes. This follows from Lemma 8.1 and
because

PW*(/Ng)a*(@)" @ = Pi(a*(9) +VN)" W*(/Np)Q
= efN/zPl(a*(q)) + «/N)N(Q — \/Na*(q))Q)
—e VANV NG ()2 + e VAN'T Na*(9)2 =0.
The third term on the r.h.s. of (4.12) is bounded, from Proposition 6.2, by

C||J]leX
N

dy (w)N " ¥ ~ >‘
w* AU (;0) —UM(t; 0 Jo U (1;0)Q2)| <
\/N< (VN ) Ve Q, (Us(1;0) (t;0)p(Jg)Us(1; 0)Q)| <

The fourth and last term on the r.h.s. of (4.12) is bounded, using Lemma 7.1 and Propo-
sition 5.1,

dy % a*(ga)N */o. ~ . .
TN <W (vNg) NG QU (r,0)¢(1¢,)(u2(t,0)—u<r,0))9>‘
*(90)”
Ml
( .
x H N+ D'2U* (15,000 (JG,) (Ua (25 0) —U(1; 0)) Q|
Ce Klr|
< \/_ [V + 126 (@) (Ua(1: 0) — U(z; 0)) ] .

Writing (M 4 1)2¢(J@,) = a*(J@,)(N 4 2)? 4+ a(J@,)N?, and using Lemma 3.1, we find

* N
<W*(~/— YO0 00 (JF) (Ua(; 0) — U(t; 0)) 2 >‘

v/ N!
C|lJ||eK1
< %” W+ D2 (Ua(1:.0) — U(r; 0)) 2|
C||J||e"
_ ClJle™
- N

where, in the last step, we used Proposition 6.1.
Summarizing, we showed that

~ ~ o~ CllJ
ITe g (7 = 13043 )| < %ew

for all compact hermitian operators J on L?>(R?, dx). Since the space of compact opera-
tors is the dual to the trace class operators, and since )712,1; and |@;){(@;| are hermitian, we
immediately obtain that
C
~(1 ~ g~
e A

which concludes the proof of Proposition 2.1.
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5 Bounds on the Growth of Number of Particles

One of the most important ingredients in the proof of Theorem 1.1 presented in the previous
section is a bound on the growth of the number of particles with respect to the evolutions
U(t; s) and Uy (2 s).

Proposition 5.1 Suppose that U(t; s) and U,(t; s) are the unitary evolutions defined in (4.5)
and (4.10), respectively. Then, for every j with2j € N, there exist constants C;, K; > 0 such
that

[NV + Dith(t; s)v| < CieXl 1|V + Dy
and
[NV + Dt )y | < €| W+ D>y |

for every Yy € F, t € R. This implies that, for any j with 2j € N, the operators
W+ DIt (t; )N + 177 and (N + DIUE; s)N + 1)72~! extend as bounded oper-
ators on the Fock space F with norm bounded by

|V + DItk )N + D)7 || < Cjekil—]

and

[NV + DU )N + 1757 < Cjefih =l

The proof of this proposition can be found in [17]. More precisely, the bound for the
dynamics U(¢; s) is given in Proposition 3.3 of [17]. On the other hand, the bound for the
dynamics U (¢; s) (which is much simpler), can be obtained using arguments very similar to
those of Lemma 3.5 of [17] (where a different cutoffed dynamics is studied).

6 Comparison of Dynamics

The goal of this section is to estimate the difference between the full fluctuation evolution
U(t; s) and the dynamics U (2; s).

Proposition 6.1 Suppose that, in the definition (2.1) of the regularized potential V, the
cutoff ay is such that ay > N7, for some r € N. Suppose that U(t; s) and U, (t; s) are the
unitary evolutions defined in (4.5) and (4.10), respectively. Then, for any j € N, there exist
constants C; ., K . > 0 such that

A C:,eKirli=sl ,
H N + 1)) (U(t; s) — Un(t; S))Iﬁ‘” < /T(w, (IC T+ NAQIH 1)1#)1/2’
where K is the kinetic energy operator
K=dT'(=A) =/dexa;‘anx. 6.1)
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Proof We fix t > 0 and s = 0 (all other cases can be treated analogously). Using
U(t;0) — Uy (15 0) = /Ot dtU(t; T)(L(0) = L2(0))Us(1; 0)
we find that
|V + D7 (U(e;0) = Us(2; 0)) yr || < /0 dr [V + DU 0 (L) = L2(0))Ua (T: 009 |
< [ ace o+ ) oo |
+ /0, dte® 0| W+ DY L (0| (6.2)
where we used Proposition 5.1 and we wrote £(t) — £,(t) = L3(t) + L4, with

] i ~ =~
L0 = / dxdy¥ (x - Ya’ (@5 o) +aF,0)ax,

: N (6.3)
Ly = ﬁ/dxdyV(x - y)a;‘a;’fayax.
Using Lemma 6.3 to bound the first term on the r.h.s. of (6.2), we find
[V + 17 (U 0) — Uy (25 0)) ¥ |
= el 1y
+ /OtdteK([_r)(uz(r; 0¥, NV + DY 2W + DY 00p) 2. (6.4)

To bound the second term on the r.h.s. of the last equation we observe that, restricting the
operators on the n-particle sector ™ of the Fock space,

(N+ 1)21+1£3(N+ 1)2j+1 |}_(”)
1 4j+2 n 1 4j+4 1
(n+ ) (ZV(x,—x,) _(n+ S G
i<j i<j

1n+1<NTS)
e

1+ 1> NT™)

n+14j+6
R D

(n+DYPY (A, + 1D+

=1

1(/\[_|_1>N4;+5)

1
E[N(IC-I-N)-F o

(N+ 1)4]4»6]

Fn)

where we used the bounds Vz(x) <1—Aand |V(x)| <ay ! (see (2.1)) and K is defined in
(6.1). In Lemma 6.1 below we show that there exists a constant C > 0 such that, for arbitrary
T eR,

K<Ly(t)+ CWN +1).
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Hence

LN + 1> N#)

N+14j+6
D

W+ DY LW + DY < %(&(r) +CW+ D)+

and therefore
(th(z; 00y, (N + DY LI + DY (5 0)yr)
1
= U@ 0V, (L2(0) + CW + D) (x; 0)9)

1 1 ,
+ Nz—aﬁ,%(” 0P AN + 1= NTB)W + DYy (z: 0)y).  (65)

Using the bound 1(x > 1) < x™%*5 valid for every m € N, Proposition 5.1 and the
assumption oy > N, we can estimate the second term on the r.h.s. of the last equation by

Nz;a%,@{z(r; 0y, 1N + 12 NFB)W + DU Uy (z; 0y

1 .
. (4j+6)(m+1) .
< N, Nm(uz(r,ow, W+ 1HW Us(t;0)%)

eKr” N+ 1)(2j+3)<m+1)1/f”2

<
- Nm+272r

for appropriate constants C, K (depending on m and j). Fixing m = 2r — 1, we find

1 1 )
NZ—a%VWz(T; Oy, LN + 1> NTH )W + DY (73 0)y)

< %eKr H W+ 1)2r(2_/‘+3)]/,”2.

To control the first term on the r.h.s. of (6.5) we use Lemma 6.2 and Proposition 5.1 together
with the fact that, at T =0,

(¥, (L2000 + CV + D)) < C(yr, (K+ N + D).
We conclude that there exist constants C, K > 0, depending on r and j, such that
. . C 0
(th(z: 0y, W + DY LIV + DY (z; 0)y) < ﬁe’“w, (K+NYEH 1)),
Inserting this bound in (6.4), we obtain the desired estimate. O

We also need to bound the difference between the two evolutions /(¢; 0) and U5 (¢; 0) in
the third term on the r.h.s. of (4.12). This is the content of the next proposition.

Proposition 6.2 Suppose that, in the definition (2.1) of the regularized potential V, the
cutoff ay is such that ay > N7, for some r € N. Let ¢, be the solution of the regularized
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Hartree equation (2.21). Suppose that U(t; s) and U, (t; s) are the unitary evolutions de-
fined in (4.5) and (4.10), respectively. Suppose that J is a bounded hermitian operator on
L%(R3, dx). Then, there exist constants C, K > 0 such that

a*(p)V ; ; ~ C|J ek

< \/‘”F Q. W/ No) (U (t:0) — U3 (1 0))¢<J<o,)u2<r;0)sz>‘ < dNi«/eN
where dy = ~/N!/(e"N2NN/?) < CN'/* was defined in (4.3).
Proof We fix t > 0 and we write

< T@g W(VNo) (U (1:0) — U; (1: 0))p (JGUs (1 0>sz>

VN!

= /0 ds< j‘;l Q, WV N (15 5) (L3 (s) + La)U* (5: 00 (JG)Us (15 O)Q>
where £3(s) and L4 are defined in (6.3). Taking the absolute value, we find

< g, W (v/No)(U*(1; 0) — Us (1 0))¢<J<75,>uz<r;0>sz>’
VN!

1 d*((p)N ‘
d Q

S/0 ’ vV N!
x|V D205 (85 ) L3 (U (55 00 (J @)U (8 0)2 |

N+ D)™'2W*(/Noy)

* N
+/ ds||(N 4+ D)™ Lalhr(t; $)W* (V' N) \j(]’i]_). QH
x|V 4 DU (53 00 (TG (1 0L
=:A+B (6.6)

where the parameter ¥ > 0 will be fixed later on. To bound the term A we note that, by
Lemma 7.1, Proposition 5.1, Lemma 6.3, we have

A< dE/ dse’?<’*s>}|(/\f+1)‘/253(s)u*(s;0)¢(ng,)u2(t;0)sz||
N JO

C ! &
dse®X IV + DU (s: 0)p (J ) U (2; 0)S2
SﬁdN/o 5K [V + 12U (5 0 (J5) s 1 0)Q

C ! =
— | dse® |V + Do (I U (2; 0)K2]).
fﬁdN/o sV + 130 (T 7t (1002

Writing (N + 130 (J@;) = a*(J @) N +2)° +a(JG;)N?, and using Lemma 3.1, we con-
clude (again by Proposition 5.1) that

CllJ "
VNdy

o2 CUI
~ VNdy

for an appropriate constant K > 0.

1 ~
dse®' |V + D" ;09| < (6.7)
0
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Next, we estimate the term B on the r.h.s. of (6.6). On the one hand, we have
[NV + DU (s: 0 (J G U (15 0)R
< CR | + D> YT (1 0) 2|

< CR TN W + D>y 102 < €T K+ (6.8)

where the constants C, K depend on k > 0. To bound the other norm in the term B, we write

a* ()" *(w)’”
v N Q=
W INO)= Q=D A= Q

m=>0

Note that, by the unitarity of the Weyl operators (recall that a* ()" Q = +/m!{0, ..., 0, p®™,

0,...p)
Z |-’4m|2 = 1.
m=>1
Hence
«/ﬁ
a (QD) ) iy *((p)m
_WXK;O‘A ‘A‘< Ja QU S) N + DT LyWN + D)7 Us(t; ) W Q>
m, >0 \/Z— \/E
- a*(g)*
N+ D2y (s 5) Q
¥ ZN: T
*((P)‘Z *((p)l
+£§5< \/e— Q Z/{Z (t S)£4Z/[2(t ) \/E Q> (69)

where 0 < § < 1 will be fixed later on. In the regime £ > N°, we estimated
LZ < ;(N_i_ 1)4
4= Nzoclz\, '

In the regime £ < N 3 on the other hand, we used the fact that £, commutes with A/, and
that (N 4+ 1)~2¢ < 1. By Proposition 5.1, we have

a*(p)*
NI

< | W+ D™ P N + D2

” N+ DUy (25 5) QH

* I
N +1 KHMQ”
’( +1) 70

1

< CeE(z—.v)/2
- (04 1)<2
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where the constants C, K depend on «. Therefore,

@
N+ DUy (1 5) —=2
N*a 12"/5;5 u
CeK(t—s) 1 CeE(Z_S)

< 6.10
N2a12V fyet o+ 1)2K—4 — N2+(S(2K—6)(X12V ( )

To bound the second term on the r.h.s. of (6.9), we observe that, on the n-particle sector,

2
1 2~ nt s~
L3z, :ﬁ<zv(xi_xj)) szvz(xi—xj)
i<j i<j
n*l(n < N''?) n*l(n > N'/'?)
= TZ(I_AXj)+T
j=1 N
This implies that
N41(N> N1/12)
2 >
L

where KC is the kinetic energy operator defined in (6.1). We find

*(p)* 2, at (@)
[§5< 70 QUL (t; $) LU (13 5) 70 sz>

a* 4 a* 4
< N7/4 Z< W0 s )0¢ + Nt 52 Q>

t<N’ Ve Ve
1 ) PN (O
+ N Z< T BB EONT U9 == Q),

L<N?

for arbitrary p > 0 (we use here the fact that 1(N > N /12y < N=P/I2N/P_ for any p > 0).
Combining Lemma 6.1, Lemma 6.2 and Proposition 5.1, we conclude that

* V4 a* 4
Z< W) v ) L2 ie 5D sz>

£<N® va va
ek < a(g)" a*(p)"
< Q,(K+N) §2>
N £<N?® Ve Ve
CeKi—9) *((p) N4+pa (w) o
N””/lza[zv . \/Z_ \/E
Cel((f s) Cel((f s) "
=TNTA 1% Z bt i Grmgr NZP/12=GEmig?, Z e
L<N® N <3
CeE(t—s) CeE(t—s)

<
T ONTAS2 T N2p/12-Gpigl
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where we used that ||@; || ;1 remains uniformly bounded in 7 € R (by a constant depending
only on ||¢|| 41). Together with (6.10), we obtain, from (6.9),

a* )V _|’

VN!

H N 4+ D)™ Lalhy (1; )W (V' No) Q

< CoR- 1 Lo L 1
— N2+8(2K*6)(x12v N7/4-25 N2+”/12*(5“’)5a12v :

We fix § < 1/12. Moreover, we choose « > 0 so large that N>*T@<=9¢2 > N3/2 and p > 0
so large that N!TP(1/12=9q2 > N3/2_ Then, together with (6.8), we find that the term B on
the r.h.s. of (6.6) can be bounded by

C|lJ|e*!
B<—
dyv/'N
because dy < CN'/* (recall that dy = ~/N!/(e""/>NN/2)). Together with (6.7), this com-
pletes the proof of the proposition. ]

The next lemma is used to bound the kinetic energy by the generator £,(¢) of the dynam-
ics Uy (t; 5).

Lemma 6.1 Let £,(t) be as defined in (4.11) and let IC be the kinetic energy operator
K =/dexa;‘VXax. (6.11)

Then there exists a constant C > 0 such that the operator inequalities
—CIN+ 1) <Ly(t) —K<CWN+1) (6.12)

hold true for all t € R.

Proof It suffices to show that there exists a constant C such that

(v, (L200) = K)¥)| < Clyr, W + D) (6.13)

for all Y € F. By definition, we have that
(V. (L20) — K) ) = f dx(V %13 P) 0 lax v, arp)
4 / dxdy¥ (x — )5, 7 ) (ay ¥ ax )

+2Re / dxdyV(x = )FOFOay v, 1Y) (6.14)

The first term on the r.h.s. of the last equation can be estimated by
de(V * |a,|2)(x)<axw,axw>) <[V |’<ﬁt|2|!m/dxnamn2 <SCY, NY).  (6.15)
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The second term on the r.h.s. of (6.14) can be handled similarly:
‘ f dxdyV (x — y)§,()@ () {ay ¥, axM < / dxdy|V (x — )| |50 laxy 11?

S I4E |a,|2||oc/dxnaan2
< CY, Ny). (6.16)
Finally, the last term on the r.h.s. of (6.14) is bounded by
‘ / dxdyV (x — )@, ()@ (y){ay ¥, a:w>‘
= ‘/dy&,(y)(aylﬁ,a*(v(y - )%)W)‘
s/dynayl/fnz+/dyl@(y)f||a*(V(y—.)@)wu2
= C(1+sup| Vv = @) (v, v + D)
<Cy, W+ Dy), (6.17)
where we used Lemma 3.1. O

After controlling the kinetic energy with the expectation of the generator £,(¢), we have
to show that this expectation remains bounded in time. This is the content of the next lemma.

Lemma 6.2 Let Uy(t; s) be the evolution defined in (4.10), with generator L,(t). There
exist constants C and K such that

(U (t; )W, Ly (13 )W) < CeXI N, (La(s) + N + 1)) (6.18)
forally € Fandallt,s e R.

Proof We use the shorthand notation v, = U, (¢; s)¥. To control (v, Lo(¢)v,), we first
observe that

d .
E<W2,52(¢)¢2)=<W2,£2(f)1ﬁ2) (6.19)

with the time-derivative

£ait) = / dxdyV (= )G 0)3.0) + 507 ())a’as
+/dXdy‘7(x - Y)(a(x)%(y) +$t(x)";5t(y))a;kax

+ / dxdyV (x — )@ 0FMalat +5,0F, Maay).  (6.20)

Next, we want to control (/,, ﬁz(t)tp%) in terms of (Y, (L2(¢2) + N)vr,). There are several
contributions to the expectation (yr,, £,(¢)v,) arising from the terms on the r.h.s. of (6.20).
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For example, the contribution from the last line of (6.20) is given by
1= 2Re/dxdy\7(x —= NGOG0V, a;as )
= —ZIm/ dxdyV(x — VG (x)AG (y)axayr, V)
+2Im [ dxdyV (x = @0 (V#1812 0F 0 {aay o, vo)  (6.21)

since ¢; solves the regularized Hartree equation (2.21). Since || V% 1%¢*llso < D& ||i,1 <C,
the second line on the r.h.s. of the last equation can be bounded by

‘ / dy(V =13, 1)) 0@ May . a* (V(y = )@ )v)

sfdy!(V*|<z,|2)(y>\2\§5t<y>lzua*(v<.—y)at)wzuz+/dy||a,wz||2
= (14 17+ 1P 2 sup | PO = 08 [5) [V + D24 |
!
< C(¢r, W + D). (6.22)

As for the first term on the r.h.s. of (6.21), we write ¥, = {wz(n)}nzo and

(acay ¥, o) =) / dxy ... dx,(aay )™ (xr, . X)) (1 x)

n>0
—(n+2) n)
= Zw/(n + 1)(n+2)/dx1 codxyy, T,y X L X)W (X e, X))
n>0
Therefore, introducing the notation x,, = (xy, ..., X,),

/dxdyv(x = V)& () Ag (y){axay Pz, ¥2)

=Y Vu+ D +2) / dxdydx, V(x = )G AGOMTS 0Ly, %)W" (X,).

n=0

(6.23)

Integrating by parts, we find
/ dxdyV (x — y)§ () AG () {axay o, ¥2)

= SVl D) [ drdyds, V7= 307V .y x)UE (5

n>0

=Y Va+Dn+2) / %,V (x = NGOG0 (@ y %) Pl ().

n>0
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In the first term, we integrate by parts once more, but this time w.r.t. the variable x:
/ dxdyV (x = 1)@ (x) AG, (y) @y, )

=Y Vot Dn+2) / dxdydx,V (x = )G VGNP (. )08 (%)

n>0

S Vat D+ / dxdydx,V (x = ) VGOV @y %) vy (%)
n>0

- Va+ D +2) f dxdydx,V(x — )G VGOV, 05 Gy x)vs” ().
n>0

Taking absolute value, and using Cauchy-Schwarz, we find
’ / dxdyV (x — y)§ (x) AG, () (axay o, ¥2)

<> m+2) / dxdydx, V2 (x — ) [ (x, y, x|

n>0

+Y o+ 1)/dxdydxn\v&)}(x)\2|V€o}(y)!2|¢§”)(xn)|2

n>0

+2) (1 +2) / dxdydx, |V " (x, y, x|’

n>0

+2Z<n+1)/dxdydxﬁ2<x ~ @@ |VE[ v @[

n>0

Using the fact that || V2 x |§; *[|loe < @117, < C forall r € R, and since

/dxdydxn Vix — y)’lpz("”)(x, v, Xn)‘2
< / dxdyd, |V e,y x0 [+ [0 (v, %) [)
we conclude that
‘ f dxdyV (x — )@ () AG, () (ava, ¥, Yo} | < Clyra, (K + N + D).

Together with (6.22) and (6.21), this implies that
1| < Cly, (K+N + D).

The contribution from the second line on the r.h.s. of (6.20) can be bounded analogously.
The contribution from the first term on the r.h.s. of (6.20) is given by

2Re / dxdyV (x — Y)§,0)6, 0 llax v |
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—2Im / dxdyV (x = )3, AG D) layyn®

+2mm [ dxdy Vo= [0 (7 18 P) 0 lasval?
=A+B.
The second term can be estimated by
IBI <201V % 18 P13 (V2. Ny).
As for the first term, we integrate by parts. Since

/ dxdyV (x = | VE)| lava I
is clearly a real number, we find
A= 21m/dxdyv‘ﬂ;(x - NG WMVE W llaynl®.
Integrating by parts with respect to x, we conclude that
|Al = 4/dxdy|V(x =M@V |IVeavalllac |

s4/dxdyW<x—y)ﬁ@(y)fnvxamﬂ+/dxdy\vat<y>\||axw2n2

<4V 12| 2 K2) + 180 (W2, N
< C(¥2, (K+N)n).

Summarizing, we showed that

< C{Y, (K+N + D).

d L
E(Wz, 2(t)1/f2>

Together with Lemma 6.1 and with Proposition 5.1, we conclude that

d
‘E(wz, (L2(0) + N+ 1)n)| < C(¥a, (L2(0) + N + 1))

Hence, the lemma follows from Gronwall inequality. O

Lemma 6.1 and Lemma 6.2 allow us to control the contribution of the term with £4 in
(6.2). To bound the contribution containing £3(7), we use the following lemma.

Lemma 6.3 Suppose L3(t) is defined as in (6.3). Then there exists a constant C > 0 such
that

j Cc .
[+ D Lsey] = |V + D7y |

forallt e R.
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Proof We compute

[N 25| = (. L3ON L3(1)v)

- /a’xdydzde(x —WWV(z—w)
x (V. (&3, (») + ay@,(y))a N aZ (af, G (w) + au @, (w))a )

= 2Re/dxdydzdw V=)V —w)d ()@ (w)
x (v atala N ala}a. )
+2Re f dxdydzdwV (x — y)V (2 — w)§ (), (w)
x (V. ajala, N ataya. )

=1+1I (6.24)

Using the canonical commutation relations and the formula a, N' = (N + 1)a,, we find

1= 2Re/dxdydzdw\7(x — V(@@ —w)g0)E w)
x (acayaa, (N + 172, a,a. (N + 1)7H72y)
+2Re [ dxdydu? (- )T - )7 0w
X (araya, N + 17712y, a (W + 1)+ 2y)

+ 2Re/dxdysz(x — V(=050 ()

x (ayaya, (N + 1) Py, a (W + 1D)7172y)
=A+B+C. (6.25)

Applying Schwarz inequality, we find
IA| < /dxdydzdw |avaya.a, (N + 172y |

+ / dxdydzdwV?(x — y)V2(z = w) |G )7 )| [ ara W + 12y |

< v+ D7 P+ [V [0 F12)

< ClW + 1Ry

where we used that, since V2 < D(1 — A), |V % |3;*[le < D||@;|| g1 < C uniformly in
t € R. The second term on the r.h.s. of (6.25) can be bounded by
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IB| < /dxdydw“axayaw(/\/’—i— l)j_l/zx//H2

+/mwmﬁ%ewmu—wm@ﬁmmﬁwmw+wwww

sclw+ntyl

Similarly, the third term on the r.h.s. of (6.25) is controlled by
IC| < /dxdydz”clxayaz(./\/'—i- 1)-f_1/21//|’2

a;(N‘i‘ 1)j+1/2¢H2

+fw@ﬁmu—wW@—nm@ﬁmuW
<clw+nyl

where, on the second line, we first integrate over y and we extract the supremum over x
of |(V2 % |@;12)(x)|. Afterwards we integrate over x and extract the supremum over z of
|(\~/2 *|3:1?)(z)| and, finally, we integrate over z.

The second term on the r.h.s. of (6.24) can be written as

I =2Re / dxdydzdwV (x — y)V(z — )@ ()@, (w)

x (acaya, (N — 1)/, aca,a, (N — 1)/ )

+ 2Re/ dxdydwV (x — )V (x — w3 (T, (w)|aza, (N — DY, ava, (N — 17 ).
Hence, we can estimate

| < 2/dxdydzde2(z —w)|g ) [* |araya. NV = DIy

+ 2/dxdyde2(x —w)|@ )|’ |aca, W — DIy |

< [P+ @ P v + D72y |

This completes the proof of the lemma. ]

7 Relation Between Product States and Coherent States

In this paper we are interested in the evolution of factorized initial data of the form ¢®V
with a fixed number of particles N. Since it is more convenient to work with coherent states,
we write
a*(p)®N
0,...,0,¢%V,0,..} = —— =dyPyW(Np)Q
{ ==

where the constant dy ~ N'/* takes into account the fact that only a small part of the coher-
ent state W (~/N¢)S2 lies in the N-particle sector. Similarly, if we apply the inverse Weyl
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operator W*(«/ﬁ(p) to the factorized state {0, ..., 0, ®V,0, ...}, only a small part (of size
d,;l) of the resulting Fock space vector will have a small number of particles. This is the
content of the next lemma, whose proof can be found in [2].

Lemma 7.1 There exists a constant C > 0 such that, for any ¢ € L*>(R?, dx), we have

—1/2 * a*(q))N H £
H(N+1) W*(v/'Ng) i Q ng.

8 A Property of the Quadratic Evolution L4 (¢ s)

One of the reasons why we obtain precise error bounds is the observation that, for arbitrary
t eRand f e L2(R?, dx), the vectors U (t; 0)*a* (f)Uy(t; 0)2 and Uy (t; 0)*a(f)Us(t; 0)Q
are localized in the one-particle sector. Heuristically, this fact is based on the observation
that U4, (¢; 0) has a quadratic generator; its commutator with a(f) and a*( f) is again linear
in creation and annihilation operators. Hence, any derivative of U4, (¢; 0)*a*( f)U, (¢; 0)2 and
Us(t; 0)a(f)Usx(t; 0)2 at t = O lives exclusively in the one-particle sector of the Fock space.
In the next lemma, we show that this continues to hold for ¢ # 0.

Lemma 8.1 Suppose that the evolution U (t; s) is defined as in (4.10). Then we have, for
any f € L*(R3,dx) and any t € R,

U (15009 (L (t; 0)2 = P1Ux (15 0)" ¢ (f)Ua(t; 0)S2.

Proof For any ¢ € F with ||| =1 and ¢ = 1(N = m)yr, with m # 1, we define the
quantity

1
Fiy= sup —|(¥.th(t: 0)"a(f)th(t; 0)S)]
feLZ(R3) ”f”

1
+ osup (¥, U (t; 0)*a" () (15 0) Q).
feL?2(R3) /1

Note that F(0) =0. Let
K= / dxV.a;V,ay.
We observe that, for any f € L*(R3, dx),

eiKlta(f)e—ilCt :a(e_iA’f).

—i At

Since e is a unitary operator on L>(R?, dx), we conclude that

1
sup  — (¥, 1(1; 0)"a(/)h(t; 0)Q)|
feL2(R3) Al

1 . )
= sup —|(V.th(t:0) ™ a(fle M ih(t; 0)Q)|
feL2(R3) il
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and similarly if we replace a(f) with a*(f). This implies that

1 , ,
F)y= sup —|(,th(t; 00" a(fe ™Mb (1;0)Q)
feL2(R3) £
1 , .
+ sup  — (¥, th(t; 00 ™M a* (e ML (15 0)Q)].
feL2(R3) ”f”

For f € L*>(R?, dx), we compute

i%(w, Up(t; 0)* ™ a( fe ™M (1;0)R)

=y, U (1; 0)*[e™a(fle™™, L2(t) — K]th(t; 0)R)
= (Y, Us(t; 0)*[a (), L2(t) — K]t (25 0)R2)

with f, = e~/ f. Using the canonical commutation relations, it is simple to check that

[a(f), L2(t) = K] = a((V % 1@ 1P) fi + (V % £i3)@:) +a* (V% F,8)%).

Notice that, under the assumption V2 <C(1 —A), we find

[(V=1@P) £ ] <141 SuP/dyV(x ~ @) = CIANG N < CIfI

and

|V £80@ | < 18 SuP/dyV(x - MA@ < CUANIG G < ClF

for a constant C, independent of ¢ and f. Therefore, we conclude that
1

il 26 0 a6 09)| < € /0 dsF(s)

for every f € L*(R3, dx). The same bound can be obtained with a(f) replaced by a*(f).

Hence, we obtain
t
0§F(t)§C/ dsF(s)
0
which implies that F () =0 for all 7 € R.

Acknowledgements We are grateful to H.-T. Yau for helpful discussions.
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