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Abstract In this paper we perform an analytical and numerical study of Extreme Value dis-
tributions in discrete dynamical systems. In this setting, recent works have shown how to get
a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue
these investigations by giving analytical expressions of Extreme Value distribution param-
eters for maps that have an absolutely continuous invariant measure. We compare these
analytical results with numerical experiments in which we study the convergence to limiting
distributions using the so called block-maxima approach, pointing out in which cases we
obtain robust estimation of parameters. In regular maps for which mixing properties do not
hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as
expected. However, we obtain an empirical distribution that can be explained starting from
a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602,
2006) have found analytical results.
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1 Introduction

Extreme Value Theory (EVT) was first developed by Fisher and Tippett [21] and formalized
by Gnedenko [29] which showed that the distribution of the block-maxima of a sample of
independent identically distributed (i.i.d.) variables converges to a member of the so-called
Extreme Value (EV) distribution. It arises from the study of stochastical series that is of great
interest in different disciplines: it has been applied to extreme floods [30, 50, 56], amounts of
large insurance losses [6, 14]; extreme earthquakes [8, 13, 55]; meteorological and climate
events [1, 19, 20, 48, 54, 60]. All these events have a relevant impact on socioeconomic
activities and it is crucial to find a way to understand and, if possible, forecast them [34, 39].

The attention of the scientific community to the problem of modeling extreme values is
growing. An extensive account of recent results and relevant applications is given in Ghil
et al. [27]. Such an interest is mainly due to the fact that this theory is also important in
defining risk factor in a wide class of applications such as the modeling of financial risk
after the significant instabilities in financial markets worldwide [18, 28, 45], the analysis of
seismic and hydrological risk [8, 47]. Even if the probability of extreme events decreases
with their magnitude, the damage that they may bring increases rapidly with the magnitude
as does the cost of protection against them Nicolis et al. [49].

From a theoretical point of view, extreme values represent extreme fluctuations of a sys-
tem. Very recently, many authors have shown clearly how the statistics of global observables
in correlated systems can be related to EV statistics [5, 15]. Clusel and Bertin [9] have shown
how to connect fluctuations of global additive quantities, like total energy or magnetization,
by statistics of sums of random variables in such a way that it is possible to identify a class
of random variables whose sum follows an extreme value distributions.

The so called block-maxima approach is widely used in EVT since it represents a very
natural way to look at extremes. It consists of dividing the data series of some observable
into bins of equal length and selecting the maximum (or the minimum) value in each of them
[11]. When dealing with climatological or financial data, since we usually have limited data-
set, the main problem in applying EVT is related to the choice of a sufficiently large statistics
of extremes provided that each bin contains a suitable number of observations. Therefore a
smart balance between number of maxima and observations per bin is needed [19, 40–42].

Recently a number of alternative approaches have been studied. One consists in looking
at exceedance over high thresholds rather than maxima over fixed time periods. While the
idea of looking at extreme value problems from this point of view is very old, the develop-
ment of a modern theory has started with Todorovic and Zelenhasic [57] that have proposed
the so called Peaks Over Threshold approach. At the same time there was a mathematical
development of procedures based on a certain number of extreme order statistics [36, 52]
and the Generalized Pareto distribution for excesses over thresholds [16, 17, 53].

Since dynamical systems theory can be used to understand features of physical systems
like climate and forecast financial behaviors, many authors have studied how to extend EVT
to these field. When dealing with dynamical systems we have to know what kind of proper-
ties (i.e. stability, degree of mixing, correlations decay) are related to Gnedenko’s hypotheses
and also which observables we must consider in order to obtain an EV distribution. Further-
more, even if the convergence is achieved, we should evaluate how fast it is depending on
all parameters and properties used. Empirical studies show that in some cases a dynamical
observable obeys to the extreme value statistics even if the convergence is highly dependent
on the kind of observable we choose [58–60]. For example, Balakrishnan et al. [3] and more
recently Nicolis et al. [49] and Haiman [33] have shown that for regular orbits of dynamical
systems we don’t expect to find convergence to EV distribution.
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The first rigorous mathematical approach to extreme value theory in dynamical systems
goes back to the pioneer paper by P. Collet in 2001 [12]. Collet got the Gumbel Extreme
Value Law (see below) for certain one-dimensional non-uniformly hyperbolic maps which
admit an absolutely continuous invariant measure and exhibit exponential decay of corre-
lations. Collet’s approach used Young towers [61, 62] and his suggestion was successively
applied to other systems. Before quoting them, we would like to point out that Collet was
able to establish a few conditions (usually called D and D′) and which have been introduced
by Leadbetter [43] with the aim to associate to the stationary stochastic process given by the
dynamical system, a new stationary independent sequence which enjoyed one of the clas-
sical three extreme value laws, and this law could be pulled back to the original dynamical
sequence. Conditions D and D′ require a sort of independence of the stochastic dynamical
sequence in terms of uniform mixing condition on the distribution functions. Condition D

was successively improved by Freitas and Freitas [22], in the sense that they introduced a
new condition, called D2, which is weaker than D and that could be checked directly by
estimating the rate of decay of correlations for Hölder observables.1 We notice that condi-
tions D2 and D′ allow immediately to get Extreme Value Laws for absolutely continuous
invariant measures for uniformly one-dimensional expanding dynamical systems: this is the
case for instance of the 1-D maps with constant density studied in Sect. 3 below. Another
interesting issue of Collet’s paper was the choice of the observables g’s whose values along
the orbit of the dynamical systems constitute the sequence of events upon which we suc-
cessively search for the partial maximum. Collet considered a function g(dist(x, ζ )) of the
distance with respect to a given point ζ , with the aim that g achieves a global maximum
at almost all points ζ in the phase space; for example g(x) = − logx. Using a different g,
Freitas and Freitas [23] were able to get the Weibull law for the family of quadratic maps
with the Benedicks-Carleson parameters and for ζ taken as the critical point or the critical
value, so improving the previous results by Collet who did not keep such values in his set of
full measure.

The latter paper [23] strongly relies on condition D2; this condition has also been in-
voked to establish the extreme value laws on towers which model dynamical systems with
stable foliations (hyperbolic billiards, Lozi maps, Hénon diffeomorphisms, Lorenz maps
and flows). This is the content of the paper by Gupta, Holland and Nicol [32]. We point out
that the observable g was taken in one of three different classes g1, g2, g3, see Sect. 2 below,
each one being again a function of the distance with respect to a given point ζ . The choice of
these particular forms for the g’s is just to fit with the necessary and sufficient condition on
the tail of the distribution function F(u), see next section, in order to exist a non-degenerate
limit distribution for the partial maxima [24, 37]. The paper Gupta et al. [32] also covers
the easier case of uniformly hyperbolic diffeomorphisms, for instance the Arnold Cat map
which we studied in Sect. 3.2.

Another major step in this field was achieved by establishing a connection between the
extreme value laws and the statistics of first return and hitting times, see the papers by

1We briefly state here the two conditions, we defer to the next section for more details about the quantities
introduced. If Xn, n ≥ 0 is a stochastic process, we define Mj,l ≡ {Xj ,Xj+1, . . . ,Xj+l} and we put M0,m =
Mm. Moreover we set am and bm two normalizing sequences and um = x/am +bm , where x is a real number,
cf. next section for the meaning of these variables. The condition D2(um) holds for the sequence Xm if for
any integer l, t,m we have |ν(X0 > um,Mt,l ≤ um) − ν(X0 > um)ν(Mt,l ≤ um)| ≤ γ (m, t), where γ (m, t)

is non-increasing in t for each m and mγ (m, tm) → 0 as m → ∞ for some sequence tm = o(m), tm → ∞.

We say condition D′(um) holds for the sequence Xm if limk→∞ lim supm m
∑[m/k]

j=1 ν(X0 > um,Xj >

um) = 0. Whenever the process is given by the iteration of a dynamical systems, the previous two conditions
could also be formulated in terms of decay of correlation integrals, see Freitas and Freitas [22], Gupta [31].
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Freitas, Freitas and Todd [24, 26]. They showed in particular that for dynamical systems
preserving an absolutely continuous invariant measure or a singular continuous invariant
measure ν, the existence of an exponential hitting time statistics on balls around ν almost
any point ζ implies the existence of extreme value laws for one of the observables of type gi ,
i = 1,2,3 described above. The converse is also true, namely if we have an extreme value
law which applies to the observables of type gi , i = 1,2,3 achieving a maximum at ζ , then
we have exponential hitting time statistics to balls with center ζ . Recently these results have
been generalized to local returns around balls centered at periodic points [25]. We would
like to point out that the equivalence between extreme values laws and the hitting time
statistics allowed to prove the former for broad classes of systems for which the statistics of
recurrence were known, for instance for expanding maps in higher dimension.

In this work we consider a few aspects of the extreme value theory applied to dynamical
systems throughout both analytical results and numerical experiments. In particular we an-
alyze the convergence to EV limiting distributions pointing out how robust are parameters
estimations. Furthermore, we check the consistency of block-maxima approach highlight-
ing deviations from theoretical expected behavior depending on the number of maxima and
number of block-observation. To perform our analysis we use low dimensional maps with
different properties: mixing maps in which we expect to find convergence to EV distribu-
tions and regular maps where the convergence is not ensured.

The work is organized as follows: in Sect. 2 we briefly recall methods and results of
EVT for independent and identical distributed (i.i.d.) variables and dynamical systems. In
Sect. 3 we explicitly compute theoretical expected distributions parameter in respect to the
observable functions of type gi , i = 1,2,3 for map that have constant density measure.
Numerical experiments on low dimensional maps are presented. In Sect. 4 we show that it
is possible to derive an asymptotic expression of normalizing sequences when the density
measure is not constant. As an example we derive the explicit expressions for the Logistic
map. Eventually, in Sect. 5 we repeat the experiment for regular maps showing that extreme
values laws do not follow from numerical experiments.

2 Background on EVT

Gnedenko [29] studied the convergence of maxima of i.i.d. variables

X0,X1, . . . ,Xm−1

with cumulative distribution (cdf) F(x) of the form:

F(x) = P {am(Mm − bm) ≤ x}

Where am and bm are normalizing sequences and Mm = max{X0,X1, . . . ,Xm−1}. It may
be rewritten as F(um) = P {Mm ≤ um} where um = x/am + bm. Such types of normalizing
sequences converge to one of the three type of Extreme Value (EV) distribution if neces-
sary and sufficient conditions on parent distribution of Xi variables are satisfied [43]. EV
distributions include the following three families:

• Gumbel distribution (type 1):

F(x) = exp{−e−x} x ∈ R (1)
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• Fréchet distribution (type 2):

{
F(x) = 0 x ≤ 0

F(x) = exp{−x1/ξ } x > 0
(2)

• Weibull distribution (type 3):

{
F(x) = exp{−(−x)1/ξ } x < 0

F(x) = 0 x ≥ 0
(3)

Let us define the right endpoint xF of a distribution function F(x) as:

xF = sup{x : F(x) < 1} (4)

then, it is possible to compute normalizing sequences am and bm using the following corol-
lary of Gnedenko’s theorem:

Corollary (Gnedenko) The normalizing sequences am and bm in the convergence of nor-
malized maxima P {am(Mm − bm) ≤ x} → F(x) may be taken (in order of increasing com-
plexity) as:

• Type 1: am = [G(γm)]−1, bm = γm;
• Type 2: am = γ −1

m , bm = 0 or bm = c · m−ξ ;
• Type 3: am = (xF − γm)−1, bm = xF ;

where

γm = F−1(1 − 1/m) = inf{x;F(x) ≥ 1 − 1/m} (5)

G(t) =
∫ xF

t

1 − F(u)

1 − F(t)
du t < xF (6)

and c ∈ R is a constant. It is important to remark that the choice of normalizing sequences
is not unique [43]. For example for bm of type 2 distribution it is possible to choose either
bm = 0 or bm = c · m−ξ . In particular, we will use the last one since it is a more general
choice that ensure the convergence for a much broader class of initial distributions [4].

Instead of Gnedenko’s approach it is possible to fit unnormalized data directly to a single
family of generalized distribution called GEV distribution with cdf:

FG(x;μ,σ, ξ) = exp

{

−
[

1 + ξ

(
x − μ

σ

)]−1/ξ}

(7)

which holds for 1 + ξ(x − μ)/σ > 0, using μ ∈ R (location parameter) and σ > 0 (scale
parameter) as scaling constants in place of bm, and am [51]. ξ ∈ R is the shape parameter
also called the tail index: when ξ → 0, the distribution corresponds to a Gumbel type. When
the index is negative, it corresponds to a Weibull; when the index is positive, it corresponds
to a Fréchet.
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In order to adapt the extreme value theory to dynamical systems, we will consider the
stationary stochastic process X0,X1, . . . given by:

Xm(x) = g(dist(f m(x), ζ )) ∀m ∈ N (8)

where ‘dist’ is a Riemannian metric on �, ζ is a given point and g is an observable function,
and whose partial maximum is defined as:

Mm = max{X0, . . . ,Xm−1} (9)

The probability measure will be here an invariant measure ν for the dynamical system.
As we anticipated in the Introduction, we will use three types of observables gi , i = 1,2,3,
suitable to obtain one of the three types of EV distribution for normalized maxima:

g1(x) = − log(dist(x, ζ )) (10)

g2(x) = dist(x, ζ )−1/α (11)

g3(x) = C − dist(x, ζ )1/α (12)

where C is a constant and α > 0 ∈ R.
These three type of functions are representative of broader classes which are defined,

for instance, throughout (1.11) to (1.13) in Freitas et al. [24]; we now explain the reasons
and the meaning of these choices. First of all these functions have in common the following
properties: (i) they are defined on the positive semi-axis [0,∞] with values into R ∪ {+∞};
(ii) 0 is a global maximum, possibly equal to +∞; (iii) they are a strictly decreasing bijection
in a neighborhood V of 0 with image W . Then we consider three types of behavior which
generalize the previous specific choices:

Type 1: there is a strictly positive function p : W → R such that ∀y ∈ R we have

lim
s→g1(0)

g−1
1 (s + yp(s))

g−1
1 (s)

= e−y

Type 2: g2(0) = +∞ and there exists β > 0 such that ∀y > 0 we have

lim
s→∞

g−1
2 (sy)

g−1
2 (s)

= y−β

Type 3: g3(0) = D < +∞ and there exists γ > 0 such that ∀y > 0 we have

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ

The Gnedenko corollary says that the different kinds of extreme value laws are deter-
mined by the distribution of F(u) = ν(X0 ≤ u) and by the right endpoint of F , xF . We will
see in the next section that the local invertibility of gi , i = 1,2,3 in the neighborhood of
0 together with the Lebesgue’s differentiation theorem (which basically says that whenever
the measure ν is absolutely continuous with respect to Lebesgue with density ρ, the measure
of a ball Bδ(x0) of radius δ centered around almost any point x0 scales like δρ(x0)), allow
us to compute the tail of F , in fact we have

1 − F(u) ∼ ρ(ζ )|Bg−1(u)(ζ )|,



1162 D. Faranda et al.

where g is any of the three types of functions introduced in (10) to (12) and |A| denotes the
diameter of the set A. As we said above the tail of F determines the three limit laws for
partial maximum of i.i.d. sequences. In particular Th. 1.6.2 in Leadbetter et al. [43] specifies
what kind of conditions the distribution function F must verify to get one specific law: the
above type 1, 2, 3 assumptions are just the translation in terms of the shape of gi of the
conditions on the tail of F .

3 Distribution of Extremes in Mixing Maps with Constant Density Measure

Our goal is to use a block-maxima approach and fit our unnormalized data to a GEV dis-
tribution; for that it will be necessary to find a linkage among am, bm, μ and σ . At this
regard we will use Gnedenko’s corollary to compute normalizing sequences showing that
they correspond to the parameter we obtain fitting directly data to GEV distribution.

We derive the correct expression for mixing maps with constant density measure and the
asymptotic behavior for logistic map that is a case of non-constant density measure.

3.1 Asymptotic Sequences

In this section we will consider the case of uniformly hyperbolic maps which preserve the
Lebesgue measure (the density ρ = 1) and satisfy the conditions D2 and D′, sufficient to get
extreme valuers distributions. For the second map, the algebraic automorphisms of the torus
better known as the Arnold cat map, the existence of extreme value laws follows from the
theory developed in Gupta et al. [32]. Starting from the definitions provided by Gnedenko
we derive as a novel result the exact expression for the normalizing sequences am and bm.

Case 1 (g1(x) = − log(dist(x, ζ ))) By (8) and (9) we know that:

1 − F(u) = 1 − ν(g(dist(x, ζ )) ≤ u)

= 1 − ν(− log(dist(x, ζ )) ≤ u)

= 1 − ν(dist(x, ζ ) ≥ e−u) (13)

and the last line is justified by using Lebesgue’s Differentiation Theorem. Then, for maps
with constant density measure, we can write:

1 − F(u) � ν(Be−u(ζ )) = �de
−ud (14)

where d is the dimension of the space and �d is a constant. To use Gnedenko corollary it is
necessary to calculate uF

uF = sup{u;F(u) < 1}

in this case uF = +∞.
Using Gnedenko (6) we can calculate G(t) as follows:

G(t) =
∫ ∞

t

1 − F(u)

1 − F(t)
du =

∫ ∞

t

e−ud

e−td
du = 1

d

∫ ∞

td

e−v

e−td
dv = 1

d
(15)
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According to the Leadbetter et al. [43] proof of Gnedenko theorem we can study both am

and bm or γm convergence as:

lim
m→∞m(1 − F {γm + xG(γm)}) = e−x

lim
m→∞m�de

−d(γm+xG(γm)) = e−x
(16)

then we can use the connection between γm and normalizing sequences to find am and bm.
By (5) or using relation (16):

γm � ln(m�d)

d

so that:

am = d bm = 1

d
ln(m) + ln(�d)

d

Case 2 (g2(x) = dist(x, ζ )−1/α) We can proceed as for g1:

1 − F(u) = 1 − ν(dist(x, ζ )−1/α ≤ u)

= 1 − ν(dist(x, ζ ) ≥ u−α)

= ν(Bu−α (ζ )) = �du
−αd (17)

in this case uF = +∞.

γm = F−1(1 − 1/m) = (m�d)
1/(αd) (18)

and, as discussed in Sect. 2, using Beirlant [4] choice of normalizing sequences we expect:

bm = c · m−ξ

where c ∈ R is a constant.

Case 3 (g3(x) = C −dist(x, ζ )1/α) Eventually we compute am and bm for the g3 observable
class:

1 − F(u) = 1 − ν(C − dist(x, ζ )1/α ≤ u)

= 1 − ν(dist(x, ζ ) ≥ (C − u)α)

= ν(B(C−u)α (ζ )) = �d(C − u)αd (19)

in this case uF = C.

γm = F−1(1 − 1/m) = C − (m�d)
−1/(αd) (20)

For type 3 distribution:

am = (uF − γm)−1 bm = uF (21)
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3.2 Numerical Experiments

Since we want to show that unnormalized data may be fitted by using the GEV distribution
FG(x;μ,σ, ξ) we expect to find the following equivalence:

am = 1/σ bm = μ

where, clearly, μ = μ(m) and σ = σ(m). This fact can be seen as a linear change of variable:
the variable y = am(x − bm) has a GEV distribution FG(y;μ = 0, σ = 1, ξ) (that is an
EV one parameter distribution with am and bm normalizing sequences) while x is GEV
distributed FG(x;μ = bm,σ = 1/am, ξ).

As we said above we now apply the previous considerations to two maps which enjoy
extreme values laws and have constant density: we summarize below the theoretical results
we obtained for all three type of observables. We have obtained the results in terms of m

but, since we fix k = n · m, the previous results can be translated in terms of n as follows:
For g1 type observable:

σ = 1

d
μ ∝ 1

d
ln

(
k

n

)

(22)

For g2 type observable:

σ ∝ n−1/(αd) μ ∝ n−1/(αd) (23)

For g3 type observable:

σ ∝ n1/(αd) μ = C (24)

Following Freitas et al. [24] we obtain the expression for the shape parameters: ξ = 0 for
g1 type, ξ = 1/(αd) for g2 type and ξ = −1/(αd) for g3 type.

In order to provide a numerical test of our results we consider a one-dimensional and a
two dimensional map. The one dimensional map used is a Bernoulli Shift map:

xt+1 = qxt mod 1 q > 1 ∈ N (25)

with q = 3.
The considered two dimensional map is the famous Arnold’s cat map defined on the

2-torus by:

[
xt+1

yt+1

]

=
[

2 1
1 1

][
xt

yt

]

mod 1 (26)

A wide description of properties of these maps can be found in Arnold and Avez [2] and
Hasselblatt and Katok [35].

We proceed as follows. For each map we run a long simulation up to k iterations starting
from a given initial condition ζ . Note that the results—as we tested—do not depend on
the choice of ζ . From the trajectory we compute the sequence of observables g1, g2, g3
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Fig. 1 Left: g1 observable empirical histogram and fitted GEV pdf. Right: g1 observable empirical cdf and
fitted GEV cdf. Logistic map, n = 104, m = 104

as follows dividing it into n bins each containing m = k/n observations. Then, we test
the degree of agreement between the empirical distribution of the maxima and the GEV
distribution according to the theoretical values presented above. A priori, it is reasonable to
assume GEV as a suitable family of statistical models. For some selected values of n, the
maxima are normalized and fitted to GEV distributions FG(x;μ,σ, ξ) using a maximum
likelihood method which selects values of the model parameters that produce the distribution
most likely to have resulted in the observed data.

All the numerical analysis contained in this work has been performed using MATLAB
Statistics Toolbox functions such as gevfit and gevcdf. These functions return maximum
likelihood estimates of the parameters for the generalized extreme value (GEV) distribution
giving 95% confidence intervals for estimates [46].

As in every fitting procedure, it is necessary to test the a posteriori goodness of fit. We
anticipate that in every case considered, fitted distributions passed, with maximum confi-
dence interval, the Kolmogorov-Smirnov test described in Lilliefors [44]. For illustration
purposes, we present in Fig. 1 an empirical pdf and cdf with the corresponding fits.

Once k is set to a given value (in our case k = 107), the numerical simulations allow us
to explore two limiting cases of great interest in applications where the statistical inference
is intrinsically problematic:

1. n is small (m is large), so that we extract only few maxima, each corresponding to a very
extreme event.

2. m is small (n is large), so that we extract many maxima but most of those will not be as
extreme as in case (1).

In case (1), we have only few data—of high quality—to fit our statistical models whereas
in case (2) we have many data but the sampling may be spoiled by the inclusion of data not
giving a good representation of extreme events. We have in general that in order to obtain a
reliable fit for a distribution with p parameters we need 10p independent data [19] so that
we expect that fit procedure gives reliable results for n > 103. As the value of m determines
to which extend the extracted bin maximum is representative of an extreme, below a certain
value mmin our selection procedure will be unavoidably misleading. We have no obvious
theoretical argument to define the value of mmin. We expect to obtain good fits throughout
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Fig. 2 (Color online) g1 observable, ζ � 0.51. (a) ξ VS log10(n); (b) σ VS log10(n); (c) μ VS log10(n).
Left: Bernoulli Shift map. Right: Arnold Cat Map. Dotted lines represent computed confidence interval, red
lines represent a linear fit, blue lines are theoretical values

the parametric region where the constraints on n, m are satisfied. Therefore, our flexibility
in choosing satisfying pairs (n,m) increases with larger values of k.

For a g1 type observable function the behavior against n of the three parameters is pre-
sented in Fig. 2. According to (22) we expect to find ξ = 0. For relatively small values of n

the sample is too small to ensure a good convergence to analytical ξ and confidence inter-
vals are wide. On the other hand we see deviations from expected value as m < 103 that is
when n > 104. For the scale parameter a similar behavior is achieved and deviations from
expected theoretical values σ = 1/2 for Arnold Cat Map and σ = 1 for Bernoulli Shift are
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Fig. 3 (Color online) g2 observable, ζ � 0.51. (a) ξ VS log10(n); (b) log10(σ ) VS log10(n); (c) log10(μ)

VS log10(n). Left: Bernoulli Shift map. Right: Arnold Cat Map. Dotted lines represent computed confidence
interval, red lines represent a linear fit, blue lines are theoretical values

found when n < 103 or m < 103. Location parameter μ shows a logarithm decay with n as
expected from (22). A linear fit of μ in respect to log(n) is shown with a red line in Fig. 2.
The linear fit computed angular coefficients K∗ of (22) well approximate 1/d : for Bernoulli
Shift map we obtain |K∗| = 1.001 ± 0.001 while for Arnold Cat map |K∗| = 0.489 ± 0.001.
We find that ξ values have best matching with theoretical ones with reliable confidence in-
terval when both n > 103 and m > 103. These results are confirmed even for g2 type and
g3 type observable functions as shown in Figs. 3(a) and 4(a) respectively. We present the fit
results for α = 3 but we have done tests for different α and for fixed n and different α.
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Fig. 4 (Color online) g3 observable, ζ � 0.51. (a) ξ VS log10(n); (b) log10(σ ) VS log10(n); (c) log10(μ)

VS log10(n). Left: Bernoulli Shift map. Right: Arnold Cat Map. Dotted lines represent computed confidence
interval, red lines represent a linear fit, blue lines are theoretical values

For g2 observable function we can also check that μ and σ parameters follow a power
law as described in (23). In the log-log plot in Fig. 3(b), 3(c), we can see a very clear linear
behavior. For the Bernoulli Shift map we obtain |K∗| = 0.330 ± 0.001 for μ series, |K∗| =
0.341 ± 0.001 for σ in good agreement with theoretical value of 1/3. For Arnold Cat map
we expect to find K∗ = 1/6, from the experimental data we obtain |K∗| = 0.163±0.001 for
μ and |K∗| = 0.164 ± 0.001 for σ .

Eventually, computing g3 as observable function we expect to find a constant value for μ

while σ has to grow with a power law in respect to n as expected from (24). As in g2 case we
expect |K∗| = 1/(αd) and numerical results shown in Fig. 4(b), 4(c) are consistent with the
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theoretical one since |K∗| = 0.323±0.006 for Bernoulli shift map and |K∗| = 0.162±0.006
for Arnold Cat map.

In all cases considered the analytical behavior described in (23) and (24) is achieved and
the fit quality improves if n > 103 and m > 103. The g3 type observable constant has been
chosen C = 10. The nature of these lower bound is quite different.

4 Distributions of Extremes in Mixing Map with Non-constant Density Measure

4.1 Asymptotic Sequences

The main problem when dealing with maps that have absolutely continuous but non-constant
density measure ρ(ζ ) is in the computation of the integral:

ν(Bδ(ζ )) =
∫

Bδ(ζ )

ρ(x) dx (27)

where Bδ(ζ ) is the d-dimensional ball of radius δ centered in ζ .
We have to know the value of this integral in order to evaluate F(u) and, therefore, the

sequences am and bm.
As shown in the previous section δ is linked to the observable type: in all cases, since we

substitute u = 1 − 1/m, δ → 0 means that we are interested in m → ∞.
In this limit, a first order approximation of the previous integral is:

ν(Bδ(ζ )) � ρ(ζ )δd + O(δd+1) (28)

that is valid if we are not in a neighborhood of a singular point of ρ(ζ ).
As an example we compute the asymptotic sequences for a logistic map:

xt+1 = rxt (1 − xt ) (29)

with r = 4. This map satisfies hypothesis described in the analysis performed for Benedicks-
Carleson maps in Moreira Freitas and Freitas [23].

For this map the density of the absolutely continuous invariant measure is explicit and
reads:

ρ(ζ ) = 1

π
√

ζ(1 − ζ )
ζ ∈ (0,1) (30)

So that:
∫

Bδ(ζ )

ρ(ζ ) dζ = 2

π

[
arcsin(

√
ζ + δ) − arcsin(

√
ζ − δ)

]
(31)

where ζ + δ < 1 and ζ − δ > 0. Since Extreme Value Theory effectively works only if n,m

are large enough, the results in (31) can be replaced by a series expansion for δ → 0:

2

π

[
arcsin(

√
ζ + δ) − arcsin(

√
ζ − δ)

] = 1

π

2δ√
ζ(1 − ζ )

[1 + δ2P (ζ ) + · · ·] (32)
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up to order δ3, where:

P (ζ ) = 1

8ζ 2
− 2

ζ(1 − ζ )
+ 2

ζ 2(1 − ζ )
+ 6

ζ 2(1 − ζ )2
(33)

Using the last two equations we are able to compute asymptotic normalizing sequences
am and bm for all gi observables.

Case 1 (g1(x) = − log(dist(x, ζ ))) For g1 observable functions we set δ = e−ud . In case of
logistic map d = 1. First we have to compute G(t) using (15) and the expansion in equation:

G(t) =
∫ ∞

t
du(e−u + e−3uP (ζ ))

e−t + e−3tP (ζ )
� 1 − 2

3
e−2tP (ζ ) (34)

We can compute γm, if m � 1, as follows:

F(γm) � 1 − 1

m
(35)

At the first order in (32) we get

1

m
� 1

π

2e−γm

√
ζ(1 − ζ )

(36)

so that:

γm � ln(m) + ln

(
2

π
√

ζ(1 − ζ )

)

(37)

Therefore, the sequences am and bm if m � 1 are:

am � [G(γm)]−1 � 1 + 2

3

π2

4m2
ζ(ζ − 1)P (ζ ) (38)

bm � γm � ln(m) + ln(2ρ(ζ )) (39)

Case 2 (g2(x) = dist(x, ζ )−1/α) We can proceed as for g1 setting δ = (αu)−α , computing
γm we get at the first order in (32):

1

m
� 1

π

2γ −α
m√

ζ(1 − ζ )
= 2ρ(ζ )(αγm)−α (40)

γm = 1

α

(
1

2mρ(ζ )

)−1/α

(41)

We can respectively compute am and bm as:

am = γ −1
m bm = (2mρ(ζ ))−ξ (42)
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Case 3 (g3(x) = C − dist(x, ζ )1/α) As in the previous cases, we compute γm up to the first
order setting δ = [α(C − γm)]α :

1

m
� 1

π

2[α(C − γm)]α√
ζ(1 − ζ )

= 2ρ(ζ )[α(C − γm)]α (43)

γm = C − 1

α

(
1

2mρ(ζ )

)1/α

(44)

For type 3 distribution:

am = (uF − γm)−1 bm = uF ; (45)

where uf = C.

4.2 Numerical Experiment on the Logistic Map

Following the same procedure detailed in Sect. 3.2, we want to show the equivalence be-
tween EV computed normalizing sequences am and bm and the parameters of a GEV dis-
tribution obtained directly fitting the data even in case of logistic map that has not constant
density measure. Using (38)–(39) for g1, we obtain the following theoretical expression:

σ(m, ζ ) � 1 + 2

3

π2

4m2
ζ(ζ − 1)P (ζ ) μ(m, ζ ) � ln(m) + ln(2ρ(ζ )) (46)

From (39), for g2 observable type, we write:

σ(m, ζ ) � 1

α
(2mρ(ζ ))

1
α μ(m, ζ ) � (2mρ(ζ ))

1
α (47)

and in g3 case using (45), we expect to find:

σ(m, ζ ) � 1

α
(2mρ(ζ ))−1/α μ(m, ζ ) � C = uF (48)

Values of ξ are independent on density and, as stated in Freitas’ ξ = 0 for g1 type, ξ =
1/(αd) for g2 type and ξ = −1/(αd) for g3 type.

In Figs. 5, 6, 7 we presents a numerical test of the asymptotic behavior described in
(46)–(48) on logistic map for d = 1, a = 3, C = uF = 10, ζ = 0.3 against the variable n.
As shown in previous section, block maxima approach works well with maps with constant
density measure when n and m are at least 103: In fact, regarding ξ parameter. Significant
deviations from the theoretical value are achieved when n < 1000 or m < 1000 even in the
case of the Logistic Map.

Regarding μ and σ , for g1 observable a linear fit of μ in respect to log(n) give us
|K∗| = 0.999 ± 0.002, while σ shows the same behavior of ξ since the best agreement
with theoretical value σ = 1 is achieved when n,m > 103. In the log-log plots of Fig. 6(b),
6(c) for g2 observable, we can observe again the expected linear behavior for μ and σ with
|K∗| corresponding to 1/(αd). From numerical fit we obtain |K∗| = 0.3334 ± 0.0007 for μ

series and |K∗| = 0.337 ± 0.002 for σ in good agreement with theoretical value of 1/3. By
applying a linear fit to the log-log plot in Fig. 7(b), the angular coefficient corresponding to
σ series is |K| = 0.323 ± 0.003 again consistent with the theory.
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Fig. 5 (Color online) g1 observable, ζ = 0.31. (a) ξ VS log10(n); (b) σ VS log10(n); (c) μ VS log10(n).
Logistic map. Dotted lines represent computed confidence interval, red lines represent a linear fit, blue lines
are theoretical values

For a logistic map we can also check the GEV behavior in respect to initial conditions.
If we fix n∗ = m∗ = 103 and fit our data to GEV distribution for 103 different ζ ∈ (0,1)

an asymptotic behavior is reached as shown from the previous analysis. For g1 observable
function we have observed that the first order approximation works well for all three pa-
rameters. Deviation from this behavior are achieved for ζ → 1 and ζ → 0 as the measure
become singular when we move to these points and we should take in account other terms
of the series expansion. Numerically, we found that deviations from first order approxima-
tion are meaningful only if ζ < 10−3 and ζ > 1 − 10−3. Averaging over ζ both ξ and σ we
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Fig. 6 (Color online) g2 observable, ζ = 0.3. (a) ξ VS log10(n); (b) log10(σ ) VS log10(n); (c) log10(μ)

VS log10(n). Logistic map. Dotted lines represent computed confidence interval, red lines represent a linear
fit, blue lines are theoretical values

obtain 〈ξ 〉 = 1.000 ± 0.009 and 〈σ 〉 = 1.00 ± 0.03 where the uncertainties are computed
with respect to the estimator. Since we expect ξ = 0 and σ = 1 at zero order approximation,
numerical results are consistent with the theoretical ones; furthermore, experimental data
are normally distributed around theoretical values.

Asymptotic expansion also works well for g2 observables: we obtain 〈ξ 〉 = 0.334±0.001
in excellent agreement with theoretical value ξ = 1/3. Eventually, in g3, averaging ξ over
different initial conditions we get 〈ξ 〉 = −0.334±0.002 that is again consistent to theoretical
value −1/3.
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Fig. 7 (Color online) g3 observable, ζ = 0.3. (a) ξ VS log10(n); (b) log10(σ ) VS log10(n); (c) log10(μ)

VS log10(n). Logistic map. Dotted lines represent computed confidence interval, red lines represent a linear
fit, blue lines are theoretical values

5 The Case of Regular Maps

Freitas and Freitas [22] have posed the problem of dependent extreme values in dynamical
systems that show uniform quasi periodic motion. Here we try to investigate this problem
numerically. We have used a one-dimensional and a bi-dimensional discrete map. The first
one is the irrational translation on the torus defined by:

xt+1 = xt + β mod 1 β ∈ [0,1] \ Q. (49)
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And for the bidimensional case, we use the so called standard map:

yt+1 = yt + λ

2π
sin(2πxt ) mod 1 xt+1 = xt + yt+1 mod 1 (50)

with λ = 10−4. For this value of λ, the standard map exhibits a regular behavior and it
is not mixing, as well as torus translations. This means that these maps fail in satisfying
hypothesis D2 and D′ and moreover they do not enjoy as well an exponential hitting time
statistics. About this latter statistics, it is however known that it exists for torus translation
and it is given by a particular piecewise linear function or a uniform distribution depending
on which sequence of sets Ak is considered [10]. In a similar way, a non-exponential Hitting
Time Statistics (HTS) is achieved for standard map when λ � 1 as well as for a skew map,
that is a standard map with λ = 0 [7]. Therefore we expect not to obtain a GEV distribution
of any type using gi observables.

We have pointed out that the observable functions choice is crucial in order to observe
some kind of distribution of extreme values when we are dealing with dynamical systems
instead of stochastic series. Nicolis et al. [49] have shown how it is possible to obtain an
analytical EV distribution which does not belong to GEV family choosing a simple observ-
able: they considered the series of distances between the iterated trajectory and the initial
condition. Using the same notation of Sect. 2 we can write:

Ym(x = f tζ ) = dist(f t ζ, ζ ) M̂m = min{Y0, . . . , Ym−1}

For this observable they have shown that the cumulative distribution F(x) =
P {am(M̂m − bm) ≤ x} of a uniform quasi periodic motions is not smooth but piecewise
linear (Nicolis et al. [49], Fig. 3). Furthermore slop changes of F(x) can be explained by
constructing the intersections between different iterates of (49). F(x) must correspond to a
density distribution continuous obtained as a composition of box functions: each box must
be related to a change in the slope of F(x).

The numerical results we report below confirm that for the maps (49) and (50) the dis-
tributions of maxima for various observables cannot be fitted with a GEV since they are
multi modal. We recall that the return times into a sphere of vanishing radius do not have a
spectrum, if the orbits have the same frequency, whereas a spectrum appears if the frequency
varies continuously with the action, as in the standard map for λ close to zero [38]. Since the
EV statistics refers to a single orbit, no change due to the local mixing, which insures the
existence of a return times spectrum [38], can be observed. Considering that the GEV exists
when the system is mixing and does not when it is integrable, one might use the quality of fit
to GEV as a dynamical indicator, for systems which exhibit regions with different dynami-
cal properties, ranging from integrable to mixing as it occurs for the standard map when λ

is order 1. Indeed we expect that in the neighborhood of a low order resonance, where the
homoclinic tangle of intersecting separatrices appears, a GEV fit is possible. Preliminary
computations carried out for the standard map and for a model with parametric resonance
confirm this claim, that will be carefully tested in the near future.

Using the theoretical framework provided in Nicolis et al. [49] we check numerically the
behavior of maps described in (49)–(50) analyzing EV distributions for gi observable func-
tions. Proceeding as in Sect. 3 for mixing maps, we try to perform a fit to GEV distribution
starting with different initial conditions ζ , a set of different α values and (n,m) combina-
tions. In all cases analyzed the Kolmogorov-Smirnov test fails and this means that GEV
distribution is not useful to describe the behavior of this kind of statistics. This result is in
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agreement with Freitas et al. [26] but we may find out which kind of empirical distribution
is obtained.

Looking in details at Mm histograms that correspond to empirical density distributions,
they appear always to be multi modal and each mode have a well defined shape: for g1 type
observable function modes are exponential while, for g2 and g3, their shape depends on
α value of observable function. Furthermore, the number of modes and their positions are
highly dependent on both n,m and initial conditions.

Using Nicolis et al. [49] results it is possible to understand why we obtain this kind of
histograms: since density distribution of M̂m is a composition of box functions, when we
apply gi observables we modulate it changing the shape of the boxes. Therefore, we obtain
a multi modal distribution modified according to the observable functions gi .

An example is shown in Fig. 8 for standard map: the left figures correspond to the his-
togram of the minimum distance obtained without computing gi observable and reproduce a
composition of box functions. The figures in the right show how this distribution is modified
by applying g1 observable to the series of minimum distances. We can see two exponential
modes, while the third is hidden in the linear scale but can be highlighted using a log-
scale. The upper figures are drawn using n = 3300, m = 3300, the lower with n = 10000,
m = 1000.

6 Concluding Remarks

EVT was developed to study a wide class of problems of great interest in different disci-
plines: the need of modeling events that occur with very small probability comes from the
fact that they can affect in a strong way several socioeconomic activities: floods, insurance
losses, earthquakes, catastrophes. A very extensive account of EVT applications has been
recently given in Ghil et al. [27]. EVT was applied on limited data series using the block-
maxima approach facing the problem of having a good statistics of extreme values retaining
a sufficient number of observation in each bin. Often, since no theoretical a priori values of
GEV parameters are available for this kind of applications, we may obtain a biased fit to
GEV distribution even if tests of statistical significance succeed. The recent development of
an extreme value theory in dynamical systems give us the theoretical framework to test the
consistency of block-maxima approach when analytical results for distribution parameters
are available. This theory relies on the global properties of the dynamical systems consid-
ered (such as the degree of mixing or the decay rate of the Hitting Time Statistics) but also
on the observable functions we chose.

Our main finding is that a block-maxima approach for GEV distribution is totally equiv-
alent to fit an EV distribution after normalizing sequences are computed. To prove this we
have derived analytical expressions for am and bm normalizing sequences, showing that μ

and σ of fitted GEV distribution can replace them. This approach works for maps that have
an absolutely continuous invariant measure and retain some mixing properties that can be
directly related to the exponential decay of HTS. Since GEV approach does not require the
a priori knowledge of the measure density that is instead require by the EV approach, it is
possible to use it in many numerical applications.

Furthermore, if we compare analytical and numerical results we can study what is the
minimum number of maxima and how big the set of observations in which the maximum
is taken has to be. To accomplish this goal we have analyzed maps with constant density
measure finding that a good agreement between numerical and analytical value is achieved
when both the number of maxima n and the observations per bin m are at least 103. We re-
mark that the fits have passed Kolmogorov-Smirnov test with maximum confidence interval
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Fig. 8 Histogram of maxima for g1 type observable function, standard map, x0 = y0 = √
2 − 1. Left:

series of min(dist(f t ζ, ζ )). Right: series of g1 = − log(min(dist(f t ζ, ζ ))). (a) n = 3300, m = 3300.
(b) n = 10000, m = 1000

even if n < 103 or < m < 103 so that parametric or non-parametric tests are not the only
thing to take in account when dealing with extreme value distributions: if maxima are not
proper extreme values (which means m is not large enough) the fit is good but parameters are
different from expected values. The lower bound of n can be explained using the argument
that a fit to a 3-parameters distribution needs at least 103 independent data to give reliable
informations.

Therefore, we checked that in case of non-constant absolutely continuous density mea-
sure the asymptotic expressions used to compute μ and σ works when we consider n and
m of order 103. For logistic map the numerical values of parameters we obtain averaging
over different initial conditions are totally in agreement with the theoretical ones. In regu-
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lar maps, as expected, the fit to a GEV distribution is unreliable. We obtain a multi modal
distribution, that, for the analyzed maps, is the result of a composition of modes in which
the shape depends on observable types. This behavior can be explained pointing out that
this kind of systems have not an exponential HTS decay and therefore have no EV law for
observables of type gi .

To conclude, we claim that we have provided a reliable way to investigate properties of
extreme values in mixing dynamical systems which may satisfy mixing conditions (like D2

and D′), finding an equivalence among am, bm, μ and σ behavior for absolutely continuous
measures. In our future work we intend to address the case of singular measure. Recently the
theorem was generalized to the case of non-smooth observations and therefore it holds also
with non-absolutely continuous invariant probability measure [26]. In this case we expect
the same for all the procedure described here. Understanding the extreme values behavior for
singular measures will be crucial to apply proficiently this analysis to operative geophysical
models since in these case we are always dealing with singular measures. In this way we
will provide a complete tool to study extreme events in complex dynamical systems used in
geophysical or financial applications.
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