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Abstract Scaling laws for Gauss linking number Ca and writhing number Wr for spheri-
cally confined flexible polymers with thermally fluctuating topology are analyzed. For ideal
(phantom) polymers each of N segments of length unity confined to a spherical pore of ra-
dius R there are two scaling regimes: for sufficiently weak confinement (R � N1/3) each
chain has |Wr| ≈ N1/2, and each pair of chains has average |Ca| ≈ N/R3/2; alternately
for sufficiently tight confinement (N1/3 � R), |Wr| ≈ |Ca| ≈ N/R3/2. Adding segment-
segment avoidance modifies this result: for n chains with excluded volume interactions
|Ca| ≈ (N/n)1/2f (φ) where f is a scaling function that depends approximately linearly
on the segment concentration φ = nN/R3. Scaling results for writhe are used to estimate
the maximum writhe of a polymer; this is demonstrated to be realizable through a writhing
instability that occurs for a polymer which is able to change knotting topology and which is
subject to an applied torque. Finally, scaling results for linking are used to estimate bounds
on the entanglement complexity of long chromosomal DNA molecules inside cells, and to
show how “lengthwise” chromosome condensation can suppress DNA entanglement.

Keywords Polymer topology · Confined polymers · Polymer statistics · Chromosome
structure · Chromosome topology

1 Introduction

Polymer physics consists in part in analysis of geometric constraints on molecule confor-
mations, for example effects of chain flexibility, excluded volume, or confinement. How-
ever, topological constraints also play a major role in determining physical properties of
polymers, particularly dynamical properties of dense, entangled chains [1, 2]. By contrast
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with geometry, methods for study of topological constraint and entanglement are less well
developed, and many basic problems concerning the topological properties of flexible poly-
mers have not been analyzed. An area where such problems are of particular interest is
that of chromosome dynamics, since mm or even cm-long DNA molecules must be repli-
cated and physically separated during the process of cell division [3–8]. For consideration of
DNA topology in vivo, the ensemble of fluctuating topology is relevant since topoisomerases
(DNA-topology-changing enzymes) are present in large numbers [9, 10].

A basic problem of polymer topology is determination of the equilibrium distribution
of linking topologies for two circular polymers. In this paper the topological quantity of
interest is Gauss’ linking number of two circular chains with contours described by space
curves C and C ′ traced out by vectors r(n) and r′(n′),

Ca = 1

4π

∮
C

∮
C′

dr × dr′ · (r − r′)
|r − r′|3 (1)

This paper uses the biophysical notation of “catenation number” Ca to refer to the Gauss
linking number of two circular polymers.

The Gauss linking number Ca simply counts the total number of signed crossings of the
two circular curves r and r′. It is highly degenerate in the sense that many topologically
distinct links take on the same value of Ca (e.g., all links with the same number of + and −
crossings have Ca = 0, the same linking number of the “unlink”), and therefore Ca is a poor
choice for use as a precise topological classifier of specific links [11, 12].

Despite this, in many problems of polymer physics, one is less concerned with specify-
ing a specific chain topology, than with determining whether two polymers are more or less
entangled together under some particular conditions [13–15]. In the latter case, the distri-
bution of Ca is a useful tool for determination of degree of entanglement. Given the signed
nature of Ca, for the achiral polymers of interest here, in most cases 〈Ca〉 = 0. The focus in
this paper will be on the linking number distribution width 〈Ca2〉; the typical value of Ca
can be estimated as |Ca| ≈ 〈Ca2〉1/2. Polymers with 〈Ca2〉 � 1 are highly entangled, while
polymers with 〈Ca2〉 � 1 are essentially completely disentangled [15].

A result that will be important to this paper is 〈Ca2〉 for two ideal circular polymers
each of N segments which are constrained to share the same volume, (e.g., by being teth-
ered together at a point along their contours [15]). For an ideal (phantom) polymer, the
Gauss linking number (Ca) of two adjacent circular polymers scales as |Ca| ≈ N1/4 [15],
a scaling law first determined by Tanaka [16, 17]. Remarkably, introduction of excluded
volume interactions dramatically suppresses equilibrium topology fluctuations in this prob-
lem to |Ca| ≈ (lnN)1/2 [15]. This effect of excluded volume interactions on chain topology
is far stronger than the small shift of chain radius scaling from ≈ N1/2 for ideal polymers
to ≈ N0.6 for polymers with excluded volume interactions, and is a consequence of seg-
ment correlations which lead to a long-range suppression of inter- and intrachain contacts
[18, 19].

A quantity closely related to Ca is the “writhe” (Wr) of individual polymers [20]. Wr is
a geometrical quantity which measures chirality of polymer fluctuations, and corresponds to
the right-hand side of (1) but where C = C ′, i.e., the Gauss formula evaluated for the same
curve. Wr is not a topological property, but is a geometrical measure of chiral bending of
one polymer.

In this paper the scaling of Ca and Wr are analyzed for n flexible circular polymers each
N statistical segments in length, confined to a spherical cavity of radius R. The effect of
confinement is to increase the degree of entanglement of the polymers, and at the same
time to increase their writhes. A few workers have examined Ca [21, 22] and Wr [22–24]
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distributions for confined polymers, but the present paper is the first to show how scaling
laws unify results for wide ranges of R and N for ideal and self/mutually-avoiding poly-
mers.

Section 2 analyzes Wr and Ca of chains of N unit-length segments confined to a spher-
ical cavity of radius R. First, the scaling of Ca and Wr are discussed for noninteracting
(phantom) polymers in a sphere: for both large- and small-chain limits, |Ca| ≈ N/R3/2 on
average for any pair of chains. For Wr, two distinct regimes exist depending on whether
N/R3, the scaling variable describing confinement, is small or large. For weak confinement,
the well-known isolated-chain scaling law |Wr| ≈ N1/2 applies, but for strong confinement,
|Wr| ≈ N/R3/2.

These scaling laws are then generalized to the case of polymers with excluded volume
interactions, in dense melt and semi-dilute conditions. The change in the scaling laws are
relatively minor modifications of those of noninteracting chains; the main change is that
the regime where Wr increases as R is decreased is not physically accessible for polymers
with appreciable self-avoidance, leading to the result that |Wr| ≈ N1/2 under almost all
circumstances. Wr scaling behaviors noted previously [23, 24] are consistent with the Wr
scaling laws established here.

In Sect. 3 an application of the methods for estimation of Wr fluctuations is used to
estimate the maximum Wr possible for a single tightly folded polymer. For ideal random
walks it is argued that it is possible to find a state for which Wr ≈ N2, and that this introduces
the possibility of a writhing instability for a polymer where Wr is driven by a field, as
discussed by Moroz and Kamien [25]. Numerical evidence is presented in favor of this
scenario for ideal and self-avoiding polymers.

Finally Sect. 4 briefly discusses applications of the results of the paper to segregation
of chromosomes, highlighting the efficacy of “lengthwise condensation” [6, 15] in driving
entanglement removal even for highly confined polymers able to change their topology.

2 Catenation and Writhe Scaling for Spherically Confined Polymers

2.1 Ideal Polymers

Consider ideal, flexible “phantom” (noninteracting) circular polymers each of N monomers
confined to a spherical cavity of radius R, with freely fluctuating topology. Outside the con-
fining sphere, the polymers have a size ≈ N1/2. In the confined case, there are two scaling
regimes; if the chains are sufficiently short, they fit inside the sphere (Fig. 1(a)). Alternately,
for long chains, the chains have to “reflect” back and forth inside the sphere; since one cross-
ing of the sphere requires R2 monomers, there are N/R2 “reflections” per chain (Fig. 1(b)).

2.1.1 Catenation Fluctuations

To estimate the Ca of two phantom chains, one should determine the number of “close
encounters” of segments, since at those points one can change the sign of a crossing with
no perturbation of the large-scale conformation of the chains [15]. Such exchanges can be
made at each close encounter independently, so one obtains an estimate for Ca2 equal to the
number of close encounters.

(i) Long chains: N1/2 > R. For long chains which cross the sphere many times, the num-
ber of segment close encounters will be just N times the concentration of segments
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Fig. 1 A circular polymer of N segments confined within a sphere of radius R. (a) If the polymer is suf-
ficiently short that its size ≈ Nν < R (ν = 1/2 for ideal polymers, ν = 3/5 for “good solvent” conditions),
the polymer conformations are unperturbed by confinement. (b) If the polymer is long enough that Nν > R,
then it must “reflect” from the wall of the confining sphere once per every ≈ R1/ν monomers. These two
regimes apply not only to ideal polymers, but also describe the shapes of single chains in a polymer melt, or
the conformations of strings of correlation “blobs” under semi-dilute solution conditions

contributed by the other chain (N/R3), for a total of N2/R3. All chains are equally
linked with all other chains, since they all cross the sphere multiple times.

(ii) Short chains: N1/2 < R. For short chains, for most configurations two given chains do
not overlap. However, when two chains do happen to overlap, their catenation will be
〈Ca〉neighbor = N1/2 [15]. Now, the probability of the two phantom chains overlapping is
proportional to the volume fraction occupied by either chain, i.e., N3/2/R3. Multiplying
this by the linking-squared expected for neighbor chains together gives the estimate of
the average linking-squared of two phantom chains averaged over all configurations,
〈Ca2〉 ≈ N2/R3, the same result as for long chains.

2.1.2 Writhe Fluctuations

Wr for a chain counts its signed self-crossings, which scale differently for short and long
chains. The reason for this is that there are two types of self-contacts, local and nonlocal.
Local contacts occur every few segments due to small loops along the chains. They are
randomly signed, and their total number scales with N , leading to the well-known result
that Wr2 ≈ N for almost any kind of flexible polymer (ideal or good solvent) [21]; the same
result holds for short enough chains confined to a sphere.

However, for sufficiently long chains in a sphere, there are additional self-contacts
due to the chain crossing back and forth; again multiplying N monomers times the seg-
ment concentration N/R3 one obtains a nonlocal contact Wr2 contribution ≈ N2/R3.
The nonlocal contacts dominate Wr2 only when N2/R3 > N , i.e., for N > R3, or for
N1/3 > R. Notably the polymer length at which the Wr scaling changes (N ≈ R3) is
larger than the chain length at which the chain fills the sphere and starts to “reflect”
from the walls of the cavity (N ≈ R2). It is to be emphasized that the regime where
nonlocal contacts dominate and where 〈Wr2〉 ≈ N2/R3 occurs for segment concentrations
N/R3 > 1.
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2.1.3 Scaling Laws

Therefore, one may conclude that for phantom chains of N segments confined to a sphere
of radius R,

〈Ca2〉 ≈ N2/R3

〈Wr2〉 ≈
{

N N/R3 < 1

N2/R3 N/R3 > 1

(2)

This suggests a scaling function description of Ca and Wr fluctuations:

〈Ca2〉 = Nc(N/R3)

〈Wr2〉 = Nw(N/R3)
(3)

where c(x) and w(x) are functions with forms independent of N and R in the limit of large
N and R. The catenation scaling function c(x) ≈ x for both small and large x, possibly
with different prefactors in those two limits. The writhe scaling function has two different
behaviors for small and large x; w(x) → a for x � 1, while w(x) → bx for x � 1, for some
O(1) constants a and b. The forms (3) indicate that both 〈Ca2〉 and 〈Wr2〉 are extensive in N ,
times a scaling function dependent only on the segment concentration.

2.1.4 Numerical Test of Scaling Laws

A numerical test of (3) is indicated. Figure 2 shows plots of 〈Ca2〉/N and 〈Wr2〉/N versus
N/R3 for a number of values of N and R, for Monte Carlo simulations of two circular
freely-jointed ideal polymers (closed “phantom” polygons with no self- or mutual-segment
avoidance) confined in a spherical cavity of radius R. The segment lengths were allowed
to fluctuate between 0.9 and 1.1 units of length, and single-vertex “diffusion” and random-
length crankshaft-rotation moves were used to equilibrate the chains (for details see [15]).
Five independent runs were used to obtain statistics for each (N,R) case, each roughly 106

Monte-Carlo steps per monomer in length. It was verified that each run was many correlation
lengths long, and error bars were calculated from the variance of averaged quantities for the
different runs.

Results are shown in Fig. 2 for a number of (N,R) pairs: R = 4 (	) for N = 320, 640 and
1280; R = 4.5 (�) for N = 1280; R = 6 (+) for N = 1280; R = 8 (◦) for N = 80, 160, 320,
640 and 1280; R = 16 (�) for N = 80, 160, 320, 640 and 1280; R = 24 (*) for N = 320 and
640; R = 32 (×) for N = 320 and 640; and R = 40 (∇) for N = 640. In Fig. 2(a) 〈Ca2〉/N
is plotted as a function of N/R3, in accord with (3); the data collapse onto a single curve,
indicating that the scaling argument is in accord with the numerical data. Furthermore, the
data fall onto a nearly linear curve: the solid line in Fig. 2(a) is 〈Ca2〉/N = 0.04067N/R3.
The small- and large-N/R3 limits of the scaling function appear to have slightly different
prefactors, but both limits are well described by (3).

Figure 2(b) shows 〈Wr2〉/N for the same MC data set; the same symbols are plotted
for the various (N,R) cases as in Fig. 2(a). In accord with (3), the data collapse onto a
scaling function which goes to a constant O(1) limit for small N/R3, and which becomes
approximately linear in N/R3 for large values of that variable. The solid curve in Fig. 2(b) is
〈Wr2〉 = [0.141.125 + (0.08x)1.125]1/1.125 where x = N/R3, which has the small- and large-x
limits described in (3). The collapse of the numerical data thus indicates that the scaling
laws of (2) and (3) hold with the expected asymptotic behaviors of the scaling functions.
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Fig. 2 Scaling behavior of catenation and writhe fluctuations for phantom polymers of N unit-length seg-
ments confined to a sphere of radius R. (a) Catenation 〈Ca2〉/N scales linearly with the variable x = N/R3

for both small and large x (solid line is ∝ x, see text). (b) Writhe 〈Wr2〉/N goes to a constant limit as x � 1,
and approaches the limit ∼ x for x � 1. Solid curve is a fit scaling function that goes to a constant for small
x and behaves linearly for large x (see text)

2.2 Polymers with Excluded-Volume Interactions

2.2.1 Melt Conditions

Now consider the more realistic case of n circular polymers each of N segments confined
in a sphere of radius R, where the segments have excluded-volume interactions with one
another. It is instructive to first consider the limit of i.e., where the segment density, nN/R3,
is a constant (one can imagine the volume fraction to be unity). In this case segment cor-
relations are screened at scales larger than the statistical segment length (taken to be unity
here) so the polymer statistics are IRW (Gaussian) at scales smaller than the pore radius R,
and the chain conformation at larger scales undergoes “reflection” from the pore walls, just
as in the previous subsection (Fig. 1).

The volume occupied by the segments is nN = R3, or R = n1/3N1/3; by applying this
constraint to the results of the previous subsection the scaling properties for the melt are
obtained:

〈Ca2〉 = N2

R3
= N

n

〈Wr2〉 = N

(4)

Note that N ≤ R3 always holds for a melt of n > 1 chains.
These scaling laws hold in both the limits of short (N1/2 < R, or n > N1/2) and long

(N1/2 > R, equivalently n < N1/2) chains, and have simple physical interpretations. When
overfilling of space is suppressed by the melt volume constraint, Wr is dominated by random
signs contributed by the ∼ N small loops along each polymer length. On the other hand,
since Ca counts interchain crossings, in the melt there is ∼ 1 crossing per segment. Only
1/n of those are contributed by a given neighbor chain, giving Ca2 ∼ N/n for any two
chains in the pore.

In the case of short chains N1/2 < n, 〈Ca2〉 = N/n continues to be true for any two chains
averaged over all conformations, but for short chains, each conformation consists of chains
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which are spatially isolated from many of the other chains. For the melt, each chain in each
configuration interacts with only N1/2 < n neighbor chains and has catenation

〈Ca2〉neighbor = N1/2 (5)

with each of those neighbors. The short-chain melt case illustrates the possibility for a dif-
ference between linking of a chain with its neighbor chains (〈Ca2〉neighbor), and the linking of
two particular chains averaged over all configurations (〈Ca2〉). For the short-chain melt, the
total number of catenations of one chain with its N1/2 neighbors is therefore ∝ N , in accord
with previous estimates [26–29].

The same scaling laws will hold for a collapsed globule formed by n polymers of N

segments each adhered together under poor solvent conditions, assuming equilibration of
topology.

2.2.2 Semi-dilute Conditions

The results of the previous subsection may be generalized to the case where the polymers
are less crowded. If the polymers are put into the pore at a concentration below that where
space is filled in the presence of a “good solvent” in which the segments do not adhere to
one another, then the polymers will form a droplet of semi-dilute solution (SDS) of segment
concentration nN/R3. The polymers will have self-avoiding walk (SAW) statistics in the
absence of confinement, and therefore the unperturbed size of a chain of N monomers is Nν .
The condition that one has sufficient overlap of the chains to generate a SDS is simply
nN3ν > R3. Combining this with the condition that the concentration be less than the melt
case gives the range for SDS behavior, N1/3 < R/n1/3 < Nν . For three dimensions recall
that the exponent is close to the Flory value ν = 3/5, so for reasonable values of N , the
range of R for which there is SDS behavior is narrow.

In the semi-dilute case, the structure of the droplet is that of a melt of SDS correla-
tion “blobs” containing monomers from just one of the polymers. If the blob size is ξ and
the number of monomers in a blob is g, then ξ = gν , and the concentration must satisfy
nN/R3 = g/ξ 3. Solving these two equations gives g = R3/(3ν−1)/(nN)1/(3ν−1) = 1/φ1/(3ν−1)

as the number of monomers per blob, where the final expression is in terms of the segment
concentration φ ≡ nN/R3.

The average Ca2 follows from (4) via replacement of N with the number of blobs per
chain, N/g:

〈Ca2〉 ≈ N

n
φ1/(3ν−1) ≈ N

n
φ5/4 (6)

where the final term plugs in the Flory exponent ν = 3/5, and where the segment concen-
tration φ = nN/R3 has been used. Because of the variation in blob size with concentration,
there are slightly stronger N and R dependences than found for the ideal random walk but
overall the scaling behavior is only slightly modified from the melt case. In the melt limit
φ → 1 one recovers the melt result (4).

Equation (6) assumes that each blob crossing contributes unity to 〈Ca2〉, which is not
quite complete, since two adjacent SAWs each of g monomers have 〈Ca2〉 ≈ lng [15], and
therefore exchange of two adjacent blobs will change 〈Ca2〉 by this amount. Therefore there
is a blob-blob catenation correction to (6) (the formula should include a leading lng). This
weak correction does not change the power-law scaling, and is not likely to be observable.
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For the short-chain case ([N/g]1/2 < n) one can estimate the number of links a
chain has with its neighbors in any configuration. Each chain overlaps with (N/g)1/2 =
N1/2φ1/[2(3ν−1)] other chains, and has Ca2 = (N/g)1/2 with each of those chains, or

〈Ca2〉neighbor = N1/2φ1/[2(3ν−1)] = n1/[2(3ν−1)]N3ν/[2(3ν−1)]

R3/[2(3ν−1)] = n5/8N9/8

R15/8
(7)

where the last equation corresponds to use of the Flory exponent ν = 3/5.
One is tempted to compute Wr2 using the blob argument, but counting chain self-

crossings at the blob scale will give a contribution ∼ N/g to Wr, which is much smaller
than the ∼ N that will be contributed by small loops along the chain. Therefore the writhe
will continue to scale as

〈Wr2〉 ≈ N (8)

with an amplitude which will depend on segment concentration contributed by one chain,
φ1 = N/R3 = φ/n.

2.2.3 Scaling Laws for Semi-dilute and Concentrated Solution

Results for overlapping chains at all segment concentrations (highly concentrated melt-like
and SDS cases) can be summarized by one pair of scaling laws

〈Ca2〉 = N

n
c(φ)

〈Wr2〉 = N w(φ1)

(9)

for scaling functions c and w that depend only on the segment density φ = nN/R3 and
the one-chain segment density φ1 = N/R3, respectively. The scaling function c(φ) ∝
φ1/(3ν−1) ≈ φ5/4 for φ � 1; as φ approaches the melt limit (φ ≈ 1), this function should
approach c(φ) ∝ φ. On the other hand, the writhe scaling function w(φ1) should remain
O(1) for all φ, and is dependent on the single-chain density φ1 = φ/n.

2.2.4 Numerical Test of Scaling Laws

Numerical calculations were carried out as in Sect. 2.1.4, following the procedure de-
scribed in Ref. [15], for n = 2 or n = 4 polymers each of N monomers confined within
a sphere of radius R. The polymer segments have a cylindrical shape, of unit length and
cross-sectional diameter d = 0.2. The volume fraction occupied by polymer segments is
η = 3nd2N/(16R3); for d = 0.2 this becomes η = (3/400)nN/R3. Since the maximum
volume fraction allowed for packing of cylinders is η = π/(2

√
3) = 0.9068 . . . , the maxi-

mum numerical value of the segment density is φ = nN/R3 = 200π/(3
√

3) ≈ 121. Again,
five independent runs were carried out, each of between 106 and 107 Monte-Carlo steps per
monomer. Errors were calculated from the run-to-run variances.

Results are shown in Fig. 3, where 〈Ca2〉/(N/n) is plotted as a function of segment
concentration φ = nN/R3, and where 〈Wr2〉/N is plotted as a function of the one-chain
density φ1 = N/R3. The different data points show data for: R = 4 (	) for n = 2 with
N = 160 and 320; R = 6 (+) for n = 2 with N = 320 and 640; R = 8 (◦) for n = 2 with
N = 160, 320 and 640 and for n = 4 with N = 160 and 320; R = 10 (*) for n = 2 with
N = 160 and 640; R = 16 (�) for n = 2 with N = 160, 320 and 640; R = 24 (×) for n = 2
and N = 1280; and R = 30 (∇) for n = 2 and N = 1280.
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Fig. 3 Scaling behavior of catenation and writhe fluctuations for circular polymers of N unit-length segments
confined to a sphere of R. The segments have a diameter 0.2 times their length and interact via excluded-vol-
ume interactions. (a) Catenation 〈Ca2〉/N scales linearly with the segment density φ = nN/R3 for x > 1, and
faster than linearly for φ < 1. Solid curve is a fit function that interpolates between the asymptotic behaviors
φ5/4 and φ1 expected for φ < 1 and φ > 1, respectively (see text). (b) Writhe 〈Wr2〉/N goes to a constant
limit for x1 = N/R3 � 1; for φ1 > 1, there is a slight increase with x1 similar to that seen in Fig. 2(b), but
the extent of this increase is limited by the finite-density constraint imposed by segment-segment excluded
volume interactions. Solid curve is a fit function that interpolates between the constant and ≈ φ asymptotic
behaviors expected for φ < 1 and φ > 1 (see text)

When plotted using the scaling variables of (9), the results collapse onto single curves.
For low concentrations, the Ca graph (Fig. 3(a)) has a slope consistent with the ex-
pected SDS slope of 5/4; for larger concentrations the slope drops to near 1 expected for
dense, melt-like systems where the range of segment correlation is short. The solid curve
plotted through the data is 〈Ca2〉/N = 2(0.01x)5/4/[1 + (1.15x)10/4]1/10 for x = nN/R3,
which changes smoothly between x5/4 and x dependence in small- and large-x
limits.

The result for Wr/N is nearly constant (Wr2 ∼ N ) as expected, with a slight (less then
threefold) increase of the scaling function with increasing single-chain segment density φ1 =
N/R3. The smooth curve shown in Fig. 3(b) is 〈Wr2〉 = [0.04250.83 + (0.011x)0.83]1/0.83 and
changes smoothly from constant for small x = N/R3, to ∝ x for large x. In conclusion,
numerical data for 〈Ca2〉 and 〈Wr2〉 are well described by the scaling behaviors of (9).

2.2.5 Isolated Self-avoiding Chains

If the spherical pore is large enough that the chains fit into it without overlapping, i.e., if
R > n1/3Nν , then the chains only overlap for a fraction N3ν/R3 of all conformations. For
each overlapping conformation, the chains will have Ca2 ≈ lnN [15]. The average catena-
tion of any two chains will therefore be

〈Ca2〉 ≈ N3ν

R3
lnN = N9/5

R3
lnN (10)

For isolated SAWs, 〈Wr2〉 ≈ N .
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3 Writhe Instability for a Single Polymer

3.1 Maximum Writhe of a Polymer

The analysis of Wr scaling in Sect. 2 suggests an estimate for the maximum possible value
of Wr for a single phantom circular polymer. For phantom polymers under spherical con-
finement, |Wr| ≈ N/R3/2, by a crossing-counting argument that was validated numerically.
For phantom chains, or for chains with small excluded volume (e.g., semiflexible chains
with a large segment length to diameter ratio, note that naked DNA has a ratio of about 20),
one can imagine making the confinement radius comparable in size to one polymer segment,
with the result that |Wr| ≈ N , much larger than the ≈ N1/2 writhe of an unconstrained poly-
mer. This scaling has been observed for phantom polymers under extreme confinement in a
volume of cross-sectional dimension comparable to a segment length [22].

In this extreme limit, there are N2 crossings, i.e., every segment crosses all N other
segments of the polymer in most viewing projections. The writhe is the square root of the
number of crossings since they are randomly signed. However, by making all the crossings
the same sign, one can imagine achieving

|Wr|maximum ≈ N2 (11)

for the writhe of a chirally collapsed or confined polymer. This value of Wr is the maximum
possible: it requires correlated-sign crossings of every segment with every other segment in
every projection.

In addition to the confinement free energy (≈ NkBT ) there will be an additional free
energy cost ≈ NkBT for generating the same-sign crossings since each segment must be
specifically oriented to generate same-sign crossings. To achieve the maximally writhed
state, the polymer will have to become highly chirally knotted, so there will have to be
available mechanisms for knotting topology change (e.g., type-II topoisomerases for DNA
molecules). The maximally-writhed state is distinct from the plectonemically supercoiled
state, which has |Wr| ≈ N and which is unknotted.

3.2 Writhe-Driven Chiral Collapse of a Polymer

The possibility of a |Wr| ≈ N2 collapsed state suggests that there may a phenomenon of
writhe-driven chiral polymer collapse that can be driven by a field coupled to polymer Wr.
The most straightforward mechanism for driving Wr is the coupling of mechanical torque τ

to the Lk of a polymer with twist rigidity (e.g., double-helix DNA). The energy function for
this situation is

E

kBT
= Ebend + 2πC

L
(�Tw)2 − 2πτ�Lk (12)

Here the conformational bending free energy depends only on the polymer shape r(s), and
the twisting energy depends only on the total twist Tw. The Fuller-White formula �Lk =
�Tw + Wr allows the final torque term to be decoupled into twist and writhe contributions,
where Wr depends only on the polymer shape r(s). For this model, the fluctuations of �Tw
may be integrated out, leaving an effective free energy for the conformational fluctuations
of the form

F

kBT
= Ebend − 2πτWr + constant (13)
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indicating that mechanical torque coupled to �Lk amounts to a coupling of the torque to
Wr. This direct coupling of torque to Wr in the presence of type-II topoisomerases able to
change knotting state could lead to formation of a highly writhed state, but only if torsional
stress was replenished faster (e.g., by rapid rotation of the end of a tethered polymer) than
those same type-II topoisomerases were able to relax it.

3.3 Numerical Test for Ideal Polymers

As a test of the existence of the writhing instability proposed above, Monte Carlo simula-
tions of single ideal polymer rings of N segments were carried out following the method
of [15], but with the energy �E = −2πτWr. The rings were sampled in equilibrium with
fixed torque of 2πτ = 1 (τ = 0.1592). Figure 4(a) shows representative collapsed conforma-
tions for N = 20, N = 80 and N = 320. The chains are folded back on themselves at every
segment to form a compact conformation in which every segment can overlap the majority
of the other segments. Writhes obtained as a function of polymer length N are shown in
Fig. 4(b) (◦). The collapsed chains have a writhe which scales as the square of chain length,
well approximated by Wr = (N/1.65)2 (Fig. 4(b), solid line).

For one polymer length (N = 80), average Wr is shown as a function of the torque τ ,
in Fig. 4(c). These data were obtained from a series of simulations at gradually in-
creased torque. The onset of the collapse is abrupt, and occurs for a critical torque value
2πτ ≈ 0.251, where Wr jumps by approximately 100-fold. This first-order-like onset of
tight writhing is in rough accord with the scenario described by Moroz and Kamien for a
polymer subject to a field coupled to writhe [25].

Figure 4(d) shows the critical torque beyond which writhe collapse occurs as a function
of chain length N , determined by gradually increasing the torque from zero, until collapse
is observed (as in Fig. 4(c)). For small polymers more torque is needed than for large poly-
mers, and for large N , the critical torque approaches a constant, O(1) value. The critical
torque shown in Fig. 4(d) represents the limit of stability of the low-writhe (“chiral random
polymer” [30]) state.

3.4 Effect of Excluded Volume Interactions

Given the dramatic behavior shown in Fig. 4(a)–(d) for ideal polymers, one would like
to know whether a similar effect persists for chains of finite thickness. Figure 4(e) shows
average Wr as a function of torque τ for a circular polymer with N = 80 segments and
segment thickness d = 0.05 (a thickness to segment length ratio similar to that of naked
double-stranded DNA in physiological buffer); again an abrupt collapse is observed, but for
a larger torque (2πτ ≈ 0.44) than for the ideal polymer case (compare with Fig. 4(c)): more
torque is needed to drive the now self-avoiding polymer near itself so as to generate large
writhe.

Finally, data for the collapsed state writhe at a torque of τ = 0.1592 for the d = 0.05 case
are shown in Fig. 4(b) (×), for various chain lengths. The writhe is below that of the ideal
polymer case, but does follow Wr ≈ N2 as in the ideal case for small chain lengths. However,
beyond N = 80, the rate of increase of Wr with N drops. This is reasonable since at some N

the tight configurations for ideal polymers (Fig. 4(a)) will become impossible to realize for
finite-thickness polymers, so the collapsed polymer will have to start to elongate, suggesting
a scaling behavior Wr ≈ N with a numerically large prefactor. These data establish that
the writhe instability analyzed in detail above for ideal polymers exists for self-avoiding
polymers (for finite chain thickness).
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Fig. 4 Torque-driven writhing instability of a single ring polymer. (a) Typical writhe-collapsed polymer
conformations for ideal (zero-thickness) polymers for N = 20, 40 and 320, for constant torque τ = 0.1592.
(b) Writhe versus polymer length N for τ = 0.1592. Results are shown for ideal polymers with zero thickness
(◦), which closely follow Wr ≈ (N/1.65)2 (line). Results for self-avoiding polymers are also shown (×) for
segment thickness d = 0.05. Excluded volume reduces the maximum Wr that can be attained, and for large
enough N , changes the scaling behavior. (c) Onset of writhe instability for ideal (zero-thickness segment)
polymers. Equilibrium Wr versus τ is plotted for a polymer of N = 80 segments. An abrupt transition is
observed for 2πτ ≈ 0.251. (d) Torque for onset of writhe instability as function of chain length N . (e) Onset
of writhe instability for self avoiding polymer with N = 80 and segment thickness d = 0.05. There is still
an abrupt transition to a collapsed high-Wr state, but at a larger value of torque (2πτ ≈ 0.44) than in the
zero-thickness case (compare with (b))
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4 Chromosome Entanglement and Segregation

4.1 Equilibrated Topology of Human Chromosomes

Given a scaling theory for equilibrium linking for confined polymers, one can estimate the
thermal equilibrium entanglement using (9), 〈Ca2〉0 = (N/n)c(nN/R3), that would occur
for otherwise unconstrained chromosomes within a cell nucleus, under the assumptions that
random strand passages are made by type-II topoisomerases, and that the chromosomes
behave as self-avoiding polymers.

A statistical segment of chromatin is thought to be roughly b = 60 nm in length, 30 nm
wide, containing about 35 nucleosomes, or 6 Kb of DNA. Thus, the larger human chromo-
somes, approximately 200 Mbp in length, as chromatin correspond to N ≈ 30,000 segment-
long polymers. Human chromosomes are confined within a cell nucleus of radius R ≈ 3
μm, or measured in polymer segment units, R/b = 50. The number of chromosomes in a
human nucleus is n = 46, thus we can compute the segment density φ = nN/(R/b)3 = 10,
corresponding to a volume fraction of roughly 10%. Reading off 〈Ca2〉/(N/n) = 0.06 for
this φ value from Fig. 3 gives the estimate 〈Ca2〉0 = 40. This is likely an overestimate since
chromatin fiber has a segment diameter-to-length ratio larger than the b/d = 0.2 used to
compute Fig. 3. In conclusion, if human chromosomes were to fully equilibrate their topol-
ogy, they would be expected to have 〈Ca2〉 ≈ 40; i.e., they would equilibrate to an entangled
state. However, the value of 〈Ca2〉 is much smaller than N in numerical size.

It is to be stressed that 〈Ca2〉0 is not necessarily the actual catenation that occurs in the
cell, but only that which would occur if topology were equilibrated for uncondensed chro-
mosomes in a nucleus. It has been estimated that the time needed for topological equilibrium
may greatly exceed cell-cycle timescales, and that observations of chromosome territories
(distinct spatial regions of the nucleus that contain separate chromosomes) may be related
to this kinetic constraint [7]. Other factors such as tethering of chromosomes to the nuclear
envelope during interphase [7], or formation of condensed heterochromatin domains, likely
play a major role in maintaining chromosome territories and limiting chromosome entan-
glement. Nevertheless, the estimate 〈Ca2〉0 is useful as it is a thermodynamic upper bound
on entanglement of chromosomes confined to a nucleus.

4.2 Topological Resolution of Chromosomes Driven by Lengthwise Condensation

During cell division, chromosomes become completely segregated from one another, de-
spite the fact that following DNA replication, the chromosomes are released from being
tethered to the inside of the nuclear envelope, and have an opportunity to entangle with
one another. Evidence for inter-chromosome entanglements have been obtained from ex-
periments in fission yeast where the DNA-topology-changing enzyme topo II was disabled
during chromosome condensation: different chromosomes were observed to be unable to
segregate from one another [31]. Similar effects have been observed in vitro in experiments
with Xenopus egg extracts [32], and in vivo for mammalian cells [33, 34]. These observa-
tions of inter-chromosome entanglements following suppression of topo II activity imply
that chromosomes became entangled with one another at some time prior to the inhibition.

Strikingly, following DNA replication, chromosomes start to condense into string-like
structures that become gradually visible in the light microscope. This process of “chromo-
some condensation” is thought to be coupled to the process of segregation of chromosomes
from one another [3, 5, 6] as well as to separation of sister chromatids from one another
inside each chromosome (the focus here is less on the segregation of the duplicate sister
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chromatids from one another [15], but rather on the segregation of different chromosomes).
Below it will be argued that the peculiar type of condensation that occurs—“lengthwise con-
densation”, or folding of chromosomes along their length—ensures separation of different
chromosomes, provided that topo II is present during the condensation process.

Previously it was argued that lengthwise condensation can drive topological separa-
tion of two polymers that are tethered to one another [15]. The results of Sect. 2 al-
low one to see how lengthwise condensation can drive segregation of different chromo-
somes even while confined inside the nucleus. Consider chromosomes which are initially
in the form of flexible polymers of N statistical segments each of b and cross-sectional
diameter d . Suppose lengthwise condensation occurs: the chromosomes will become lo-
cally thicker (d → d ′ > d), but in doing so will become stiffer (b → b′ > b) and shorter
(L = Nb → L′ = N ′b′ < N ). A simple and reasonable assumption is that the condensation
process will conserve chromatin volume, i.e. Ld2 = L′d ′2, or Nbd2 = N ′b′d ′2. To simplify
the calculation to follow, it will be assumed that as condensation occurs, b and d will in-
crease by the same factor, i.e., b′ = λb and d ′ = λd . For this particular model of chromosome
condensation the volume conservation constraint indicates N ′ = N/λ3. This simple model
of chromosome condensation describes the degree of condensation by the single parameter
λ > 1.

As chromosome condensation occurs, λ gradually increases, and by (9) the equilibrium
catenation of chromosomes will be

〈Ca2〉λ = N ′

n
c
([nN ′b′3]/R3

) = 1

λ3

N

n
c
([nNb3]/R3

) = 1

λ3
〈Ca2〉0 (14)

where 〈Ca2〉0 is the catenation that would be achieved in topological equilibrium before
chromosome condensation begins (the estimate made above for human chromosomes). Note
that the level of entanglement of chromosomes need not initially be close to 〈Ca2〉0 for
(14) to apply during chromosome condensation. Equation (14) indicates the equilibrium
catenation that can be reached, assuming random strand passages by topoisomerase II, given
lengthwise condensation by a factor λ, and shows how lengthwise condensation can generate
a strong thermodynamic drive to eliminate catenations between different chromosomes. The
interactions that accomplish local condensation of chromosomes by a factor λ suppress the
equilibrium level of entanglement 〈Ca2〉 by a factor λ−3.

Therefore, the equilibrium catenation expected for uncondensed human chromosomes,
〈Ca2〉 = 40, can be pushed well below 1 by only moderate condensation λ = 6. Therefore,
by locally folding chromatin fiber from its uncondensed level (30 nm thickness) to a con-
densed 200 nm-thick fiber will ensure complete decatenation of different chromosomes.
The increase of b and d by the same factor λ allows the same scaling function c(φ) to
be used which simplifies this computation, but this condition is not required to obtain the
same condensation-driven topological resolution. Finally, it should be noted that the segment
density is unchanged by this condensation process, but the total number of segments per
chain is reduced by a factor λ3; for the human chromosome case considered above (λ = 6)
N ′ = N/λ3 ≈ 30,000/200 ≈ 150. Thus, when human chromosomes become separated by
this process, they will still be relatively long, flexible polymers.

To summarize, the mechanism outlined here of lengthwise-condensation-driven entan-
glement removal requires that there first be enzymes which act to condense chromatin
along its length, without introduction of “cross-links” between different chromosomes.
Then, this condensation system must act slowly enough that there is time for topology-
changing enzymes (topo II) to release entanglements between different chromosomes. Given
these two requirements, as lengthwise condensation goes forward, entanglements will be
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released at successively large length scales by the combined action of the lengthwise-
condensation mechanism and topo II. In accord with this, disturbing either the condensation
or topology-changing machinery has been observed to disrupt the condensation-resolution
process [31–36]. Finally, fully condensed chromosomes become “individualized” (length-
wise condensation can generate this as well, see Ref. [15]), and following separation of
sister chromatids, the two sets of replicated chromosomes then decondense to form nuclei.
As emphasized by Rosa and Everaers [7] kinetic effects may delay full re-entanglement,
giving time for establishment of chromosome tethering and other nuclear structures factors
stabilizing chromosome territories.

4.3 Estimates for Bacterial Chromosomes

Bacterial chromosomal DNAs (≈ 5 × 106 bp) are much shorter than those of humans, but
bacteria also do not have histones and chromatin fiber. Instead bacterial chromosomes are
compacted at the lowest level by the action of DNA-bending proteins [37]. The result is that
a single statistical segment of bacterial chromosome likely contains ≈ 5 × 102 bp and has
b ≈ 50 nm. The result is N ≈ 104, similar to the value for human chromosomes despite the
latter’s much larger length. The size of bacterial cells is R ≈ 500 nm. So, considering the sit-
uation where following DNA replication during slow growth there are n = 2 chromosomes
in a bacterial cell, φ = nN/(R/b)3 = 20, giving c(φ) ≈ 0.1 (see Fig. 3). Thus, for bacterial
chromosomes confined to a bacterial cell, 〈Ca2〉0 ≈ (N/n)c(φ) ≈ 103. Chromosomes in a
bacterial cell, despite the relatively short DNA length, have the potential to become much
more entangled than human chromosomes.

Bacteria therefore require mechanisms to ensure segregation of their duplicate chro-
mosomes, which may include chromosome condensation mechanisms including DNA
looping (self-tethering) and supercoiling [37], both of which are capable of generating
lengthwise condensation if suitably regulated. The lengthwise condensation necessary to
ensure segregation of duplicate chromosomes can be computed from (14) to be λe ≈
(〈Ca2〉0/〈Ca2〉λ)1/3 ≈ (103/0.1)1/3 ≈ 20. According to this estimate, a higher degree of con-
densation is necessary to ensure segregation of bacterial chromosomes than in the human
case; of course, note that the estimate of condensation for bacteria is for DNA, while the
previous section’s estimate for human chromosomes started with chromatin fiber which is
already strongly lengthwise-condensed relative to naked DNA.

Recent experiments do indeed suggest that the bacterial chromosome is highly length-
wise-condensed [38]; mechanisms for this include highly clustered distributions of chromo-
somal proteins found in chromosome-wide protein-mapping experiments [39]. In addition
to lengthwise condensation the cylindrical geometry of many bacterial cells may play a role
in promotion of chromosome segregation [8, 40].

5 Conclusions

This paper has presented scaling theories, substantiated by numerical simulations, for equi-
librium Ca and Wr for polymers confined within a spherical pore (Sect. 2). A simple scaling
description of the results allows equilibrium Ca or Wr to be easily estimated for a wide va-
riety of situations. A general feature of the results is that thermal equilibrium average values
of Ca2 and Wr2 are rather small despite their crowding in a pore; for example for two poly-
mers with excluded volume, 〈Ca2〉 < 0.01N even for 2N/R3 ≈ 1 (Fig. 3). The numerically
small prefactors of the scaling laws discussed in this paper are similar to the small prefactors
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observed for scaling laws of catenation of tethered polymers [15]; each unit of Ca requires
many (� 1) segments under most circumstances.

It is worth noting that the scaling law proposed here for the catenation of isolated self-
avoiding polymers in spherical confinement, (10), has not yet been tested numerically.

Previous results concerning writhes of confined polymers can be understood in terms of
the results of this paper. First, work of Micheletti et al. [23] showed that |Wr| ≈ N3/4 for
ideal polymers inside a pore of radius R = 4.4; the value of N/R3 in that study ranged from
0.64 to 2.8 over N = 50 to 250. Referring to Fig. 2(b), over that N/R3 range, 〈Wr2〉/N is in
the crossover between isolated and confined regimes, with the result that 〈Wr2〉/N ≈ N1/2.
Therefore, over this range, a log-log plot of 〈Wr2〉 versus N would have a slope near 3/2,
explaining the power law observed by Micheletti et al. [23].

Results of Baiesi et al. for |Wr| of collapsed polymers (polymers in bad solvent) can also
be understood in terms of the results of this paper, but now in terms of the scaling function
describing 〈Wr2〉 for polymers with excluded volume, Fig. 3. Baiesi et al. observed that
|Wr| ≈ N0.6 in bad solvent, for N from 200 to 1000. For the collapsed polymers, φ = N/R3

will be nearly constant, with R ≈ N1/3; Fig. 3 indicates that 〈Wr2〉/N should be nearly
constant in this case, suggesting 〈Wr2〉 ≈ N1/2. However, there can be expected to be a
gradual increase in net φ as N → ∞ due to gradually decreasing surface blob effects. Thus
based on Fig. 3, one can expect |Wr| ≈ Nα where α is slightly larger than 0.5, as observed
by Baiesi et al. [24].

A byproduct of the scaling theory for Wr scaling is description of a writhe instability
for a polymer driven by a field coupled to Wr (Sect. 3). A first-order-like transition was
observed, similar to the scenario described by Moroz and Kamien [25]. Since this general
type of theory has been used as a description of DNA supercoiling [41] it is interesting
to see that such a model leads to a highly knotted and writhed state with |Wr| ∼ N2. The
writhe-collapsed state with |Wr| ∼ N2 is distinct from the |Wr| ≈ N unknotted plectonemic
supercoiled state, which is the equilibrium for a circular polymer under torsional stress only
in the case where knot type is constrained to unknot [42].

Experimentally achieving the superwrithed state described in Sect. 3 would require main-
tenance of torsional stress in DNA, while allowing knotting topology to change. It would be
of interest to study the nature of writhe-condensed polymer conformations generated in the
case of a semiflexible polymer instead of the freely-jointed polymer studied here. Notably,
similar high-writhe states have been observed in numerical calculations for semiflexible
polymers under torsional stress where knot type is not controlled [42].

A second mechanism that might be able to drive a writhing instability is cholesteric in-
teractions between nearby segments that prefer local chiral packing. Tight confinement of
polymers with cholesteric interactions has been observed to generate chirally wound con-
formations and enhanced chiral knotting in simulations [43]. This effect provides an expla-
nation for experimental observations of chiral knotting of DNA expelled from viral capsids
[44]. It may be useful to understand the relation between the chiral self-organization ob-
served in those studies and the writhe-torque-driven collapse of Sect. 3.

One of the applications of the theory developed in this paper is description of entangle-
ment of chromosomes inside cells (Sect. 4). To simplify the discussion of this, results for
circular polymers have been used, but one should keep in mind that the chromosomes of
eukaryotes (and some bacteria) are generally linear. Definition of Ca for linear polymers
can be made by joining the end segments by a straight line; this construction will in general
generate a subleading contribution to Ca, since only R � N monomers are needed to make
the closure, generating at most a correction ≈ R to 〈Ca2〉. Since 〈Ca2〉 ≈ N/n � R un-
der most circumstances (recall nN ≈ R3 for reasonably concentrated polymers) the closure



Scaling of Linking and Writhing Numbers for Spherically Confined 1369

correction is fairly small. Therefore Ca for linear polymers is reasonably well defined, and
the scaling results of this paper provide a useful estimate of entanglement even for linear
chromosomes.

It is to be emphasized that other mechanisms may well help drive disentanglement of
chromosomes in cells. As mentioned above, kinetic effects may limit the degree to which
entanglements of separate chromosomes are able to form during interphase (including im-
mediately following cell division) [7]. In addition, it is known from simulation studies that
loop structures and heterogeneity of effective segment size along confined polymers [45, 46]
generate spatial self-organization and segregation effects, providing potential mechanisms
for the observed compartmentalization of the interphase nucleus. It has also been suggested
that constraints on topoisomerase activity on chromatin fibers might tend to maintain chro-
mosomes in spatially segregated territories during interphase [47].

All of these effects (and more not yet characterized by experimentalists or imagined by
theorists) may play a role in spatially organizing the interphase nucleus, and in reducing
overlap of separate chromosomes during interphase. However, the fact remains that follow-
ing DNA replication, large numbers of remnant catenations of duplicate chromatids plus en-
tanglements between different chromosomes must be resolved before chromosomes can be
segregated. The condensation-resolution mechanism discussed in Sect. 4 provides a simple
explanation of how this can be accomplished: lengthwise condensation, presumably driven
in part by condensin complexes, in concert with topology change mediated by topo II, can
drive entanglements out of chromosomes (including initially tightly interwound chromo-
somes, see Ref. [15]). The estimates of Sect. 4 indicate the degree of lengthwise condensa-
tion required to ensure that chromosomes fully separate from one another.

A final comment regarding disentanglement via lengthwise condensation regards the
question of the reduction of entanglement entropy apparent during the process described
in Sect. 4. There is no doubt that the entropy of the topology of polymers is driven down
by this process, which might strike one as paradoxical since 〈Ca2〉λ is a thermodynamic av-
erage. One should keep in mind that there is no paradox since the polymer is being folded
up in a rather precise fashion, by local contraction and thickening. The interactions driv-
ing lengthwise condensation (e.g., local folding of chromatin by SMC protein complexes
[35]) involve far more energy (in excess of kBT per segment) than the free energy change
associated with freezing out entanglements.
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