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Abstract We consider the asymmetric simple exclusion process in one dimension with
weak asymmetry (WASEP) and O-1 step initial condition. Our interest are the fluctua-
tions of the time-integrated particle current at some prescribed spatial location. One ex-
pects a crossover from Gaussian to Tracy-Widom distributed fluctuations. The appropriate
crossover scale is an asymmetry of order /e, times of order £72, and a spatial location of
order £ 73/2. For this parameter window we obtain the limiting distribution function of the
integrated current in terms of an integral over the difference of two Fredholm determinants.
For large times, on the scale £, this distribution function converges to the one of Tracy-
Widom.

Keywords WASEP - KPZ crossover scale - Finite time correction to Tracy-Widom

1 Introduction

The asymmetric simple exclusion process (ASEP) on the one-dimensional lattice Z is a sto-
chastic particle system with at most one particle per site. An ASEP particle waits a unit expo-
nentially distributed random time and then jumps to the right with probability p, 0 < p <1,
and to the left with probability ¢ = 1 — p. The jump is actually carried out only if the des-
tination site is empty. Waiting times and jump probabilities are independent. We will set
p= %, so predominantly particles move towards the left, and always consider O-1 step ini-
tial condition for which the left half lattice is empty and the right half lattice is completely
filled. We label particles from left to right. If x,, () denotes the position of the m-th particle,

m=1,2,...,then x,,(0) =m and x,,(t) < x,,,41(¢) forall t > 0.
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In a celebrated work [1], Johansson investigated for the case p = 0, the totally asymmet-
ric simple exclusion process (TASEP), the time-integrated particle current across the origin,
denoted here by 7 (0, #). — 7 (0, t) is simply the total number of particles which have jumped
across the edge (0, 1) up to time 7. Johansson proves that in the limit # — oo it holds

1
JO, 1) = - + 2731 B ey (1.1)

&rw 1s a Tracy-Widom distributed random variable, which first appeared in the context of the
large N limit of the largest eigenvalue of a GUE random matrix [2, 3]. The asymptotics (1.1)
has recently been extended by Tracy and Widom [4, 5] to the partially asymmetric simple
exclusion process (PASEP). In this case 7 (0, ) is the number of signed jumps across the
edge (0, 1) up to time ¢ and, in fact, (1.1) still holds with the only modification that ¢ on the
left hand side is replaced by /(g — p).

In the limit of symmetric jumps, p = g = 5, one finds

1
27
JO, )= Qr) 42— 1) g (1.2)

for large ¢, where &g is Gaussian distributed with mean 0 and variance 1. Even finer details
are established and we refer to the recent study [6] on the large deviations for 7 (0, t).

With this perspective it is of interest to understand in more detail the crossover be-
tween the Gaussian central limit theorem (1.2) and the (non-Gaussian) Tracy-Widom sta-
tistics (1.1). The appropriate crossover scale was already identified by Bertini and Gia-
comin [7]. For such a study it is convenient to introduce the dimensionless scale parameter
e, ¢ >0and ¢ < 1, and to consider the time scale ¢ 2¢, t = O(1). The strength of the
asymmetry is encoded by the choice

1
p:E(l—,Bs"‘), >0, >0, (1.3)

which corresponds to a weakly asymmetric simple exclusion process (WASEP). The stan-
dard WASERP is the particular case o = 1. The macroscopic density profile, p(x, t), is then
governed by the dissipative Burgers equation

Lo+ L (—pp—p—22p) =0 (1.4)

o T ax \TPPY T T ) T '
In [8, 9] the associated Gaussian fluctuation theory has been developed which, in particular,
proves that

TN(0,e7%) = —%ﬂts” +e(e Vg (1.5)
for small €. The superscript ¢ for 7° should remind that the jump probability is adjusted
according to (1.3). The variance c(¢)? can be computed in principle from fluctuating hydro-
dynamics [10] which arrives at an expression in terms of the linearization of (1.4) around
the time evolved step profile.

Following [7] the crossover scale is o = % This crossover scale has also been noted in
the spectral gap [11] of the WASEP generator and in the large deviations of the total current
[12, 13]. We expect that, with the appropriate adjustment of constants, (1.5) holds whenever
o> % On the other side for o < % the limiting distribution should be Tracy-Widom. In this
paper we investigate only the crossover regime o = 1/2, for which an added interest comes

@ Springer



The Crossover Regime for the Weakly Asymmetric Simple Exclusion 211

from the relation to the KPZ equation, see [7, 14] and the discussion in our companion
papers [15, 16]. Hence we fix

1
p=30-pVR  g-p=pVE T=C=1-280k (1.6)

On the time scale £~¢ the average time integrated current is of order £~3/? and a typical
particle profile increases linearly over the interval [—S8te~3/2, Bte~3/2] with 0 to the left and
1 to the right of this interval. The one-point distribution of the time-integrated current will
be studied at a general location and not only at the origin.

In Sect. 5 we summarize our main result, which states that in the rescaled units the
fluctuations of the integrated current have a size of order ¢'/3 with a ¢-dependent amplitude
& of order 1. The distribution function of &; is given in (4.29), from which it is easily checked
that &, is Tracy-Widom distributed in the limit # — oo. Thus at the crossover scale, one still
has the same long time behavior as for the PASEP.

The analysis heavily relies on the methods developed by Tracy and Widom in [4]. In
Sect. 2 we employ the Ramanujan summation formula, an observation which will be instru-
mental in the asymptotic analysis. The saddle point is discussed in Sect. 3, while in Sect. 4
we study the p-integration and convert the contour integrations to a Fredholm determinant
in L?(R) with a real symmetric kernel. In Appendix C we argue that one could also perform
the p-integration in the very first step, still to arrive at the same result.

2 The Tracy and Widom Contour Integration Formula for the Particle’s Positions

As discussed in [5], the time-integrated current is directly linked to the motion of an ASEP
particle with its label properly adjusted. Hence, our focus will be on the motion of parti-
cles. To ease the comparison we follow closely the notation in [4], which will be referred
to merely as TW. We introduce the dimensionless parameter o, 0 < o < 1, to label the
reference point. At time £~2¢ the particle index of interest equals

m=oBre>? 2.1
and the m-th particle is typically at the location

ae ™ o =(-1+2J0)pr. 2.2)

—32

In fact we will have to include a subleading correction to c¢;& of order e71/?1loge. The

fluctuation scale is
e 2 =070 = Vo) (). (2.3)
For later use we also introduce
ey =001 = o)l (Bn)'7, cs=4o/(1 - o),
vi = 2Beses = 2B(B0' (Vo (1 — /o)™

With these conventions our task will be to study the limit ¢ — 0 of the WASEP distribu-
tion function

2.4)

Ff(s) =P(x,(e7%t) — 167> = (co/v1)e™* log(2B/e) < case™ ). (2.5)
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TW start their analysis with the identity

P(xn(t/(q — p)) <x)= [ J](1—ut*)det(1+J () (2.6)

du
Co k=0 1% '
see TW (25), (27), and Lemma 4. We follow their convention that all contour integrals are
given a factor 1/2m1. Cy is a circle with center at O and radius in the open interval (z, 1). The
operator J(u) has the kernel J (u; n, n") given by

, 0oo($)  C" uf(m, 2/
J(u;n,n')= d 2.7
(p5m.11) /c o) (T = @7

with u € C. Here n, ' are on a circle with center 0 and radius r € (z, 1) and, as a linear
operator, J(w) acts on functions on this circle. The integration contour C; is over a circle
with center 0 and radius in the interval (1, 7/7). ¢ is defined through

Poo() = (1 — ) ~Fe! /(=) (2.8)
and f through
LA
,7) = —Z" 29
fw, 2) k:E_ s 29)

By immediate bounds, for u € C\{0, ", n € Z} the function f(u,z) is analytic in the
annulus 1 < |z] < ~!. We will need its analytic extension, which can be deduced from a
product formula representation. Following [17], we set

o0

@ @oo=]J(1=aq"). lgl<l, (@ q@n=(a:9)/(aq":q). (2.10)

n=0
The Ramanujan summation formula, see [17], Theorem 10.5.1, states

) @ Dn y _ (0% D)oo (/0% e (g3 Do (b/8; Dox (2.11)

by @)~ (5@ (b/ax; @)oo(b; Q)oo(q/a; @)oo

n=—00

provided |¢g| < 1 and |b/a| < |x| < 1. Setting a = u, b = ut, x =17, ¢ = 7, one easily
checks that for 1 < |z| < ! it holds

(TZ5 T)oo(1/ 1025 T)oo (T5 T)oo (T3 T)oo
(725 T)oo(1/25 T)oo (1 T) oo (T/ 143 T)oo

wf(u,z)=p

_ 1—puz = (-t -1
(-1 -p [1 (I—zt)(1—z"'77)

n=1

0 . n _ —l_ n
1 (1 —pze) (1 = ()" ') (2.12)
n=I

(I —pr)(1 — p~'zn)
Since 0 < 7 < 1, the right hand side is analytic in z and p in the domain C\{0, t",n € Z}.

Hence the right hand side of (2.12) is the analytic continuation of f as defined through (2.9).
In both variables f has simple poles at ", n € Z.
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3 Saddle Point Analysis and Limit Kernel

We investigate the limit of the kernel (2.7) of J () as ¢ — 0. The integrand is written as the
product of three factors,

Voo (£)E™ N
Yoo (MM (& —n)

X puf (1, ¢ /') = Q1 x Q2 x Q. (3.1

We study each factor separately and start with Q;.
In (2.5) the logarithmic term is switched to the right as

P(xn(e7%t) — 167 < ca(s +y, " log(2B/e))e™'/?) (3.2)

and thus regarded as a shift of s. First we will ignore this shift, which can be included later
on because of the uniform error estimates. Hence the parameters in the numerator ¢o.(£)¢"”
of O, are

3/2
9

m=oaopte” x=c1e3? 4 cpse 12, (3.3)

As a consequence, the saddle point analysis is identical to the one of TW with ¢ replaced by
£73/2_ The saddle point is given by

§=—c, 349
see (2.4) for the definition. Setting
Poo()0" = oo (§)EMeV O, 3.5)
in a neighborhood of ¢ = £ one finds, see TW (30),
V() =—(c3)’e P — )34 c3se7 2 — §)
+0(e7¢ -8 +0(e7 (¢ - £)). (3.6)

The rescaling close to the saddle point corresponds to the substitutions

n—>E+c'Ven, - E+erVen, ¢ &+ et 3.7)
Then
. (pOO(;)gm _ _1 3 l N3 o
L P _exp[ 38+ 300) +s(¢ n)]- (3.8)

For the limit in (3.8), ¢ € I'; and ' € ', where I'; consists of the two rays from —c; to
—c3 + o0e®?™/3 while T, consists of the two rays from 0 to +ooe*™/3,
Close to the saddle point the second factor of (3.1) reads

3
Or=——. (3.9)
? ca/E(C — 1)
The factor Q3 needs more work. By (3.7) the ratio ¢ /5’ close to the saddle point reads
+ ;! & 1y,
EXGEVE | esen ! (1 — ) E+ 0. (3.10)
E+cy e
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Hence, according to (3.1), uf (i, -) has to be evaluated at 1 + /gz with
z=(c3en)" (' = ¢). (3.11)

Correspondingly in (2.12) we substitute z by 1 + +/ez and write the product as Q4 X
05 x Qg. Then
wf (1, 14+ e2) = 0405 Q. (3.12)

We study the limit of each factor as ¢ — 0.
The factor Q4 reads

1 —u(l+4/e2) 1
= = 1 . .1
04 — e p) —ﬁz( + O0(e)) (3.13)

To study the limit of the factor Qs we introduce the g-gamma function,

mm:w(l—qﬂ”, when |g| < 1, (3.14)

(G @)oo
see [17] (10.3.3). Setting ¢* = 1 + /&7 one arrives at the identity

o0

= (I—)(1—1")
Os = }:[l (Ir—-a+ «/EZ)‘E")(I —(+ \/EZ)*]‘[")
=T 00+ Ve (Ve (-7 (3.15)

Since g =t =1 — 2B./¢, it follows that x = —(z/28) + O(/¢). The g-gamma function
converges to the gamma function, I', in the limit ¢ — 1. Hence the limit ¢ — O on the right
hand side of (3.15) becomes

—T'(z/2B)T (—2/2B)(z/2B)*. (3.16)
Using
—zl(—2)=T(-z+ 1), raord —z) = ——-, (3.17)
sin(rz)
yields
- (I =1 -1 _ mz/2B
shgél_[ (1= (14 Ve2)t)(1 — (1 4+ Jez)~1t")  sin(wz/2B)’ (3.18)

n=1

The factor Qg reads

o _ n _ —1.n
Z(logl pLt e 1 e+ Ve )}

=¢eX
Q6 p|: 1— Ut 1— [L_IT”

n=1

B 0 B /’LT" \/EZ "
_exp|:z<10g<l ﬁzl—ur”>+10g(l+1+\/Ezu—r”>>:|' (3.19)

n=I1

Since u € C\Ry, the argument of the log lies in C\R_. Hence log is understood as the main
branch of the logarithm on C\R_.
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Fig. 1 The contour I';, U f‘ft
The dots are the poles at -

285"t and 28/5)"! rs ri
dR
| °

Let us define the domain

‘51, sup
O0<y<1

'DK={/,L€(C| sup §1+K} (3.20)

o<y<t| 1 — ey n=y

with ¥ > 0. If in (3.19) we assume that u € D,, then the logarithm can be expanded since
0 < t < 1. Hence the exponent [-] in (3.19) reads

£ —/ld s +/ldL + R(e) = = log(—u) + R(¢) (3.21)
2\ ) P T Y=y o B M ' '

The error term R(¢) is bounded by

1 1
R 1/2 2—/dL/d7y 322
| <s>|scﬁ(/ﬁ>|z|< ATl Al B CEES

with some constant ¢ independent of €. According to the definition (3.12), we conclude that,
uniformly on D, with an error of order /¢ loge,

2
lim —/epf (1, 1 +e2) = ————— /26 cppyiontm, (3.23)
e—>0 sin(z/2p8)

Since T = 1 — 284/, the product in (2.6) converges to a non-degenerate limit only if
u = O(/¢). Therefore, as the final step, we substitute & by 28/4/¢. Then the p-integration
is over a circle with center O and radius in the interval (28./¢)~!(, 1). This contour is de-
formed to I'}, U f’; I} = {uldist(e, Ry) =1} N {Rp < e~1/4} and f’; closes the contour,
see Fig. 1, where in brackets we remark that s~'/4 and 1 are taken here only for concrete-
ness. As explained in Appendix A, one can choose gy > 0 such that, for all 0 < ¢ < &,
7 N {nfp <k} CD,. Also I';, converges as ¢ — 0 to I'y = {u]dist(u, Ry) = 1}. By
uniformity in & one concludes that for u € I'), N {|Rp < «} it holds

2Bue f(2Bu~/e, 1 +/e2)

1 2
=7 % exp[i (log(—p) + log(Zﬂ\/E))} (1+0We) (324

with z defined in (3.11).
To complete the argument, one introduces the logarithmic shift of s and sets

m=cBre "2, x=c1e 7 +oo(s + 1y,  og(2BVe))e ™2 (3.25)
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216 T. Sasamoto, H. Spohn

The rescaled kernel of J (1) reads then
T (wsn ') =T (2BuveE; & + ¢35 'nve £ + ey’ Ve) ey 'We. (3.26)
Combining the saddle point asymptotics (3.8) with (3.24), it holds pointwise
giirg)lg(u;n,n/) =1(u;n,n) (3.27)
for p € '}, M < k., where the limit kernel is defined by

1 1 1
Husnon) = [ exp[ =3¢+ 500 +se - )|
¢

n
g

-1,/
N ——a e oL S D I P (3.28)
sin(y,”'w(n' — ©)) t

forpel,.

As discussed in Appendix B, the operator I(u) is trace class for u € I',,. Hence its
Fredholm determinant is well-defined. What we would like to show is the validity of the
limit

lim det(1 4 J* (1)) = det(1 + 1 (). (3.29)

For this we would need the convergence J*(u) — I(u) as ¢ — 0 in trace norm. TW have
to handle the same problem for the limiting case log(—u) = 0 and the sine expanded as
v, 'w(y' — ¢), which formally corresponds to y;, — co. They use that % (' — ¢) > 0, hence
their kernels are bounded. In our case the kernel is singular at n’ — ¢ = y,n, n € Z. This
makes the issue of convergence in trace norm somewhat delicate.

In the following we assume the validity of the limit in (3.29). We also assume the expo-
nential bounds

|det(1+ J* ()| < ce™, |det(1+ ()| < ce! (3.30)

for some constant ¢y < 1.

4 The p-integration, Fredholm Determinant

Rescaling the p-integration of (2.6) as in (3.26), one obtains

Ff(s) = / ]_[(1 —2Bu~/et*)det(1 + Jg(u))%du. @.1)
(

28e)~1¢y k=0

For n € C\R, and small ¢ it holds

g 1 —utt _exp|:2ﬁf/ dy—log(l —;Ly):| 4.2)

Thus only if || = O(/€) there is a non-degenerate limit and
o0
: _ k — oM
E%H(l 2Bu/etk) =" 4.3)
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Larger values of |u| are exponentially suppressed as exp[—1/4/¢]. We now choose « so
large that by assumptions (3.30) and by (4.2) the error is small uniformly in €. Then

lim F*(s) = / e *det(1+ I(u))ldu = F,(s), 4.4)
e—0 T, nw
which defines the limiting distribution function F;(s) still depending on the rescaled time
parameter ?.
In principle (4.4) is already the final answer, but we still have to transform to a more
manageable form. Let us introduce the kernel

-1
Vi T

sin(y; 't (n; — ¢5))

. 1 1, 1,
K(Ui,Ci’ﬂj,Kj)ZﬂeXP —gfj +§ﬂj+s(§/—77j)

1
= exp[s(¢; —n)]F ;. ¢). 4.5)
Ci—mi

We expand the Fredholm determinant of (4.4). The n-th term of the expansion reads

1 1 - - -
_ du—e*“/ d’?l"'dnn/ de; ---de, H{My, I(ﬂj*{j>e*lj/t Iﬂ(ﬂj*{j)}
I¢ j=1

!
n-Jr, M T,

x det{K (mi, 650y, 60} 2y (4.6)

,,,,,

For this expression the p-integration can be carried out. We set
w=y"Y (n;—¢) (4.7)
j=1
and note that 1w > 0, since for ¢; € I';, n; € I'; it holds N(n; — ¢;) > 0. Therefore

. 1 . .
e—mw/ e—uluw—ldlu — _.(elrrw _ e—mw)r(w)
Ty

2mi
1 Ood 1 711( iTw 7i7'rw) w (4 8)
= — v—e e —¢€ Ju. .
2ri J v
In addition
1 00
eSEi—m) — _/ dxer@—m), 4.9
gj — N s

since R(¢; —n;) <O.
Let us first define the operators K with integral kernels

-1
Vi ©

K*(x. :/ d / G T
R A D)

1 1
X exp|:—§;“3 + 5?73 +ly—nx+ yt_l(n —¢)logv j:iy[_ln(n — ;)]. (4.10)

We expand the determinant in (4.6) into cycles. The following rearrangement, illustrated for
a 3-cycle, is performed for each cycle. We consider the summand e v* of (4.8) using the
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identity (4.9) and the definition (4.5) of F. Then the term of interest reads
3
S DR DA
/dmdnzdns f d¢idgades H{emy' = yre T F(ny, ¢p))
j=1
o0 [e] (o]
x / dx; / dxz/ dx3(_1)3ex1(Ez—m)e)C2(§3—nz)eX3(Z1—773)
s N s

oo [e°] oo
=/ dx1/ dxzf dx%(_1)3/dmdé—leiﬂyfl('irn)vyfl(nril)

x F(n1, gl)e(tlm—mm)/dnzdgzeinn’l(nz—fz)vyfl(nz—fz)F(nz’ {'2)6({2“_”2)‘2)
X /dnngei”V‘_l(n37:3)1)y’_1(7737§3)F(7’]x, 4—3)6(;3)(27773)@)
[e9) 00 00
=(—1)3/ de/ dx2/ des K (s, X)) K (1, 6) K (32, x3). @.11)

The summand e~ v¥ of (4.8) results correspondingly with K" replaced by K.

We thus expand the Fredholm determinant in (4.4), with the n-th term of the expansion
given in (4.6), and integrate over u. According to (4.8) this yields the two terms correspond-
ing to +e*"*y?, Using the identity (4.11) and resumming the series results in the difference
of two Fredholm determinants. In this difference the constant term 1 cancels. Altogether one
therefore obtains

Fi(s) :/ e " det(1 +1(u))ldu
Ty 19

oo

1 1 -
=1+~ A dv_e U(det(1 — K;7) — det(1 — K)). (4.12)

Here the determinant is understood in L?([s, 00)) Note that KUi — 0 as v — 0, since
N(n — ¢) > 0. Hence for small v the integral in (4.12) is well-defined.

Next we want to reexpress the kernels K+ as Airy-like kernels. Note that, since If=r,
and F:" =T, one has

K (x, ) =K, (x,y). (4.13)

‘We also note that, forv =1,

K (x,y) — K7 (x,y) =121 /y)Ai(x)Ai(y) (4.14)
by the standard representation of the Airy function, denoted by Ai. Hence

K{(x,y) = Bi(x, y) £i(r/y)Ai(0)Ai(y), (4.15)

where B, (x, y) is a real kernel and defined through

Ty

1. 1
Bz(x,y)=/ dg dn(ﬂ/yr)cot(y,"ﬂ(n—;“))eXP[—§{3+§n3+{y—nX] (4.16)
Ty
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The Crossover Regime for the Weakly Asymmetric Simple Exclusion 219

Let D=0/dx 4+ d/dy. Then

1 1
/ d¢ dn(n—;‘)eXP[—§§3+§n3+;‘y—nX]
r, r,

1, 1
=—D/ de | dnexp| =z + <’ + Ly —nx
el 30 73
3 n

- / dAS(A)%Ai(x + MAI(y + 1). 4.17)

By functional calculus this identity can be extended to a general class of functions of D. To
obtain the cotangent, a convenient representation is the power series

1 1
-1 -1
7 cot wz)=-+2z E _ 4.18
Vi (yt ) Z 1 Z2 ()/[I’l)2 ( )

The sum converges except for z € (y;Z)\{0}. Then
Bi(x,y) = Kai(x,y) + / dA'G (0, M) Ai(x + 1) Ai(y + 1) (4.19)
with K,; the Airy kernel
(o]
Kai(x,y) = / dAAL(x + L)Ai(y +A) (4.20)
0

and G(A, \') the kernel of the operator
d () & !
2— - 2 . 421
m (Zl( o7 v ) ) 4.21)

By direct computation one verifies that, for a > 0, the operator 2(d/d))(—(d?/dA?) 4+ a?)~!
has the kernel

Ga(h)) = —0(n — 1)e™ ], (4.22)
where (1) = —1 for A < 0 and 8(A) = 1 for A > 0. Summing over n as in (4.21) yields

G ) =—0(r =) (1 —1)7", (4.23)

Hence one arrives at

B,(x,y) = Kai(x,y) + /oo dr (e — 1) (Al + MAI(y + 1) — Ai(x — DAI(y — 1)).
0

(4.24)

Lemma 4.1 Let B be a trace class operator on the Hilbert space H with scalar product
(-,-) and Py the unnormalized projection along v € ‘H. Then for o € R

%(det(l — B —iaPy) —det(l — B +iaPy))
= —a(det(l — B+ Py) —det(1 — B)). (4.25)
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220 T. Sasamoto, H. Spohn

Proof Let (1 — B) be invertible. Then
det(1 — B +iaPy) =det(1 — B)(1 +ia(y, (1 — B)"'y)). (4.26)
Hence the difference on the left side of (4.25) reads
—adet(l1 - B)(14 (¥, (1 — B)'¢) = 1) = —a(det(1 — B+ Py) —det(1 — B)). (4.27)
Taking limits on both sides the invertibility condition is removed. ]

To return to (4.12) we substitute y,u = —logv, du = —(y;v)~'dv. Then
Kvi(x, V)=B/(x4+u,y+u) xi(z/y)Ai(x +u)Ai(y + u). (4.28)

Using (4.25) with & = 7/y;, one arrives at the final result

F(s)=1 —/ exp[—e"¢ 7]

oo

x (det(1 — P,(B, — Pa) P,) — det(1 — P, B, P,))du. (4.29)

Here P, projects onto [u, 00), Pa; has kernel Ai(x)Ai(y), and the determinants are in L?(RR).
In Appendix C we show that B is trace class and that the integral in (4.29) is well-defined.

5 One-Point Distribution of the Particle Current

Let us first state our main result concisely. We consider the WASEP with asymmetry B./¢
and have established that

Hm P(x, (e72t) — c167> = (c2/y1)e ™ 1og(2B/e) < case™'1?) = F,(s), (5.1)

o
where
m=opte 2, ¢ =(—142J0)pt, =011 — Jo) (B,
yi =280 (Vo — o), 0<o<1.

The limit distribution function F; (s) is defined in (4.29) and its #-dependence is only through
the parameter ;.
We reexpress our findings in terms of time-integrated currents and set

5.2)

JE(j, 1) =t of signed jumps across the bond (j, j + 1) up to time z,

where the superscript ¢ reminds on the e-dependence of the asymmetry. The transformation

from particle position to integrated current is discussed in [5], which can simply be followed

(their quantity Z equals —7). We also allow for a shift of the reference point by e~ 'x,

x = O(1). Then, for |y| < 1, we define the (x, #)-dependent family of distribution functions
1
Fi () = IP’(Zﬂ\/EJS(Lyﬂts_3/2 +xe7, e7) + il lyD*Bre!
— (1= yDIx|Be™"* + (x*/2t) —log(2B/e) < y,s> (53)
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with |-] denoting integer part. In the new parameters
Vi =271/3(1 _ y2)2/3ﬂ4/3t1/3. (5.4)

% F(. (s) is the properly scaled probability distribution for the statistics of the current at

location LyBte =32 4+ xe~!] integrated over the time span [0, s ~2¢]. The limit (5.1) can then
be restated as

lim ¢, (s) = Fi(s). (5.5)

Let & be a random variable with distribution function F;. Then (5.3) translates to the
one-point statistics of the time-integrated current as

2BVeTe (| yBte ™ +xe7' |, e7%)
1
=50 lyD*B2te™ + (1 — |yDIx|Be™"* — (x?/2t) +log(2BV/E) + vk, (5.6)

valid in the limit of small ¢.
It is instructive to write down the probability density for &, which is given by

d o0
pi(s) = —Fi(s) = / yee” C 7 exp[—e” g, (u)du, (5.7)
ds s
where
g:(u) =det(1 — P,(B, — Pa) P,) — det(1 — P, B, P,). (5.8)

1 — exp[—e"*] is the Gumbel distribution function and the first factor in (5.7) is the Gum-
bel probability density. Since lim,_, o, F;(s) = 0, it follows that the second factor of the
convolution is normalized as

/w g (u)du =1. (5.9)

However, numerical computations clearly indicate that the definite sign of p, is regained
only after smearing with the Gumbel density, see [15].

As discussed in the introduction, in the long time limit the integrated current is expected
to be Tracy-Widom distributed, which corresponds to taking ¢ — oo in (5.6). Since y, ~ t'/3,
the Gumbel distribution in (5.7) tends to §(s — u) and B, of (4.24) tends to K ; as t — o0.
Hence &, has the probability density

Poo(8) = 8oo(5) = Frw (s)u(s) (5.10)
with
Frw(s) =det(1 — P.KaiPy),  u(s)=(PAiL, (1 — P,KAP) ' PAD)L (511
It follows from the identities in [3] that
(log Frw)' = u. (5.12)
Hence py = Ffy, and
lim F(s) = Frw(s), (5.13)

confirming the conventional expectation.
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6 Conclusions

We have studied the crossover asymptotics of the WASEP in an e-dependent parameter win-
dow. Somewhat more physically, our result can be rephrased through appropriately adjusted
time scales. One considers the asymmetry ¢ — p which is assumed to be small but fixed.
(g — p)~! defines the time unit. For short times the statistics of the integrated current is
approximately Gaussian. In an intermediate time window one should observe the statistics
corresponding to F;, which for long times approaches the Tracy-Widom distribution Fry.
As g — p is increased the crossover window should shrink and might become not discernible
at all.

In this paper the focus is on the derivation of F;(s) from the WASEP scaling limit. Prop-
erties of this family of distribution functions and their relation to the KPZ equation will be
discussed in the companion papers [15, 16].

Remark After submitting this article, G. Amir, I. Corwin, and J. Quastel posted their paper
[18] in the arXiv, in which independently they establish the limit (5.1) and the formula
(5.7) for the probability density p,. As here, their starting point is the PASEP Tracy-Widom
contour integration formula.

Acknowledgements We are grateful to Michael Priahofer for many illuminating discussions and to Sylvain
Prolhac for helping with the combinatorics in Appendix C. H.S. thanks Jeremy Quastel for emphasizing the
importance of the crossover WASEP. This work is supported by a DFG grant. In addition T.S. acknowledges
the support from KAKENHI (9740044) and H.S. from Math-for-Industry of Kyushu University.

Appendix A: The Set D,

For k > 0 we define D, = DV N DP, with

o=

0=<y=<1

o ‘51}, D£2)={MISUP ‘§1+K}, (A1)
- MKy O<y<l

n—=y
and I', = {p|dist(n, Ry) =1, R < «}. We claim that one can choose ¢y > 0 such that for
all 0 < € < gq it holds

2/ CD. (A2)

For u € 28./e T, one has |Ru| < 2B8(1 + )/, |Iu| < 2B4/¢. Clearly, for sufficiently
small & our assertion holds for the set D1,
To discuss D@ we define

e =y(@-y'+0)" o<y<l (A3)

(1) For a < 0, the maximum of £ is at yp = 1 and it holds that £ < 1. (ii) For a > 0 and
a% + b? < G the maximum of £ is at yy = (a2 4+ b%)/a and £ < |b|""(a? + b*)'/2. For p €
2B,/ T, we set u =2B./e(a + ib). If a <0, we are in case (i) and our assertion holds
for this part of the contour. If ¢ > 0, then & = 28./ga, a < k, b =2B./eb, |b| = 1. For ¢
sufficiently small it holds 28./e(a® 4+ b*) < a and we are in case (ii). Hence £ is bounded
by b~!(a® + b*)'/? < (k? + 1)'/2 < 1 + k., which implies that also this part of the contour is
contained in D?.
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Appendix B: Bounds on the Kernels 7 (x), K vi
The ¢-integration in 7 (i) from (3.28) has a simple pole whenever
n—¢=ym, meZl. (B.1)

Thus the ¢-integration is singular for a discrete set of points 7’ € I';,. The integration along
I"; looks locally like

/ du(u—2z)" (B.2)
with sufficiently small @ > 0. For z # 0 and |z| < a/2, the integral (B.2) is uniformly
bounded and extends by continuity to z = 0. Thus |7 (1; 1, )| is bounded by coe 3P =o'
for sufficiently small § > 0. Hence 7 (u) is trace class.

A similar discussion applies to the kernels Kvi (x,y) from (4.10). The singularities of
csc(mr y,‘l (n — ¢)) are simple isolated poles only, hence integrable, the integrations in (4.10)

are well-defined, and the kernel is bounded by coe=*I"’e=*1" for sufficiently small § > 0.

Appendix C: p-integration First

We describe an alternative route to arrive at (4.12). The starting point is the expansion of the
Fredholm determinant (2.6), which is a 2r-fold integral over ¢, ..., ¢, and ny, ..., n,. Each
integrand has factors corresponding to Q;, Q», Q3 as in (3.10). For each of them we use the
saddle point approximation as discussed in Sect. 3. There then remains an n-fold product of
functions f with an argument scaled as in (3.10), (3.11). Finally the p-integration has to be
carried out, see (2.6).

The new idea here is to first integrate over u and then take the limit ¢ — O with the
arguments /¢ close to the saddle. Thereby one circumvents the discussion at the end of
Sect. 3. With a more careful variant, possibly, one could control the error bounds.

To lighten the notation, we use instead of 7 the conventional symbol ¢ = 1 — /. For
1 < |zj] <q’1, j=1,...,n, we define

Hn(m,...,zn)=/ du— gq(u)]_[ wf(w.z)}

n n— i o1 .
= (- 1) / dup g [ [{(e—a79) " @4}, (€1
ez 7 o j=1
with
(o]
gg(w) =[J(1 - nq"). (C2)
k=0
We split the sum over ¢, ..., £, into n-tuples with no double points and the rest. Thereby
H,=H" + H™", (C3)

Only H™ is discussed. We checked that the remainder term H™" tends to 0 for & — 0 for
n =2,3,4,5. Unfortunately the combinatorial structure becomes involved and we did not
try to work out the extension to general n.
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H™ has only the simple poles g ¢, £ € Z. C encloses those poles with £ < 0. Therefore
the p-integration can be carried out with the result

n

HP (21 oz = (D" Y@ >y ({e < 0))g~ " g, (¢7%)

[T Ly)eZ i=1
« H(i)(qfei _ q*ej) H(Zj)f.f, (C4)
j=1 j=1

Here Z(*) means no double points and I—[(i) means that the i-th factor is omitted from the
product. We now substitute £; by £; + ¢; for j #i. Then

HO G z) = (1) (Z %(a") H(z‘,)f)
j=1

>0

XZ > 1"[“) (1—g7) " @'}

i=1 (,..0,...tn)(Z\0)»—1 j=1

=H" (21, 2)HP (21, . 20). (C.5)

We first study the issue of analytic extension. Since g, (¢“) = exp[—cq‘], H®'" is ana-
lytic on all of C". For H,f*)’z it suffices to consider the case i = n. From the restriction of
no double points, we conclude that we have a sum over products, where each factor is of the
form

m#0
=> (D1 =¢") ()" + (1-¢") ")
m=1
S 00
= Z Z{(_l)kq;n(€1+...+ﬁk) (qkz)m + qm((1+m+l")z_m}
£1,..lp=0 m=1
= Z {(—1)]‘(1 — quqZHrerﬁk)* quq[l+"’+ek + (Z _ q51+“‘+5k)7 qglerJrgk}
£1,....0=0
(C.6)
for k =1,2,.... The last expression is the analytic extension to C \ {0} except for the poles
atz=q', L.

‘We summarize the result in

Proposition C.1 Let D, ={z € C |1 < |zl <q '} and let D, ={z € Z |z # 0,z # ¢,
£ Z}. Then H™, as defined on D", extends to an analytic function on Df’".

Close to the saddle z; = 1+ /ew;. For 1 + \/ew; € D, we define

HY = HOTH®=, (C.7)

n,e n,e n,e
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HOT i, wy) = (1) Vo) T HOT A+ Vewr, ... 1+ VEw,),  (C8)
HOZ (wi, .. w) = (WO HO (L4 Vewn, ..., 1+ Vew,), (C9)

with the shorthand w = Z'}Zl w;. We also introduce the limit functions defined on D",
with Dy =C\ Z,

H (wy,...,w,) = (=1)"T(w), (C.10)

n -1
Hn): (wy, ..., w,) = 7 sin(rw) (l_[rr_l sin(nwﬂ) . (C.11)

=1
Theorem C.2 Pointwise on D(?" it holds
lim H®' =H;, lim H,f*; *=Hr. (C.12)

The proof is divided into several parts. We start with g,,.

Lemma C.3 It holds
o] n -
lim (/&) """ ;gq (4) (1"[10 + ﬁwj)) =T (w). (C.13)
- =
Proof The product in (C.13) equals 1 + /ew + O(g?). Then, by [17], equation 10.3.1,

(Vo) “’“qu )1+ Vew) ™

=1

(\/—)—UH—IZ Z+1 (1+\/_w)—[ 1

=0
= (B ey LD 1y ey (C.14)
(¥ @)oo
The g-Gamma function is defined by
@9
M= -t g o, (C.15)
(@*; oo
Setting x = w, one thus arrives at
([)*"*‘qu YL+ Vew) ™ =1+ Vew) Ty (w), (C.16)
=1
which implies the limit (C.13). O

Lemma C.3 establishes the left part of (C.12).

@ Springer



226 T. Sasamoto, H. Spohn

Lemma C.4 The following limits hold.
(1) Fork=1

lim /& )~ {—(1 = (1 4+ Vew)g™) " (1 + Vewng ™ + (1 + vVew) —¢°) 'q')
=0

=mcotmw. (C.17)

(ii) Fork=>?2

lii%(ﬁ)kg i; 0{<—1)k(1 = (U Ew)g ) T ey g
1seens b=
+ ((1 + «/Ewl) _ qz]+»-»+zk)—1q£]+~»+zk}
1 = - u L_ 1
=1+ (—l)k) 7Y /0 duu® 1(e -1)" =0 1)‘B(k) (C.18)

For even k the coefficients B(k) are related to the Bernoulli numbers B by B(k) =
k' Qm)k (=12 B,

Proof ad (i): Separating the £ = 0 term of the second summand and expanding inside the
curly bracket one obtains

yr%ﬁ[ (1 (1 +vew)) ™ =Y {1+ VEw)(d = VEO (1 - (1 + Vewn)
g—> —

x (1= e0) ™ = (1= Vew)(1 = ve0) (1 — (1 — ew)(1 - ﬁ@)l}}

-1

= (w1)7 ZZwl —Z

=mcotmw. (C.19)

ad (i1): For k > 2 the sum approximates the Riemann integral

o0 ) k k -
/ duy - / dug [ e (1 - l_[e”.f> (14 (=DF). (C.20)
0 0 j=1 j=1

Note that the limit does not depend on wy, ..., wy, in contrast to k = 1. O

With Lemmas C.3 and C.4 we have identified the limit of H*)-*, in principle. It remains
for each n to rearrange the sum such that the expression (C.11) results.

To handle the constraint of the sum in (C.5), let us denote by 7,,_; the set {1,...,n — 1}
of labeled vertices. An unoriented edge with endpoints i, j, i # j, is denoted by » and 4,
stands for &, ¢ Let &,_1 be the set of all edges of I,,_;. Then the constraint of the sum in
(C.5) can be written as

[T a-s. (C21)

be&y—y
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By expanding the product one has to sum over the set G,_; of all undirected graphs over
I,_,.For g € G,_; the weight, w(g), in this sum results from (—1)#©2® and from the limits
(C.17) and (C.18). A given graph g decomposes 1, into disjoint clusters. In view of (C.11)
and (C.17) we keep the number of clusters of size 1 fixed (they yield a product of cotangents)
and sum over all other clusters, by (C.18) necessarily of even size. Thereby we arrive at the
following counting problem.

Given is the set I,, of m vertices, m even, and set G,, of undirected graphs over I,,.
For a given graph g € G,,, I,, decomposes into r clusters Cy, ..., C, of size |C;| =m;,
> i—ymj=m.The weight w(g) is defined by

w(g) = (—1)Fedzes) ]_[ B(m;)((m; — 1)!)". (C.22)

j=1

Note that B(m) = 0 for odd m. Since we do not want to allow for m; = 1, only for the next
lemma we set

B(1) =0. (C.23)
Lemma C.5 For even m it holds

> w(g)= mﬂ—H(—l)’”/z. (C.24)

8€EGm

Proof The weight w(g) induces a weight of the clusters as
w({Cr.....CY) =] Jw(Cy. (C.25)
j=1

To compute w(C;) we note that

S w@) =k —DI=D (k= DY) BK). (C.26)

g€y, singlecluster

The prefactor can be verified firstly because it holds for k = 2. Now assume it is valid for
general k > 2. Then, adding an extra vertex, k + 1, it can be connected in k distinct ways to
the cluster of size k and the number of edges is thereby always increased by 1. Hence

w(C;) = (="' B(m;). (C.27)
We introduce a generating function, f (1), for the left hand side of (C.24) by

> Y wie

evenm=2  g€Gnm

oo [e°] l "11 r
> Yok ¥ s(m-n)

evenm=2 r=1 my,...,mp>2

m r
(7 Y o

j=1

f)
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= Z—(—l) (i ! A‘B(k)) (C.28)
k

=2

Using (C.18) the sum over k reads

(o] 00 .
2n2/ d 2n—1( u __ 1 -
Z (2n)' | duu (e"—1)

o0
:/ du(u(e" — 1))_12(coshku — 1) =log(mwr/sinm}). (C.29)
0
Hence
f) = @r) tsin(a) — 1. (C.30)
Taylor expanding f confirms the claim. |

Proof of Theorem C.2 We return to an with the constraint in the summation written as in
(C.21). For g € G,_1 we decompose I,_; = 1! | UI? . I' | consists of one point clus-
ters {i}, i € I' |, and I> | consists of clusters of 51ze > 2, compare with the notation
above (C.22). By (C.17) the one point cluster {i} carries the weight

h; = cot(mw;). (C31)
Either set could be empty and |1nz_1| is even. With this convention the weight of g is given
by

r

w(g) = (—1)“edg“>< I h,.> [T{BGn)(m; — 1)}, (C.32)

iell j=1

n—1

where the second product refers to the clusters of In2 see (C.22). If I, ' _, =9, then the first
product equals 1 and correspondingly for 1,1271. Then

HX Wi, w) =Y fut i, By wy) (C.33)
i=1
with
foa@wi, s we )= ) w(g). (C.34)
8€Gn—1

It is convenient to introduce the symmetrizer S,,. If g is some functionon C”, 1 <m <n,
then S, g is defined by

1
(Sng)(wh ey wn) = ; Zg(wn(1)7 ceey wn(m))s (C35)

where the sum is over all permutations 7w of (1,...,n). Let us also set |I,1271| =j, j=
0,2,...,[n], where [n] =n — 2 for even n and [n] = n — 1 for odd n. In the sum (C.34) we
fix the set I, ! _, and sum over all graphs for the set /;_,. By Lemma C.5 this yields

( ]_[ h,-) ; Jlr lnf(—l)j/z. (C.36)
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Performing the sum over all subsets /! |, one obtains

[n]
. ) n—1
Joci(wi, o, wemy) = Z (=P +1)7! <n 1 j) Sp—i1(hy---hp_ij).

j=0,j even
(C.37)
Carrying out the sum (C.33), it then follows that
" o n
an(wlv--wwn): Z (_1)]/27[] ( .)Sn(hl""hn—l—j)
. n—j
j=0, even
n n -1

:nlsin<n Zw,) (Hnlsin(nwj)> : (C.38)

j=1 j=1

The last term is a mere rewriting of the identity

sin<i9j>: > (=p®hr 3 [sing, [ | cosé. (C.39)
j=1

oddk>1 AC(l,...n} i€A icAc
k<n |Al=k
Equation (C.38) establishes the second assertion of Theorem C.2. O

If the remainder term in (C.3) is ignored, then by Theorem C.2 the scaled H, converges
to

n n -1
H'H®® =T (w)r " sin (71 > w,> (Hn' sin(r w,-)> . (C.40)
j=1

j=1

This agrees with (4.6) upon performing the p-integration by using the first identity of (4.8)
and collecting the factors from the saddle point.
Appendix D: Trace Class Property

Proposition D.1 The operator P; B, P; is trace class. The functions appearing in (4.29) and
(5.7) are absolutely integrable in u.

Remark We have no direct proof that p,(s) >0 and f_oooo pi(s)ds = 1.

Proof All operators will be defined on L?([s, 00)).
We have

B, = K + Gy, (D.1)

where for simplicity we set y, = 1. In general, if B = A A,, then (tr|B|)> <
(trATA)(trA3A,), see [19], Sect. VI.6. For the Airy kernel we write

Kai(x,y) =/OchAi(x+A —S)AI(y + A — ). (D.2)
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Hence Ka; = A? with A (x, y) = Ai(x +y — 5) and
o0 o0
tr| K o] < / dx/ dy|Ai(x + ). (D.3)

For the operator C, we write

i -1

Ci(x,y) = / dr(er — 1) (Ailx + DAI(y + A1) — Ai(x — DAi(y — 1))
0
o A—s —1 . . .
= / dr(e = 1) (Ai(x + 1 —5) — Ailx — A +9))Ai(y + A —5)

+ / dre”I2AI(x — A+ $)(AI(y + 1 —5) — Ai(y — A +5))

x (70 —1) e, (D.4)
Hence C, = A, A, + A3A4.
By definition
tr| A, |? =/ dx/ dy(ey — 1)_ (Ai(x +y) —Ai(x — y)) . D.5)
s 0

We split the y-integration into the intervals [0, c], [c, 00). In [0, ¢] we Taylor expand Ai(x +
y) — Ai(x — y) in y and choose ¢ so small that the first order dominates. We then determine
c; such that (e¥ — 1)72 < ¢;e™ on [¢, 00). Using Schwarz inequality yields the estimate

o0 C
tr|A,|*> < czf dx(/ dyy*(e’ — 1)_2Ai/(x)2
K 0

o0 o0
+2 f dyAi(x + y)? +2 / dye ™ Ai(x — y)2> (D.6)
0 0
for a suitable choice of the constant c,. By definition
o0 [e]
tr|As|*> = / dx / dye ™ Ai(x — y)? (D.7)
s 0

and, repeating the argument for tr|A,|?,

(o] (o]
tr|Aq)* = / dx/ dy(e-v - 1)_26y (Ai(x +y) — Ai(x — y))2
s 0
o0 c 1
< 6‘2/ dx / dyy*(e” — 1) e’ Ai'(x)?
s 0

+2 / dyAi(x + y)? +2 / dye ™ Ai(x — y)2>. (D.8)
0 0

Using that |Ai(x)| =~ exp[—x?], |AI'(x)| = exp[—x*/?] for x — oo and |Ai(x)| =~
lx|714, |AT'(x)| = |x|'/* for x — —oo, all integrals are bounded with the asymptotics
exp[—s*?] for s — oo and |s|¥? for s — —o0.
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Let us consider the integral (5.7) for p,(s). The first factor decays as e™ for u — oo
and as exp[—e!!] for u — —oo. For the second factor we use the inequality |det(1 4+ B)| <
exp[tr| B|], see [20], Sect. XIII:17. From our previous estimates on the trace norm of By,
g:(u) is bounded by ¢ for u — oo and as cexp[|u|*/?] as u — —oo, which establishes in-
tegrability. For the integral (4.29) defining F;(s) one uses that for large u the determinants
behave as 1 + O(exp[—u’/?]). O
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