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Abstract We derive semiclassical diffusive equations for the densities of electrons in the
two energy bands of a semiconductor, as described by a k·p Hamiltonian. The derivation
starts from a quantum kinetic (Wigner) description and resorts to the Chapman-Enskog
method as well as to the quantum version of the minimum entropy principle. Four differ-
ent regimes are investigated, according to different scalings of the k·p band-coupling and
band-gap parameters with respect to the scaled Planck constant.

Keywords Quantum drift-diffusion · k·p model · Quantum entropy principle

1 Introduction

The origin of Quantum Fluid Dynamics (QFD) dates back to 1926 [26] when E. Madelung
realized that Schrödinger equation admits a fluid-dynamic form which is formally identi-
cal to a pressureless Euler system with a quantum correction (of order �

2) involving what
nowadays is known as “Bohm potential” [5, 6]. Since the first half of nineties [16] the in-
terest in QFD has been rapidly increasing because of applications to semiconductor devices
modeling (see Ref. [19] and references therein). Indeed, QFD-like models are the meeting
point between two fundamental requirements: the incorporation of quantum effects (which
in modern nanoscale devices are no longer negligible and may dominate the behavior of the
device) and the preference for fluid-dynamic descriptions (hydrodynamics, energy transport,
drift-diffusion, etc.) which are relatively simple, flexible and cheap from the computational
point of view.
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There are basically two roads to QFD. The first is the one followed by Madelung and
consists in inserting the WKB Ansatz ψ = √

n eiS/� into Schrödinger equation. This yields
relations between the density n and the current J = n∇S. The second road starts from the
kinetic-like formulation of quantum mechanics due to Wigner [32, 36, 39] and, in much the
same way as one goes from classical kinetic to classical fluid equations, consists in writing
equations for the moments of the Wigner functions (pseudo-distributions on phase-space):

n(x) =
∫

w(x,p)dp, J (x) =
∫

pw(x,p)dp.

Both roads are equivalent [17, 18] but the use of Wigner functions is often of great interest
because it allows one to stick to the classical case.

While Madelung equations (which hold for a pure quantum state) are formally closed
and equivalent to the Schrödinger equation [17], in the case of mixed (statistical) states
the equations for n and J are not closed, i.e. they contain terms depending of higher-order
moments. The problem of the closure of mixed-state quantum hydrodynamic equations has
been set on a solid basis by Degond and Ringhofer [13] who extended to the quantum
case Levermore’s entropy minimization principle [25]. This principle, which is intimately
connected with maximum likelihood principle in statistics, stipulates that an observed set M

of macroscopic moments is the manifestation of an underlying local equilibrium state which,
among all states having the same macroscopic moments M , is the minimizer of a suitable
entropy functional A. This implies that the state to be used for the closure of fluid-dynamic
equations for a certain set of moments M satisfies a constrained minimization problem:

Find a minimizer of A under the constraint that the moments M are given.

In the quantum case, once such a local equilibrium state has been found, one can expand it
semiclassically (i.e. in powers of �) in order to obtain quantum corrections to fluid equations
up to the desired order (usually �

2, which is sufficient for including Bohm-like terms). Many
subsequent works use the quantum version of the entropy minimization principle in order
to obtain QFD models of various kind (hydrodynamics, energy transport, SHE-model, drift-
diffusion) [4, 8–12, 20, 21].

All the works quoted above, as well as most of works appeared in the literature, consider
the case of a scalar Hamiltonian of the form p2/2m + V (x). To our knowledge, however,
derivations of QHD equations for spinorial systems, i.e. systems having additional, discrete,
degrees of freedom, are still almost absent in the literature and the few examples we are
aware of [2, 7, 27, 34, 40] do not exploit the quantum entropy minimization principle.

In the present paper we study the application of Degond and Ringhofer’s technique to
a (pseudo)spinorial case of interest in semiconductor physics, namely the two-band “k·p”
Hamiltonian

H =
⎛
⎝− �

2

2m
� + Eg/2 −�

2

m
K · ∇

�
2

m
K · ∇ − �

2

2m
� − Eg/2

⎞
⎠

which describes electrons in a periodic potential with two available energy bands [23, 35].
The band-gap Eg and the coupling vector K = (K1,K2,K3) will be referred to as “crys-
tal parameters” or “band parameters”. The k·p Hamiltonian acts on wavefunctions in
L2(R3,C

2) and, therefore, the system has a spin-like degree of freedom, called pseudospin.
The meaning of such pseudospin is related to the energy bands, as it will be explained in
Sect. 2. Our ultimate goal is the formal derivation of diffusive semiclassical equations for
the densities, n+ and n−, of the electrons in the two bands.
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To this aim, once the kinetic (Wigner) equations for the k·p system have been written,
interaction effects are introduced under the form of a BGK-like term making the system
relax to a local equilibrium state. The band densities n+ and n− are then suitably defined
and the local equilibrium state is assumed to be given by the quantum entropy minimization
principle, under the constraint of given moments n+ and n−. This is equivalent to assuming
that the BGK collisions do not allow band-crossings. Band transitions, therefore, are exclu-
sively due to external potentials. Here by “external potentials” we mean any electrostatic
potential different from the one generated by the semiconductor ion lattice and may com-
prise, therefore, external bias, self-consistent Coulomb potentials, heterostructure potentials
etc. Such field-mediated band transitions are known as “Zener tunneling” [22] and are of the
utmost importance for the so-called interband semiconductor devices [31, 37]. Of course,
band-crossing collisions can always be added to the model, if desired.

After writing the Wigner-BGK equation in terms of dimensionless variables, two para-
meters appear which are assumed to be small: a diffusive parameter τ (the scaled typical
collision time) and a semiclassical parameter ε (the scaled Planck constant). Also the di-
mensionless band parameters will appear in the equations, namely the scaled coupling vec-
tor α = (α1, α2, α3) and the scaled (half) band-gap γ . First, we look for the formal quantum
diffusive limit (τ → 0, ε ∼ 1) by applying to Wigner-BGK equations the Chapman-Enskog
method at first order. The result is summarized in Theorem 4.1 and consists of two coupled
equations for n+ and n− (see (4.9) or the equivalent, but more explicit, (4.14)). However,
these equations are only of theoretical interest, since they are rather involved, especially
because of the complicated dependence of the local equilibrium g on the moments n+ and
n−, as resulting from the constrained entropy minimization. Therefore, our next step is to
take the semiclassical limit ε → 0 of the quantum diffusive equations (4.14). To this aim we
first have to expand the constrained entropy minimizer g up to first order in ε, which can be
done explicitly by using Moyal calculus (see Theorem 5.2). Then, the formal semiclassical
limit of the diffusive equations is computed in four cases, according to different scalings
of the band parameters α and γ with respect to ε, namely (α ∼ 1, γ ∼ 1), (α ∼ ε, γ ∼ ε),
(α ∼ ε, γ ∼ 1), (α ∼ 1, γ ∼ ε) (see Theorems 6.1–6.4). In the first case, representing strong
influence of the crystal lattice, we obtain a system of drift-diffusion-like equations with
complicated effective-mass effects and nonlinear interband coupling terms, see (6.13). The
nonlinear coupling comes from the first-order quantum correction to the classical equilib-
rium distribution, which is a remarkable feature of the spinorial case because, instead, first-
order corrections always vanish for scalar Hamiltonians [36]. The second, opposite, case is
also interesting since it results in a system of standard (i.e. with parabolic dispersion rela-
tions) drift-diffusion equations (6.18) with a linear, field-dependent, coupling term which
induces a relaxation of the band polarity. In the third case, where the coupling vector α van-
ishes and the bands remain separated by a band-gap 2γ , the semiclassical limit is trivial,
consisting of two decoupled parabolic drift-diffusion equations (6.20). The last case (van-
ishing band-gap) produces in the limit a band-crossing, and therefore a singularity, along
the plane α · p = 0. We shall call it a “Dirac plane” because of the evident analogy with
Dirac points in the spectrum of relativistic massless particles [33] as well as of materials
such as graphene [15, 24]. The singularity prevents the diffusive equations from having a
finite limit for ε → 0. However, we show that changing the definition of energy bands from
“upper/lower” to “pseudospin up/down” yields decoupled drift-diffusion equations (6.24)
for the populations of such newly-defined bands. This fact can be properly interpreted in
terms of pseudospin conservation (see Remark 6.3).

Note that in the present paper we do not consider semiclassical corrections of order ε2

and, consequently, Bohm-like terms are missing. A two-band drift-diffusion model for a
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spin-orbit Hamiltonian, based on the quantum minimum entropy principle, has been re-
cently obtained in Ref. [3], with the inclusion of ε2 terms. However, although spin densities
have a simpler structure than k·p band densities (basically, w↑↓ = w1 ± w3 substitutes def-
inition (4.2)), the ε2 corrections turn out to be very complicated. This fact suggested us not
to introduce further complications in the present paper and to postpone the computation of
higher-order corrections for the k·p case to future works.

The outline of the paper is as follows. In Sect. 2 we introduce the k·p Hamiltonian and
related concepts such as energy bands, pseudospin and band projections. In Sect. 3 we in-
troduce the kinetic description of the system, define the local band-densities n+ and n−,
and write down the Wigner-BGK (WBGK) equations. The scaling of the WBGK equa-
tions, with the introduction of the diffusive and semiclassical parameters, is performed in
Sect. 3.2. Section 4 is devoted to the derivation of the quantum diffusive equations by ap-
plying the Chapman-Enskog method (Theorem 4.1). The characterization of the local equi-
librium state g as the solution of the constrained entropy-minimization problem is given
in Sect. 5.1. The proof of the characterization theorem (Theorem 5.1) is postponend to the
Appendix. In Sect. 5.2 the semigroup equation for g is written, which is used in next Sect. 5.3
to explicitly compute the first two terms of the semiclassical expansion of g (Theorem 5.2).
These computations are then used in Sect. 6 to study the semiclassical limits of the quantum
diffusive model in the four cases mentioned above (Theorems 6.1–6.4).

2 The k·p Model

The simplest possible description of an electron in a semiconductor crystal with two energy
bands (e.g. “valence” and “conduction”) is obtained from a periodic Hamiltonian by means
of the k·p method [23, 35] and consists of a 2 × 2 Hamiltonian of the following form:

H =
⎛
⎝− �

2

2m
� + Eg/2 −�

2

m
K · ∇

�
2

m
K · ∇ − �

2

2m
� − Eg/2

⎞
⎠ . (2.1)

Here, Eg is the band-gap and K = (K1,K2,K3) is the matrix element of the gradient opera-
tor between the Bloch functions u± of the upper (+) and lower (−) bands, evaluated at zero
pseudo-momentum:

K =
∫

lattice cell
u+(x)∇u−(x) dx.

The k·p model has to be completed by adding an “external” potential term qV (where q > 0
denotes the elementary charge), accounting for all electric fields except the crystal one. The
electric potential V (x) can be either fixed or self-consistently given by a Poisson equation.

The “free” k·p Hamiltonian H is the quantization of the classical matrix-valued symbol

h(p) =
⎛
⎝

p2

2m
+ Eg/2 −i �

m
K · p

i �

m
K · p p2

2m
− Eg/2

⎞
⎠ . (2.2)

It will be convenient to decompose any 2 × 2 complex matrix in the basis of Pauli matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
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(the coefficients of the decomposition will be real if the matrix is hermitian). The opera-
tors σ1, σ2, σ3 are called “pseudospin components” in this context. Putting

α = (α1, α2, α3) := �

m
K and γ := Eg/2, (2.3)

we can write

h(p) = p2

2m
σ0 + α · pσ2 + γ σ3 = h0(p)σ0 + �h(p) · �σ , (2.4)

where

h0(p) = p2

2m
, �h(p) = (0, α · p,γ ),

and, as usual, �σ = (σ1, σ2, σ3) is the formal vector of Pauli matrices.

Remark 2.1 Here and in the following we adopt the arrow notation for three-vectors, such
as �h(p), that are the (pseudo)spinorial part of the Pauli coefficients. Instead, we do not use
the arrow notation for “cartesian” three-vectors such as x, p, K , α etc.

The dispersion relation for the free Hamiltonian H is easily obtained by computing the
(p-dependent) eigencouples of the symbol h(p). This yields the energy bands

E±(p) = p2

2m
±

√
(α · p)2 + γ 2 = p2

2m
± |�h(p)| (2.5)

and the corresponding normalized energy eigenvectors

ψ
p
± = 1√

2(1 ± ν3(p))

(
ν3(p) ± 1

ν1(p) + iν2(p)

)
, (2.6)

where we have introduced

�ν(p) = (ν1(p), ν2(p), ν3(p)) = �h(p)

|�h(p)| = (0, α · p,γ )√
(α · p)2 + γ 2

. (2.7)

The two eigenprojections P±(p), that we call band-projections, are therefore given by

P±(p) = ψ
p
± ⊗ ψ

p
± = 1

2
(σ0 ± �ν(p) · �σ) (2.8)

and we can clearly write

h(p) = E+(p)P+(p) + E−(p)P−(p). (2.9)

Other interesting observables are the band index

B(p) = �ν(p) · �σ , (2.10)

so that P±(p) = 1
2 (σ0 ± B(p)), and the velocity vector operator

U(p) = ∇ph(p) =
(

p/m −iα

iα p/m

)
= p

m
σ0 + ασ2. (2.11)
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Remark 2.2 Note that the eigenvectors of U(p) are of the form

ϕ± = 1√
2

(
1
±i

)
, (2.12)

with eigenvalues p/m ± α. Here, the subscripts ± do not correspond to the band indices
unless �ν(p) = �e2 = (0,1,0) (i.e. γ = 0). In other words, only in the case �ν(p) = �e2 the
energy eigenstates are simultaneously velocity eigenstates (and, of course, eigenstates of
the pseudospin σ2).

Clearly, the corresponding operators P±, B and U acting on the wavefunction space
L2(R3,C

2) are obtained from P±(p), B(p) and U(p) by the quantization rule p 
→ −i�∇ .
The corresponding (generalized) eigenstates are

ψ
p
±(x) = ψ

p
± eip·x/�,

for h, P± and B , and

ϕ
p
±(x) = ϕ± eip·x/�

for U , where ψ
p
± and ϕ± are given by (2.6) and (2.12).

3 Wigner-BGK Equation for the k·p Model

In this section we introduce the kinetic description of the k·p system, which is based on
the Wigner formulation of statistical quantum mechanics [36]. In such a framework, as we
shall see, the definition of local densities and the introduction of relaxation-time collision
operator are particularly straightforward.

3.1 Spinorial Wigner Functions

A mixed (statistical) quantum state for a system governed by the k·p Hamiltonian H is
described by a density operator S, i.e. a bounded nonnegative operator, with unit trace, act-
ing on L2(R3,C

2). However, the statistical quantum mechanics has a “kinetic” formulation
due to Wigner [32, 36, 39] which, because of its analogies with classical kinetic theory,
is particularly suitable as a “mesoscopic” description leading, eventually, to fluid-dynamic
equations for macroscopic averages [19]. The Wigner transform w = w(x,p) of a (scalar)
function ρ = ρ(x, y) is

w(x,p) = (Wρ)(x,p) =
∫

R3
ρ

(
x + ξ

2
, x − ξ

2

)
e−ip·ξ/�dξ, (3.1)

and its inverse is given by

ρ(x, y) = (W −1w)(x, y) = 1

(2π�)3

∫
R3

w

(
x + y

2
,p

)
ei(x−y)·p/� dp. (3.2)

The connection with mixed states arises from the fact that a (scalar) density operator S

admits an integral representation

(Sψ)(x) =
∫

R3
ρS(x, y)ψ(x)dy
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whose associated integral kernel ρS is the so-called density matrix. Therefore, we can asso-
ciate to a mixed state, with density operator S, a Wigner function

w = WρS = Op−1
�

(S),

which turns out to be real-valued. The notation Op−1
�

is due to the fact that S 
→ ρS 
→ w

is exactly the inverse of the Weyl quantization [14, 39] which associates a classical phase-
space symbol a(x,p) with the operator

[Op
�
(a)ψ](x) = 1

(2π�)3

∫
R6

a

(
x + y

2
,p

)
ψ(y) ei(x−y)·p/� dy dp. (3.3)

Note, in fact, that Op
�
(a) is an integral operator with formal kernel W −1a.

In our “spinorial” case, the density operator S acts on L2(R3,C
2) and then it has a 2 × 2

density matrix ρS
ij (x, y). Thus, we can associate with S a 2 × 2 matrix of Wigner functions

wij = wij (x,p) given by

wij = WρS
ij = Op−1

�
(Sij ) (3.4)

or, briefly,

w = WρS = Op−1
�

(S),

which turns out to be hermitian

wij (x,p) = wji(x,p).

It will be convenient to consider the Pauli components of the Wigner matrix w, which are
four real-valued functions on phase-space,

w = w0σ0 + �w · �σ , �w = (w1,w2,w3).

In this way we have a very simple, and classical-fashioned, formula for the expected value
of an observable A in the state S:

1

2
Tr(SA) = 1

2
Tr(AS) =

3∑
k=0

∫
R6

ak(x,p)wk(x,p)dx dp, (3.5)

where S = ∑3
k=0 Op

�
(wk)σk and A = ∑3

k=0 Op
�
(ak)σk . Such identity allows to consider the

local density (or moment) of the observable A in the state S as

1

2
Tr(SA | x) =

3∑
k=0

∫
R3

ak(x,p)wk(x,p)dp. (3.6)

In particular, we shall be interested in the local band-densities n±(x), that are the local
densities of the band-projections P± defined in the previous section. Since Weyl quantization
reduces to standard quantization for symbols depending only on p (and also for symbols
depending only on x), from (2.8) we have P± = 1

2 (σ0 ± Op
�
(�ν) · �σ) and then, according

to (3.6), the local densities are given by

n±(x) = Tr(SP± | x) =
∫

R3
[w0(x,p) ± �ν(p) · �w(x,p)]dp. (3.7)
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3.2 Wigner-BGK Equations

Assume now that the dynamics of the time dependent mixed state S(t) is given by the von
Neumann equation (Schrödinger equation for mixed states)

i�∂tS(t) = [H + qV σ0, S(t)],

where H is the k·p Hamiltonian (2.1), qV σ0 is the external field term and, as usual, [A,B]
denotes the commutator AB − BA. Then, using (3.1), it is not difficult to prove that the
evolution equations for the corresponding time dependent Pauli-Wigner functions

wk = wk(t) = wk(x,p, t), w(t) = Op−1
�

(S(t)),

are the following:

{
(∂t + p

m
· ∇x + qΘ�[V ])w0 + α · ∇xw2 = 0,

(∂t + p

m
· ∇x + qΘ�[V ]) �w + α · ∇xw0 �e2 − 2

�
�h(p) × �w = 0.

(3.8)

Here, �h(p) = (0, α · p,γ ), �e2 = (0,1,0) and Θ�[V ] is the pseudo-differential operator

Θ�[V ] = i

�

[
V

(
x + i�

2
∇p

)
− V

(
x − i�

2
∇p

)]
, (3.9)

that is, more explicitly,

[Θ�[V ]w](x,p, t)

= i

�

∫
R6

[
V

(
x + ξ

2

)
− V

(
x − ξ

2

)]
eiξ ·(p′−p)/�w(x,p′, t)

dξ dp′

(2π�)3
.

System (3.8) just describes a single-particle Hamiltonian dynamics. Since we are interested
to the diffusive regime, collisional effects have to be inserted somehow. A simple model
taking account of collisions, that force the system towards a local equilibrium, is obtained
by adding relaxation-time terms of BGK (Bhatnaghar-Gross-Krook) type [1]

{
(∂t + p

m
· ∇x + qΘ�[V ])w0 + α · ∇xw2 = g0−w0

τc
,

(∂t + p

m
· ∇x + qΘ�[V ]) �w + α · ∇xw0 �e2 − 2

�
�h(p) × �w = �g− �w

τc
,

(3.10)

where τc is the relaxation time (which is assumed to be the same constant for all components)
and g = g0σ0 + �g · �σ is a local-equilibrium Wigner matrix that will be specified later on.
System (3.10) will be referred to as “Wigner-BGK” (WBGK) equations.

3.3 Scaling the WBGK Equations

In order to rewrite system (3.10) in scaled form, let us introduce the reference length x0,
time t0, momentum p0, potential V0 and density N0, and switch to dimensionless quantities:

x → x0x, t → t0t, p → p0p, V → V0V, w → N0w, g → N0g,
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(for the sake of simplicity the new, dimensionless, variables are denoted by the same sym-
bols as the old ones). After some algebra, (3.10) can be written in dimensionless form as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
mx0
t0p0

∂t + p · ∇x + mqV0
p2

0
Θ �

x0p0
[V ])w0 + m

p0
α · ∇xw2 = mx0

p0τc
(g0 − w0),

(
mx0
t0p0

∂t + p · ∇x + mqV0
p2

0
Θ �

x0p0
[V ]) �w + m

p0
α · ∇xw0�e2

− 2mx0
p0�

�h(p0p) × �w = mx0
p0τc

(�g − �w).

Now let us make the following assumptions:

(i) the momentum reference value p0 is chosen as being the thermal one, p0 = √
mkBT ,

where kB is Boltzmann constant and T is the (constant) temperature of the thermal
bath;

(ii) the electric potential reference value V0 is chosen such that qV0 = p2
0/m = kBT , which

amounts to assume that the potential energy is on the same scale as the typical kinetic
energy of electrons;

(iii) the reference time t0 is on the diffusive time scale.

The last assumption implies that, if we define the diffusive parameter τ as the scaled colli-
sion time

τ = p0τc

mx0
, (3.11)

then, in order to have the time derivative multiplied by τ , we must choose t0 such that
mx0
t0p0

= τ , i.e.

t0 = m2x2
0

p2
0τc

= mx2
0

kBT τc

. (3.12)

We also introduce the semiclassical parameter ε as the scaled Planck constant

ε = �

x0p0
, (3.13)

and (without changing the symbols, for the sake of simplicity) redefine the scaled crystal
parameters α and γ as

m

p0
α → α,

m

p2
0

γ → γ. (3.14)

All this considered, the dimensionless WBGK equations take the scaled form

{
(τ∂t + p · ∇x + Θε[V ])w0 + α · ∇xw2 = g0−w0

τ
,

(τ∂t + p · ∇x + Θε[V ]) �w + α · ∇xw0 �e2 − 2
ε
�h(p) × �w = �g− �w

τ
,

(3.15)

where �h(p) keeps the form

�h(p) = (0, α · p,γ ) (3.16)

but now p, α, γ are the new scaled quantities.
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Remark 3.1 Of course, one may obtain the same equations by starting from the scaled
Hamiltonian

h(p) =
( 1

2 p2 + γ −iα · p
iα · p 1

2p2 − γ

)
.

(obtained from the unscaled expression (2.2) dividing by the reference energy p2
0/m) and

using the scaled Weyl-Wigner correspondence:

Op �

p0x0
= Opε .

4 Quantum Diffusive Limit

Our first goal is to derive a quantum diffusive model for the time dependent band densities
n±(x, t), introduced in Sect. 3. We recall here their definition for a time dependent mixed
state:

n±(x, t) =
∫

R3
[w0(x,p, t) ± �ν(p) · �w(x,p, t)]dp. (4.1)

Since we have adopted the same symbols for scaled and unscaled variable, this expression
is the same in both cases. For later convenience we introduce the notations

w±(x,p, t) := w0(x,p, t) ± �ν(p) · �w(x,p, t) (4.2)

and, for any given f = f (x,p, t),

〈f 〉(x, t) :=
∫

R3
f (x,p, t) dp, (4.3)

so that definition (4.1) can be simply written as

n± = 〈w±〉.

Quantum diffusive equations for n± can be derived by performing an asymptotic analysis,
based on the Chapman-Enskog method, of (3.15) for the small parameter τ . To this aim
we have to be more precise about the local equilibrium state g = g0σ0 + �g · �σ appearing
in the WBGK equation (3.15). However, for the time being, we can postpone a detailed
discussion about g to Sect. 5 and introduce just the properties that are needed here. Since in
this work we are mainly interested in band-transitions induced by the electric field V (the so-
called Zener tunneling [22]), then we assume that collisions do not produce band-crossings.
Hence, the BGK operator must conserve the band densities n+ and n−, which leads to the
fundamental moment constraints

〈g±〉 = n± = 〈w±〉. (4.4)

Of course, it is always possible to include band-crossing collisions in the model, which
eventually lead to additional coupling terms in the diffusive equations, but this issue will not
be discussed in the present paper.
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In order to apply the Chapman-Enskog method, let us rewrite the scaled WBGK sys-
tem (3.15) in compact form as follows:

τ∂tw
τ + T wτ = g[nτ ] − wτ

τ
, (4.5)

where, using Pauli components,

(T w)0 = (p · ∇x + Θε[V ])w0 + α · ∇xw2,

�(T w) = (p · ∇x + Θε[V ]) �w + α · ∇xw0 �e2 − 2

ε
�h(p) × �w.

(4.6)

In (4.5) we added an index τ to stress the dependence of w on the diffusive parameter τ .
Moreover, we introduced the notation g[nτ ] to stress the dependence of g on the couple of
moments

nτ := (nτ
+, nτ

−) = (〈wτ
+〉, 〈wτ

−〉) (4.7)

of the unknown wτ , as it implicitly results from the constraints (4.4).

Theorem 4.1 (Formal diffusive limit) Assume that nτ = (nτ+, nτ−) converges as τ → 0 to
some limit couple of densities n = (n+, n−), and assume that g[nτ ] is such that

〈(T g[nτ ])±〉 = 0 (4.8)

for all τ > 0. Then n+(x, t) and n−(x, t) satisfy the evolution equation

∂tn± = 〈(T T g[n])±〉. (4.9)

Proof First of all (assuming the map n 
→ g[n] to be continuous) we observe that passing to
the limit for τ → 0 in (4.5) yields

wτ → g[n],
which means that the 0-order approximation for wτ is the local equilibrium relative to the
limit moments. The Chapman-Enskog Ansatz reads as follows:

wτ = g[nτ ] + τw(1), (4.10)

where w(1) is, therefore, a perturbation of the local equilibrium state. By substituting (4.10)
into the WBGK equation (4.5) we obtain

τ∂tw
τ + T g[nτ ] + τT w(1) = −w(1)

which, for τ → 0, yields

w(1) = −T g[n]. (4.11)

Thus, by substituting again in the previous equation, we have

τ∂tw
τ + T g[nτ ] − τT T g[n] = T g[n].

If we now take the moments 〈(·)±〉 of both sides of the latter equation, and use the con-
straints (4.4), we obtain

τ∂tn± + 〈(T g[nτ ])±〉 − τ 〈(T T g[n])±〉 = 〈(T g[n])±〉.
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Thus, by using assumption (4.8) (that continuity guarantees to hold also for g[n]), (4.9)
follows. �

Remark 4.1 System (4.9) is the diffusive limit of the kinetic model (3.15). It is formally
closed provided that g can actually be expressed as a function of n+ and n− by using the
constraints (4.4). Moreover, g should satisfy condition (4.8). In Sect. 5 we shall prove that,
if g is given by a minimum entropy principle, then it satisfies condition (4.8) (see Proposi-
tion 5.1) and, moreover, we shall write explicitly g as a function of n+ and n−, at least in
the semiclassical approximation.

In view of the subsequent semiclassical analysis, let us end the section putting sys-
tem (4.9) in a more explicit form. For the sake of brevity we simplify notations by defining

Θ := Θε[V ], ∂i := ∂

∂xi

(4.12)

and adopting Einstein’s convention on repeated indices. Then we have

〈(T w)±〉 = ∂i〈piw± + αi(w2 ± ν2w0)〉 ∓ 〈 �w · Θ�ν〉, (4.13)

where we exploited the anti-symmetry of the operator Θ as an operator acting on functions
of p (see definition (3.9)). This, in particular, implies that 〈Θw〉 = 0 for all w. Let us now
simply write g for g[n]. By putting w = T g in (4.13) we obtain a more explicit expression
of the right-hand side of the quantum diffusive equations (4.9), which become

∂tn± = ∂i∂j 〈pipjg± + 2piαj (g2 ± ν2g0) + αiαj (g0 ± ν2g2)〉
+ ∂i〈(pi ± ν2αi)Θg0 ± pi�ν · Θ �g − 2ε−1γαig1〉
∓ 〈Θ�ν · [pi∂i �g + Θ �g + αi∂ig0�e2 − 2ε−1 �h × �g]〉, (4.14)

with g = g[n] = g[(n+, n−)]. In order to complete the quantum diffusive model, a discus-
sion is now required about the local equilibrium state represented by g. This will be done in
the next section.

5 The Local Equilibrium Wigner Functions

In this section we describe the local equilibrium state g = g0σ0 + �g · �σ as given by the quan-
tum version of the minimum entropy principle. Then, g will be semiclassically expanded at
first order in the semiclassical parameter ε.

5.1 Local Equilibrium State from Minimum Entropy Principle

Following Refs. [12, 13] we search the local-equilibrium state as the minimizer of a suitable
quantum entropy-like functional A, under the constraint that the moments under considera-
tion are given. In our case, such moments are the two band-densities n± (see definition (3.7)).
Assuming that the system is in thermal equilibrium with a bath at a given temperature T ,
the functional A will be the quantum Helmholtz free-energy functional

A(S) = Tr

{
kBT S

(
log

S

N0
− I

)
+ HS

}
,
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where S is the density operator describing the state of the system. Note that we are using
the mathematician’s convention for the sign of the entropy, opposed to the physicist’s one.
In scaled variables (see Sect. 3) A(S) reads as follows

A(S) = Tr{S(logS − I ) + HS}, (5.1)

where, as usual, we adopt the same symbols for scaled and unscaled quantities.
Let us consider, therefore, the following constrained minimization problem.

Problem 5.1 Let n+(x) and n−(x) be assigned functions. Find a density operator G

such that A(G) is minimal among all density operators S satisfying 〈w±〉 = n±, with
w = Op−1

ε (S).

Such operator will be our local-equilibrium density operator associated to n+ and n−.
Adapting the proof given in Ref. [13] to the present (spinorial) case, we shall prove in the
Appendix the following theorem.

Theorem 5.1 A necessary condition for G to be a solution of the constrained minimization
Problem 5.1 is that two functions μ0(x) and μs(x) exist such that

{
G = e−Hμ,

〈g±〉 = n±, with g = Op−1
ε (G),

(5.2)

where Hμ = Opε(hμ) is a modified k·p Hamiltonian with symbol

hμ(x,p) = [p2/2 + V (x) + μ0(x)]σ0 + [|�h(p)| + μs(x)]�ν(p) · �σ . (5.3)

Remark 5.1 Recalling (2.8) and (2.9), and putting

μ±(x) = V (x) + μ0(x) ± μs(x), (5.4)

we can write

hμ(x,p) = [E+(p) + μ+(x)]P+(p) + [E−(p) + μ−(x)]P−(p), (5.5)

where

E±(p) = p2

2
±

√
(α · p)2 + γ 2 = p2

2
± |�h(p)| (5.6)

are the scaled energy bands. From (5.5) we realize that Hμ provides each energy band with
its own chemical potential. The two degrees of freedom represented by μ+ and μ− allows
(in principle) the constraint equation 〈g±〉 = n± to be satisfied.

5.2 Associated Semigroup Equation

Several properties of G can be deduced from the associated semigroup equation for G(β) =
e−βHμ , β ≥ 0, that is {

∂βG(β) = −HμG(β), β > 0,

G(0) = I,
(5.7)
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which, of course, yields G for β = 1. The corresponding equation for the Wigner matrix g

is easily obtained by transforming system (5.7) with Op−1
ε . This yields

{
∂βg(β) = −hμ#εg(β), β > 0,

g(0) = σ0,
(5.8)

where #ε denotes the so-called Moyal (or “twisted”) product between symbols [14, 39]

a#εb = Op−1
ε [Opε(a)Opε(b)], (5.9)

where a and b are 2×2 matrices, in the present case. The Moyal product has a semiclassical
expansion

#ε = #(0) + ε#(1) + ε2#(2) + · · · , (5.10)

where

a#(k)b = 1

(2i)k

∑
|α|+|β|=k

(−1)|α|

α!β! (∂α
x ∂β

p a)(∂α
p∂β

x b). (5.11)

In particular, #(0) is the usual matrix product,

a#(0)b = ab,

and #(1) is the Poisson bracket between matrices

a#(1)b = i

2

3∑
k=1

(
∂a

∂xk

∂b

∂pk

− ∂a

∂pk

∂b

∂xk

)
.

As a first application of the semigroup equation (5.8), we show that our local equilibrium
state satisfies condition (4.8) of Theorem 4.1.

Proposition 5.1 A Wigner matrix g(β) satisfying (5.8) is such that

〈(T g(β))±〉 = 0,

where T is given by (4.6). In particular, the BGK equilibrium state g[nτ ] satisfies condi-
tion (4.8) for all τ ≥ 0.

Proof Since HμG(β) = G(β)Hμ and, therefore, hμ#ε g(β) = g(β)#εhμ, then, using the fact
that #(k) is symmetric for even k and antisymmetric for odd k, the semigroup equation (5.8)
can be expanded as

−∂βg(β) =
∑
k even

εk[hμ#(k)g(β)]+ +
∑
k odd

εk [hμ#(k)g(β)]−, (5.12)

where [ab]+ and [ab]− denote, respectively, the symmetric and antisymmetric part of the
matrix product ab. The expressions in Pauli components are:

[ab]+ =
(

a0b0 + �a · �b
a0 �b + �ab0

)
, [ab]− =

(
0

i�a × �b
)

. (5.13)
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Now, let C denote the set of p-dependent 2 × 2 matrices a such that the Pauli components
aj are even functions of p for j = 0,1,3 and odd function of p for j = 2. Let us say, briefly,
that a ∈ C has the parity structure

(even, even, odd, even).

It is immediate to see that the Hamiltonian symbol hμ belongs to the parity class C . More-
over, by using (5.11) and (5.13), it can be easily verified that, if g ∈ C , then [hμ#(k)g(β)]+ ∈
C for even k and [hμ#(k)g(β)]− ∈ C for odd k. Since, clearly, g(0) ∈ C , from the semigroup
equation (5.8) (written in the form (5.12)) we immediately conclude that g(β) ∈ C , for all
β ≥ 0. Now, it can be easily verified that, if g(β) ∈ C , then T g(β) has the reverse parity
structure (odd, odd, even, odd). Thus it turns out that (T g(β))± are both odd functions of p

and, consequently, 〈(T g(β))±〉 = 0.
Since this result does not depend on the choice of the chemical potentials μ± (or, equiv-

alently, of the local densities n±), then the BGK state g[nτ ], which just requires a particular
choice of μ±, clearly satisfies (4.8). �

5.3 Semiclassical Expansion of the Local Equilibrium Wigner Functions

As already remarked, the quantum diffusive equations (4.14) are formally closed if g can be
expressed as a function of n+ and n− from the relation 〈g±〉 = n±. The chemical potentials
μ+ and μ− guarantee the necessary degrees of freedom. However, finding the explicit form
of μ± = μ±(n+, n−), and then of g = g(n+, n−), is in general a very complicated task
unless some approximations are performed. Since in standard applications the semiclassical
parameter ε = �

p0x0
is rather small (e.g. ε = 0.012 for a system of typical size x0 = 10−7 m at

a temperature T = 300 K), it is reasonable to assume ε � 1 and investigate the semiclassical
approximation of g and, consequently, of the quantum diffusive equations (4.14). A glance
to (4.14) immediately suggests that also the ε-order approximation of g is needed to obtain
the 0-order approximation of the diffusive equations.

Theorem 5.2 (Semiclassical expansion of the constrained entropy minimizer) Assume that
g satisfy the necessary conditions (5.2). Then

g = g(0) + εg(1) + O(ε2),

where g(0) is given (in Pauli components) by

g
(0)

0 = φ+ + φ−
2

, �g (0) = φ+ − φ−
2

�ν, (5.14)

with

φ±(x,p) = n±(x) e−E±(p)/z±, z± :=
∫

R3
e−E±(p)dp, (5.15)

and g(1) is given by

g
(1)

0 = 0, �g (1) = η�e1, (5.16)

with �e1 = (1,0,0) and

η = γαi

4|�h|2
[
∂i(φ+ + φ−) + (φ+ − φ−)∂i log(n+n−)

2|�h| − log n+z−
z+n−

]
. (5.17)
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Proof Let us assume for the moment that the chemical potentials do not depend on ε. As
we have already seen, g = g(β = 1), where g(β) solves the semigroup problem (5.8). Let
us, therefore, expand g(β) in powers of ε:

g(β) = g(0)(β) + εg(1)(β) + ε2g(2)(β) + · · · , (5.18)

Substituting (5.18) and (5.10) in (5.8) yields, at leading order,

{
∂βg(0)(β) = −hμg(0)(β), β > 0,

g(0)(0) = σ0,

and, therefore,1

g(0)(x,p;β) = e−βhμ(x,p).

After straightforward calculations we obtain the Pauli components of g(0) = g(0)(β = 1):

g
(0)

0 = φ
μ
+ + φ

μ
−

2
, �g (0) = φ

μ
+ − φ

μ
−

2
�ν (5.19)

where

φ
μ
± = φ

μ
±(x,p) = e−[E±(p)+μ±(x)]. (5.20)

As far as the first-order term is concerned, from (5.12) and (5.18) we obtain the equation for
g(1)(β):

{
∂βg(1)(β) = −hμg(1)(β) − [hμ#(1)g(0)(β)]−, β > 0,

g(1)(0) = 0,

or

g(1)(β) = −
∫ β

0
e−(β−β ′)hμ [hμ#(1)g(0)(β ′)]− dβ ′.

After lengthy but straightforward calculations we obtain the Pauli components of g(1) =
g(1)(β = 1):

g
(1)

0 = 0, �g (1) = ημ�e1, (5.21)

with �e1 = (1,0,0) and

ημ = − γαi

4|�h|2
[
φ

μ
+∂iμ+ + φ

μ
−∂iμ− + (φ

μ
+ − φ

μ
−)∂i(μ+ + μ−)

2|�h| + μ+ − μ−

]
, (5.22)

where φ
μ
± are given by (5.20) and �h by (3.16).

Now, μ± depend on ε because the constraint equations in (5.2) contain ε. But, according
to definition (4.2), we have g

(0)
± = φ

μ
± and g

(1)
± = 0. Thus, the constraint equations imply

n± = 〈g±〉 = 〈(g(0) + εg(1))±〉 + O(ε2) = e−[E±(p)+μ±(x)] + O(ε2),

1As expected, the semiclassical approximation of Op−1
ε (e−Hμ) is simply given by the matrix exponential

of the symbol Hamiltonian hμ. Indeed, it can be proven that Op−1
ε [f (Opε(h))] → f (h) for ε → 0+ , see

Ref. [14].
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which allows to invert at order 2 the relation between μ± and n±:

μ± = − log
n±
z±

+ O(ε2), (5.23)

with z± = ∫
R3 e−E±(p)dp. We see, therefore, that in (5.20) and (5.22) we can substitute μ±

with − log n±
z± by making an error of order ε2. By performing such substitution in (5.20) we

obtain (5.14)–(5.15). By performing the substitution in (5.22), we can first use the relation

φ±∂iμ± = −∂iφ±,

to get

ημ = γαi

4|�h|2
[
∂i(φ+ + φ−) − (φ+ − φ−)∂i(μ+ + μ−)

2|�h| + μ+ − μ−

]
,

and then, by completing the substitution, we obtain (5.16)–(5.17). �

Remark 5.2 Intuitively enough, the leading-order semiclassical approximation of the local-
equilibrium Wigner functions, g(0), is a couple of independent “Maxwellians”, one for each
band. The first-order correction g(1) is a peculiar feature of spinorial Hamiltonians, since it
always vanishes in the scalar case.

6 Semiclassical Limits of the Diffusive Equation

As already remarked in the previous sections, the formal closure of the quantum diffusive
equations (4.14) relies on the possibility of expressing the local-equilibrium Wigner func-
tions gk as functions of the moments n+ and n−. This (even in simpler non-spinorial situ-
ations) is in practice possible only in the semiclassical approximation ε � 1. Thus, in this
section we shall exploit the results of Sect. 5.3 in order to perform a leading-order semiclas-
sical analysis of (4.14). This will be carried out for different scalings of the band parameters
α = (α1, α2, α3) and γ with respect to ε.

6.1 The Case α ∼ 1, γ ∼ 1

First of all let us examine the case of a “strong influence” of the band parameters, which
are therefore assumed to be of order 1 with respect to ε. The starting point are the quantum
diffusive equations (4.14). There, the semiclassical parameter ε appears explicitly and is also
hidden in Θ = Θε[V ] (see definition (3.9)) and in g (see previous section). As far as Θε[V ]
is concerned, its formal Taylor expansion in ε can be easily found and reads as follows:

Θε[V ] =
∞∑

k=0

(−1)k+1

(
ε

2

)2k ∑
|α|=2k+1

1

α! ∇α
x V ∇α

p . (6.1)

Note that just the first term (k = 0) contributes to the leading order of (4.14), that is

Θ0[V ] = −∇xV · ∇p, (6.2)

which is nothing else than the force term in the classical Liouville equation. As far as g

is concerned, we just need the g(0) and g(1) terms computed in the previous section and
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given by (5.14)–(5.15) and (5.16)–(5.17), respectively. In particular, (5.14) implies g
(0)

1 = 0
and �h × �g (0) = 0, and, therefore, no ε−1-order terms will appear in our final equations. So,
from (4.14) we see that what we have to compute is

〈(T T g)
(0)
± 〉 = ∂i∂j 〈pipjg

(0)
± + 2piαj (g

(0)

2 ± ν2g
(0)

0 ) + αiαj (g
(0)

0 ± ν2g
(0)

2 )〉
+ ∂i〈(pi ± ν2αi)Θ0g

(0)

0 ± pi�ν · Θ0 �g (0) − 2γαig
(1)

1 〉
∓ 〈Θ0�ν · [pi∂i �g (0) + Θ0 �g (0) + αi∂ig

(0)

0 �e2 − 2�h × �g (1)]〉,

where Θ0 := Θ0[V ] is given by (6.2). First of all, using (5.14) and g
(0)
± = φ±, we immedi-

ately obtain

∂i∂j 〈pipjg
(0)
± + 2piαj (g

(0)

2 ± ν2g
(0)

0 ) + αiαj (g
(0)

0 ± ν2g
(0)

2 )〉
= ∂i∂j 〈v±

i v±
j φ±〉 + ∂i∂j 〈c2

ij (φ+ + φ−)〉, (6.3)

where

v±
i (p) := pi ± ν2αi = pi ± αiα · p√

(α · p)2 + γ 2
= ∂E±(p)

∂pi

(6.4)

are the components of the electron semiclassical velocity in the two bands and, moreover,
we have introduced the function

ck
ij = ck

ij (p) := γ 2αiαj

2|�h(p)|k
. (6.5)

Next, let us compute the terms that depend on g(0) and are linear in Θ0. By using the inte-
gration by parts and the following formula for the derivatives of �ν(p)

∂

∂pi

�ν(p) = γαi

|�h(p)|2
�ν⊥(p), �ν⊥ = (0, ν3,−ν2), (6.6)

we obtain

∂i〈v±
i Θ0g

(0)

0 ± pi�ν · Θ0 �g (0)〉 ∓ 〈Θ0�ν · [pi∂i �g (0) + αi∂ig
(0)

0 �e2]〉
= ∂i[∂jV 〈δijφ± ± 2c3

ij (φ+ + φ−)〉] ∓ ∂i∂jV 〈c3
ij (φ+ + φ−)〉. (6.7)

As far as the term quadratic in Θ0 is concerned, we obtain

〈Θ0�ν · Θ0 �g (0)〉 = ∂iV ∂jV 〈c4
ij (φ+ − φ−)〉. (6.8)

Now, let us consider the contributions from g(1). Looking at (5.16)–(5.17), we can distin-
guish a linear part of �g (1),

�g (1)

lin = γαi

4|�h|2
∂i(φ+ + φ−) �e1,

and a nonlinear one,

�g (1)

nlin = − γαi

4|�h|2
(φ+ − φ−)∂i(μ+ + μ−)

2|�h| + μ+ − μ−
�e1
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(in both cases g
(1)

0 = 0).
As far as the linear part is concerned, we obtain

−∂i〈2γαi g
(1)

lin,1〉 ± 〈Θ0�ν · 2�h × �g (1)

lin 〉 = −∂i∂j 〈c2
ij (φ+ + φ−)〉

∓ ∂i[∂jV 〈c3
ij (φ+ + φ−)〉]

± ∂i∂jV 〈c3
ij (φ+ + φ−)〉. (6.9)

Putting together (6.3), (6.7), (6.8) and (6.9), we obtain the linear part of the semiclassical
diffusive equation:

〈(T T g)
(0)
± 〉lin = ∂i∂j 〈v±

i v±
j φ±〉 + ∂i[∂jV 〈δijφ± ± c3

ij (φ+ + φ−)〉]
∓ ∂iV ∂jV 〈c4

ij (φ+ − φ−)〉.

Remark 6.1 This expression is indeed linear in n+ and n−, because of the factorized struc-
ture of φ± (see (5.15)). Using φ+ + φ− = 2φ± ∓ (φ+ − φ−), the previous equation can be
rewritten as

〈(T T g)
(0)
± 〉lin = ∂i∂j 〈v±

i v±
j φ±〉 + ∂i[∂jV 〈(δij ± 2c3

ij )φ±〉]
− ∂i[∂jV 〈c3

ij (φ+ − φ−)〉] ∓ ∂iV ∂jV 〈c4
ij (φ+ − φ−)〉, (6.10)

putting in evidence a diagonal drift term in which the response of the band electron to the
electric field is mediated by the tensor

δij ± 2c3
ij (p) = δij ± γ 2αiαj

|�h(p)|3 = ∂2E±(p)

∂pi∂pj

, (6.11)

which is clearly related to the k·p effective-mass tensor [35]. Note that for certain values of
the band parameters α and γ such effective-mass may be negative, making electrons in the
lower band behave like holes.

Finally, let us consider the contribution from the nonlinear part of g(1) which, us-
ing (5.23), can be rewritten as follows:

�g (1)

nlin = γαi

4|�h|2
(φ+ − φ−)∂i log(n+n−)

2|�h| − log n+z−
z+n−

�e1.

Using again (6.5) and (6.6), we quickly obtain

〈(T T g)
(0)
± 〉nlin = −∂i〈2γαi(g

(1)

nlin)1〉 ± 〈Θ0�ν · 2�h × �g (1)

nlin〉

= −
〈
(c2

ij ∂i ± c3
ij ∂iV )

(φ+ − φ−)∂j log(n+n−)

2|�h| − log n+z−
z+n−

〉
, (6.12)

which is, indeed, a nonlinear expression in n+ and n−. Putting together the linear and non-
linear parts, (6.10) and (6.12), and recalling the structure of φ±, see (5.15), we obtain the
following result.



Diffusive Limit of the Two-Band k·p Model for Semiconductors 299

Theorem 6.1 (Formal semiclassical approximation for α ∼ 1, γ ∼ 1) Let us denote by nε±
the solution of the quantum diffusive equations (4.14). Then

nε
± = n± + O(ε),

where n± satisfy the following system:

∂tn± = ∂i[D±
ij ∂jn± + ∂jV (δij ± 2C3±

ij )n±]
− ∂i[∂jV (C3+

ij n+ − C3−
ij n−)] ∓ ∂iV ∂jV (C4+

ij n+ − C4−
ij n−)

−
∫

R3
(c2

ij ∂i ± c3
ij ∂iV )

(φ+ − φ−)∂j log(n+n−)

2|�h| − log n+z−
z+n−

dp, (6.13)

with

D±
ij := 1

z±

∫
R3

v±
i (p)v±

j (p) e−E±(p)dp,

Ck±
ij := 1

z±

∫
R3

ck
ij (p) e−E±(p)dp.

(6.14)

We recall that φ± are defined in (5.15), v±
i in (6.4) and ck

ij in (6.5). Note that (6.13) is
a nonlinear uniformly parabolic system because, as one can immediately see from (6.14),
the 3 × 3 constant matrices D+

ij and D−
ij are definite positive. Note also that the parabolic

system is not “weakly coupled” [29, 30], because of coupling terms involving derivatives of
n+ and n−.

6.2 The Case α ∼ ε, γ ∼ ε

We now consider the case in which both the band parameters, α and γ , have little influence
on the dynamics at the macroscopic scale. We assume, therefore, that they are of order ε. In
order to stress this fact, we make the substitutions

α → εα, γ → εγ, (6.15)

with α ∼ 1 and γ ∼ 1 (of course, this amounts to redefine the change from unscaled to
scaled quantities (3.14) as mx0α

�
→ α, mx0γ

p0�
→ γ , and to assume mx0α

�
and mx0γ

p0�
to be of

order 1). Note that the spinorial part of the Hamiltonian is rescaled as ε �h and, therefore, the
energy bands are now

Eε
±(p) = p2

2
± ε|�h(p)| = p2

2
± ε

√
(α · p)2 + γ 2.

Then, we should start again the whole procedure with the new scaled quantities: compute the
new g(0) and g(1), as in Sect. 5, and compute the new right-hand side of the diffusive equation
〈(T T g)

(0)
± 〉, as in Sect. 6.1. However, since the new problem is a regular perturbation of the

previous one, an equivalent and much easier procedure is to start directly from the diffusive
limit (6.13), insert the new factors ε where necessary, and just take the limit for ε → 0. To
this aim, note that in such limit we have Eε(p) → p2/2 and then

φ±(x,p) → n±(x)e−p2/2/(2π)3/2. (6.16)
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Therefore, the leading order local-equilibrium distribution is now given by two identical
Maxwellians in the two bands. Moreover, the semiclassical velocities v± (see (6.4)) both
reduce to the “free” velocity p (we term it “velocity” because in unscaled variables it
would be p/m). In particular, taking also into account (6.16), the diffusion coefficients D±

ij

(see (6.14)) reduce to

D±
ij → δij .

Finally, since the coefficients ck
ij (p) (see (6.5)) scale as ε4−kck

ij (p) we have that, in the limit

ε → 0, only k = 4 survives. In particular, the integrated coefficient C4±
ij (see again (6.14)

and use (6.16)) becomes

C4±
ij → αiαjγ

2

2(2π)3/2

∫
R2

e−p2/2

((α · p)2 + γ 2)2
dp := Cij (6.17)

(where, of course, α and γ are the crystal parameters in the new scaling). All this considered,
making the substitutions (6.15) in (6.13) and passing to the limit ε → 0, we obtain the
following result.

Theorem 6.2 (Formal semiclassical approximation for α ∼ ε, γ ∼ ε) Let us denote by nε±
the solution of the quantum diffusive equations (4.14) with α and γ substituted by εα and εγ .
Then nε± = n± + O(ε), where n± satisfy the following system:

∂tn± = ∂i(∂in± + ∂iV n±) ∓ Cij ∂iV ∂jV (n+ − n−), (6.18)

and the coupling coefficients Cij are given by (6.17).

Remark 6.2 Note that (6.18) are two standard drift-diffusion equations with a simple cou-
pling term, proportional to the square of the force field, which acts as a relaxation mechanism
for the band-polarity of the electron population (indeed, it is immediate to see from (6.17)
that

∑
ij Cij ∂iV ∂jV ≥ 0).

6.3 The Case α ∼ ε, γ ∼ 1

We now assume that the coupling vector α is small, of order ε, while the band-gap parameter
γ is of order 1. Thus, we now make the substitution

α → εα, (6.19)

with α ∼ 1 and γ ∼ 1. Note that, in the limit ε → 0, we obtain

Eε
±(p) = p2

2
±

√
ε2(α · p)2 + γ 2 → p2

2
± γ

and the energy bands reduce to two identical parabolic bands separated by a constant gap 2γ ,
while the Hamiltonian becomes diagonal. Hence, we expect that such limit describes two
completely decoupled parabolic bands. Indeed, if we make the substitution (6.19) in (6.13)
and pass to the limit, we easily see that

v±
i → pi, D±

ij → δij , ck
ij → 0, Ck±

ij → 0

and, therefore, we obtain the limit equations as follows.
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Theorem 6.3 (Formal semiclassical approximation for α ∼ ε, γ ∼ 1) Let us denote by nε±
the solution of the quantum diffusive equations (4.14) with α substituted by εα. Then nε± =
n± + O(ε), where n± satisfy the following system:

∂tn± = ∂i(∂in± + ∂iV n±). (6.20)

As expected, this is a trivial system of two decoupled diffusive equations for parabolic
bands.

6.4 The Case α ∼ 1, γ ∼ ε

The last case we consider is when the coupling vector α is of order 1 and the band-gap
parameter γ is of order ε. We therefore make the substitution

γ → εγ, (6.21)

with α ∼ 1 and γ ∼ 1. Note that in this case the band-gap vanishes in the limit ε → 0 and
the two bands become singular, with the appearance of a “Dirac plane” of equation α ·p = 0
in the spectrum:

Eε
±(p) = p2

2
±

√
(α · p)2 + ε2γ 2 → E0(p) = p2

2
± |α · p|.

Thus, unlike the preceding cases, this time we cannot expect a regular limit equation as
ε → 0. Indeed, if we write explicitly the coupling coefficients C

k,±
ij (see (6.14)) in the new

scaling,

Ck±
ij = ε2γ 2αiαj

z±

∫
R3

e−p2/2∓
√

(α·p)2+ε2γ 2

((α · p)2 + ε2γ 2)k/2
dp,

we quickly see that

C2±
ij ∼ ε, C3±

ij ∼ 1, C4±
ij ∼ 1

ε
,

showing that the coupling term ∂iV ∂jV (C4+
ij n+ − C4−

ij n−) in the diffusive equations be-
comes singular. A more precise inspection, which starts again from the kinetic level and
the quantum diffusive equation (4.14) (written in the new scaling), confirms that the term
〈Θ�ν · Θ �g〉 is of order 1/ε and therefore singular. Hence, apparently, no semiclassical diffu-
sive equation for the two band populations can be found in the scaling α ∼ 1, γ ∼ ε.

However, an alternative approach clarifies the situation. For γ = 0, let us change the
definition of energy bands from the singular one, E0±(p) = p2/2 ± |α · p|, to the regular
one,

E∗
±(p) = p2

2
± α · p. (6.22)

Hence, the singular “upper” and “lower” bands are replaced by two regular bands that in-
tersect along the plane α · p = 0. Note that, for such bands, the projection vector is given
by �ν ∗ = �e2 = (0,1,0). Using the new definition, it can be readily checked that the diffusive
equations for

n∗
±(x, t) =

∫
R3

w∗
±(x,p, t) dp =

∫
R3

[w0 ± w2](x,p, t) dp (6.23)
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in the limit ε → 0 read as follows:

∂t n
∗
± = ∂i[∂j 〈v∗±

i v∗±
j φ∗

±〉 + ∂iV 〈φ∗
±〉],

where

φ∗
± = n∗

±e−E∗±/z∗
±, z∗

± =
∫

R3
e−E∗±(p) dp, v∗±

i = pi ± αi.

But, since

〈v∗±
i v∗±

j e−E∗±(p)/z∗
±〉 = δij ,

the above equations reduce to

∂tn
∗
± = ∂i(∂in

∗
± + ∂iV n∗

±). (6.24)

We can summarize the above discussion in the following Theorem.

Theorem 6.4 (Formal semiclassical approximation for α ∼ 1, γ ∼ ε) Let us denote by n
∗,ε
±

the solution of the quantum diffusive equations (4.9) with γ substituted by εγ and (·)±
substituted by (·)∗±, according to the new definition (6.23). Then

n∗,ε
± = n∗

± + O(ε),

where n∗± satisfy system (6.24).

Hence, the densities n∗± satisfy a decoupled system of drift-diffusion equations for par-
abolic bands. The reason becomes immediately clear by looking at the semiclassical dynam-
ics in phase-space. Replacing γ by εγ and letting ε → 0, the collisionless dynamics of the
regular-band Wigner functions

w∗
± = w0 ± �ν ∗ · �w = w0 ± w2

is readily derived from (3.15) and (6.2):

∂tw
∗
± + (p ± α) · ∇xw

∗
± + F · ∇pw∗

± = 0, (6.25)

where F = −∇xV is the force field. The two families of particles are therefore decoupled
and their diffusive regime is described by (6.24). On the other hand, the collisionless dy-
namics of the singular-band Wigner functions

w± = w0 ± �ν · �w = w0 ± sw2, s = s(p) = sgn(α · p),

is formally given by

∂tw± + (p ± sα) · ∇xw± + F · ∇pw± = ±2α · Fδ(α · p)w2,

which, using w2 = (w∗+ − w∗−)/2, can also be written

∂tw± + (p ± sα) · ∇xw± + F · ∇pw± = ±α · Fδ(α · p)(w∗
+ − w∗

−). (6.26)

The interpretation of these results is clear. The dynamics takes the simplest possible form
when described in terms of w∗± but, if one wants to force the description in terms of w±, a



Diffusive Limit of the Two-Band k·p Model for Semiconductors 303

coupling term concentrated on the Dirac plane appears which simply exchanges band labels
in such a way to make (6.26) equivalent to (6.25). Note that such delta-like coupling term is
the responsible for “squared delta” singularity in the squared transport operator T T which
causes the failure of the semiclassical diffusive limit for n±, as described above.

Remark 6.3 From the quantum-mechanical point of view, as already noticed in Sect. 2 (see
Remark 2.2), we can observe that, if γ = 0, then energy eigenstates are simultaneously
velocity eigenstates (and, of course, also eigenstates of the “pseudospin” σ2). In particular,
the states of energies E∗±(p) are also states, respectively, of velocity p ± α (corresponding
to pseudospin σ2 = ±1). The same conclusion is not true for the bands E±(p) since, in that
case, the pseudospin sign depends on the sign of α · p (and, therefore, the pseudospin sign
changes along each band when the Dirac plane is crossed). Thus, the decoupling of the bands
E∗± can be interpreted in terms of pseudospin conservation across at the plane α · p = 0.
A similar behavior has been predicted and observed at Dirac points in graphene [24, 38].

Acknowledgements This work was partially supported by the Italian Ministry of University (MIUR Na-
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and applications”, prot. n. 2006012132_004).

Appendix: Characterization of Local Equilibrium: Proofs

This Appendix is devoted to the proof of Theorem 5.1. First of all we note that the two
constraints 〈w±〉 = n± are equivalent to the two constraints

〈w0〉 = n0, 〈�ν · �w〉 = ns

because the moments (n+, n−) are clearly related to the moments (n0, ns) by n± = n0 ± ns .
Thus, we can reformulate Problem 5.1 and Theorem 5.1 in the following equivalent form,
where we recall that the quantum free-energy functional A(S) is

A(S) = Tr{S(logS − I ) + HS}.

Problem A.1 Let n0(x) and ns(x) be assigned functions. Find a density operator G such
that A(G) is minimal among all density operators S satisfying 〈w0〉 = n0 and 〈�ν · �w〉 = ns ,
with w = Op−1(S).

Theorem A.1 A necessary condition for G to be a solution of the constrained minimization
Problem A.1, is that two functions μ0(x) and μs(x) exist such that

{
G = e−Hμ,

〈g0〉 = n0, 〈�ν · �g〉 = ns , with g = Op−1(G),
(A.1)

where Hμ is given by the symbol (5.3).

Here and in the remainder of this section we have drop the unnecessary subscript ε from
the Weyl quantization notation, so that Op ≡ Opε .

By standard variational methods, the reformulated constrained minimization problem,
Problem A.1, is equivalent to a saddle-point problem for the Lagrangian

L(S,μ) := A(S) −
[

K(S,μ) −
∫

R3
(μ0n0 + μsns)(x) dx

]
, (A.2)



304 L. Barletti, G. Frosali

where

K(S,μ) =
∫

R3
(μ0〈w0〉 + μs〈�ν · �w〉)(x) dx, w = Op−1(S),

and μ = (μ0,μs), with μ0 = μ0(x), μs = μs(x) Lagrangian multipliers. Then, the con-
strained minimizer G must satisfy

A(G) = min
S

max
μ

L(S,μ) = max
μ

min
S

L(S,μ).

Lemma 1 Putting f (S) = S(logS − I ), the Gâteaux derivative of S 
→ Tr{f (S)} is given
by

δ Tr{f (S)}
δS

(δS) = Tr{f ′(S)δS} = Tr{log(S)δS}.

Proof See [28] for a general result and [13] for an elementary proof restricted to f ∈
C1(0,+∞), f ′ > 0, and Tr{f (S)} defined on density (i.e. trace-class, positive and self-
adjoint) operators. �

Lemma 2 A necessary condition for Gμ to be a solution of the unconstrained minimization
problem

L(Gμ,μ) = min
S

L(Gμ,μ) (A.3)

is

Gμ = exp[−H − Op(μ0σ0 + μs�ν · �σ)] = exp(−Hμ), (A.4)

where Hμ = H + Op(μ0σ0 + μs�ν · �σ), in accordance with the definition (5.3) of hμ.

Note, therefore, that the chemical potentials introduced in Sect. 5 can now be interpreted
as the Lagrangian multipliers associated to the constrained minimization problem.

Proof of Lemma 2 The Euler-Lagrange equation associated to the unconstrained minimiza-
tion problem (A.3) is

δL
δS

= δA
δS

− δK
δS

= 0. (A.5)

From Lemma 1 and the linearity of Tr{HS} we obtain

δA
δS

(δS) = Tr{log(S)δS + HδS}.

Recalling (3.5), the functional K can be written as follows:

K(S,μ) = Tr{Op(μ0σ0 + μs�ν · �σ)S}.

Thus, by linearity, we simply have

δK
δS

(δS) = Tr{Op(μ0σ0 + μs�ν · �σ)δS},
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and the Euler-Lagrange equation (A.5) becomes

Tr{log(S)δS + HδS − Op(μ0σ0 + μs�ν · �σ)δS} = 0, ∀δS. (A.6)

The arbitrariness of the (self-adjoint, trace-class) variation δS implies that, if S = Gμ is a
solution of (A.6), then Gμ must satisfy (A.4). �

Proof of Theorem A.1 From Lemma 2, the saddle-point problem (A.2) becomes the maxi-
mization problem

A(G) = max
μ

min
S

L(S,μ) = max
μ

L(Gμ,μ).

The Euler-Lagrange equation for such problem is

δL
δS

∣∣∣
(Gμ,μ)

δGμ

δμ
+ δL

δμ

∣∣∣
(Gμ,μ)

= 0,

which reduces to

δL
δμ

∣∣∣
(Gμ,μ)

= 0

because (A.5) holds, being Gμ a minimizer. Now, by the linearity of L with respect to μ,
we simply have

δL
δμ

∣∣∣
(Gμ,μ)

= −
∫

R3
[δμ0(〈g0〉 − n0) + δμs(〈�ν · �g〉 − ns)](x) dx = 0

with g = Op−1(Gμ). Since this equality must hold for any variation (δμ0, δμs), then we
obtain the constraints

〈g0〉 = n0, 〈�ν · �g〉 = ns , with g = Op−1(Gμ). (A.7)

In conclusion, the constrained minimizer G must satisfy G = Gμ, with Gμ given by (A.4)
and satisfying (A.7). These conditions are exactly those of Theorem A.1. �
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