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Abstract Toeplitz matrices have applications to different problems of statistical mechanics.
Recently it was used for calculation of entanglement entropy in spin chains. In the paper
we review these recent developments. We use the Fisher-Hartwig formula, as well as the
recent results concerning the asymptotics of the block Toeplitz determinants, to calculate
entanglement entropy of large block of spins in the ground state of XY spin chain.
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1 Introduction

We study von Neumann entropy and Rényi entropy of spin chains by means of the Fisher-
Hartwig formula. The concept of entanglement was introduced Schrödinger in 1935 in the
course of developing the famous ‘cat paradox’, see [53–56]. Recently it became important
as a resource for quantum control, which is central for quantum device building, including
quantum computers (it is a primary resource for information processing). Entropy of a sub-
system as a measure of entanglement was introduced in [13]. We study spin chains with
unique ground state. Von Neumann entropy (and Rényi entropy) of the whole ground state
is zero, but it is positive for a subsystem [block of spins]. In order to define entanglement
entropy one has to introduce reduced density matrix. The reduced density matrix was first
introduced by P.A.M. Dirac in 1930, see [24].

We calculate the entropy of a block of L continuous spins in the ground state of a Hamil-
tonian. We can think that the ground state is a bipartite system |GS〉 = |A&B〉, where we
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call the block by subsystem A and the rest of the ground state by subsystem B . The den-
sity matrix of the ground state is ρAB = |GS〉〈GS|, and the density matrix of the block of
L neighboring spins [subsystem A] is ρA = TrB(ρAB), where we trace out all degrees of
freedom outside the block. The von Neumann entropy of the block is

S(ρA) = −TrA (ρA lnρA) , (1)

which measures how much the block is entangled with the rest of the ground state. On the
other hand, the Rényi entropy S(ρA,α) is defined as

S(ρA,α) = 1

1 − α
ln TrA

(
ρα

A

)
, and α > 0, (2)

here α is a parameter. Rényi entropy [52] is important in information theory. The Rényi
entropy turns into von Neumann entropy at α → 1. Knowledge of the Rényi entropy at
arbitrary α permits evaluation of spectrum of the density matrix. Our main example is XY

spin chain.
The Toeplitz matrix TL[�] is said to be expressed in terms of the generating function

�(θ) (which is called symbol in mathematical literature):

TL[�] = (�i−j ), i, j = 1, . . . ,L − 1 (3)

where

�k = 1

2π

∫ 2π

0
�(θ)e−ikθ dθ (4)

is the k-th Fourier coefficient of generating function �(θ). The generating function �(θ)

can be type of N × N matrix and TL[�] is a N L × N L matrix for such case. One of the
central objects in the study of the Toeplitz matrix TL[�] is its determinant, which we will
denote as DL[�],

DL[�] := detTL[�]. (5)

Starting with Onsager’s celebrated solution of the two-dimensional Ising model in the
1940’s, Toeplitz determinants have played an increasingly central role in modern mathemat-
ical physics. We refer the reader to the book [50], and to survey [49] as for comprehensive
sources of the classical results and the history concerning the use of the Toeplitz determi-
nants in statistical mechanics.

Another important areas of applications of the Toeplitz determinants are random matrices
and combinatorics. We refer the readers to the works [5, 29, 60] for the basic results and for
the historic reviews.

Given a generating function �(θ), a principal question is the evaluation of the large
L behavior of the Toeplitz determinant DL[�]. The pioneering works on the asymptotic
analysis of Toelpitz determinants were done by Szegö (regular symbol) and by Fisher and
Hartwig (singular symbol). These results have been used in the study of spin correlation in
two-dimensional Ising model in the classical works of Wu and McCoy, see for example [50]
and since then by many other researchers and for a various generating functions.

The main focus of the majority of works in the area has been, so far, the study of spin
correlations. The key objects of the analysis have been the relevant correlation functions
of the local operators. In this paper, we discuss yet another, more recent application of the
asymptotic analysis of Toeplitz determinants in the theory of quantum spin models. Instead
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of the local operators, these applications are concerned with the important nonlocal objects
appearing in spin chains in connection to their suggested use in quantum informatics [43,
45]. Indeed, we shall survey some of the recent results concerning the quantum entangle-
ment. We will consider the two applications—the entanglement in the XX model and in the
XY model. The first one is related to a singular scalar generating function, while the second
one deals with a regular but (2 × 2) matrix generating function.

We begin with the brief review of the history and some of the most recent results con-
cerning the asymptotic analysis of Toeplitz determinants.

The plan of the paper is:
In the second section we discuss the asymptotical expression of the determinant of a

large Toeplitz matrix. The section is divided into subsections. Section 2.2 is devoted to
block Toeplitz determinants.

Third section is devoted to XY spin chain. In Sect. 3.1 we remind derivation of determi-
nant representation of entropy of a block of spins in the ground state. Isotropic case, i.e. the
XX model, is considered in Sect. 3.2. For anisotropic case we have to use the block Toeplitz
matrices.

In Sect. 4 we derive asymptotic expression of entropy of large block of spins in isotropic
case: the leading logarithmic term and sub-leading corrections.

In Sect. 5 we derive asymptotic expression of von Neuman entropy of large block of
spins in anisotropic case. In the case of XY spin chain the entropy has a limit. We calculate
the limit.

In Sect. 6 we calculate limiting expression for Renyi entropy of large block of spins in
XY spin chain.

In Sect. 7 we derive the spectrum of the limiting density matrix from Renyi entropy. We
prove that the spectrum is exact geometric sequence, see (117) and (124). We also calculate
the degeneracy of individual eigenvalues, see (126).

The content of Sects. 4–7 is based on the works [28, 31, 32, 37].
In Sect. 8 we formulate open problems.

2 Szegö and Fisher-Hartwig Asymptotics

Throughout the paper we will follow the usual, in the theory and applications of the Toeplitz
determinants, convention to denote the argument of the functions on the unit circle either as
θ or as z, z = eiθ , i.e. we will always assume the notational identity,

f (z) ≡ f (θ), z = eiθ , θ ∈ [0,2π).

We first consider the case of scalar generating function, i.e. N = 1. We shall also use for this
case the low case symbol φ instead of �.

2.1 Szegö and Fisher-Hartwig Asymptotics in the Case of Scalar Symbols

In this subsection we review the basic mathematical facts concerning the asymptotics of
Toeplitz determinants DL[φ] with scalar generation functions φ(z).

The large L asymptotic behavior of DL[φ] depends significantly on the analytical prop-
erties of the generating function φ(θ). In the case of the smooth enough functions φ(θ),
the behavior is exponential and its leading and the pre-exponential terms are given by the
following classical result of Szegö, known as the strong Szegö limit theorem.
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Theorem 1 Suppose that the generation function φ(θ) satisfies the conditions,

1. φ(θ) �= 0 , for all θ ∈ [0,2π).
2. index φ(θ) ≡ argφ(2π) − argφ(0) = 0.
3.

∑∞
k=−∞ |Vk| + ∑∞

k=−∞ |k||Vk|2 < ∞, where Vk are the Fourier coefficients of the func-
tion,

V (θ) := lnφ(θ), (6)

that is,

V (z) =
∞∑

k=−∞
Vkz

k, Vk = 1

2π

∫ 2π

0
V (θ)e−kiθ dθ. (7)

Then,

DL[φ] ∼ ESz[φ] exp
(
LV0

)
, L → ∞, (8)

where the pre-exponential factor, ESz[φ], is given by the equation,1

ESz[φ] = exp

( ∞∑

k=1

kVkV−k

)

. (9)

Conditions (1) and (2) on the symbol φ(θ) ensure that the function V (z) is a well defined
function on the unit circle. Condition (3) is a smoothness condition.2 It is certainly satisfied
by the differentiable functions and is not satisfied by the functions having root and jump
singularities. In the context of Toeplitz matrices, this type of singularities is usually called
the Fisher-Hartwig singularities. The general form of the symbol φ(z) which has m, m =
0,1,2, . . . fixed Fisher-Hartwig singularities is given by the equation,3

φ(z) = eV (z)z
∑m

j=0 βj

m∏

j=0

|z − zj |2αj gzj ,βj
(z)z

−βj

j , z = eiθ , θ ∈ [0,2π), (10)

where

zj = eiθj , j = 0, . . . ,m, 0 = θ0 < θ1 < · · · < θm < 2π, (11)

gzj ,βj
(z) ≡ gβj

(z) =
{

eiπβj , 0 ≤ arg z < θj ,

e−iπβj , θj ≤ arg z < 2π,
(12)

1It is this equation which is responsible for the term “strong Szegö theorem”. Szegö’s first result, i.e. Szegö
limit theorem produced the asymptotics of the determinant DL[φ] up to an undetermined multiplicative con-
stant.
2In [59], Szegö proved this theorem under a somewhat stronger smoothness assumption on the symbol;
namely, he assumed that the symbol is positive, and that the symbol and its derivative are Lipschitz functions.
It took a substantial period of time and the efforts of several very skillful analysts to reduce the smoothness
conditions to the conditions (1)–(2) above. It also worth noticing that these conditions are already precise,
i.e., if they do not satisfy, the asymptotics (8) may not hold.
3In writing the Fisher-Hartwig symbol in form (10) we follow the recent paper [20]. Equation (10) is slightly
different from the one accepted in most of the literature devoted to the Fisher-Hartwig generating functions.
The “translation” back to the standard form is easy. The main deviation from the standard form is that in (10)

the product z

∑m
j=0 βj is factored out which allow to better appreciate the non-triviality of the shifting some

of the parameters βj by integers.
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�αj > −1/2, βj ∈ C, j = 0, . . . ,m, (13)

and V (z) is a sufficiently smooth function on the unit circle so that the first factor of the right
hand side of (10) represents the “Szegö part” of the symbol. The condition on αj insures
integrability. As it has already been mentioned before, a single Fisher-Hartwig singularity
at zj consists of a root-type singularity

|z − zj |2αj =
∣∣
∣∣2 sin

θ − θj

2

∣∣
∣∣

2αj

(14)

and a jump gβj
(z). A point zj , j = 1, . . . ,m is included in (11) if and only if either αj �= 0

or βj �= 0 (or both); in contrast, we always fix z0 = 1 even if α0 = β0 = 0 (note that gβ0(z) =
e−iπβ0). Observe that for each j = 1, . . . ,m, zβj gβj

(z) is continuous at z = 1, and so for
each j each “beta” singularity produces a jump only at the point zj .

In 1968, M. Fisher and R. Hartwig [26] suggested a formula for the leading term of
the asymptotic behavior for the Toeplitz determinant generated by the symbol (10).4 The
principal insight of Fisher and Hartwig was the observation that the singularities of the
symbol yield the appearance of the power-like factors in the asymptotics. Indeed, in the case
of all βj = 0, the Fisher-Hartig formula reads as follows.

DL[φ] ∼ E0
FH[φ]L

∑m
j=0 α2

j exp
(
LV0

)
, L → ∞. (15)

The pre-exponential constant factor, E0
FH[φ], is more elaborated than its Szegö counterpart

ESz[φ] from the Szegö equation (8). The description of E0
FH[φ] involves a rather “exotic”

special function—the Barnes’ G-function G(x) which is defined by the equations (see e.g.
[62]),

G(1 + x) = (2π)x/2e−(x+1)x/2−γEx2/2
∞∏

n=1

{(1 + x/n)ne−x+x2/(2n)}, (16)

where γE is Euler constant and its numerical value is 0.5772156649 . . . . The G-function
can be thought of as a “discrete antiderivative” of the 
-function. The exact expression for
E0

FH[φ] is given by the equation (cf. (9)),

E0
FH[φ] = exp

( ∞∑

k=1

kVkV−k

)
m∏

j=0

eαj (V0−V (zj ))

×
∏

0≤j<k≤m

|zj − zk|−2αj αk

m∏

j=0

G2(1 + αj )

G(1 + 2αj )
.

(17)

The double product over j < k is set to 1 if m = 0, so that in the absence of singularities,
we are back to the strong Szegö limit theorem.

The Fisher-Hartwig formula (15) was proven in 1973 by H. Widom [63].
The presence of jumps, under the assumption |�βj − �βk| < 1, does not change the

structure much of the large L behavior of the Toeplitz determinant DL[φ]. Indeed, it is still

4Some important partial results concerning the asymptotics of the Toeplitz determinants with singular sym-
bols were also obtained by A. Lenard [44] and used by Fisher and Hartwig as a strong evidence in favor of
their formula.
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the combination of the exponential and the power terms with the exponential term being
determined, as before, by only the Szegö part of the symbol while the power factor is de-
termined by both the α and the β parameters of the Fisher-Hartwig part of the symbol. The
Fisher-Hartwig formula for the general case of symbol (10) reads (cf. (15)),

DL[φ] ∼ EFH[φ]L
∑m

j=0(α2
j
−β2

j
) exp

(
LV0

)
, L → ∞. (18)

The pre-exponential constant factor, EFH[φ], is now even more complex than in the case of
all βj = 0. In addition to the Barnes’ G-function, it now involves the canonical Wiener-Hopf
factorization of the Szegö part, eV (z), of the symbol φ(z),

eV (z) = b+(z)eV0b−(z), b+(z) = e
∑∞

k=1 Vkzk

, b−(z) = e
∑−1

k=−∞ Vkzk

. (19)

Note that b+(z) and b−(z) are analytic inside and outside of the unit circle |z| = 1, re-
spectively, and they satisfy the normalization conditions b+(0) = b−(∞) = 1. The exact
expression for EFH[φ] is given by the equation (cf. (9) and (17)),

EFH[φ] = exp

( ∞∑

k=1

kVkV−k

)
m∏

j=0

b+(zj )
−αj +βj b−(zj )

−αj −βj

×
∏

0≤j<k≤m

|zj − zk|2(βj βk−αj αk)

(
zk

zj eiπ

)αj βk−αkβj

×
m∏

j=0

G(1 + αj + βj )G(1 + αj − βj )

G(1 + 2αj )
(1 + o(1)) . (20)

The proof of the general Fisher-Hartwig formula (18) is due to E. Basor [8] for �βj = 0,
E. Basor [9] for αj = 0, |�βj | < 1/2, A. Böttcher and B. Silbermann [16] for |�αj | < 1/2,
|�βj | < 1/2, T. Ehrhardt [25] for |�βj − �βk| < 1. The precise statement concerning the
large L behavior of the Toeplitz determinant DL[φ] with the Fisher-Hartwig generating
function (10) is given by the following theorem.

Theorem 2 (T. Ehrhardt [25]) Let φ(z) be defined in (10), V (z) be C∞ on the unit circle,
�αj > −1/2, |�βj − �βk| < 1, and αj ± βj �= −1,−2, . . . for j, k = 0,1, . . . ,m. Then, as
L → ∞, the asymptotic behavior of the Toeplitz determinant DL[φ] is given by the formulae
(18)–(20).

A. Böttcher and B. Silbermann [16] in 1985 and E. Basor and C. Tracy [11] in 1991
constructed examples with �βj not lying in a single interval of length less than 1 and such
that the large L asymptotics is very different from the one given by (18). These examples
have showed that for the asymptotics (18) to take place, the condition

|�βj − �βk| < 1, ∀j, k = 0,1, . . . ,m, (21)

is precise. In the case of arbitrary complex βj , E. Basor and C. Tracy conjectured in [11]
a very elegant structure of the large L asymptotics of the determinant DL[φ]. They based
their arguments on the formal analysis of the behavior of the both sides of estimate (18)
with respect to the shifts of the β-parameters by integers. A detail description of the Basor-
Tracy conjecture can be found in the original paper [11] as well as in the recent work [20]
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were this conjecture was actually proven with the help of the new technique—the Riemann-
Hilbert method.

We refer the reader to monograph [17] and survey [25] for more on the mathematics of
the Toeplitz determinants with the Fisher-Hartwig symbols.

For the Riemann-Hilbert approach in the theory of the Toepitz determinants, we refer
the reader to the papers [20] and [19] where the method was introduced (following the
similar approach for the Hankel determinants [27] and the theory of integrable Fredholm
determinants [33, 34]) and to the works [41, 42, 47, 48], where the method was further
developed. The crucial role in the implementation of the Riemann-Hilbert approach to the
Toeplitz determinants is played by the Deift-Zhou nonlinear steepest descent method of
the asymptotic analysis of the oscillatory matrix Riemann-Hilbert problems [22] and by its
orthogonal polynomial version [21].

2.2 Block Toeplitz Determinants

A general asymptotic representation of the determinant of a block Toeplitz matrix, which
generalizes the classical strong Szegö theorem to the block matrix case, was obtained by
Widom in [64–66] (see also more recent work [15] and references therein).

Theorem 3 (H. Widom [66]) Let �(z) be a N ×N matrix function defined on the unit circle
and satisfying the conditions,

1. det�(θ) �= 0 , for all θ ∈ [0,2π).
2. index det�(θ) ≡ arg det�(2π) − arg det�(0) = 0.
3.

∑∞
k=−∞ |�k| +∑∞

k=−∞ |k||�k|2 < ∞,

where �k are the Fourier coefficients of �(θ), and |F | denote a matrix norm of the matrix F.
Then, the asymptotic behavior of the block Toeplitz determinant generated by the symbol
�(z) is given by the formulae,

DL[�] ∼ EW[�] exp

(
L

2π

∫ 2π

0
ln det�(θ)dθ

)
, L → ∞, (22)

EW[�] = det
(
T∞[�]T∞[�−1]), (23)

where T∞[�] is a semi-infinite Toeplitz matrix,

T∞[�] = (�i−j ), i, j = 1,2, . . . . (24)

From the application point of view, there is an important difference between this result
and the Szegö formula (8) for the case of scalar symbols. Indeed, the determinant in the
right hand side of (23) is the Fredholm determinant of an infinite matrix, and already for
2 × 2 matrix symbols the question of effective evaluation of Widom’s pre-factor EW[�] is a
highly nontrivial one, even for a relatively simple matrix functions �. Indeed, up until very
recently the only general class of matrix functions � for which such effective evaluation is
possible has been the class of functions with at least one-side truncated Fourier series. This
class was singled out by Widom himself in [64, 65], and this Widom’s result has been used
in the recent paper [10] of E. Basor and T. Ehrhardt devoted to the dimer model.

Another class of matrix generating functions which admits an explicit evaluation of
Widom’s constant are the algebraic symbols. This fact was demonstrated in the works [31,
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32, 36] for important cases of the block Toeplitz determinants appearing in the analysis of
the entanglement entropy in quantum spin chains. For this class of symbols, Widom’s pre-
factor admits an explicit evaluation in terms of Jacobi and Riemann theta functions. To give
a flavor of these results, we will now present a detail description of the asymptotics of the
block Toeplitz determinant related to the XY spin model obtained in [31, 32]. We shall also
use these formulae later in Sect. 4.

The Toeplitz determinant in question is generated by the 2 × 2 matrix symbol,

�(z) =
(

iλ φ(z)

−φ−1(z) iλ

)
(25)

and

φ(z) =
√

(z − z1)(z − z2)

(1 − z1z)(1 − z2z)
, (26)

where z1 �= z2 are complex nonzero numbers not lying on the unit circle. Following the
needs of the XY model, we shall assume that the both points are from the right half plane
though the result we present below can be easily generalized to the arbitrary position of the
points z1 and z2 outside of the unit circle. We will also distinguish three possible locations
of the points z1 and z2 on complex plane.

Case 1a: Both z1 and z2 are real, they lie outside of the unit circle, and we assume that
z1 > z2 > 1.

Case 1b: Both z1 and z2 are complex, z1 = z∗
2, and we assume that �z1 > 1 and �z1 > 0.

Case 2: Both z1 and z2 are real, they lie at the different sides of the unit circle, and we
assume that z1 > z−1

2 > 1.

The reason why the Cases 1a and 1b are considered as sub-cases of a single case is that in
the both these cases all the root singularities of the function φ(z) defined in (26) are inside
of the unite circle while all its zeros are outside. In Case 2, the zeros and the singularities
are evenly distributed between the inside and the outside of the unit circle. This difference
in the position of the roots and singularities of φ(z) has an impact to the derivations of the
asymptotics and, as we see below, is reflected in the form of the final answer. We shall also
see that in the context of the XY model, Case 1 and Case 2 correspond to the small (h < 2)
and large (h > 2) magnetic field, respectively.

The complex parameter λ plays role of a spectral parameter for the Toeplitz matrix gen-
erated by the symbol,

�0(z) ≡ −�(z)|λ=0 =
(

0 −φ(z)

φ−1(z) 0

)
. (27)

Hence the Toeplitz determinant DL[�] we are dealing with is in fact a Toeplitz characteris-
tic determinant,

DL[�] ≡ DL(λ) = det
(
iλI2L − TŁ[�0]

)
. (28)

Given the branch points zj of the symbol �(z), we introduce now the elliptic curve,

w2(z) = (z − z1)(z − z2)(z − z−1
2 )(z − z−1

1 ). (29)

Let us also re-label the branch points of this curve by the letters λA, λB , λC , and λD , ac-
cording to the following rule. Case 1a: λA = z−1

1 , λB = z−1
2 , λC = z2, λD = z1; Case 1b:
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λA = z−1
1 , λB = z−1

2 , λC = z1, λD = z2; Case 2: λA = z−1
1 , λB = z2, λC = z−1

2 , λD = z1. Ob-
serve that λA and λB are always inside the unite circle while λC and λD are always outside.
This new relabeling of the branch points allows to introduce the module parameter of elliptic
curve (29) in the universal way,

τ = 2

c

∫ λC

λB

dz

w(z)
, c = 2

∫ λB

λA

dz

w(z)
. (30)

Theorem 4 ([31, 32]) Let

θ3(s) =
∞∑

n=−∞
eπiτn2+2πisn, (31)

where τ is taken from (30), be the third Jacobi theta-function associated with the curve (29).
Then, the large L asymptotic behavior of the determinant DL(λ) is given by the equations,

DL(λ) ∼ θ3(β(λ) + στ
2 )θ3(β(λ) − στ

2 )

θ2
3 ( στ

2 )
(1 − λ2)L, L → ∞ (32)

where

β(λ) = 1

2πi
ln

λ + 1

λ − 1
, (33)

and σ = 1 in Case 1 and σ = 0 in Case 2.

Remark The theta-functions involved in the asymptotic formula (32) has zeros at the points

±λm, λm = tanh

(
m + 1 − σ

2

)
πτ0, m ≥ 0, (34)

where,

τ0 = −iτ = −i

∫ λC

λB

dz
w(z)

∫ λB

λA

dz
w(z)

> 0.

The asymptotics (32) is uniform outside of the arbitrary fixed neighborhoods of the points
λ = ±1 and λ = ±λm.

Observe that in the case under consideration, det�(z) ≡ 1−λ2. Therefore, the last factor
in (32) is exactly the exponential term of the general Widom-Szegö formula (22) written for
symbol (25). The rest of (32) gives then the corresponding Widom’s constant, i.e.

EW [�] = θ3(β(λ) + στ
2 )θ3(β(λ) − στ

2 )

θ2
3 ( στ

2 )
. (35)

Similar formulae for the case of the more general quantum spin chains were obtained
in [36]. The relevant generating function has the same matrix structure (25) with the scalar
function φ(z) defined by the equation,

φ(z) :=
√

p(z)

z2np(1/z)
(36)
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and p(z) is a polynomial of degree 2n. The analog of the formulae (32)–(35) in the case
n > 1 involves, instead of elliptic, the hyperelliptic integrals and, instead of the Jacobi theta-
function, the 2n − 1 dimensional Riemann theta-function.

The methods that lead to these results, involves the theory of integrable Fredholm oper-
ators [19, 30, 33, 34] and the use of the algebrageometric techniques of the soliton theory
(see e.g. [12]).

3 XY Model and Block Entropy

The Hamiltonian of XY model can be written as

H = −
∞∑

n=−∞
(1 + γ )σ x

n σ x
n+1 + (1 − γ )σ y

n σ
y

n+1 + hσ z
n . (37)

Here σx
n , σ

y
n σ z

n are Pauli matrices and h is a magnetic field; Without loss generality, the
anisotropy parameter γ can be taken as 0 ≤ γ < 1; Case with γ = 0 is usually called XX

model. The model was solved in [1–3, 6, 7, 46] and it owns a unique ground state |GS〉.
The Toeplitz determinants were used for evaluation of some correlation functions [7, 57,
58]; Integrable Fredholm operators were used for calculation of other correlations [23, 35,
38]. When the system is in the ground state, the entropy for this whole system is zero but the
entropy of a sub-system can be positive. We calculate the entropy of a sub-system (a block of
L neighboring spins) which can measure the entanglement between this sub-system and the
rest part [37]. We treat the whole chain as a binary system |GS〉 = |A&B〉, where we denote
the block of L neighboring spins by sub-system A and the rest part by sub-system B. The
density matrix of the ground state can be denoted by ρAB = |GS〉〈GS|. The density matrix
of sub-system A is ρA = TrB(ρAB). Von Neumann entropy S(ρA) of the sub-system A can
be represented as following:

S(ρA) = −TrA(ρA lnρA). (38)

This entropy also defines the dimension of the Hilbert space of states of the block of L spins.

3.1 Derivation

Following Ref. [46], let us introduce two Majorana operators

c2l−1 =
(

l−1∏

n=1

σ z
n

)

σx
l and c2l =

(
l−1∏

n=1

σ z
n

)

σ
y

l , (39)

on each site of the spin chain. Operators cn are hermitian and obey the anti-commutation
relations {cm, cn} = 2δmn. In terms of operators cn, Hamiltonian HXX can be rewritten as

HXX(h) = i

N∑

n=1

(c2nc2n+1 − c2n−1c2n+2 + hc2n−1c2n). (40)

Here different boundary effects can be ignored because we are only interested in cases with
N → ∞. This Hamiltonian can be subsequently diagonalized by linearly transforming the
operators cn. It has been obtained [6, 46] (also see [43, 45, 61]) that

〈GS|cm|GS〉 = 0, 〈GS|cmcn|GS〉 = δmn + i(BN)mn. (41)



1024 A.R. Its, V.E. Korepin

Here matrix BN can be written in a block form as

BN =

⎛

⎜
⎜⎜⎜
⎝

�0 �−1 . . . �1−N

�1 �0

...
...

. . .
...

�N−1 . . . . . . �0

⎞

⎟
⎟⎟⎟
⎠

and �l = 1

2π

∫ 2π

0
dθ e−ilθ�0(θ), (42)

where both �l and �0(θ) (for N → ∞) are 2 × 2 matrix,

�0(θ) =
(

0 φ(θ)

−φ−1(θ) 0

)
and φ(θ) = cos θ − iγ sin θ − h/2

| cos θ − iγ sin θ − h/2| . (43)

Other correlations such as 〈GS|cm · · · cn|GS〉 are obtainable by Wick theorem. The Hilbert
space of sub-system A can be spanned by

∏L
i=1{σ−

i }pi |0〉F , where σ±
i is Pauli matrix, pi

takes value 0 or 1, and vector |0〉F denotes the ferromagnetic state with all spins up. It’s
possible to construct a set of fermionic operators bi and b+

i by defining

dm =
2L∑

n=1

vmncn, m = 1, . . . ,2L; bl = (d2l + id2l+1)/2, l = 1, . . . ,L (44)

with vmn ≡ (V)mn. Here the matrix V is an orthogonal matrix. It’s easy to verify that dm is
hermitian operator and

b+
l = (d2l − id2l+1)/2, {bi, bj } = 0, {b+

i , b+
j } = 0, {b+

i , bj } = δi,j . (45)

In terms of fermionic operators bi and b+
i , the Hilbert space can also be spanned by∏L

i=1{b+
i }pi |0〉vac . Here pi takes value 0 or 1, 2L fermionic operators bi , b+

i and vacuum
state |0〉vac can be constructed by requiring

bl |0〉vac = 0, l = 1, . . . ,L. (46)

We shall choose a specific orthogonal matrix V later.
Let {ψI } be a set of orthogonal basis for Hilbert space of any physical system. Then the

most general form for density matrix of this physical system can be written as

ρ =
∑

I,J

c(I, J )|ψI 〉〈ψJ |. (47)

Here c(I, J ) are complex coefficients. We can introduce a set of operators P (I, J ) by
P (I, J ) ∝ |ψI 〉〈ψJ | and P̃ (I, J ) satisfying

P̃ (I, J )P (J,K) = δI,K |ψI 〉〈ψI |, P (I, J )P̃ (J,K) = δI,K |ψI 〉〈ψI |. (48)

There is no summation over a repeated index in these formula. We shall use an explicit
summation symbol through the whole paper. Then we can write the density matrix as

ρ =
∑

I,J

c̃(I, J )P (I, J ), c̃(I, J ) = Tr(ρP̃ (J, I )). (49)

Now let us consider the quantum spin chain defined in (37). For the sub-system A, the com-
plete set of operators P (I, J ) can be generated by

∏L
i=1 Oi . Here we take operator Oi to be
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any one of the four operators {b+
i , bi, b

+
i bi , bi b

+
i } (Remember that bi and b+

i are fermionic
operators defined in (44)). It’s easy to find that P̃ (J, I ) = (

∏L
i=1 Oi)

† if P (I, J ) =∏L
i=1 Oi .

Here † means hermitian conjugation. Therefore, the reduced density matrix for sub-system
A can be represented as

ρA =
∑

TrAB

(

ρAB

(
L∏

i=1

Oi

)†) L∏

i=1

Oi. (50)

Here the summation is over all possible different terms
∏L

i=1 Oi . For the whole system to be
in pure state |GS〉, the density matrix ρAB is represented by |GS〉〈GS|. Then we have the
expression for ρA as following

ρA =
∑

〈GS|
(

L∏

i=1

Oi

)†

|GS〉
L∏

i=1

Oi. (51)

This is the expression of density matrix with the coefficients related to multi-point corre-
lation functions. These correlation functions are well studied in the physics literature [14].
Now let us choose matrix V in (44) so that the set of fermionic basis {b+

i } and {bi} satisfy
an equation

〈GS|bibj |GS〉 = 0, 〈GS|b+
i bj |GS〉 = δi,j 〈GS|b+

i bi |GS〉. (52)

Then the reduced density matrix ρA represented as sum of products in (51) can be repre-
sented as a product of sums

ρA =
L∏

i=1

(〈GS|b+
i bi |GS〉b+

i bi + 〈GS|bib
+
i |GS〉bib

+
i

)
. (53)

Here we used the equations 〈GS|bi |GS〉 = 0 = 〈GS|b+
i |GS〉 and Wick theorem. This fermi-

onic basis was suggested in Refs. [43, 45, 61].
Now let us find a matrix V in (44), which will block-diagonalize the correlation func-

tions of Majorana operators cn. From (44) and (42), we have the following expression for
correlation function of dn operators:

〈GS|dmdn|GS〉 =
2L∑

i=1

2L∑

j=1

vmi〈GS|cicj |GS〉vjn,

〈GS|cmcn|GS〉 = δmn + i(BL)mn, (54)

〈GS|dmdn|GS〉 = δmn + i(B̃L)mn.

The last equation is the definition of a matrix B̃L. Matrix BL is the sub-matrix of BN defined
in (42) with m,n = 1,2, . . . ,L. We also require B̃L to be the form [43, 45, 61]

B̃L = V BLV T = ⊕L
m=1νm

(
0 1

−1 0

)
= � ⊗

(
0 1

−1 0

)
. (55)

Here the matrix � is a diagonal matrix with elements νm (all νm are real numbers). There-
fore, choosing matrix V satisfying (55) in (44), we obtain 2L operators {bl} and {b+

l } with
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following expectation values

〈GS|bm|GS〉 = 0, 〈GS|bmbn|GS〉 = 0,

〈GS|b+
mbn|GS〉 = δmn

1 + νm

2
.

(56)

Using the simple expression for reduced density matrix ρA in (53), we obtain

ρA =
L∏

i=1

(
1 + νi

2
b+

i bi + 1 − νi

2
bib

+
i

)
. (57)

This form immediately gives us all the eigenvalues λx1x2···xL of reduced density matrix ρA,

λx1x2···xL =
L∏

i=1

1 + (−1)xi νi

2
, xi = 0,1, ∀i. (58)

Note that in total we have 2L eigenvalues. Hence, the entropy of ρA from (38) becomes

S(ρA) =
L∑

m=1

e(1, νm) (59)

with

e(x, ν) = −x + ν

2
ln

(
x + ν

2

)
− x − ν

2
ln

(
x − ν

2

)
. (60)

3.2 XX Model

Notice further that for XX model, i.e. γ = 0 case, matrix BL can have a direct product form

BL = GL ⊗
(

0 1
−1 0

)
with GL =

⎛

⎜
⎜⎜
⎜
⎝

φ0 φ−1 . . . φ1−L

φ1 φ0

...
...

. . .
...

φL−1 . . . . . . φ0

⎞

⎟
⎟⎟
⎟
⎠

, (61)

where φl is defined as

φl = 1

2π

∫ 2π

0
dθ e−ilθφ(θ), φ(θ) =

{
1, −kF < θ < kF ,

−1, kF < θ < (2π − kF )
(62)

and kF = arccos(|h|/2). From (55) and (61), we conclude that all νm are just the eigenvalues
of real symmetric matrix GL.

However, to obtain all eigenvalues νm directly from matrix GL is a non-trivial task. Let
us introduce

DL(λ) = det(G̃L(λ) ≡ λIL − GL). (63)

Here G̃L is a Toeplitz matrix and IL is the identity matrix of dimension L. Obviously we
also have

DL(λ) =
L∏

m=1

(λ − νm). (64)
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Fig. 1 Contours 
′ (smaller
one) and 
 (larger one). Bold
lines (−∞,−1 − ε) and
(1 + ε,∞) are the cuts of
integrand e(1 + ε,λ). Zeros of
DL(λ) (see (64)) are located on
bold line (−1,1). The arrow is
the direction of the route of
integral we take and r and R are
the radius of circles

From the Cauchy residue theorem and analytical property of e(x, ν), then S(ρA) can be
rewritten as

S(ρA) = lim
ε→0+

1

2π i

∮


′
dλe(1 + ε,λ)

d

dλ
lnDL(λ). (65)

Here the contour 
′ in Fig. 1 encircles all zeros of DL(λ) and function e(1 + ε,λ) is analytic
within the contour. Just like the Toeplitz matrix GL is generated by function φ(θ) in (61)
and (62), the Toeplitz matrix G̃L(λ) is generated by function φ̃(θ) defined by

φ̃(θ) =
{

λ − 1, −kF < θ < kF ,

λ + 1, kF < θ < (2π − kF ).
(66)

Notice that φ̃(θ) is a piecewise constant function of θ on the unit circle, with jumps at
θ = ±kF . Hence, if one can obtain the determinant of this Toeplitz matrix analytically, one
will be able to get a closed analytical result for S(ρA) which is our new result. Now, the
calculation of S(ρA) reduces to the calculation of the determinant of the Toeplitz matrix
G̃L(λ).

3.3 XY Model

Similarly let us introduce:

B̃L(λ) = iλIL − BL, DL(λ) = det B̃L(λ). (67)

Here IL is the identity matrix of dimension 2L. By definition, we have

DL(λ) = (−1)L

L∏

m=1

(λ2 − ν2
m). (68)

Using again the Cauchy residue theorem we obtain that, similar to (65),

S(ρA) = lim
ε→0+

1

4π i

∮


′
dλe(1 + ε,λ)

d

dλ
lnDL(λ). (69)

Here the contour 
′ in Fig. 1 encircles all zeros of DL(λ).
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Fig. 2 Polygonal line � (direction as labeled) separates the complex z plane into the two parts: the part
�+ which lies to the left of �, and the part �− which lies to the right of �. Curve � is the unit circle in
anti-clockwise direction. Cuts J1, J2 for functions φ(z),w(z) are labeled by bold on line �. Definition of the
end points of the cuts λ... depends on the case: Case 1a: λA = λ1 and λB = λ−1

2 , λC = λ2 and λD = λ−1
1 .

Case 1b: λA = λ1 and λB = λ−1
2 , λC = λ−1

1 and λD = λ2. Case 2: λA = λ1 and λB = λ2, λC = λ−1
2 and

λD = λ−1
1

We also realized that B̃L(λ) is the block Toeplitz matrix with the generator �(z), i.e.

B̃L(λ) =

⎛

⎜
⎜⎜
⎜
⎝

�̃0 �̃−1 . . . �̃1−L

�̃1 �̃0

...
...

. . .
...

�̃L−1 . . . . . . �̃0

⎞

⎟
⎟⎟
⎟
⎠

(70)

with

�̃l = 1

2π i

∮

�

dz z−l−1�(z), �(z) =
(

iλ φ(z)

−φ−1(z) iλ

)
(71)

and

φ(z) =
(

λ∗
1

λ1

(1 − λ1 z)(1 − λ2 z−1)

(1 − λ∗
1 z−1)(1 − λ∗

2 z)

)1/2

. (72)

We fix the branch by requiring that φ(∞) > 0. We use ∗ to denote complex conjugation
and � the unit circle shown in Fig. 2. λ1 and λ2 are defined differently for different values
of γ and h. There are following three different cases:

In Case 1a (2
√

1 − γ 2 < h < 2) and Case 2 (h > 2), both λ1 and λ2 are real

λ1 = h −√
h2 − 4(1 − γ 2)

2(1 + γ )
, λ2 = 1 + γ

1 − γ
λ1. (73)

In Case 1b (h2 < 4(1 − γ 2)), both λ1 and λ2 are complex

λ1 = h − i
√

4(1 − γ 2) − h2

2(1 + γ )
, λ2 = 1/λ∗

1. (74)
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Note that in the Case 1 the poles of function φ(z) (see (72)) coincide with the points λA and
λB , while in the Case 2 they coincide with the points λA and λC .

4 Block Entropy of XX Model and the Fisher-Hartwig Formula

From (65), one needs the calculation of the Toeplitz determinant DL(λ) with a singular
generating function

φ̃(θ) =
{

λ − 1, −kF < θ < kF ,

λ + 1, kF < θ < (2π − kF ).
(75)

It is easy to check that this function admits the canonical Fisher-Hartwig factorization given
by (10) with

m = 2, αj = 0 ∀j,

β0 = 0, β2 = −β1 ≡ β(λ) = 1

2πi
ln

λ + 1

λ − 1
,

(76)

and

eV (z) ≡ eV0 = (λ + 1)

(
λ + 1

λ − 1

)−kF /π

. (77)

The branch of the logarithm is fixed by the condition,

−π ≤ arg

(
λ + 1

λ − 1

)
< π., (78)

For λ /∈ [−1,1], the left inequality is also strict, and hence |�(β1(λ))| < 1
2 and |�(β2(λ))| <

1
2 . Therefore, Theorem 2 is applicable (indeed, even its earlier weaker version proven by
E. Basor [9] would suffice) and we see that the determinant DL(λ) of λIL − GL can be
asymptotically represented as

DL(λ) =
(

2 − 2 cos(2kF )
)−β2(λ) {

G
(

1 + β(λ)
)
G
(

1 − β(λ)
)}2

×
{
(λ + 1)

(
(λ + 1)/(λ − 1)

)−kF /π
}L

L−2β2(λ). (79)

Here G is, as before, the Barnes G-function and

G(1 + β(λ))G(1 − β(λ)) = e−(1+γE)β2(λ)

∞∏

n=1

{(
1 − β2(λ)

n2

)n

eβ2(λ)/n2
}
. (80)

Let us substitute the asymptotic form (79) into (65) and after some simplification [37],
we have that

S(ρA) = 1

3
ln L + 1

6
ln

(
1 −

(
h

2

)2)
+ ln 2

3
+ ϒ1, L → ∞ (81)

with

ϒ1 = −
∫ ∞

0
dt

{
e−t

3t
+ 1

t sinh2(t/2)
− cosh(t/2)

2 sinh3(t/2)

}
(82)
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for XX model. The leading term of asymptotic of the entropy 1
3 ln L in (81) was first obtained

based on numerical calculation and a simple conformal argument in Refs. [43, 45, 61] in the
context of entanglement. We also want to mention that a complete conformal derivation for
this entropy was found in Ref. [40]. One can numerically evaluate ϒ1 to very high accuracy
to be 0.4950179 . . . . For zero magnetic field (h = 0) case, the constant term ϒ1 + ln 2/3
for S(ρA) is close to but different from (π/3) ln 2, which can be found by taking numerical
accuracy to be more than five digits.

5 Block Entropy of XY Model and the Block Toeplitz Determinants

For the block entropy of XY model, by virtue of (69), our objective becomes the asymptotic
calculation of the determinant of the block Toeplitz matrix DL(λ) or, rather, its λ -derivative
d
dλ

lnDL(λ).
Let us denote,

z1 := λ−1
1 , and z2 := λ2. (83)

It is easy to check than that the generating function introduced in (71)–(72) coincides with
the one introduced in (25)–(26) together with the case-separations and the λA − λD labeling
of the branch points. Hence one can use Theorem 4 and substitute the asymptotic form (32)
into (69). Deforming the original contour of integration to the contour 
 as indicated in
Fig. 1 we arrive at the following expression for the entropy [31, 32]:

S(ρA) = 1

2

∫ ∞

1
ln

(
θ3(β(λ) + στ

2 )θ3(β(λ) − στ
2 )

θ2
3 ( στ

2 )

)
dλ, (84)

which can also be written in the form,

S(ρA) = π

2

∫ ∞

0
ln

(
θ3(ix + στ

2 )θ3(ix − στ
2 )

θ2
3 ( στ

2 )

)
dx

sinh2(πx)
. (85)

This is a limiting expression as L → ∞. In [32] it is also proven that the corrections in (84)
are of order of O(λ−L

C /
√

L).

The entropy has singularities at phase transitions. When τ → 0 we can use Landen trans-
form (see [62]) to get the following estimate of the theta-function for small τ and pure
imaginary s:

ln
θ3(s ± στ

2 )

θ3(
στ
2 )

= π

iτ
s2 ∓ πiσs + O

(
e−iπ/τ

τ 2
s2

)
, as τ → 0.

Now the leading term in the expression for the entropy (84) can be replaced by

S(ρA) = iπ

6τ
+ O

(
e−iπ/τ

τ 2

)
for τ → 0. (86)

Let us consider two physical situations corresponding to small τ depending on the case
defined on the page 2:

1. Critical magnetic field: γ �= 0 and h → 2.
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This is included in our Case 1a and Case 2, when h > 2
√

1 − γ 2. As h → 2 the end
points of the cuts λB → λC , so τ given by (30) simplifies and we obtain from (86) that
the entropy is:

S(ρA) = −1

6
ln |2 − h| + 1

3
ln 4γ, for h → 2 and γ �= 0 (87)

correction is O(|2 − h| ln2 |2 − h|). This limit agrees with predictions of conformal
approach [18, 40]. The first term in the right hand side of (87) can be represented as
(1/6) ln ξ , this confirms a conjecture of [18]. The correlation length ξ was evaluated in
[6].

2. An approach to the XX model: γ → 0 and h < 2: It is included in Case 1b, when 0 <

h < 2
√

1 − γ 2. Now λB → λC and λA → λD , we can calculate τ explicitly. The entropy
becomes:

S0(ρA) = −1

3
lnγ + 1

6
ln(4 − h2) + 1

3
ln 2, for γ → 0 and h < 2 (88)

correction is O(γ ln2 γ ). This agrees with [37] (see also (81)).

As it has already been indicated, the theta-functions involved in the asymptotic for-
mula (32) has zeros at the points ±λm which are defined in (34). Theorem 4 shows, in
particular, that in the large L limit, the points ±λm are double zeros of the DL(λ). More
precisely, we see that in the large L limit the eigenvalues ν2m and ν2m+1 from (59) merge
to λm:

ν2m, ν2m+1 → λm, (89)

which in turn implies (cf. (59)) the following equivalent description of the limiting entropy
S(ρA) [31].

The limiting entropy, S(ρA), of the subsystem can be identified with the infinite conver-
gent series,

S(ρA) =
∞∑

m=−∞
e(1, λm) =

∞∑

m=−∞
(1 + λm) ln

2

1 + λm

. (90)

Indeed, (90) follows from the substitution of (32) into (69) and integrating over the original
contour 
′ of Fig. 1.

It is also worth mentioning that relation (89) also indicates the degeneracy of the spec-
trum of the matrix BL and an appearance of an extra symmetry in the large L limit.

Remark These numbers λm satisfy an estimate:

|λm+1 − λm| ≤ 4πτ0 with τ0 = −iτ.

This means that (λm+1 − λm) → 0 as τ → 0 for every m. This is useful for understanding of
large L limit of the XX case corresponding to γ → 0, as considered in [37]. The estimate
explains why in the XX case the singularities of the logarithmic derivative of the Toeplitz
determinant d lnDL(λ)/dλ form a cut along the interval [−1,1], while in the XY case it has
a discrete set of poles at points ±λm of (34).

The higher genus analog of formula (84) for the class of quantum spin chains introduced
by J. Keating and F. Mezzadri in [39] has been obtained in [36].
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Remark It was shown by Peschel in [51] (who also suggested an alternative heuristic deriva-
tion of (90) based on the work [18]), the series (90) can be summed up to an elementary
function of the complete elliptic integrals corresponding to the modular parameter τ—see
(109) and (110) below. It is an open problem whether an analogous representation of the
integral equation (84) exists for higher genus. The key issue here is the extreme complexity
of the identification of the zero divisor of the theta-functions in the dimension grater than 1.

6 Renyi Entropy and the Spectrum of Reduced Density Matrix of XY Model

The Renyi entropy of Sα(ρA) of the block of spins is defined by the expression

Sα(ρA) = 1

1 − α
ln Tr(ρα

A), α �= 1 and α > 0. (91)

Here the power α is a parameter. The Renyi entropy is intimately related to the spectrum of
the reduced density matrix ρA. Indeed, let λn, (0 < λn < 1) and an denote the eigenvalues
and their multiplicities of the operator ρA. The spectrum is completely determined by its
momentum function, i.e. by the ζ -function of ρA,

ζρA
(α) =

∞∑

n=0

anλ
α
n. (92)

The obvious equation takes place,

ζρA
(α) = e(1−α)SR(ρA,α). (93)

The key point is that we can evaluate Sα(ρA), and hence ζρA
(α), explicitly.

As it is shown in [37], the Renyi entropy Sα(ρA) of a block of L neighboring spins,
before the large L limit is taken, can be represented by the finite sum,

SR(ρA,α) = 1

1 − α

L∑

k=1

ln

[(
1 + νk

2

)α

+
(

1 − νk

2

)α]
, (94)

where the numbers

±iνk, k = 1, . . . ,L

are the eigenvalues of the same block Toeplitz matrix (68) as we worked with in Sect. 3.4.
In virtue of (89), the Renyi entropy in the large L limit can be identified with the convergent
series,

SR(ρA,α) = 1

1 − α

∞∑

m=−∞
ln

[(
1 + λm

2

)α

+
(

1 − λm

2

)α]
, (95)

with

λm = tanh

(
m + 1 − σ

2

)
πτ0. (96)
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The summation of the series can be done following the same approach as in [51] in the case
of the von Neuman entropy. The result is (for details see [28]) the following,

SR(ρA,α) = α

1 − α

(
πτ0

12
+ 1

6
ln

kk′

4

)
+ 1

1 − α
ln

∞∏

n=0

(
1 + q2n+1

α

)2
, (97)

qα = e−απτ0 , (98)

for the case h > 2, and

SR(ρA,α) = α

1 − α

(
−πτ0

6
+ 1

6
ln

k′

4k2

)
+ 1

1 − α
ln

∞∏

n=1

(
1 + q2n

α

)2

+ 1

1 − α
ln 2, (99)

qα = e−απτ0 ,

for the case h < 2. In these equations, τ0 ≡ −iτ is the module parameter defined in (30),
and k ≡ k(q1), k′ ≡ k′(q1) are the standard elliptic modular functions, see e.g. [62]. The
quantities k and k′ are simply related to the basic physical parameters γ and h. Indeed, one
has that

k ≡

⎧
⎪⎪⎨

⎪⎪⎩

√
(h/2)2 + γ 2 − 1/γ, Case 1a: 4(1 − γ 2) < h2 < 4;

√
(1 − h2/4 − γ 2)/(1 − h2/4), Case 1b: h2 < 4(1 − γ 2);

γ /
√

(h/2)2 + γ 2 − 1, Case 2: h > 2.

(100)

k′ =
√

1 − k2.

By standard techniques of the theory of elliptic functions, (30) can be transformed into the
following representation for the module τ0 as a function of k.

τ0 ≡ I (k′)
I (k)

, k′ =
√

1 − k2, (101)

I (k) is the complete elliptic integral of the first kind,

I (k) =
∫ 1

0

dx
√

(1 − x2)(1 − k2x2)
. (102)

The q-products in (97) and (99) can be expressed in terms of the elliptic lambda function
or λ-modular function. The λ-function plays a central role in the theory of modular functions
and modular forms, and it is defined by the equation (see e.g. [62]),

λ(τ) = θ4
2 (0|τ)

θ4
3 (0|τ)

≡ k2(eiπτ ), �τ > 0, (103)
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where θj (s|τ), j = 3,4 are Jacobi theta-functions; the function θ3(s|τ) has already been
defined in (31), while the function θ4(s|τ) is defined by the equation,

θ(s|τ) =
∞∑

n=−∞
(−1)neπiτn2+2πisn. (104)

The λ-function is analytic function of τ , �τ > 0, and it satisfies the following symmetry
relations with respect to the actions of the generators of the modular group,

λ(τ + 1) = λ(τ)

λ(τ ) − 1
, (105)

λ

(
− 1

τ

)
= 1 − λ(τ). (106)

In terms of the λ-modular function, the formulae for Renyi read as follows [28].

SR(ρA,α) (107)

= 1

6

α

1 − α
ln
(
kk′)− 1

12

1

1 − α
ln
(
λ(αiτ0)(1 − λ(αiτ0))

)

+ 1

3
ln 2,

for h > 2 and

SR(ρA,α) = 1

6

α

1 − α
ln

(
k′

k2

)
+ 1

12

1

1 − α
ln

λ2(αiτ0)

1 − λ(αiτ0)

+ 1

3
ln 2, (108)

for h < 2.
Equations (107) and (108) allow to apply to the study of the Renyi entropy the apparatus

of the theory of modular functions.

Remark Using (107) and (108) one can evaluate the asymptotics of the Renyi entropy as
α → 1. This would lead to the following formulae for the Neumann entropy,

S(ρA) = 1

6

[
ln

(
k2

16k′

)
+
(

1 − k2

2

)
4I (k)I (k′)

π

]
+ ln 2, (109)

in Case 1, and

S(ρA) = 1

12

[
ln

(
16

(k2k′2)

)
+ (k2 − k′2)

4I (k)I (k′)
π

]
, (110)

in Case 2. For the Cases 1a and 2 these formulae were first obtained by Peschel in [51] by a
direct summation of series (90).
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7 Spectrum of the Limiting Density Matrix

Following our calculations with L.A. Takhtajan and F. Franchini we will show now how to
extract from (97) and (99) the information about the spectrum of the density matrix ρA.

Consider first the case h > 2. Combining (97) and (93), we arrive at the following repre-
sentation for the ζ -function ζρA

(α),

ζρA
(α) = eα(

πτ0
12 + 1

6 ln kk′
4 )

∞∏

n=0

(
1 + q2n+1

α

)2
. (111)

At the same time, using the classical arguments of the theory of partitions (see e.g. [4],
Chap. 11, (11.1.4)) we have that

∞∏

n=0

(
1 + q2n+1

)=
∞∑

n=1

p
(1)

O (n)qn, (112)

where p
(1)

O (0) = 1 and p
(1)

O (n), for n > 1, denote the number of partitions of n into distinct
positive odd integers, i.e.

#
{
(m1, . . . ,mk) : mj = 2rj + 1, m1 > m2 > · · · > mk, n = m1 + m2 + · · · + mk

}
.

Hence (111) becomes,

ζρA
(α) = eα(

πτ0
12 + 1

6 ln kk′
4 )

∞∑

n=0

anq
n
α, (113)

where,

a0 = 1, an =
n∑

l=0

p
(1)

O (l)p
(1)

O (n − l). (114)

Finally, observing that

qn
α = (

e−πτ0n
)α

, (115)

we conclude that

ζρA
(α) =

∞∑

n=0

anλ
α
n, λn = e−πτ0n+ πτ0

12 + 1
6 ln kk′

4 . (116)

Comparing the last equation with (92) we arrive at the following theorem.

Theorem 5 Let the magnetic field h > 2. Then, the eigenvalues of the reduced density matrix
ρA are given by the equation,

λn = e−πτ0n+ πτ0
12 + 1

6 ln kk′
4 , n = 0,1,2, . . . , (117)

and the corresponding multiplicities an are determined by the relation (114).

The case h < 2 is treated in a very similar way. Instead of (111) we have now the formula,

ζρA
(α) = 2e

α(− πτ0
6 + 1

6 ln k′
4k2 )

∞∏

n=0

(
1 + q2n

α

)2
, (118)
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where qα as in (98). The analog of the Taylor expansion (112) is the equation,

∞∏

n=0

(1 + q2n) =
∞∑

n=1

p
(1)

N (n)q2n, (119)

where p
(1)

N (0) = 1 and p
(1)

N (n), for n > 1, denote the number of partitions of n into distinct
positive integers, i.e.

# {(m1, . . . ,mk) : m1 > m2 > · · · > mk ≥ 0, n = m1 + m2 + · · · + mk} .

Hence (118) becomes,

ζρA
(α) = 2e

α(− πτ0
6 + 1

6 ln k′
4k2 )

∞∑

n=0

bnq
2n
α , (120)

where,

b0 = 1, bn =
n∑

l=0

p
(1)

N (l)p
(1)

N (n − l). (121)

Finally, observing that

q2n
α = (

e−2πτ0n
)α

, (122)

we conclude that

ζρA
(α) = 2

∞∑

n=0

bnλ
α
n, λn = e

−2πτ0n− πτ0
6 + 1

6 ln k′
4k2 . (123)

Comparing the last equation again with (92) we arrive at the analog of Theorem 5 for the
case h < 2.

Theorem 6 Let the magnetic field h < 2. Then, the eigenvalues of the reduced density matrix
ρA are given by the equation,

λn = e
−2πτ0n− πτ0

6 + 1
6 ln k′

4k2 , n = 0,1,2, . . . , (124)

and the corresponding multiplicities equal 2bn where the integers bn are determined by the
relation (121).

Let

f (x) :=
∞∑

n=0

anx
n, (125)

be the generating function for the coefficients an. Then, (107) and (93) in conjunction with
the symmetry property (106) allow to analyze the asymptotic behavior of the function f (x)

generating function as x → 1. In its turn, this fact yields the evaluation of the large n as-
ymptotics of the multiplicities an.
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Theorem 7 Let an be the multiplicities of the eigenvalues of the reduced density matrix for
h > 2. Then their large n behavior is given by the relation,

an ∼ 2−3/23−1/4n−3/4eπ
√

n
3 , n → ∞. (126)

We will publish detailed derivation together with L.A. Takhtajan and F. Franchini.

8 Summary and Open Problems

We want to emphasize that the method described here also works for evaluation of correla-
tion functions. For example space, time and temperature dependent correlation function of
quantum spins was evaluated in [35]. The book [14] explains how to apply this method for
calculation of correlation functions in Bose gas with delta interaction.

On the other hand there are still open problems. For example let us consider the XXZ

model. The Hamiltonian can be written in terms of Pauli matrices σn:

HXXZ = −
∞∑

n=−∞
σx

n σ x
n+1 + σy

n σ
y

n+1 + �σz
nσ z

n+1. (127)

At � < −1 the model has a gap and the ground state is anti-ferromagnetic. Challenging
problem is to calculate the von Neumann entropy and Rényi entropy of large block of spins
on the infinite lattice. It will be interesting to find the dependence of limiting entropy on �.
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to an analytic weight: canonical representation and strong asymptotics. Constr. Approx. 24, 319–363
(2006). arXiv:math/0502300v1

49. McCoy, B.M.: The connection between statistical mechanics and quantum field theory. In: Bazhanov,
V.V., Burden, C.J. (eds.) Statistical Mechanics and Field Theory, pp. 26–128. World Scientific, Singapore
(1995). arXiv:hep-th/9403084v2

50. McCoy, B.M., Wu, T.T.: The Two Dimensional Ising Model. Harvard University Press, Cambridge
(1973)

51. Peschel, I.: On the entanglement entropy for a XY spin chain. J. Stat. Mech. P12005 (2004).
arXiv:cond-mat/0410416v1

52. Rényi, A.: Probability Theory. North-Holland, Amsterdam (1970)
53. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812

(1935)
54. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 823–828

(1935)
55. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 844–849

(1935)
56. Schrödinger, E.: The present situation in quantum mechanics. Proc. Am. Philos. Soc. 124, 323–338

(1935). http://www.tu-harburg.de/rzt/rzt/it/QM/cat.html (translated by John D. Trimmer)
57. Shiroishi, M., Takahahsi, M., Nishiyama, Y.: Emptiness formation probability for the one-dimensional

isotropic XY model. J. Phys. Soc. Jpn. 70, 3535–3543 (2001). arXiv:cond-mat/0106062v2
58. Abanov, A.G., Franchini, F.: Emptiness formation probability for the anisotropic XY spin chain in a

magnetic field. Phys. Lett. A 316, 342–349 (2003). arXiv:cond-mat/0307001v1
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