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Abstract In many experimental situations, a physical system undergoes stochastic evolu-
tion which may be described via random maps between two compact spaces. In the current
work, we study the applicability of large deviations theory to time-averaged quantities which
describe such stochastic maps, in particular time-averaged currents and density functionals.
We derive the large deviations principle for these quantities, as well as for global topologi-
cal currents, and formulate variational, thermodynamic relations to establish large deviation
properties of the topological currents. We illustrate the theory with a nontrivial example of
a Heisenberg spin-chain with a topological driving of the Wess-Zumino type. The Cramér
functional of the topological current is found explicitly in the instanton gas regime for the
spin-chain model in the weak-noise limit. In the context of the Morse theory, we discuss
a general reduction of continuous stochastic models with weak noise to effective Markov
chains describing transitions between stable fixed points.
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1 Introduction

Dynamics of complex systems, in the presence of disorder and under external forces, is often
modeled by non-equilibrium stochastic processes. Despite the considerable interest in such
models, exact results, or even effective approximation methods are not readily available for
generic situations. Instead, specific results were derived under restricting assumptions; for
instance, the case of steady-states was investigated in many publications (a complete list
would be prohibitively long), drawing upon the methods provided by the Large Deviations
Principle (LDP), developed, for example, in Refs. [2, 20, 22, 23, 51].

More recently, the LDP-based methods were applied to the case where the quantities of
interest are time-averaged observables, like currents or densities of particles [6–9, 16, 21, 31,
41, 42]. Even more attention was paid to the production of entropy, which is actually a linear
functional of currents, and related fluctuation theorems. (See, for example, Refs. [13, 14, 19,
27, 29, 33, 35, 38, 40, 45, 55, 59].) However, prior studies have only considered processes in
spaces with a trivial topological structure, in the sense that we will explain in the following.
To the best of our knowledge, the topological nature of global currents (fluxes) has not been
discussed before.

In most cases, stochasticity of dynamics and observation errors make detailed knowledge
of system trajectories unnecessary and distracting. Fortunately, one can often find topolog-
ical characteristics of the system, which are easier to observe. We suggest that properly
defined stationary currents are such topological characteristics.

In the present paper, extending on our recent preprint [16], we address the problem
of deriving statistical properties of empirical (time-averaged observable) currents for non-
equilibrium stochastic processes which are equivalent to random maps between compact
spaces with nontrivial topology. We employ a method inspired by the LDP, but also special
field-theoretical tools developed originally in the context of nonlinear sigma-models [1].

Our main results concern deriving via LDP explicit asymptotic expressions for joint dis-
tribution function of current density and density and distribution function of total topological
current in non-equilibrium steady state stochastic systems (stochastic maps) defined on com-
pact spaces. Existence of a nontrivial large deviations distribution for net currents and the
resulting thermodynamic relations are intimately related to nontrivial configurations of maps
from the base domain space to the target space. We mainly focus on yet unexplored rela-
tionship between the large-deviations probabilistic techniques for non-equilibrium systems
and the topological structure of the configuration spaces of the model. From that perspec-
tive, this article makes a completely novel contribution. In the present study we consider a
global static violation of detailed balance, in contrast to stochastic pumping problems, where
changing parameters in time brings the system out of equilibrium [3, 15, 53].

The power of the aforementioned general results and technique is illustrated on the en-
abling example of a circular spin chain, corresponding to a stochastic process mapping from
the torus to the sphere. (See Fig. 1 for illustration.) A physical realization of this model could
be the following: consider a nano-structure represented by a circular spin-chain of N � 1
classical interacting spins characterized by unit vectors ni where i = 1, . . . ,N , coupled to
a stochastic external magnetic field B . Note that such a device could be used as a magnetic
field detector, by measuring the response of the spin chain as a function of time. It is most
useful to consider the low-energy, long-wavelength limit of the problem, which would cor-
respond to a high sensitivity of the device. Therefore, we will restrict our attention only to
the spin couplings relevant to the long-wavelength approximation. The spin system can be
driven in other ways than by an external magnetic field. For example, a nonconservative
force, a so-called spin transfer torque, is caused by a spin-polarized current [54, 58].
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Fig. 1 Top: consecutive configurations of the string as it wraps around the sphere. Bottom: the same config-
urations in the discretized representation of the string by a cyclic spin chain

Other possible realizations of the spin-chain model are molecular motors [4, 36, 46]
which often exhibit periodic motions resulting from nonconservative driving. Although spe-
cific examples may not have been yet discovered, we believe that there are relatively simple
non-equilibrium bio-molecular systems whose functioning is controlled by topological cur-
rents, probably far more complex than those discussed here in the context of the spin-chain
model.

Performing precise measurements in such setups, in the presence of fluctuations, is es-
sentially related to the ability to detect collective modes of the chain ni , by integrating the
response over a time interval. Therefore, such a device would be a natural detector of the
total current associated with the integrated response of the entire chain. Our analysis will fo-
cus on the probabilistic description of the empirical current (time-integrated response) and
generalize to compact spaces the study of the current density distribution (or a 1D current),
the focus of earlier works [6–9, 16, 21, 31, 41, 42] in both single- and many-particle systems.
The total current in our spin-chain example originates from global, topological characteris-
tics of the system, as locally the stationary force driving the system is potential. In fact, this
example represents the case of the topological driving associated with a multi-valued poten-
tial of the Wess-Zumino type [1, 47, 61], and thus the essential part of our analysis will be
devoted to establishing large deviations characteristics of the global (topological) current in
the spin-chain model.

The material in the paper is organized as follows. In Sect. 2 we introduce a general sto-
chastic model and a specific example with a nontrivial topology. All the results of the paper
are briefly discussed and listed at the end of this introductory section. In Sect. 3 we present
a topological picture of stochastic currents. In Sect. 4 we consider overdamped continuous
stochastic processes. We review some results related to statistics of the empirical density, and
current density, as well as other extensive observables derived from them. We also extend
the large deviation theory to nontrivial topologies and develop a general approach to obtain
large deviation functions for topological currents. Section 5 is devoted to a non-equilibrium
stochastic model with a nontrivial topology: a classical Heisenberg spin chain driven by a
topological term of the Wess-Zumino type. In Sect. 6, in addition to giving a summary and
conclusions, we discuss a general reduction of continuous stochastic models in the weak-
noise limit to effective Markov chains with the help of the Morse theory. Appendices contain
some technical details and auxiliary material.
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2 Models and Statements of the Results

2.1 General Stochastic Model

We consider a stochastic process/trajectory ηt = {η(τ )|0 ≤ τ ≤ t}, or more rigorously ηt :
[0, t] → M of duration t , which occurs in a configuration space M , i.e., η(τ ) ∈ M for 0 ≤
τ ≤ t . The configuration space M is assumed to be a manifold of dimension m = dimM , so
that the particle position η(τ ) at any given time can be characterized by a set ηi(τ ) of local
coordinates with i = 1, . . . ,m. Our stochastic process can be described by the following
Langevin equations

η̇i (τ ) = F i(η) + ξ i(η, τ ), (1)

which is a continuous limit of the well defined discrete-time stochastic differential equations
written, for example, in the Itô form. The quantities discussed below that depend on the
continuous time should be understood as limits of the their properly discretized forms. In (1)
F i denotes the deterministic (advection) component of the particle velocity, linearly related
to the driving force Fj (overdamped dynamics),

F i = gijFj , (2)

via the mobility tensor gij (η) that can be viewed as a Riemann metric on the configuration
space M . Due to the Einstein relation (fluctuation-dissipation theorem), the same tensor
κgij , weighted with a factor κ that controls the noise strength, characterizes the correlations
of the Gaussian Markovian noise in (3):

〈ξ i(η, τ2)ξ
j (η, τ1)〉 = κgij (η)δ(τ2 − τ1). (3)

If our stochastic dynamics is interpreted as a result of elimination of fast components in har-
monic bath modeling (to achieve the Markov limit), the Einstein relation means that the bath
is at equilibrium at temperature κ , and non-equilibrium features of the system’s stationary
state can result only from the non-potential nature of the driving force F . Hereafter we imply
summation over the repeating indices and assume, without loss of generality, that the met-
ric is curvature-free. Equation (3) is consistent with the stochastic (Onsager-Machlup [48])
action

S(ηt ) = 1

2κ

∫ t

0
dτgik

(
η̇i − F i(η)

) (
η̇k − Fk(η)

)
(4)

(with gij : gij g
jk = δk

i ) defining the probability measure over ηt , such that the stochastic
average of a functional •(ηt ) of ηt (e.g., an observable accumulated over time t ) is evaluated
according to

〈•(η(t)〉ξ =
∫

M
Dη(τ ) • (ηt ) exp(−S(ηt ))∫
M

Dη(τ ) exp(−S(ηt ))
, (5)

where the denominator is usually called the partition function. In (5) we use standard nota-
tions for the path integrals over trajectories and assume proper discretization over the time
interval [0, t]. Distinction between different discretization conventions is irrelevant for the
Cramér functions in the low-noise limit.
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We introduce the empirical density and current at a point x of the trajectory’s configura-
tion space:

ρt (ηt ,x) ≡ t−1
∫ t

0
dτδ(x − η(τ )), (6)

J i
t (ηt ,x) ≡ t−1

∫ t

0
dτ η̇iδ(x − η(τ )). (7)

We are interested in the large-deviation limit of the joint probability distribution function for
ρt and J t ,

Pt (J , ρ) ≡ 〈δ(ρt − ρ)δ(J t − J )〉ξ . (8)

Assuming that the observation time t is large and focusing primarily on statistics of ρt ,J t

defined above one observes that a distinction between an open trajectory with η(0) 	= η(t)

and a closed trajectory with η(0) = η(t) disappears at t → ∞. This fact, also discussed in
detail in Sect. 3, allows us to focus on the analysis of closed trajectories.

The joint distribution function of current density and density defined in (8) is a very useful
and rich object carrying sufficient amount of dynamical and topological information about
the system one would normally be interested in. However, from the point of view of exper-
imentally and computationally desirable low-dimensional characterization of the stochastic
system, the functional Pt (J , ρ) is still too complicated. One would like to introduce a ver-
sion of (8) of smaller dimensionality, with inessential parameters integrated out. We suggest
that a topologically protected quantity satisfying these requirements is the equivalence class
components of the intersection index between a closed trajectory ηt and a cross-section α

of M , which we denote symbolically as

ω[α]
t =

∫
α

J t . (9)

Here [α] indicates that the object is invariant with respect to continuous transformation
from one cross-section to another within the same equivalence class. Obviously, currents
can be added and multiplied by numbers, where respective operation is executed over the
corresponding current densities. Therefore, currents ωt can be viewed as vectors that reside
in a certain vector space, a current space. The current components ω

[α]
t , introduced in (9),

are labeled by linearly independent equivalence classes [α] of cross sections, whose number
defines the dimension of the current space. Further details (including formal definitions) will
be given in Sect. 3. As in other parts of this manuscript, our main focus will be on evaluating
the LDP asymptotic for the respective distribution function

Pt (ω) ≡
〈∏

[α]
δ(ω[α]

t − ω[α])

〉

ξ

. (10)

Notice that the number of the linearly independent equivalence classes [α] (the dimension of
the current space) naturally depends on M , being a small number for common topological
problems (field theories). For example, for the problem considered in Sect. 5 the current
space is one-dimensional.
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2.2 Circular Spin Chain

In the large N limit, N → ∞, we can describe the circular spin-chain model using a map
n(y, τ ) = (na(y, τ )|a = 1,2,3 &

∑
a nana = 1), which represents the three-dimensional

unit vector parameterized by the angle y ∈ [0,2π ] at the time τ . By imposing periodic
boundary conditions in y and τ , we also find convenient to think about the model as of a
(1 + 1) field theory, i.e. as of a stochastic map S1 × S1 → S2.

To illustrate the general topological results we will consider the following version of the
model (1):

∂τn = F (n) + ξ , F (n) = F e(n) + u[n, ∂yn], F e(n) = v
(
∂2

yn + (∂yn · ∂yn)n
)
, (11)

〈ξa(y1; τ1)ξ
b(y2; τ2)〉 = κδ(τ1 − τ2)δ(y1 − y2)

(
δab − na(y1, τ1)n

b(y1, τ1)
)
, (12)

where parameters u and v correspond to strength of driving and overall noise normalization
respectively and [•,•] is the standard notation for the vector cross-product. Equation (12)
guarantees the transversality of the noise term to the n(y, t) field, and it is also straight-
forward to verify that all terms on the rhs of (12) are in fact transversal to n(y, t). As ar-
gued in the Introduction, this model can describe the long-wavelength limit of a nano-scale
spin device manipulated by magnetic field [54, 58]. In fact, (11) represent the most gen-
eral weak-noise, weak-driving stochastic equations which may be built for the map n(y, t)

in the long-wavelength limit, thus keeping only low-order spatial gradients (over y). It is
important to emphasize that the local force in the spin-chain model is conservative, and
the non-equilibrium character of the stochastic process is due to global (topological) effects.
These topological aspects of the model will be discussed in detail in the two first subsections
of Sect. 5.

The Onsager-Machlup action (4) that corresponds to the Langevin dynamics described
by (11) and (12) has a form

S(n) = 1

2κ

∫ t

0
dτ

∫
S1

dy
(
∂τn − u[n, ∂yn] − v

(
∂2

yn + (∂yn · ∂yn)n
))2

. (13)

Setting v = 0 turns this action into the known model, often called a (1 + 1) nonlinear σ -
model on a sphere with a topological term (often referred to as a θ -term) [1]:

S(n)|v=0 = 1

2κ

∫ t

0
dτ

∫
S1

dy
(
(∂τn)2 + u2(∂yn)2 − 2u(n · [∂τn, ∂yn])) . (14)

The nonlinear σ -model of (14), considered as an imaginary-time field theory, has ultraviolet
divergences, and thus requires a small scale regularization. In fact, our circular spin chain
model (11) may be viewed as a regularized counterpart of the σ -model, where the number N

of spins plays the role of the ultraviolet cut-off parameter. An intuitive explanation for this
regularization is that the v-term in (11) acts to align all the spins and, therefore, suppresses
the short-range fluctuations.

In this manuscript we will focus on analysis of the circular spin-chain model in the weak-
noise limit κ � |u| � v, which will also be coined (by the reason to be spelled out later
in Sect. 5) the limit of “instanton gas”, correspondent to moderate topological driving.1

1Another “anomalous” regime of the sigma-model, v � κ � |u|, was analyzed by Polyakov and Wieg-
man [49, 50] in the zero topological charge sector (not relevant for our application). The authors mapped the
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We demonstrate that the configuration space of the spin-chain model has one topologically
nontrivial cycle (i.e., the current ω is single-component). In the considered limit the system
spends most of the time around its stable configuration, whereas the current is generated by
rare events, referred to as instantons, whose interaction can be neglected due to long time
intervals between them.

2.3 Statement of Results

The main results reported in this manuscript are as follows:

• In Sect. 3 we establish a topological nature of the average current generated over a long
time in a stochastic system. The topological stochastic current ω resides in a vector space,
referred to as the current space, whose dimension is given by the number of independent
1-dimensional cycles of the system configuration space M . We demonstrate that there are
two equivalent ways to view the generated topological currents: (i) the rates with which
the stochastic trajectory loops around the independent 1-cycles, and (ii) the equivalence
classes of the divergence-free current density distributions. The equivalence of these two
views is established by the Poincaré duality represented by (18).

• We show in Sect. 4 that for a stationary stochastic process the joint probability distribution
for the empirical current density and density in the t → ∞ limit takes the form Pt (J , ρ) ∼
exp(−t S(J , ρ)) with the Cramér functional

S(J , ρ) =
∫

M

dx
(Fρ − J − (κ/2)∂ρ)2

2κρ
. (15)

This generalizes the previously reported results [6–9, 16, 41, 42] to the case of topologi-
cally nontrivial compact spaces.

• In Sect. 4.3 we describe a general method to derive large-deviation statistics of particular
currents (e.g., the Cramér function of the topological currents) from (15) in a variational
way by solving a respective set of equations for currents and densities.

• We illustrate the utility of the general approach on the example of the thermodynamic
limit N → ∞ of the spin-chain model defined above in Sect. 2.2. We show that the
topological current space of the model is one-dimensional, i.e., the generated current
is described by ω ∈ R. We compute the Cramér function S(ω) in the weak-noise limit
κ � v, |u| for not too large values of the generated current ω for |ω| � |v|(ln(|v|/κ))−1,
when the instanton gas mechanism dominates the current generation. In this instanton-gas
regime the Cramér function S(ω) has the same form as for the effective 1D random walk
(equivalent to a circular two-channel single-state Markov chain) with jump rates κ+ and

model onto a system of infinite-component massless interacting fermions, analyzed it with the Bethe ansatz
approach and thus arrived at a remarkable exact and nontrivial solution. Notice, that an intermediate case of
“interacting instantons”, correspondent to strong topological driving and vanishing noise, κ � v � |u|, con-
stitutes yet another interesting regime, which to the best of our knowledge was not studied yet. The Cramér
function in this later case can be calculated explicitly by integrating over the instanton solutions and Gaussian
fluctuations around them in the limit v = 0. As demonstrated in Ref. [28] in the context of the σ -model as a
field theory, the problem is equivalent to finding the ground-state energy of the corresponding (1 + 1) sine-
Gordon model, where v will play a role of the ultraviolet cut-off parameter. In the case v < u the saddle and
stable points of the spin-chain system coalesce producing a peculiar fixed point at θ = 0 which is stable when
approached from one direction and unstable from the other one. All such situations are beyond the scope of
this work.
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κ− in opposite directions:

S(ω) = κ+ + κ− + ω ln
ω + √

ω2 + 4κ+κ−
2κ+

−
√

ω2 + 4κ+κ−, (16)

the rates κ± being expressed through the parameters u and v of the model (11) by means
of (62), (89), (91), (83), and (93).

• In general, the vector of topological currents ω is not related to the work produced by
the driving force,

∫ t

0 dτ(F (η) · η̇). However, in the case of topological driving, as in the
spin-chain model, the work becomes a linear functional of the current vector.

3 Topological View of Stochastic Currents

Historically, a concept of current appeared in physics on a macroscopic level as a way to
describe a flux of any kind. Consider an electric circuit, represented by a circular wire with
a static electric field (for example, provided by a battery) where the electrons on average
move in one direction. The current is defined as a charge crossing some oriented section α

per unit time. The current can be considered as a sum of currents from individual particles.
An individual contribution ω is given by ω = Nt−1 with N = N+ − N−, where N± is the
number of times the particle trajectory η crosses the section α in the positive and negative
directions, respectively (see Fig. 2).

The configuration space M for the particles in the circular wire is three-dimensional, i.e.,
m = dimM = 3, and can be represented as M = S1 × D2 (with S1 and D2 being a circle
and a two-dimensional disc, respectively), whose boundary is ∂M = S1 × S1. If the particle
trajectory η is closed, i.e., η : S1 → M , the number N does not change upon deformations
of the trajectory and the cross-section α. This number, known as the intersection index, only
depends on the equivalence classes [η] and [α] and can be denoted by [η] ∗ [α] ∈ Z. The
equivalence, based on deformations, is the homotopical equivalence.2

3.1 Intersection Index and Stochastic Currents

The intersection index does not change if any of the cycles is replaced by a homologically
equivalent counterpart. Since cycles can be added and multiplied by the integers (by forming
disjoint unions and changing orientations), this equivalence can be understood if we define a

Fig. 2 (Color online) A single
open trajectory in the circular
wire

2Here and below [·] is used as a notation for the equivalence class of ·.
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zero cycle. Formally, a j -dimensional cycle is called homologically equivalent to zero, if it is
a boundary of a (j +1)-dimensional region mapped into M . Obviously homotopy equivalent
cycles are homologically equivalent. The set (actually an Abelian group) of homological
classes of j -dimensional cycles in M is called the j -th homology of M and denoted by
H1(M;Z). In the circular wire, an element of H1(M;Z) represents the number of times the
particle trajectory moves around the circuit: H1(M;Z) ∼= Z. The current ω associated with
the trajectory η can be naturally defined as ω = [η]t−1 ∈ H1(M;R) = H1(M;Z) ⊗Z R. In
the circular wire of Fig. 2 the current has only one component because H1(M;R) = R.

The topological picture, presented above on the simple example of a circular circuit,
can be extended to a much less intuitive general case in a pretty straightforward way by
viewing an averaged current ω generated in stochastic dynamics in the configuration space
M as an element in H1(M;R), the first homology group of M with real coefficients, as-
sociated with the homology class [η] of a stochastic trajectory. Since H1(M;R) is a real
and in most relevant cases finite-dimensional vector space, the generated current can be
viewed as a vector. The homology groups can be finite-dimensional and computable even in
the field theory when the configuration space M is represented by an infinite-dimensional
(in the non-regularized continuous limit) space of maps. In particular, in our enabling case
of M = Map(S1, S2) discussed in Sect. 5, the current also has only one component since
H1(Map(S1, S2);R) ∼= R.

Notice also that, originating from counting, stochastic currents can be viewed as topo-
logically protected observables, available in single-molecule measurements, which provide
stable and at the same time rich information on the underlying stochastic processes.

The topological picture of stochastic currents can be formulated in the simplest way when
defined for closed trajectories (loops). However, a general stochastic trajectory is open, i.e.,
its end point is typically different from the starting one and thus adopting the topological
language of intersection indexes and currents may seem problematic. In the long-time limit
considered in this manuscript, extension from open to close trajectories does not constitute
a problem. Indeed, when counting the intersection index N of a long trajectory, one can
always close it with a segment (e.g., a geodesic line) that is much shorter than the trajectory
itself, which creates an uncertainty no more than one in a big number N � 1. In contrast to
a boundary effects with unbounded fluctuations [52, 60], in the long-time limit in our case
one can safely ignore changes in the statistical properties of the trajectories caused by this
modification.

3.2 Currents, Current Densities, Zero-Curvature Vector Potentials and Poincaré Duality

Currents can also be represented by the current densities J defined as time integrals over
trajectories as in (7). In this subsection we will discuss some important “static” relations
between J , the current ω, and the intersection invariant [α].

The time-averaged current density from (7) is a random variable on the space of stochas-
tic trajectories η(τ ) and satisfies the relation

divx J t (ηt ,x) = t−1 (δ(x − ηt (t)) − δ(x − ηt (0))) . (17)

Therefore, our first observation is that the random variable divJ t ∼ t−1 vanishes in the
limit t → ∞. Moreover, (17) guarantees that the current density is exactly divergence-free,
divx J t (ηt ,x) = 0, if only closed stochastic trajectories are considered, which, as argued in
Sect. 3.1, does not affect the long-time behavior of the relevant distributions.
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The vector field of the current density on the m-dimensional phase space can be natu-
rally viewed as a differential form of rank (m − 1) because its integration over a (m − 1)-
dimensional cross-section section α results in a current. In the following we will use the
same notations for vector fields and the corresponding differential forms. The divergence of
the current density J is represented by the exterior derivative as divx J = dJ , and (17)
suggests that the current density is a closed from: dJ = 0. Therefore, it represents a
class [J ] in the de Rham cohomology Hm−1(M;R). The relation between the homologi-
cal and current-density representations of the current is determined by the Poincaré duality
H1(M;R) ∼= Hm−1(M;R) [56]. This can be formally expressed as

∀[α] ∈ Hm−1(M;Z) : ω ∗ [α] = t−1[η] ∗ [α] =
∫

α

J , (18)

thus representing that per unit time intersection index t−1[η] ∗ [α] of a closed trajectory η
with a cross-section α is equal to the integral over α of the current density J produced by
the trajectory.

We conclude this section by noting that the Poincaré duality Hm−1(M;R) ∼= H 1(M;R)

in the complementary dimension leads to a natural representation of the sections α in terms
of the vector potentials A, which are curvature-free, i.e.3

(∂iAj − ∂jAi)dxi ∧ dxj = 0, (19)

since the cross-section α represents a homology class [α] ∈ Hm−1(M;R), whereas the cor-
responding vector potential A represents a gauge equivalence class [A] ∈ H 1(M;R). Here
in (19) we used standard wedge-product notations for the differential 1-forms [32]. The re-
lation “[A] correspond to [α] via the Poincaré duality” can be conveniently expressed in a
way extending (18),

∀[J ] ∈ Hm−1(M;Z)|divJ = 0 :
∫

α

J =
∫

M

A ∧ J =
∫

M

dxA · J , (20)

which implies that the current components ω ∗ [α] can be labeled by the gauge classes of the
curvature-free vector potentials. This expresses the general Poincaré duality Hj(M;R) ∼=
Hm−j (M;R) in dimension j = m − 1, i.e., Hm−1(M;R) ∼= H 1(M;R). Using (20) it can
be formulated as follows. (i) With any (m − 1)-cycle α we can associate a closed 1-form
A so that (20) holds for any divergence-free current density distribution J . (ii) Any two
forms A and A′ that satisfy the condition (i) are equivalent, [A] = [A′]. (iii) Homologically
equivalent cycles generate equivalent forms, i.e., if A and A′ are respectively generated
by α and α′, then [α] = [α′] implies [A] = [A′]. Note that the conditions (i)–(iii) define a
linear map Hm−1(M;R) → H 1(M;R). The Poincaré duality also means that this map is
an isomorphism. Note that (20) is noticeably distinct from its counterpart (18). The latter
describes the Poincaré duality in the complementary dimension j = 1, by associating the
currents ω ∈ H1(M;R) with the equivalence classes [J ] ∈ Hm−1(M;R) of divergence-free
current densities J .

4 LDP for Empirical Currents

In this section, we describe results concerning the Large Deviations Principle (LDP) for
(possibly) dependent sequences of random variables, including its application to the case

3Where here and below ∂i is our shortcut notation for ∂xi
.
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of time-averaged current densities, and present a path-integral derivation for the relevant
functionals. The material of this section is organized as follows. In Sect. 4.1 we very briefly
review the foundations that stand behind the LDP and formulate a variational principle re-
lating the LDP for current density and density to the LDP for conjugated vector and scalar
potentials. In Sect. 4.2 we describe a convenient representation of the LDP in the intuitive
path-integral language. In Sect. 4.3 we present a general method to derive the Cramér func-
tion of the topological currents from the Cramér functional of the joint density and current
density distribution.

4.1 LDP for Empirical Currents and the Gärtner-Ellis Theorem

Gärtner-Ellis (G-E) theorem [26, 30] formalizes the Large Deviation Principe (LDP). It pro-
vides a convenient theoretical tool for studying the long-time behavior of stationary driven
systems. In this subsection we discuss fundamental relations and objects associated with the
G-E theorem and the LDP.

Consider a sequence of random variables ξ τ ∈ H with τ = 1,2, . . . , t . Denote by Pt(ϕ)

the distribution of the average ϕt = t−1
∑t

τ=1 ξ τ on the vector space H. Define the corre-
sponding generating function Qt (ψ) = 〈exp(tψ ·ϕt )〉, with ψ ∈ H∗ being linear functionals
in H. If the limit

λ(ψ) = lim
t→∞ t−1 ln (Qt (ψ)) (21)

does exist, is represented by a convex and bounded from below function, and

S(ϕ) = sup
ψ

(ψ · ϕ − λ(ψ)) (22)

is represented by a bounded from above lower semi-continuous function with compact level
sets, then {ϕt } satisfies the Large Deviations Principle (LDP) with the rate (or Cramér) func-
tion S . This is known as the Gärtner-Ellis (G-E) theorem [26, 30]. The LDP is formulated
in terms of the probabilities Pt(K) = ∫

K
dPt (ϕ) for the random variable {ϕt } to belong to

K ⊂ H. In many cases it can be formulated in a stronger, yet simpler form (see [26, 30] for
a general formulation): for any (measurable) set K ⊂ H

lim
t→∞ t−1 ln (Pt (K)) = −S(K), (23)

where by definition the Cramér function is

S(K) ≡ inf
ϕ∈K

S(ϕ), ∀K ⊂ H. (24)

Note that even though the LDP and the G-E theorem are formulated above for a dis-
crete set of random variables, the formulation also implies straightforward extension to the
continuous parameterization t ∈ R+ = {τ ∈ R|τ > 0}, where t plays the role of time. In
particular, we choose ϕt = (ρt ,J t ) ∈ H with divJ t = 0; the empirical density and current
density are introduced in (6) and (7), respectively. In accordance with discussion of Sect. 3,
the argument ψ = (V ,A) of the generating function is represented by a potential function
V conjugate to the density, and by a gauge equivalence class of an Abelian zero curvature
gauge field A conjugate to the current density. The LDP can be viewed as a mathematically
correct way to formulate a physically intuitive statement that under the described conditions
at long enough times t the probability distribution adopts an asymptotic form

Pt(ϕ) ∼ exp(−t S(ϕ)). (25)



120 V.Y. Chernyak et al.

By its formulation, specifically due to (24), the LDP allows the rate functions for reduced
variables to be obtained via a variational principle. Let H′ be the residence vector space for
the reduced variables ϕ′

t with the reduction (projection) map p : H → H′. In our case the
reduced variables are the currents ϕ′

t = ωt , so that H′ = H1(M;R) and the reduction map,
obviously defined by p(ρt ,J t ) = [J t ], is linear. The conjugate to ϕ′

t argument ψ ′ of the
generating function Q′(ψ ′) resides in (H′)∗ ∼= H 1(M;R) and, therefore, can be represented
ψ ′ = [A] by a gauge equivalence class of a curvature-free dA = (1/2)(∂iAj − ∂jAi)dxi ∧
dxj = 0 vector field. Applying the LDP we obtain

S ′(ω) = S(p−1(ω)) = inf
[J ]=ω

S(ρ,J ). (26)

Moreover, the LDP can be further interpreted as effectively implementing Legendre-type
transformations between thermodynamic potentials (effective actions). We describe these
general relations in the following paragraphs.

Let us also note that our stochastic theory of maps S1 × Y → X is, in fact, a field
theory; however, being identified as a theory of stochastic trajectories S1 → M , with
M = Map(Y,X), it can be interpreted as classical one-dimensional statistical mechanics in a
circular system of the size t with the target space M . The time-averaged current ωt = t−1Qt

can be viewed as the density of the topological charge Qt = [δSt (A)/δA], obtained from
the variational derivative of the gauge-invariant action St (A) with respect to the stationary
vector potential A, followed by switching to (homology) equivalence classes, the latter op-
eration denoted by square brackets. Naturally, a gauge equivalence class [A] ∈ H 1(M;R)

of curvature free vector field A can be interpreted as the chemical potential that corresponds
to the topological charge Q. According to (21), (25) the rate S(ω) = t−1�t(ω) and the log-
arithmic generation λ(A) = t−1Wt([A]) functions can be interpreted as the densities of the
free energy and thermodynamic potential, respectively, in the thermodynamic limit t → ∞.
Naturally, they are connected via the Legendre transformation

d� = Sdt + [A] · dQ, dW = Sdt − Q · d[A], (27)

and the thermodynamic potential is represented by the effective action:

e−Wt (A) =
〈
et

∫
M J t ·A

〉
=

∫
Dηe−S(η)+t

∫
M J t ·A. (28)

Therefore, applying the LDP argument to the empirical current ωt will lead to a rate func-
tion S , which is simply the generation rate of the effective action for the currents of the the-
ory. This restatement of the problem would be rather trivial, unless the theory had interesting
topological structure. Indeed, as known from quantum field theories [1], in such cases cur-
rents may have non-perturbative, anomalous terms arising from global topological effects.
As we will show in the remainder of the paper, this also happens in the non-equilibrium
stochastic theory with driving.

4.2 Path-Integral Picture of LDP and the Current Density Functional

In this subsection we, first, derive the general (compact spaces) LDP expression (15) for the
distribution of density current and density, and, second, discuss respective transformation to
the conjugated variables (potentials).
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4.2.1 Derivation of (15)

Using a standard representation for the Dirac δ-functional in (8) gives for the probability
distribution function

Pt (J , ρ) ∼
∫

DADV e−it
∫

dx(A·J+Vρ)

∫
Dηt e

−S(ηt ;A,V ), (29)

S(ηt ;A,V ) = S(ηt ) − i

∫ t

0
dτ

(
η̇

j
t Aj (ηt ) + V (ηt )

)
, (30)

where the integration is performed over real auxiliary fields A and V , and DA and DV are
the standard field-theoretical notations for functional differentials/measures.

In the large deviation limit (t → ∞), the path integral in (30) is estimated as
∫

Dηt e
−S(ηt ;A,V ) = Tr et L̂A,V ∼ exp (tλ(A,V )) , (31)

with −λ(A,V ) being the lowest eigenvalue of the operator −L̂A,V ,

L̂A,V ρ̄ = λρ̄, where L̂A,V = (κ/2)∇j∇j − ∇jFj + iV , ∇j ≡ ∂j − iAj . (32)

For the normalized ground state eigenfunction ρ̄(x) we obtain

λ(A,V ) =
∫

dxL̂A,V ρ̄(x) and
∫

dxρ̄(x) = 1. (33)

Applying further the saddle-point approximation to the functional integral in (29) with
respect to A,V , and using (30)–(33), we arrive at the following equations:

J (x) = (F + iκA − (κ/2)∂)ρ̄(x), ρ̄ = ρ. (34)

Actually, this saddle-point approximation involves a deformation of the integration contours
to the complex plane, which makes A imaginary and V = 0 in the saddle point. Thus, the
saddle-point approximation corresponds to the supremum with respect to (−iA) in the G-E
theorem (in Sect. 4.1 the definition of A differs from that of this subsection by a factor i).
Solving (33), (34) for A,V and ρ̄ and substituting the result back in the saddle-point ex-
pression for the integral in (29) yields (15) for the Cramér functional. Note that boundary
(surface) terms do not contribute due to the compactness of the target and base manifolds.
In deriving (31) from (30), the gauge freedom was fixed by the requirement that the left
eigenfunction of L̂A,V , conjugated to the right eigenfunction ρ̄, equals unity.

4.2.2 LDP for charges generated by scalar and vector potentials

The explicit large deviation result (15) can be immediately used to get thermodynamics-
like relations for Cramér functions of derived objects. One introduces the sets A(a)(x) and
V (b)(x) of vector and scalar potentials, respectively (which can also be interpreted as gauge
fields, i.e. generators of continuous symmetry transformations mentioned above), and the
corresponding sets wA(J t ) and uV (ρt ) of charges

w
(a)

A (J t ) ≡
∫

M

dxA
(a)
j (x)J

j
t (η;x) = t−1

∫ t

0
dτ η̇jA

(a)
j (η),

u
(b)
V (ρt ) ≡

∫
M

dxV (b)(x)ρt (η;x) = t−1
∫ t

0
dτV (b)(η(τ )).

(35)
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At t → ∞, the joint p.d.f. Pt (w,u) ≡ 〈δ(w − wA(J t ))δ(u − uV (ρt ))〉ξ of wA(J t ) and
uV (ρt ) has the large deviation form PA,V (w,u) ∼ exp(−t SA,V (w,u)), where

SA,V (w,u) = inf
wA(J )=w,uV (ρ)=u

S(J , ρ). (36)

In the path-integral terms, the variational principle expression (36) can be obtained by
representing the probability distribution

PA,V (w,u) ∼
∫

DJ Dρδ(w − wA(J ))δ(u − uV (ρ))e−t S(J ,ρ), (37)

followed by computing the integral in the t → ∞ limit using the saddle-point approxima-
tion.

Considering a marginalized version of (36), associated with the distribution functions of
the charges, generated by the vector potentials only, we have PA(w) ∼ exp(−t SA(w)) with

SA(w) = inf
wA(J )=w

S(J , ρ). (38)

The variational principle, represented by (38) has two important implications that cor-
respond to two specific choices of the gauge field sets A(a)(x). The choice A(x) = F (x)

leads to the observable wF (J t ) that, obviously, represents the work (entropy) production
rate, whose Cramér function S(wF ) satisfies the fluctuation theorem.

However, in this manuscript we focus mainly on the other implication of (38) associated
with the set {A(a)} of curvature-free dA(a) = 0, ∀a is chosen in a way so that the corre-
sponding set {[A(a)]} of equivalence classes forms a basis set in H 1(M;R). According to
the Poincaré duality, as described at the end of Sect. 3.2 and specifically due to (18) and (20)
the current ω = [J ] as the homology class of the current density J is fully characterized by
the values of the set wA(a) (J ) of observables. Therefore, for the described choice of {A(a)}
the variational principle of (38) is equivalent to the variational principle of (26).

We should note for completeness that since ω ∈ H1(M;R), the Fourier variable ψ conju-
gate to ω resides in the space ψ ∈ (H1(M;R))∗ ∼= H 1(M;R), which results in the following
representation:

Pt (ω) ≡ 〈δ(ωt − ω)〉ξ ∼
∫

H 1(M;R)

dψeitψ ·(ω−ωt ). (39)

Going along the lines of derivation of (30) and using the Poincaré duality (20), which allows
the identification ω = [J ] and ψ = [A], we recast (39) as

Pt ([J ]) ∼
∫

H 1(M;R)

d[A]e−it
∫
M dxA·J

∫
Dηt e

−S(η;A,0)

∼
∫

H 1(M;R)

d[A]e−it
∫
M dxA·J etλ(A,0). (40)

This representation implies that λ([A]) = λ(A,0) is obtained from λ(A,V ) by restricting
the to the zero V = 0 scalar potentials and curvature-free dA = 0 vector potentials.

4.3 Derivation of the Cramér Functional for Topological Currents

This subsection describes a general strategy for calculating the Cramér functional S(ω)

of the topologically protected currents ω. This is achieved via the variational procedure,
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formulated in Sect. 4.1 (26), equivalent to “integrating out” current density J and density ρ

dependence for a fixed value of ω.
Specifically, we will minimize the Cramér functional (15) S(J , ρ) over J and ρ under

the following conditions 4:

divJ ≡ d†J = 0,

∫
dxρ = 1, [J ] = ω. (41)

A variation of the current density that satisfies the continuity condition and keeps the topo-
logical current constant has a form δJ = d†ζ with ζ being a 2-form. A straightforward
calculation allows the requirement δS/δζ = 0 to be represented in a form:

dA ≡ ∂ × A = 0 with A = ρ−1 (Fρ − J − (κ/2)∂ρ) , (42)

where the second equality in (42) should be viewed as the definition of the vector field
(1-form) A. The stationary current that minimizes S(ω) corresponds to A = 0. The vector
potential A determines how the density and current density distributions locally differ at the
given topological current and in the stationary regime. Note that the vector field introduced
in (42) differs from its counterpart introduced earlier in (34) by a factor (−iκ). Thus, with
a minimal abuse, we use the same notation for both and hereafter stick to the one given
by (42).

Variation of S(J , ρ) with respect to ρ is performed in a straightforward way by intro-
ducing a Lagrangian multiplier λ to satisfy the normalization condition [the second relation
in (41)]. This results in

(κ/2)divA + F · A − (1/2)A2 = −κλ. (43)

Representing A as a gradient

A = −κ∂ lnρ−, (44)

where ρ−(x) is a newly introduced scalar function, and substituting (44) into (43), one finds
that the quadratic first-order Riccati-type equation (43) is transformed into the following
linear second-order differential equation

L†ρ−(x) = λρ−(x) (45)

with the adjoint Fokker-Planck operator

L† = (κ/2)∂2 + F · ∂. (46)

On a compact manifold M , eigenvalues λ are discrete and bounded from below. A solution
of (45) corresponding to the lowest −λ determines ρ−(x) and λ. However, the function
ρ−(x) is not necessarily single-valued and can acquire uncertainty in the result of going
around topologically nontrivial cycles. We can find a unique solution A of (46) with the

4Throughout the paper we use three equivalent representations of the current density: vector field, 1-form and
(m − 1)-form. The vector field is related to the 1-form through the natural metric tensor that characterizes
noise correlations. The relation between the Hodge dual differential forms of degrees 1 and (m − 1) is also
determined by the metric tensor.
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minimal eigenvalue if we fix a set Z = (Zk|k = 1, . . . , n) of topological parameters defined
by the integrals

lnZk = κ−1
∫

sk

Ai(x)dxi (47)

over the set {sk}k=1,...,n of the topologically independent 1-cycles of M .
To summarize, (41)–(43) constitute a complete set of equations that can be used to obtain

the Cramér functional S(ω) as well as the distributions ρ and J . This is achieved in three
steps.

(1) We first solve (43) together with the constraint dA = 0 (i.e., the first relation in (42))
with respect to the vector potential A. As explained above this is equivalent to solving
the linear lowest eigen-value problem (45) with the additional topological freedom fixed
unambiguously selecting the sets Z = (Zk|k = 1, . . . , n).

(2) We combine the first two relations in (41) with the second relation in (42), which results
in

(κ/2)∂ρ − (F − A)ρ = −J , d†J = 0, and
∫

dxρ = 1. (48)

From this linear system we find ρ and J in terms of Z parameterizing A.5

(3) The Cramér functional S can be obtained as a function of Z by substituting the solution
obtained on steps (1) and (2) into (15). Finally, the substitution of the obtained solution
for J into the third relation in (41) establishes a relation between Z and ω, which, being
resolved with respect to Z in terms of ω, results in S(ω).

In the case dF = 0 of topological driving, the system of (41)–(43) for the Cramér func-
tional can be further simplified. One applies the operator (κ/2)d − (F − A)∧ to the second
relation in (42) and makes use of the relations d2 = 0, dA = 0, and dF = 0. This results in
((κ/2)d − (F − A)∧)J = 0. Combined with the generic expression for the Cramér func-
tional (15) and applying some reordering of terms, this allows the system of equations (41)–
(43) and (15) to be recast as

(κ/2)divA + F · A − (1/2)A2 = −κλ,

κ−1
∫

sk

Ai(x)dxi = lnZk, dA = 0,
(49)

(κ/2)dJ − F ∧ J + A ∧ J = 0, d†J = 0, (50)

(κ/2)dρ − Fρ + Aρ = −J ,

∫
M

dxρ(x) = 1, (51)

S(ω) = (2κ)−1
∫

M

dxρA2,

∫
αk

J = ωk, (52)

where for k = 1, . . . , n one denotes by sk and αk the dual sets of topologically independent
1- and (m − 1)-cycles, respectively, i.e., [sk] and [αk] form the basis sets of H1(M) and
Hm−1(M), with the intersection property sk ∗αk′ = δkk′ . Note that in (50) the current density
is understood as the 1-form.

5This derivation is similar to the one given in Ref. [39] for the stationary current caused by a force field; in
our case the force field is replaced by F − A.
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Therefore, the procedure of finding S(ω) in the case of the topological driving dF = 0
can be summarized as follows:

(i) For an arbitrary set Z = (Zk|k = 1, . . . , n) we find a unique solution of (49) that cor-
responds to the minimal value of λ and express the vector potential A in terms of the
parameter set Z.

(ii) Upon substitution of A found on the first step into (50), the latter can be viewed as a
system of homogeneous linear equations for the current density J , whose solution is
unique up to a multiplicative factor.

(iii) We substitute the obtained current density J and vector potential A into (51), which
is now viewed as a linear equation on the density ρ with an inhomogeneous term rep-
resented by J . Therefore, the normalization condition (the second equality in (51))
determines the prefactor in the current density, which identifies normalization (multi-
plicative) factors both for J and ρ.

(iv) We substitute A, J , and ρ into (52). This expresses the Cramér function S and the
topological current ω in terms of Z. Expressing Z in terms of ω gives the desired
Cramér function S(ω).

It is also instructive to note that an alternative representation for the Cramér functions

S = −λ − κ−1
∫

dxJ · A = (2κ)−1
∫

dxρA2, (53)

allows the eigenvalue λ to be determined, which is useful for the weak-noise calculation.
The formal scheme described above will be implemented explicitly on our enabling ex-

ample of the topologically driven spin chain in Sect. 5.3.

5 Non-Equilibrium Cyclic Spin-Chain

This section focuses on the applications of the general formalism developed above to the
model of topologically driven system of N classical spins, arranged in a circular chain. In
the thermodynamic, N → ∞, limit the configuration space becomes infinite-dimensional,
and the system can be viewed as a (1 + 1) stochastic field theory with the target space
S2 (see Fig. 1). The model has three parameters v, u, and κ that describe the relaxation
rate, the rate of topological driving and the noise strength, respectively. As briefly discussed
above, the relaxation term suppresses the short-range fluctuations, and, therefore, makes the
model divergence-free in the thermodynamic limit. We are considering the weak-noise limit,
κ � v, |u|, whereas v and |u| can be comparable although such that |u|/v is not too large.
The last requirement translates into the condition that the constant loop n(y) = n0 solution
constitutes a stable stationary point of the deterministic (zero noise) dynamics.

This section is organized as follows. Section 5.1 is devoted to formulation of the topolog-
ical driving in terms of a multi-valued potential, referred to as the Wess-Zumino potential.
We also briefly discuss the finite-dimensional (regularized) approximations for the infinite-
dimensional field-theory configuration. Some details on the spin-chain regularizations are
presented in Appendix A, where we argue that, starting with a large enough N , the relevant
topological properties of the finite-dimensional approximations stabilize to their continuous
limit counterpart. In Sect. 5.2 we describe the instanton (optimal fluctuation) mechanism of
the current generation and identify the structure of the instanton space M0 ⊂ M that consists
of all the configurations the optimal trajectories (instantons) pass through. Section 5.3 con-
tains the derivation of the main results concerning the spin-chain model. Here, we calculate
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the Cramér function of the topological current ω, generated in the system, by implementing
the general procedure outlined in Sect. 4.3. This is achieved by solving the relevant Fokker-
Planck type equations, using an ansatz for the density ρ, current density J , and the vector
potential A. The implemented ansatz is asymptotically exact in the weak-noise limit. The
Cramér function S(ω) is derived for |ω| � |v|(ln(|v|/κ))−1, i.e., in the instanton gas regime.

5.1 Wess-Zumino Interpretation of the Circular Spin Chain Model

Generally, a system described by (1) is not globally driven if the force field is given by
an exact differential, i.e., F = −dV with (dV )i = ∂iV , where V is some scalar potential
function. Although the force field form is not exact in the spin-chain model, it is still closed:
dF = 0, with (dF )ij = (1/2)(∂iFj − ∂jFi), or, in other words, the force has zero curvature.
Therefore, the deterministic force in (11) can be expressed as

F = − δ

δn
VWZ(n)

∣∣∣∣
n2=1

(54)

in terms of a multi-valued potential VWZ(n). Without a single-valued potential, the system
is globally driven, and its stationary state can only be a non-equilibrium one, with a current
being generated.

To determine the potential, consider some reference configuration n0 ∈ M , e.g., a con-
stant loop (a set of collinear spins) n0(y) = n0 and for an arbitrary configuration n ∈ M rep-
resented by n(y) consider a path χ : [0, t] → M , represented by χ(y, s) with |χ(y, s)| = 1
along the path that connects n0 to n, i.e., χ(0) = n0 and χ(t) = n, or, equivalently,
χ(y,0) = n0 and χ(y, t) = n(y). In the following we will skip the dependence on (y, τ )

when obvious. To derive the potential, we can simply integrate the force F along the path
χ . According to the Stokes theorem, dF = 0 guarantees that we obtain the same potential if
the paths χ and χ ′ used in the integration are topologically equivalent. Thus, we obtain the
potential

VWZ(n) = Ve(n) − uϕB(n), Ve(n) = v

2

∫
S1

dy(∂yn)2, (55)

ϕB(n) = −
∫ t

0
dτ

∫
S1

dy(χ · [∂τχ , ∂yχ)]. (56)

The “elastic” globally potential term Ve(n), whose variation produces F e(n) in (11), en-
forces relaxation of the spin system to a y-uniform distribution (a constant loop). The sec-
ond term ∝ ϕB is topological and similar to the multi-valued Wess-Zumino action [1]. To
avoid confusion we note the in this context we are not talking about a Wess-Zumino term in
the action of our (1 + 1) field theory that would have originated from integration of a closed
3-form over a relevant 3-cycle. We rather interpret the potential in (55) as the action of a free
particle, represented by Ve (with y playing the role of time), with an additional multi-valued
term ϕB , obtained via integration of a closed 2-form over a relevant 2-cycle, as described
by (56). The quantity ϕB(n) is the area enclosed by the loop n(y). More precisely, values
ϕB(n) calculated with help of two paths χ(y, s) and χ ′(y, s) can differ by 4πm with integer
m if the paths belong to different equivalence classes. The notation ϕB indicates that it is the
Berry phase [5] associated with the loop n(y) on a sphere. Indeed, the parallel transport of
a tangent vector on the unit sphere along the loop n(y) rotates the vector by the angle equal
to the area enclosed by n(y). The Berry phase appears in the related quantum-mechanical
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phenomenon: the state of the spin with the projection s along the magnetic field acquires a
phase factor eisϕB when the direction of the slowly changing magnetic field makes one turn
of the loop n(y).

Finally we note that the purely topological nature of driving, i.e., dF = 0, in the con-
tinuous field-theory limit of the considered model can be violated by a regularization, rep-
resented by a (finite) 2N -dimensional system of N classical spins, arranged in a circular
chain. Therefore, there is a question of how (and if at all possible) to regularize the sec-
ond term in the expression for the driving force (11) to preserve the topological nature of
driving on the regularized level. This can be achieved by implementing an approach based
on (55). To define the topological term we note that in the thermodynamic limit N → ∞,
the values of the neighboring spins are close, i.e., |nj+1 − nj | � 1 and, therefore, we can
uniquely connect nj to nj+1 with geodesic lines. This results in a piece-wise smooth loop
ñ(y) with the desired topological potential uϕB(ñ). We provide some mathematical details
of the regularization in Appendix A.

5.2 Instantons and Tubular Neighborhoods

This subsection contains a preliminary discussion of our strategy in dealing with the prob-
lem of weak noise. The approach consists in reducing our original model to an effective
stochastic model on a circle, where the new reduced variable is the re-parameterized Berry
phase θ(x) ∈ S1:

ϕB(n) = 2π(1 − cos(θ/2)). (57)

The representation in (57) is possible and useful due to the instanton (optimal fluctua-
tion) character of the current generation in this weak noise limit considered here. Then, a
typical configuration is a closed loop on the sphere S2 (also referred to, here and later on,
as a “string”) that is almost shrunk to a point performing a diffusive random walk over S2

However, this typical diffusive meandering does not generate a current. Instead, the current
is generated by rare events naturally occurring along the instanton trajectories illustrated in
Fig. 1. The instanton trajectory is an optimal fluctuation as it has the highest probability
(i.e., minimizes the Onsager-Machlup action) among the trajectories resulting in the tran-
sition. An instanton trajectory starts with a string, originally shrunk to a point, opening up
into a “plane” circle configuration and then shrinking back to a point at the opposite end
on the sphere. Such a fast and rare process generates a full cycle in the space of the re-
parameterized Berry phase θ .

The first step of our computational strategy, detailed in the next subsection, consists in
adopting the instanton approximation to evaluation of the current density J . The approxi-
mation means that the non-equilibrium current density J obtained from (41)–(43) is con-
centrated in the narrow tubes near the configurations passed by the optimal fluctuation tra-
jectories, i.e., the configurations x represented by “plane” circles embedded into S2. The
concept of tubes where the current density is localized was used, for example, in Refs. [11,
12, 24, 25, 39, 43, 57].

Let M0 ⊂ M be the subspace of these configurations. We refer to this as the space of
instanton configurations. For example, all four configurations shown in Fig. 1 belong to the
instanton space M0. The instanton space M0 has a simple structure that allows parametriza-
tion for the instanton as well as for a small neighborhood Ucurr ⊃ M0 where the current is
generated. First of all with a minimal abuse of notation we denote by ∂M0 ⊂ M0 the set of
configurations x ∈ M0 with θ(x) = 0, i.e., constant loops x(y) = n, parameterized by their
positions n ∈ S2 on the target sphere. Obviously, ∂M0

∼= S2. Since ∂M0 ⊂ M is a compact
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manifold embedded into the configuration space, it has a standard small tubular neighbor-
hood U0 ⊃ ∂M0, whose points (n, ξ) ∈ U0 are parameterized by the position n on the sphere
and the set ξ of transverse variables. We further show that M0 \∂M0

∼= SO(3)× (0,2π) is an
embedded 4-dimensional non-compact manifold, thus having a small tubular neighborhood
U ⊃ M0 \ ∂M0. This view suggests the following reparameterization of a “plane” circle
x : S1 → S2. Let e3 be a unit vector, orthogonal to the circle plane, with the direction deter-
mined by the loop orientation, e.g., by ∂yx(0). We denote by e1 a unit vector in the direction
from the circle center to its origin x(0), and set e2 = [e3, e1]. Then the oriented orthonormal
basis set (e1, e2, e3) represents an element g ∈ SO(3) of the orthogonal group. The fourth
coordinate of x is its Berry phase θ(x) ∈ (0,2π). The points of the corresponding tubu-
lar neighborhood are parameterized by (g, θ, ζ ) with ζ representing the set of transverse
variables. Obviously, Ucurr = U0 ∪ U covers the instanton space M0.

The aforementioned coordinate representation in the tubular neighborhood U has the
following explicit representation

n(y) = sin(θ/2) cosye1 − sin(θ/2) sinye2 + cos(θ/2)e3 +
∑

j

∑
a

ζjψ
a
j (y; θ)ea, (58)

where ζ = (ζj |j = 1,2, . . .) is the transverse deviation expanded in the transverse modes
with the components ψa

j (y) that generally is parametrically dependent on the Berry phase
θ . For a regularized version j = 1, . . . ,2N − 4. We further note that since 0 < θ < 2π in
the region U , this region does not contain nontrivial 1-cycles. Therefore, the multi-valued
potential VWZ restricted to U can be represented by a single-valued function, which can be
expanded in the transverse variables as

VWZ(x) = V0(θ) + W(θ)(ζ ⊗ ζ )/2, V0(θ) = (π/2)(−v cos θ + 4u cos(θ/2)), (59)

where W(θ) is represented by a symmetric matrix with the matrix elements Wij (θ).
The most important for us is the θ -component of the force directed along the instanton

trajectory

F0(θ) = −∂θV0(θ) = (π/2)(−v sin θ + u
√

2(1 − cos θ)). (60)

One observes that the effective potential V0(θ) has two stationary points, θ = 0 and θ = θ0

where F0(0) = F0(θ0) = 0. The unstable point

θ0 = 2 arccos(u/v) (61)

is characterized by

k0 ≡ ∂θF0(θ0) = (π/2)v
(
1 − u2/v2

)
> 0. (62)

The stable point θ = 0 can be approached along two directions corresponding to different
loop orientations. In terms of θ ∈ (0,2π) they correspond to θ → +0 and θ → 2π − 0;
in both cases ∂θF0 < 0. These two stationary points correspond to saddle-point (θ = θ0)
and equilibrium (θ = 0) string configurations. The main instanton approximation, valid in
the low-noise limit, means that only special instanton configurations, parameterized by θ

and possibly accounting for some small fluctuations (these from a small neighborhood U ⊃
M0 \ ∂M0), will be relevant to the discussion below.

We will make some additional (to the basic instanton approximation) assumptions lim-
iting the domain of validity but also adding a required extra tractability in exchange. In the
following we will discuss separately: (a) The so-called WKB approximation that ignores the
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Fig. 3 (Color online) Illustration
of the V0(θ) profile. Defined on
the [0,2π ] span the potential is
multi-valued. The bars show the
overlapping harmonic (short,
blue) and WKB (long, green)
domains

terms associated with second-order derivatives over θ in comparison with the corresponding
first- and zero-order terms. The WKB approximation is valid in the WKB domain where
θ is sufficiently far away from the equilibrium and saddle points: θ,2π − θ � √

κ/k and
|θ − θ0| � √

κ/k0, respectively. The WKB region naturally splits into two sub-domains,
0 � θ � θ0 and θ0 � θ � 2π . (b) The harmonic/linear-force approximation is valid in a rel-
atively small vicinity of the saddle-point, |θ − θ0| � 1, referred to as the harmonic region,
where one can use the linear approximation for the force, F0(θ) ≈ k0(θ − θ0). Similar to
the WKB treatment in quantum mechanics, the WKB and harmonic regions do overlap. See
Fig. 3 for illustration. The concrete form of the instanton for the spin-chain model in the
harmonic and WKB domains will be derived (and matched) in Sect. 5.3 and Appendix B.
Finally we note that, as will be demonstrated in Sect. 5.3, detailed analysis in the harmonic
region of the stable point θ = 0 can be avoided.

5.3 Derivation of the Cramér Function

In this subsection we apply the strategy, outlined in Sect. 4.3, to the spin-chain model con-
sidered in the weak-noise limit also requiring that the topological currents are not too strong.
As outlined in Sect. 4.3, the vector potential A is characterized by the topological parame-
ters given by (47). As demonstrated in Appendix A, for the spin-chain model H1(M) ∼= Z,
i.e., there is only one topologically independent cycle s, which can be chosen to be restricted
to the instanton space M0. The cycle s for such a choice is the one illustrated in Fig. 1 and
corresponds to just a change of θ from 0 to 2π . The dual cycle α of codimension 1 can be
chosen to be determined by the condition θ(x) = θ0, so that s and α intersect at the saddle
point. The topological current for our model is single-component and will be denoted by ω.
The topological parameter is also single-component,

Z = exp

(
κ−1

∫
s

Ai(x)dxi

)
. (63)

The four-step procedure for calculating S(ω) in the relevant for our application case
dF = 0 of the topological driving, was outlined in Sect. 4.3. Implementation of this pro-
cedure to the spin-chain model in the low-noise limit is facilitated by the following model-
specific assumptions for the A, J , and ρ functions which can be verified directly once the
solution, based on these assumptions, is found:

(a) The vector potential A is essentially nonzero only within the sub-domain |θ − θ0| �√
κ/k0, which is contained in the harmonic region of the saddle point. In this domain

A does not depend on the transverse variable ζ , and its only substantially non-zero
component, Aθ , is along the θ variable.
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(b) The eigenvalue λ is exponentially small and can be neglected in (49) everywhere except
for a small vicinity of the equilibrium point θ = 0. In this sub-domain A is so small that
it can be totally neglected. Moreover in the entire WKB region A is still small enough,
so that the nonlinear term A2 in (49) can also be neglected.

(c) The main contribution to the integral for S(ω) in (52) comes from the |θ − θ0| � √
κ/k0

domain.
(d) The current density J is concentrated in a small tubular neighborhood of the instanton

space M0, whose transverse size scales ∼ √
κ with the noise value. In the WKB and

saddle-point harmonic regions the longitudinal component of J has a Gaussian depen-
dence on ζ

Jθ = J0(θ)e−κ−1σ(θ)(ζ⊗ζ ). (64)

In the harmonic region of the saddle point this is the only non-zero component of J ,
and σ(θ) ≈ W(θ0).

(e) The density distribution ρ is concentrated near the equilibrium θ = 0, where rare events
generating the current can be neglected:

ρ(x) ≈ ρ0e
−2κ−1VWZ(x). (65)

The features of A, J , and ρ, listed above, are generic for a topologically driven system in
the low-noise limit. SO(3) symmetry is an important special feature of our model. Therefore,
the critical points are represented by isolated orbits of SO(3) rather than isolated points.
Discussing “the” equilibrium θ = 0 and “the” saddle θ = θ0 points in our model, what we
actually mean is that we have two isolated orbits of SO(3) which represent the equilibrium
and saddle points, respectively. These orbits are given by SO(3)/SO(2) ∼= S2 and SO(3),
respectively. The symmetry gives rise to zero modes, which substantially complicates a
straightforward path-integral calculation in the instanton approximation, especially due to
the different numbers, 2 and 3, of zero modes at the equilibrium θ = 0 an transition θ = θ0

configurations, respectively.
In our approach, the zero modes are allowed for automatically in a very simple way in

the form of the volumes of the relevant orbits S2 and SO(3) for the equilibrium and saddle
configurations, respectively.6

Properties (a)–(e) listed above allow us to ease computation of the Cramér function S(ω)

essentially and in particular bypass complications associated with detailed resolution of the
WKB domain. Therefore, in this subsection we will rely on these properties, presenting
justification details related to WKB calculations, as well as some technical details on the
determinant calculations, in Appendix B.7

6Our spin-chain model is degenerate and thus special, in what concerns the number of stable points (only
one) and number of zero modes at the stable and unstable fixed points. In a generic system the number of
the equilibrium and saddle points can be arbitrary. Moreover, the instanton manifold is 1-dimensional. An
instanton trajectory from the manifold starts at a stable point ascends to a saddle point and consequently
descends following an unstable direction to another stable point. Therefore, M0 in general can be viewed as
a graph of instanton transitions. Using the four-step strategy, outlined in Sect. 4.3, the problem of finding the
Cramér function of ω can be reduced to a Markov chain model on the graph that represents the instanton
space M0. This general approach, allowing to reduce a non-equilibrium field-theory problem in the weak
noise limit to a Markov chain model with states associated with stable fixed points of the classical dynamics,
will be addressed in a separate publication.
7Note also that the shape of the current density distribution J derived in Appendix B provides with some
useful information on the processes that generate the current.
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The material in the remaining part of the subsection is split into paragraphs according to
the four-step strategy described in Sect. 4.3.

5.3.1 Step (i): Identifying the vector potential

In this subsection we implement step (i). In the harmonic region |θ − θ0| � 1, according to
property (a), the vector potential A is described by the only non-zero component Aθ that
depends on θ only. We seek a solution in the representation of (44) with ρ−(θ) depending
on θ only. According to property (b) we set λ = 0 in (45). Making use of (46) we arrive at
the following homogeneous linear equation:

(κ/2)∂2
θ ρ− + F0(θ)∂θρ− = 0, (66)

whose general solution can be expressed in terms of the error function erf(z) = 2π−1/2 ×∫ z

0 ds exp(−s2):

ρ−(θ)/ρ−(θ0) = 1 + c erf
(√

k0/κ(θ − θ0)
)

. (67)

This results in the following expression for the θ -component of the vector potential:

Aθ = −√
4κk0/π

c exp(−k0(θ − θ0)
2/κ)

1 + c erf(
√

k0/κ(θ − θ0))
. (68)

To determine the constant c we recast (63) as Z = exp(
∫ 2π

0 dθAθ/κ), which results in

c = (1 − Z)/(1 + Z). (69)

Equation (68) shows that A peaks near θ0 and decays in a Gaussian fashion as θ moves away
from θ0. The solution presented in Appendix B.1 shows that the rapid decay continues with
θ moving even further away from θ0 inside the WKB domain.

5.3.2 Steps (ii) and (iii): Identifying the Current-Density and Density Distributions

The current density J does not have any special structure in the harmonic region in contrast
to the distributions A and ρ. Therefore, on the step (ii), the solution of (50) for J near the
saddle point can be extrapolated from the WKB region (see Appendix B.2).

Step (iii) starts with solving the first equation in (51). This is an easy task, since (51),
being restricted to any 1-dimensional subspace, becomes a linear first-order ordinary differ-
ential equation with a right hand side. On the cycle s that belongs to the instanton space, the
density ρ is represented by a function �(θ), and the linear equation adopts a form

(κ/2)∂θ�(θ) − (F0(θ) − Aθ(θ))�(θ) = Jθ (θ), �(0) = �(2π) = ρ0. (70)

The 1-dimensional linear boundary problem, defined for 0 ≤ θ ≤ 2π and represented
by (70), can be solved in a standard way [39] by using a representation

�(θ) = q(θ) exp
(
−2κ−1Ṽ (θ)

)
,

Ṽ (θ) = V0(θ) +
∫ θ

0
Aθ(θ

′)dθ ′ =
∫ θ

0
(Aθ (θ

′) − F0(θ
′))dθ ′.

(71)
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Substituting (71) into (70) one arrives at

∂θq = −(2/κ)Jθe
2κ−1Ṽ (θ), q(0) = ρ0,

q(2π) = ρ0 exp

(
2κ−1

∫ 2π

0
dθ(Aθ(θ) − F0(θ))

)
= ρ0Z

2eS+−S− ,

(72)

where we have introduced the barriers

S+ = −2κ−1
∫ θ0

0
dθF0(θ), S− = 2κ−1

∫ 2π

θ0

dθF0(θ). (73)

Close to the saddle-point configuration, q depends only on θ , and the only substantially
nonzero component of the current density J is

Jθ (x) = J0e
−κ−1σζ⊗ζ , (74)

where σ = W(θ0) and J0 is constant on the length scale
√

κ/k0, according to the prop-
erty (d).

Integration of (72) results in

q(θ) = ρ0 − 2

κ
J0e

S+
∫ θ

0
dτ exp

(
−k0(τ − θ0)

2/κ + (2/κ)

∫ τ

0
dτ ′Aθ(τ

′)
)

, (75)

which translates with the help of (68) into

q(θ) = ρ0 − √
π/(κk0)J0e

S+ 1 − c

c
+ √

π/(κk0)J0e
S+ (1 − c)2

c(1 + c erf(
√

k0/κ(θ − θ0)))
, (76)

where c = (1 − Z)/(1 + Z). One observes from (76) that q(θ) is localized at |θ − θ0| �√
κ/k0, thus justifying the approximations used so far to evaluate Aθ and Jθ . Setting θ = 2π

in (76) and applying the boundary condition from (72), one expresses J0 in terms of Z and
ρ0:

J0 = ρ0

√
κk0/(4π)(Z−1e−S+ − Ze−S−). (77)

To complete the major step (iii) we apply the normalization condition, given by the sec-
ond relation in (51), to find the normalization constant ρ0. We consider the neighborhood
U0 represented by the most probable configurations that are close to constant loops. Stated
differently, the density given by (65) is concentrated in the harmonic region of the stable
point and hence adopts a form:

ρ(x) = ρ(n, ξ) = ρ0e
−κ−1γij ξ i ξj

, (78)

where n ∈ S2 is the center of a small loop, and the matrix γ determines a harmonic expan-
sion of VWZ(x) in terms of nonzero modes ξ . Then the normalization condition becomes

∫
S2

dμ(n)

∫
Dξρ(n, ξ) = 1, (79)

thus leading to the following value of ρ0 (see Appendix B.3 for more details):

ρ0 = (1/4)
√

detγ (πN)−Nκ1−N . (80)
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Note that due to the symmetry of the model dμ(n) is an SO(3)-invariant measure on the
sphere, defined up to a multiplicative factor. This factor has been identified in a standard
way by considering the two zero modes on the sphere (see Appendix B.3 for some detail).
The determinant detγ includes (2N − 2) positive eigenvalues of the discretized operator γ .

5.3.3 Step (iv): Finding the Cramér Function for the Topological Current

Step (iv) starts with evaluating the integral (52) for the Cramér function S in terms of Z.
According to the property (d) the integral acquires its major contribution from the vicinity
of the saddle-point configuration. Indeed, the integrand decays as ∝ exp((2/κ)V0(θ)) with
θ deviating from θ0 inside the WKB domains, where (68), (69), (71) and (76) can be used.
The dependence of ρ on the transverse variables in the relevant region is given by ρ(x) =
�(θ) exp(−κ−1σζ ⊗ ζ ) with σ = W(θ0), which follows from (51) applied in the transverse
direction as well as from the asymptotic absence of the transverse components of A and J

in the relevant region.
Thus, we obtain the following expression for the Cramér function:

S = (2κ)−1
∫

SO(3)

dμθ0(g)

∫
Dζe−κ−1σζ⊗ζ

∫ 2π

0
dθA2

θ (θ)�(θ). (81)

The integral over θ can be calculated similarly to that in (75) whereas the calculation of the
other integrals is presented in Appendix B.3:

S = ϑ0N
N(πκ)N−2/

√
detσ

(
−J0 lnZ + √

κk0/πρ0(1 − Z)(Ze−S− − e−S+)/(2Z)
)

.

(82)
The integral over the space SO(3) of the zero modes is computed explicitly:

ϑ0 =
∫

SO(3)

dμθ0(g) = 2π2(1 + u2/v2)
√

1 − u2/v2, (83)

where the invariant measure dμθ0(g) in SO(3), taking into account three zero modes pro-
duced by infinitesimal changes of g, requires careful evaluation of the multiplicative factor.
This is performed in a standard way by considering the scalar products of these modes (see
Appendix B.3 for some detail).

To conclude the step (iv) we need to relate the topological current ω to the topological
parameter Z by applying the second relation in (52). Let us reiterate that we have chosen
the cycle α by the condition θ(x) = θ0, so that we have for the current

ω = ω ∗ [α] =
∫

α

J =
∫

θ(x)=θ0

dxJθ (x), (84)

which results in

ω = J0ϑ0

∫
Dζe−κ−1σζ⊗ζ . (85)

After calculating the Gaussian integral in (85) over (2N − 4) modes ζ with positive
eigenvalues at the saddle point (cf. (81)), one derives

ω = J0ϑ0N
N(πκ)N−2/

√
detσ . (86)
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We combine (80), (77) and (86) to get the topological current in terms of Z:

ω = ϑ0/(4π2κ)
√

detγ /detσ
√

κk0/(4π)(Z−1e−S+ − Ze−S−). (87)

This equation has a form

ω = Z−1κ+ − Zκ−, (88)

where the newly introduced quantities

κ± = ϑ0/(4π2κ)
√

detγ /detσ
√

κk0/(4π)e−S± (89)

can be interpreted as the transition rates in the auxiliary Markov chain model discussed
in detail in Sect. 5.3.4. The stationary current can be obtained by setting Z = 1. The final
expression of Z via ω follows from (88) (the choice of the root is related to the model
equivalence discussed in Appendix C):

Z =
√

ω2 + 4κ+κ− − ω

2κ−
. (90)

5.3.4 Final Expressions and Two-Channel Single-State Markov Chain

We complete the derivation of the Cramér function by providing the relation to the parame-
ters of the spin-chain model v and u. The ratio of the determinants can be calculated in the
limit N � 1 (see Appendix B.3 for details):

√
detγ /detσ = π−2v4u−1(v4 − u4)−1 sin(πu/v). (91)

The final expression for the Cramér function is

S = −ω ln

√
ω2 + 4κ+κ− − ω

2κ−
−

√
ω2 + 4κ+κ− + κ+ + κ−, (92)

where κ± are expressed through v and u with the help of (62), (83), (89), and (91), whereas
the barriers are

S± = 2π(v ∓ u)2/(κv). (93)

Now we can demonstrate the equivalence of the spin-chain model to the simple Markov
chain model, shown in Fig. 4 and described in Appendix C, and justify that λ can be ne-
glected in the above solution. Using the properties of the distributions J (x) and A(x), we
can rewrite the first representation of the Cramér function in (53) as

S = −ω lnZ − λ. (94)

The eigenvalue λ can be calculated by comparing the two representations of the Cramér
function:

λ = Z−1κ+ + Zκ− − (κ+ + κ−), (95)

Fig. 4 Two-channel single-state
Markov chain
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or in terms of ω,

λ =
√

ω2 + 4κ+κ− − κ+ − κ−. (96)

The equivalence of the spin-chain model at moderate topological currents to the two-channel
single-state Markov chain model is, in particular, obvious from the forms of (90), (94),
and (95).

We see that λ can indeed be neglected if the total current is not exponentially larger than
the equilibrium current.

6 Summary and Conclusions

Let us briefly summarize main steps, results of the general approach and the model discussed
in the manuscript.

We have developed here a topological picture of generated stochastic currents, where
each current component is associated with a topologically nontrivial 1-cycle in the system
configuration space, so that the current ω ∈ H1(M;R) resides in the first homology of the
configuration space with real coefficients. The current, defined in a topological way as the
set of number of rotations over the independent cycles per unit time, is related to the cur-
rent density J via the Poincaré duality H1(M;R) ∼= Hm−1(M;R), where the cohomology
is considered in the de Rahm representation. (See. e.g., [32] for review of the de Rahm
cohomology.) By considering the current density J as a closed form of rank (m − 1), the
current is viewed ω = [J ] as its cohomology class. This allows the Cramér function S(ω)

of the long-time current distribution to be calculated by applying the variational principle
to the current-density functional S(J , ρ). The explicit form of S(J , ρ) together with the
variational principle and an intuitive path-integral base derivation is also presented in the
manuscript.

We further focused on the case of topological driving, when the driving force is locally
potential, dF = 0. Even though the system may not be represented by a potential function
due to presence of topologically nontrivial cycles, it still allows description in terms of
a multi-valued potential F = −dVWZ , referred to as a Wess-Zumino potential, due to it
close resemblance with multi-valued Wess-Zumino actions well known in quantum field
theory. By applying the variational principle to the calculation of the Cramér function S(ω)

we derived a system of equations for ρ, J , and A, the latter being an auxiliary curvature-
free (dA = 0) gauge field. We also developed a procedure of solving the aforementioned
equations step-by-step, resulting in the well defined algorithm for calculating the Cramér
function S(ω) of the topological current.

To illustrate the general approach we considered a circular spin-chain stochastic model
with topological driving that constitutes a regularized version of a (1 + 1) stochastic field
theory. The model represents Langevin dynamics of an elastic string evolving over a two-
dimensional sphere S2. Despite of its high intrinsic dimensionality the problem appears
tractable as it has only one independent topologically nontrivial cycle, H1(M;R) ∼= R,
which reflects the well-known result on the homology of the loop spaces of spheres. In
the low-noise limit we have solved aforementioned variational equations for ρ, J , and A

explicitly. The solvability became possible via proper use of the rare-event, instanton analy-
sis of the current generation. Moreover, the actual calculations are streamlined even further,
as in fact we do not perform the path-integral calculations around the instanton solutions
explicitly, but rather use the instanton scenario to build an asymptotically exact ansatz for
(ρ,J ,A). This useful technical trick allows us to solve the equations (in the proper low
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noise and large deviation limit) analytically. In particular, we have found that the current
density J , generating the topological current ω, is concentrated in a small tubular neigh-
borhood of the finite-dimensional space M0 ⊂ M of instanton configuration, and it shows
a Gaussian dependence on the set ζ of the transverse variables. Technically, this approach
can be viewed as an extension of the equilibrium techniques based on current tubes [11,
12, 24, 25, 39, 43, 57] to the non-equilibrium problem of evaluating the Cramér functions
of generated stochastic currents. It is instructive to note that, although the relevant distrib-
utions are concentrated in a small tubular neighborhood of the whole instanton space M0,
the calculation of S(ω) requires careful consideration of a small neighborhood of the saddle
point (transition state) only. This reflects the fact that, during a rare event that contributes to
the current generation, the system spends most of the time around the saddle point, being
thrown there by a strong fluctuation of noise and waiting for a small extra kick that starts its
unavoidable fall-down back to the steady state. Most of the time the spin-chain is involved
in a “boring”, i.e. typical, diffusive meandering along the sphere, thus waiting (almost for-
ever) for the next instanton jump/transition. This scenario allows us to reduce the complex
stochastic field theory to a simple Markov chain model.

This asymptotic (low-noise, instanton) reduction of a continuous stochastic system to
a simple Markov chain model in the case of moderate non-equilibrium currents is quite
a general result. In the case of a purely potential force F = −dV it is connected to the
topological properties of the potential and closely related to the Morse theory [34]. A con-
nection between the Morse theory and instantons was established in [61], where a super-
symmetric imaginary-time quantum mechanics has been introduced with the effective po-
tential Veff = (dV )2. In the semiclassical limit � → 0 the instanton approach has been im-
plemented to evaluate the effects of tunneling between the metastable states, thus allowing
us to distinguish between the true zero modes, which contribute to the de Rahm cohomol-
ogy [32, 44] and hence describe the topological invariants of the configuration space, and
just soft modes with exponentially vanishing eigenvalues in the � → 0 limit. This approach
is known as the Morse-Witten (MW) theory [61]. It is well known [37] that a simple gauge
transformation turns the Fokker-Planck (FP) operator into the Schrödinger operator in the
potential Veff, with �

2 representing the temperature in the FP theory. Within this equivalence
the instantons have the same shape, although in the FP picture they play the role of optimal
fluctuations that minimize the Onsager-Machlup action for rare stochastic transitions be-
tween the metastable states. The eigenvalues of the soft modes, describing tunneling in the
MW theory, attain a true physical meaning in the FP picture, since they represent the slow-
est relaxation rates, which are due to rare over-the-barrier transitions. Such an approach has
been utilized by Tanase-Nicola and Kurchan [57] who studied a supper-symmetric FP the-
ory that extends the standard FP dynamics in the same way as the super-symmetric quantum
mechanics extends standard quantum mechanics.

At this point we note that the standard Morse theory describes the case of a purely po-
tential force, whereas for our spin-chain model the force dF = 0 is only locally potential.
The topological counterpart of stochastic dynamics in this situation is known as the Morse-
Novikov (MN) theory that has demonstrated its capabilities to study topological properties
of the underlying configuration space [47]. It is worth noting that in the continuous limit
the multi-valued potential VWZ(n) of our spin-chain describes the multi-valued action of a
free particle moving along the sphere S2 in a magnetic field of a constant curvature. If the
particle motion is affected additionally to the magnetic field by a non-zero potential, the
problem, which can be mapped onto the Kirchhoff equations, can be handled using the MN
theory [47]. In a generic situation the instanton space M0 is one-dimensional and is repre-
sented by the unstable spaces of the isolated critical points of Morse index 1 (one unstable
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mode). The spin-chain model, considered in this manuscript, whose continuous limit cor-
responds to the Kirchhoff problem with the zero potential, is degenerate due to its intrinsic
SO(3) symmetry, restored when the potential vanishes. In terms of the Morse theory this
degeneracy means that the critical points, which are isolated in the case of standard Morse
(including MN) theory are replaced by isolated critical manifolds associated with the orbits
of the underlying symmetry group, SO(3) in our case. Such a situation, in the potential force
case is described by the so-called equivariant Morse-Bott (MB) theory [10]. Therefore, the
topological counterpart of the low-noise stochastic dynamics for our spin-chain model can
be referred to as a case of the equivariant Morse-Bott-Novikov (MBN) theory. Stated in
the stochastic dynamics terms, the instanton space is represented by a 1-dimensional family
of the SO(3) orbits, actually SO(3) itself, almost everywhere. Then only the stable points
(constant loops) are represented by an orbit from S2 ∼= SO(3)/SO(2). However, and in spite
of this degeneracy, we have just showed that this collapse of the orbits at the stable critical
points is not an obstruction for the general Cramér function calculations. Let us also empha-
size that even though traditionally the standard (equivariant) Morse theory was developed
primarily for the case of a potential force, we found out that in fact it can be efficiently
used in the stochastic dynamics aspect in the case of moderate topological driving, when
the Morse function is multi-valued. As we just demonstrated on the example of the non-
equilibrium spin-chain, moderate character of the driving does not change the topological
structure of the critical and instanton manifolds in comparison with the pure potential case.

In a generic non-equivariant case with moderate topological driving one could expect a
full reduction of the low-noise stochastic dynamics to a Markov chain process on a graph
whose nodes and links represent the critical points of Morse index 0 and the unstable mani-
folds of the critical points of Morse index one, respectively. This is really the case when the
potential function satisfies the Morse-Smale (MS) condition [34], which would be a generic
situation. If the MS condition is not satisfied (which is some kind of degeneracy) the stochas-
tic dynamics of the current generation can show some additional interesting features, which
are yet to be analyzed. In the case dF 	= 0 of intrinsically non-potential force, whose topo-
logical counterpart is represented by Morse decompositions in the Conley index theory [17],
stochastic dynamics can be extremely complicated, with the critical spaces, represented by
neither isolated points nor even isolated manifolds but rather some closed sets, possibly of
fractal nature. Even in the simplest non-equivariant case of isolated critical points, the situ-
ation is much more complicated (than in the equivariant case), yet apparently treatable. The
difficulty is that transitions between different isolated states of the effective Markov chain
become direction-dependent, since as opposed to the potential and locally-potential cases
(with isolated critical points) the instanton trajectories that correspond to climbing the bar-
rier and falling down the barrier are different. The problem of computing the pre-exponential
factors in this case also becomes much more involved and less universal.

Let us also stress that in the v = 0 case the Onsager-Machlup action of the spin-chain
model in the thermodynamic field theoretic limit, N → ∞, reproduces the action of a (1+1)

sigma-model with the topological term. However, in the regularized model (finite N ) the
relative fluctuations in the v = 0 case are strong, so that nj+1 is typically not close to nj .
The corresponding string on the sphere is not continuous, which can be viewed as the main
reason for complexity of the sigma-model, considered as a field theory. The elastic term
proportional to v suppresses the relative fluctuations in such a dramatic way that statistically
nj+1 and nj are always close to each other. Therefore, the configurations can be viewed
as continuous loops in S2 even for a finite large N , which creates a topologically nontriv-
ial cycle. This interesting peculiarity of the problem gives rise to generation of the single
component stochastic current. We also note that since in the v 	= 0 case and N → ∞ the
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result is finite, the elastic term in the case of small v can be interpreted as a regularization of
the sigma-model based stochastic field theory suppressing the short-range fluctuations and
eliminating divergences.

The methodology for the LDP of empirical currents, developed in this manuscript, is
closely related to the FP approach to MW theory developed by Tanase-Nicola and Kur-
chan [57]. In a way, this methodology can be interpreted as an extension of the approach
of [57] to the locally potential driving case dF = 0, implemented in low-dimensional 0- and
1-fermion sectors that correspond to the density and current density distributions, respec-
tively, and applied to large-time statistics of empirical currents. Thus, we believe that our
weak noise analysis of currents in the problems with topological driving can be restated in
super-symmetric terms of [57]. Testing this conjecture remains a future challenge. It would
also be interesting to extend the above relation to higher dimensions, e.g., by treating dif-
fusion in n-fermion sector as noisy dynamics of n-dimensional chains that produces higher
dimensional currents, residing in Hn+1(M;R). Based on the presented in the manuscript
low-dimensional results, it appears that the low-noise limit of the Cramér functions of the
empirical currents (including the higher-dimensional counterparts) contains detailed infor-
mation on the Morse decomposition of the underlying space M .

Finally, we have considered the simplest stochastic (1 + 1) sigma model with the tar-
get space represented by S2 ∼= CP

1. A simple topological computation demonstrates that a
generalization based on the target spaces CP

n with n > 1 still provide a single component
topological current. The simplest generalization resulting in the multi-component topolog-
ical currents ω requires the target space to be a complex flag space [32, 44]. The Cramér
function S(ω) can be computed in such cases straightforwardly and without any significant
complications, by using the methodology explained above.
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Appendix A: Topological Structure of the Configuration Space

In this appendix we discuss mathematical formulations for the spin chain regularization
introduced in Sect. 5.1 in a somewhat lighter, more physical terms.

Let us first introduce a simple and useful representation of the first homotopy and homol-
ogy groups of the relevant configuration space Map(S1, S2) of maps from the base space
S1 to S2. To regularize our statistical field theory we should consider the spaces of maps
S1 → S2, with various degrees of smoothness. Ultimately, we are interested in random maps
(non-smooth) whose topological properties can be approximated using well-behaved (con-
tinuous) maps.

The spaces of smooth and piece-wise smooth maps from S1 to S2 are denoted by
Map∞(S1, S2) and Map∞

p (S1, S2), respectively. The topology of these map spaces is de-
fined in a standard way. To analyze proper discretizations of the spaces of smooth maps, we
represent the circle S1 by a cyclic lattice j = 0, . . . ,N − 1, approximate a map n(y) by a set
of points nj , and introduce ε = 2π/N . Finally, we define a set of approximations LN,ε0S

2

for the space Map(S1, S2) by

LN,ε0S
2 = {

n ∈ (S2)×N |1 − nj+1 · nj < ε0,∀j = 0, . . . ,N − 1
}
. (A.1)
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The elements of LN,ε0S
2 are represented by N -tuples of points in S2 such that the neighbor-

ing points are sufficiently close to each other. For not too large ε0, e.g., for ε0 < 1/3, we can
define a continuous map LN,ε0S

2 → Map(S1, S2) by connecting the neighboring points nj ,
nj+1 with geodesic lines.

This map generates homomorphisms between the homotopy, homology, and cohomol-
ogy groups, respectively, for all the three spaces of maps. It is possible to show that if an
approximation is accurate enough, the relevant topological properties of the approximations
LN,ε0S

2 are identical to these of the original space Map(S1, S2).
To identify a very simple and intuitive picture of the topological current generation in

our field theory, we define continuous maps θ : M → S1 for M = Map∞(S1, S2), M =
Map∞

p (S1, S2), and M = LN,ε0S
2 by associating with any loop from M its Berry phase

defined as the holonomy along x ∈ M , also understood as x : S1 → S2.
Introducing a map from eiϕB/2 ∈ U(1) to θ ∈ [0,2π] → S1 and combining it with the

maps defined above, we arrive at the continuous maps θ : M → S1 for M = Map∞(S1, S2),
M = Map∞

p (S1, S2), and M = LN,ε0S
2. In all three cases the morphisms π1(M) →

π1(S
1) ∼= Z and H1(M) → H1(S

1) ∼= Z generated in the homotopy π1 and homology H1

groups, respectively, are isomorphisms. All this implies that the current generation can be
observed by monitoring the reduced variable θ(x) ∈ S1 and counting the windings around
the circle.

Appendix B: Derivation of the Cramér Function for the Spin-Chain Model: Details

In this appendix we present some details of the Cramér function S(ω) derivation for the
spin-chain model.

B.1 Vector potential in the WKB region

In the WKB region we set λ = 0 and neglect the nonlinear term in (49), which turns it into

(κ/2)d†A + F · A = 0, dA = 0. (B.1)

Since the WKB region does not contain topologically nontrivial 1-cycles, (B.1) can be recast
in the following form:

L†ψ− = 0, A = dψ− = ∂ψ−. (B.2)

We seek the solution of this equation in the following form

ψ−(x) = ψ(x)e2κ−1VWZ(x), ψ(x) = ψ0(θ)e−κ−1σ(θ)(ζ⊗ζ ), Lψ(x) = 0, (B.3)

or, equivalently,

ψ−(x) = ψ0(θ)e2κ−1V0(θ)−κ−1σ−(θ)(ζ⊗ζ ), σ−(θ) = σ(θ) − W(θ). (B.4)

We further substitute ψ(x) given by (B.3) in the equation Lψ(x) = 0, retain only the leading
terms in κ , and keep in mind that typically |ζ | ∼ √

κ . Overall this results in the following
system of equations:

−∂θ (F0ψ0) − ψ0 Tr(σ − W) = 0, − F0∇θσ = 2σ 2 − Wσ − σW. (B.5)
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Combining the two equations in (B.5) one derives

∂θ (F0ψ0/
√

detσ) = 0, − F0∇θσ = 2σ 2 − Wσ − σW. (B.6)

The second equation in (B.6) is nonlinear, and thus intractable, if the matrix is large.
However, one can still show that this equation does have a solution with the following im-
portant property, σ(θ) = W(θ) for θ = 0, θ0, 2π . To demonstrate this property one refers to
a dynamical equations with respect to some proper time τ

θ̇ = F0(θ), σ̇ = −2σ 2 + σW(θ) + W(θ)σ, θ̇ ≡ ∂τ θ, σ̇ ≡ ∇τ σ. (B.7)

This dynamical system has three critical points (θ,W(θ)) with θ = 0, θ0, 2π , where θ = 0,
2π correspond to stable critical points, while θ = θ0 describes an unstable critical point
(∂θF0(θ0) > 0). Therefore, finding a solution with the desired properties is equivalent to
identifying two solutions of (B.7) which start at the unstable point and reach the two stable
points in infinite time. Generally such trajectories do exist. For our spin-chain model it
can be demonstrated in a straightforward manner, e.g., by using the angular-momentum
representation for the transverse modes ψa

j (y; θ) entering (58).
The first equation in (B.6) can be easily solved:

ψ0(θ) = C
√

detσ(θ)/F0(θ), (B.8)

thus immediately providing expressions for Aθ , via (B.2) and (B.4). Therefore, the WKB
solution for Aθ that matches with the harmonic solution (68) within the domains where both
apply, has the following form in the two distinct sub-domains:

0 � θ � θ0 : Aθ = −√
κk0 detσ/(π detW(θ0))(1/Z − 1)e2κ−1(V0(θ)−V0(θ0))

× e−κ−1σ−(θ)(ζ⊗ζ ), (B.9)

θ0 � θ � 2π : Aθ = −√
κk0 detσ/(π detW(θ0))(1 − Z)e2κ−1(V0(θ)−V0(θ0))

× e−κ−1σ−(θ)(ζ⊗ζ ). (B.10)

The expressions for the transverse components Aj of the vector potential can also be derived
straightforwardly.

B.2 Current Tubes in the WKB Region

In this subsection we determine the current density distribution J . To achieve this goal we
solve (50) assuming that J is concentrated in a small neighborhood of the instanton space
M0.

In the WKB region we can set A = 0 in the first equation in (50), and since the region
does not contain topologically nontrivial 1-cycles, the first equation is equivalent to J =
(κ/2)dϕ − Fϕ for some function ϕ(x). Substituting this representation into the second
equation of (50) one arrives at the following system of equations for J

Lϕ(x) = 0, J = (κ/2)∂ϕ − Fϕ. (B.11)

In the low-noise limit the current is generated by rare events, and during the transition the
system experiences small Gaussian fluctuations around the instanton trajectories. Therefore,
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the current density J is concentrated in a small tubular neighborhood Ucurr ⊃ M0 of the in-
stanton manifold M0 where its longitudinal current component should have a Gaussian de-
pendence on the transverse variables ζ . To verify this property we seek the solution of (B.11)
in a form

ϕ(x) = ϕ(θ, ζ ) = ϕ0(θ)e−κ−1σ(θ)(ζ⊗ζ ). (B.12)

We substitute the ansatz of (B.12) into (B.11) and apply the same strategy as used earlier in
Sect. B.1 in the context of deriving (B.5) and (B.6). This results in the following system of
equations

∂θ (F0ϕ0/
√

detσ) = 0, −F0∇θσ = 2σ 2 − Wσ − σW. (B.13)

Since the second relation in (B.6) and (B.13) are identical, using the same notation σ for the
variances in (B.3) and (B.12) is perfectly legitimate.

Solving the first equation in (B.13), further substituting the obvious solution into (B.11),
and keeping the leading terms in

√
κ in the way detailed in Sect. B.1, we arrive at the

following expression for the current density J in the WKB region:

Jθ (θ, ζ ) =J0

√
detσ(θ)/detW(θ0)e

−κ−1σ(θ)(ζ⊗ζ ),

Ji(θ, ζ ) =J0

√
detσ(θ)/detW(θ0)(F0(θ))−1(σij (θ) − Wij (θ))ζj e

−κ−1σ(θ)(ζ⊗ζ ).

(B.14)

Careful examination of the second equation in (B.13) in the harmonic region of the saddle
point and allowing for the properties of the solution described at the end of Sect. B.1 show
that σ−(θ) = σ(θ) − W(θ) tends to zero, when θ approaches θ0, as ∼ (θ − θ0)

2. Therefore,
the transverse components Jj vanish in the harmonic region. This confirms the assumption
we have made in Sect. 5.3, referred to there as the property (d).

At this point we note that the current distribution J , given by (B.14) derived for the
WKB region, also extends nicely into the harmonic region of the saddle point θ = θ0, thus
suggesting that J in this region is also described by (B.14). This can be verified directly.
The reason why the WKB solution easily extrapolates into the harmonic region is related
to the asymptotically longitudinal nature of the vector potential (Aj = 0) in the harmonic
region of the saddle point.

B.3 Computation of the Relevant Determinants

In this section we present some details of the functional integral calculation in (79), (81),
and (84). In (79) the integration is performed over the deviations from the stable constant
loop, whereas both in (81) and (84) the integral runs over the transverse deviations from
the saddle-point loop. In the following calculation, as in the main text, both the density ρ

and the current density J are assumed regularized on a lattice of N spins, in accordance
with discussion of Appendix A. Therefore, the functional integrals should be represented
by finite-dimensional integrals over N positions nj on the unit sphere. Since we will see
that only long-wavelength deviations from the constant and saddle-point loops contribute to
the ratio of the two integrals of interest, we will simply execute the limit N → ∞ in all the
intermediate expressions where it exists.

The integral in (79) is evaluated over the two-parametric deviations δnα(y) (with α =
1,2) from the constant loop. The potential accounting for configurations around the constant
loop is harmonic:

VWZ ≈ (1/2)(δn, γ δn), γ = 2π

(−v∂2
y u∂y

−u∂y −v∂2
y

)
, (B.15)
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where the scalar product is conventionally defined as

(ξ ,η) =
∫ 2π

0

dy

2π

∑
α

ξ ∗
α (y)ηα(y). (B.16)

The operator γ can be diagonalized in the space of Fourier harmonics eiqy with q =
0,±1,±2, . . . ,±(N − 1)/2. For the sake of convenience, and since it does affect the
N → ∞ limit, we consider an odd N . The eigenvalues and the corresponding normalized
eigenvectors of γ are

γq = 2π(vq2 + uq) and γ̄q = 2π(vq2 − uq), (B.17)

Eq = (1/
√

2)eiqy

(
1

−i

)
and Ēq = (1/

√
2)eiqy

(
1

i

)
. (B.18)

There are two zero eigenmodes in this set: E0 and Ē0. All other eigenvalues are positive in
the considered case v > u. One arrives at the following expansion in terms of the eigenvec-
tors:

δn = (1/
√

2N)
∑

q

(cqEq + c̄qĒq). (B.19)

Since δn is real and E∗
q = Ē−q , the coefficients are related as c̄−q = c∗

q , and the transforma-
tion from the set of 2N spin vector components {(δn1(y), δn2(y))} with y = 0, ε, . . . ,2π −ε

(where ε = 2π/N ) to the set of N Fourier harmonic components {(Re cq, Im cq)} with
q = 0,±1, . . . has the Jacobian equal to unity. The zero mode coordinates {Re c0, Im c0}
are related to a uniform shift δn = const along the sphere as c0 = √

N(δn1 + iδn2). Thus,
the integral over all deviations δn from the constant loop consists of a zero-mode factor
4πN and 2(N − 1) integrals over positive modes ξ , finally giving

∫
S2

dμ(n)

∫
Dξ exp

(−κ−1(ξ , γ ξ)
) = 4πNNNκN−1/

√
detγ , (B.20)

where the determinant detγ includes 2(N − 1) positive eigenvalues of γ .
The integral in (81) and (84) over transverse deviations ζ from the saddle-point loop

n0(y) and its SO(3) rotations can be calculated in a similar fashion. All small deviations,
including the longitudinal ones and rotations, can be decomposed into meridional and zonal
components:

δn(y) = δn1(y)θ̂(y) + δn2(y)φ̂(y), (B.21)

θ̂ (y) = e1 cos(θ0/2) cosy − e2 cos(θ0/2) siny − e3 sin(θ0/2),

φ̂(y) = e1 siny + e2 cosy,
(B.22)

with the unit vectors ei introduced before (58). The potential expansion of (59) can be rep-
resented in terms of the scalar product defined in (B.16) as

VWZ(n0 + δn) − V0(θ0) = (1/2)(δn, σ δn),

σ = 2π

(−v∂2
y − v(1 − u2/v2) −u∂y

u∂y −v∂2
y

)
.

(B.23)
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Note that in this appendix σ acts in the space of all deviations including the negative mode
δn1(y) = const = δθ/2, whereas in the main text σ is restricted to the subspace of trans-
verse deviations corresponding to positive modes. The eigenvalues and the corresponding
normalized eigenvectors of σ can be found similarly to those of γ :

σq,± = 2π

(
vq2 − (v/2)

(
1 − u2/v2

) ±
√

q2u2 + (v2/4)
(
1 − u2/v2

)2
)

, (B.24)

eq,+ = eiqy

√
σq,+ − σq,−

( √
σq,+ − vq2

iqu/
√

σq,+ − vq2

)
, and

eq,− = eiqy

√
σq,+ − σq,−

( √
vq2 − σq,−

−iqu/
√

vq2 − σq,−

)
.

(B.25)

Deviations from the saddle-point loop are expressed in terms of the eigenvectors as

δn = (1/
√

N)
∑

q

(cq,+eq,+ + cq,−eq,−). (B.26)

Since e∗
q,+ = e−q,+ and e∗

q,− = e−q,−, one finds c∗
q,+ = c−q,+ and c∗

q,− = c−q,−. We can
choose c0,±, as well as Re cq,± and Im cq,± with q = 1, . . . , (N − 1)/2 (for odd N ), as 2N

real normal coordinates. The Jacobian of the transformation to the normal coordinates is
2N−1.

The operator σ has a negative mode (σ0,− = −4k0 ≡ −2πv(1 − u2/v2)) related to the
longitudinal deviation as c0,− = δθ

√
N/2. Three zero modes

e±1,− = (1/
√

v2 + u2)e±iy

(
v

∓iu

)
and e0,+ =

(
0

1

)
(B.27)

correspond to solid rotations of the saddle-point loop around the vectors ei by angles φi ,
respectively (i = 1,2,3), which can be identified with the normal coordinates as

φ1 = −
(

2N−1/2v/
√

v2 + u2
)

Im c1,−, φ2 =
(

2N−1/2v/
√

v2 + u2
)

Re c1,−,

φ3 = c0,+/(
√

N sin(θ0/2)).

(B.28)

Finally, after excluding the integration over the negative mode by introducing the δ-function
δ(2c0,−/

√
N) in the full normal-mode integral, we obtain the integral over the transverse

deviations from the saddle-point configuration in the following form:

∫
SO(3)

dμθ0(g)

∫
Dζ exp

(−κ−1 (ζ , σζ )
) = 2πNNNκN−2v−3(v2 + u2)

√
v2 − u2/

√
detσ ,

(B.29)
where the determinant detσ includes 2(N − 2) positive eigenvalues of σ , or equivalently,
all eigenvalues of W(θ0).

Now we are in a position to calculate the ratio of the integrals:

∫
SO(3)

dμθ0(g)
∫

Dζ exp(−κ−1(ζ , σζ ))∫
S2 dμ(n)

∫
Dξ exp(−κ−1(ξ , γ ξ))

= ϑ0

√
detγ /detσ/(4π2κ) (B.30)
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with

ϑ0 =
∫

SO(3)

dμθ0(g) = 2π2(1 + u2/v2)
√

1 − u2/v2, (B.31)

which, in contrast to the individual integrals and determinants, is N -independent in the
N → ∞ limit. Indeed, we note that the knowledge of the lowest eigenvalues with q � N ,
specified in (B.17) and (B.24), allows us to calculate the ratio of the determinants by re-
grouping the factors

√
detσ/detγ = (

1/σ1,+
) (N−1)/2∏

q=2

γqγ̄q/
(
σq,+σq,−

)
. (B.32)

The transformation is legitimate because γq γ̄q/(σq,+σq,−) approaches unity sufficiently fast
as q increases if q � N and N → ∞. Then the upper limit of the product can be extended
to infinity. In the meantime, the Weierstrass factorization theorem [18] for the representation
of an entire function as an infinite product leads to the following identity

∞∏
q=2

(1 − z2/q2) = (πz)−1(1 − z2)−1 sinπz. (B.33)

Therefore, applying this formula with z = u/v and z → 1 to (B.32), one finds

√
detσ/detγ = (2π)−1v(v2 + u2)−1

∞∏
q=2

(1 − u2v−2q−2)/(1 − q−2)

= π−2v4u−1(v4 − u4)−1 sin(πu/v). (B.34)

Appendix C: Two-Channel Single-State Markov Chain

In this appendix we re-derive the statistics of the current working with the simple stochastic
model consisting only of one site linked to itself by an edge, with jump rates κ+ and κ− in
the positive and negative directions, respectively. This simple model, represented in Fig. 4,
describes a continuous time random walk [37], and reflects the instanton mechanism of the
current generation of our spin-chain model in the weak-noise limit.

A trajectory in the model is specified by a sequence of the jump directions wj = ±1 and
the times when they occur: η = {w1, τ1;w2, τ2; . . . ;wn, τn}, where 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ t .

To study the statistics of the jump rate one introduces counting stochastic process [33]
c(η) that measures the difference of jump counts in the positive and negative directions
(which is similar to the definition in (7)). Its value increases by wj = ±1 at the jump j if a
jump occurs in the positive or negative direction, respectively:

c(η) =
∑

j

wj . (C.1)

We are interested in the statistics of the empirical current ω, i.e., the number of jumps per
unit time c(η)/t . The probability of having ωt jumps during time t is given by the discrete
distribution

P (ω, t) = 〈δωt,c(η)〉 =
∮

|Z|=1

dZ

2πiZ
eωt lnZ〈e−c(η) lnZ〉, (C.2)
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where δ is the Kronecker symbol, and the angular brackets denote the average over sto-
chastic trajectories. This average is determined by the Markovian measure Dη exp(−S(η)),
where Dη = ∑

n dτ1 · · ·dτn and the action reads

exp (−S(η)) =
n∏

j=1

κwj
e−(κ++κ−)t , (C.3)

with κ±1 = κ± being the jump rates.
The generating function 〈e−c(η) lnZ〉 of the distribution P (ω, t) can be calculated using

the standard procedure, e.g. described in [31]:

〈e−c(η) lnZ〉 = eλ(Z)t , (C.4)

where

λ(Z) = Z−1κ+ + Zκ− − κ+ − κ− (C.5)

is the only eigenvalue of the biased 1 × 1 transition “matrix”, obtained by replacing the
jump rates as κ+ → Z−1κ+ and κ− → Zκ−, while keeping the overall escape rate equal to
(κ+ + κ−).

Although the distribution can be obtained exactly in terms of the modified Bessel func-
tion,

P (ω, t) = Iωt (2
√

κ+κ−t)(κ+/κ−)ωt/2 e−(κ++κ−)t , (C.6)

to derive the Cramér function S(ω) = limt→∞ t−1 lnP (ω, t) we only need to calculate the
integral in (C.2) within the saddle-point approximation. Thus, one derives

S(ω) = −λ(Z) − ω lnZ, (C.7)

where Z is expressed in terms of ω by means of the saddle-point equation

∂Z S ≡ −∂Zλ(Z) − ωZ−1 = 0 (C.8)

with λ(Z) specified in (C.5). The resulting quadratic equation for Z has two real solutions
of opposite signs. The positive solution should be chosen

Z =
√

ω2 + κ+κ− − ω

2κ−
, (C.9)

since it corresponds to the minimum of S over the integration contour.
The expressions presented above provide a link between the spin-chain model in the

weak noise limit and the single-state Markov chain.

References

1. Abdalla, E., Abdalla, M.C.B., Rothe, K.D.: Non-perturbative Methods in Two-Dimensional Quantum
Field Theory. World Scientific, Singapore (1991)

2. Arous, G.B., Brunaud, M.: Laplace method: variational study of the fluctuations of mean-field type
diffusions. Stoch. Stoch. Rep. 31, 79–144 (1990)

3. Astumian, R.: Adiabatic operation of a molecular machine. Proc. Natl. Acad. Sci. USA 104, 19,715–
19,718 (2007)



146 V.Y. Chernyak et al.

4. Astumian, R.: Design principles for Brownian molecular machines: how to swim in molasses and walk
in a hurricane. Phys. Chem. Chem. Phys. 9, 5067–5083 (2007)

5. Berry, M.V.: Quantum phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57
(1984)

6. Bertini, L., Sole, A.D., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Current fluctuations in stochastic
lattice gases. Phys. Rev. Lett. 94, 030601 (2005)

7. Bertini, L., Sole, A.D., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Non-equilibrium current fluctuations
in stochastic lattice gases. J. Stat. Phys. 123, 237–276 (2006)

8. Bodineau, T., Derrida, B.: Current fluctuations in nonequilibrium diffusive systems: an additivity princi-
ple. Phys. Rev. Lett. 92, 180601 (2004)

9. Bodineau, T., Derrida, B.: Distribution of current in nonequilibrium diffusive systems and phase transi-
tions. Phys. Rev. E 72, 066110 (2005)

10. Bott, R.: Lectures on Morse theory. Old and new. Bull. Am. Math. Soc. (N.S.) 7, 331–358 (1982)
11. Caroli, B., Caroli, C., Roulet, B., Gouyet, J.F.: A WKB treatment of diffusion in a multidimensional

bistable potential. J. Stat. Phys. 22, 515–536 (1980)
12. Chan, H.B., Dykman, M.I., Stambaugh, C.: Paths of fluctuation induced switching. Phys. Rev. Lett. 100,

130602 (2008)
13. Chernyak, V., Chertkov, M., Jarzynski, C.: Dynamical generalization of nonequilibrium work relation.

Phys. Rev. E 71, 025102 (2005)
14. Chernyak, V., Chertkov, M., Jarzynski, C.: Path-integral analysis of fluctuation theorems for general

Langevin processes. J. Stat. Mech. P08001 (2006)
15. Chernyak, V., Sinitsyn, N.: Pumping restriction theorem for stochastic networks. Phys. Rev. Lett. 101,

160601 (2008)
16. Chernyak, V.Y., Chertkov, M., Malinin, S.V., Teodorescu, R.: Non-equilibrium thermodynamics for

functionals of current and density. Preprint (2007)
17. Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series in Mathe-

matics, vol. 38. American Mathematical Society, Providence (1978)
18. Conway, J.B.: Functions of One Complex Variable. Springer, New York (1978)
19. Crooks, G.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366

(2000)
20. Dawson, D.A., Gärtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting dif-

fusions. Stochastics 20, 247–308 (1987)
21. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the

current. J. Stat. Mech., Theory Exp. P07023 (2007)
22. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model

using a matrix formulation. J. Phys. A, Math. Gen. 26, 1493–1517 (1993)
23. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for

large time, I. Commun. Pure Appl. Math. 28, 1–47 (1975)
24. Dykman, M.I., Luchinsky, D.G., McClintock, P.V.E., Smelyanskiy, V.N.: Corrals and critical behavior

of the distribution of fluctuational paths. J. Chem. Phys. 77, 5229–5232 (1996)
25. Dykman, M.I., Mori, E., Ross, J., Hunt, P.M.: Large fluctuations and optimal paths in chemical kinetics.

J. Chem. Phys. 100, 5735–5750 (1994)
26. Ellis, R.: Large deviations for the empirical measure of a Markov chain with an application to the multi-

variate empirical measure. Ann. Probab. 16, 1496–1508 (1988)
27. Evans, D.J., Cohen, E.G.D., Morris, G.P.: Probability of second law violations in shearing steady states.

Phys. Rev. Lett. 71, 2401–2404 (1993)
28. Fateev, V.A., Frolov, I.V., Schwarz, A.S.: Quantum fluctuations of instantons in the nonlinear σ model.

Nucl. Phys. B 154, 1–20 (1979)
29. Gallavotti, G., Cohen, E.D.G.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970

(1995)
30. Gärtner, J.: On large deviations from the invariant measure. Theory Probab. Appl. 22, 24–39 (1977)
31. Giardina, C., Kurchan, J., Peliti, L.: Direct evaluation of large-deviation functions. Phys. Rev. Lett. 96,

120603 (2006)
32. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1994)
33. Harris, R.J., Schütz, G.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech., Theory Exp.

P07020 (2007)
34. Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics, vol. 33. Springer, Berlin (1997)
35. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693

(1997)
36. Jülicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1281 (2002)
37. van Kampen, N.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1992)



Non-Equilibrium Thermodynamics and Topology of Currents 147

38. Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A, Math. Gen. 31, 3719–3729 (1998)
39. Landauer, R., Swanson, J.A.: Frequency factors in the thermally activated process. Phys. Rev. 121, 1668–

1674 (1961)
40. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for sto-

chastic dynamics. J. Stat. Phys. 95, 333–365 (1999)
41. Maes, C., Netocny, K.: Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium

steady states. Europhys. Lett. 82, 30003 (2008)
42. Maes, C., Netocny, K., Wynants, B.: Steady state statistics of driven diffusions. J. Stat. Phys. 387, 2675–

2689 (2008)
43. Maier, R.S., Stein, D.L.: Escape problem for irreversible systems. Phys. Rev. E 48, 931–938 (1993)
44. Manin, Y.I.: Gauge Field Theory and Complex Geometry. Springer, Berlin (1997)
45. Chertkov, M., Kolokolov, I., Lebedev, V., Turitsyn, K.: Polymer statistics in a random flow with mean

shear. J. Fluid. Mech. 531, 251–260 (2005)
46. Noji, H., Yasuda, R., Yoshida, M., Kinosita, K.: Direct observation of the rotation of F-1-ATPase. Nature

386, 299–302 (1997)
47. Novikov, S.P.: The Hamiltonian formalism and a many-valued analogue of Morse theory. Russ. Math.

Surv. 37(5), 1–56 (1982)
48. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1953)
49. Polyakov, A., Wiegmann, P.B.: Theory of non-Abelian Goldstone bosons in two dimensions. Phys. Lett.

B 131, 121–126 (1983)
50. Polyakov, A., Wiegmann, P.B.: Goldstone fields in two dimensions with multivalued actions. Phys. Lett.

B 141, 223–228 (1984)
51. Pra, P.D., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media.

J. Stat. Phys. 84, 735–772 (1996)
52. Puglisi, A., Rondoni, L., Vulpiani, A.: Relevance of initial and final conditions for the fluctuation relation

in Markov processes. J. Stat. Mech., Theory Exp. P08010 (2006)
53. Rahav, S., Horowitz, J., Jarzynski, C.: Directed flow in nonadiabatic stochastic pumps. Phys. Rev. Lett.

101, 140602 (2008)
54. Ralpha, D., Stiles, M.: Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008)
55. Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys.

Rev. Lett. 95, 040602 (2005)
56. Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1995)
57. Tanase-Nicola, S., Kurchan, J.: Metastable states transitions, basins and borders at finite temperatures.

J. Stat. Phys. 116, 1201–1245 (2004)
58. Tserkovnyak, Y., Brataas, A., Bauer, G.E.W., Halperin, B.I.: Nonlocal magnetization dynamics in ferro-

magnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005)
59. Turitsyn, K., Chertkov, M., Chernyak, V.Y., Puliafito, A.: Statistics of entropy production in linearized

stochastic systems. Phys. Rev. Lett. 98, 180603 (2007)
60. van Zon, R., Cohen, E.G.D.: Extension of the fluctuation theorem. Phys. Rev. Lett. 91, 110601 (2003)
61. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)


	Non-Equilibrium Thermodynamics and Topology of Currents
	Abstract
	Introduction
	Models and Statements of the Results
	General Stochastic Model
	Circular Spin Chain
	Statement of Results

	Topological View of Stochastic Currents
	Intersection Index and Stochastic Currents
	Currents, Current Densities, Zero-Curvature Vector Potentials and Poincaré Duality

	LDP for Empirical Currents
	LDP for Empirical Currents and the Gärtner-Ellis Theorem
	Path-Integral Picture of LDP and the Current Density Functional
	Derivation of (15)
	LDP for charges generated by scalar and vector potentials

	Derivation of the Cramér Functional for Topological Currents

	Non-Equilibrium Cyclic Spin-Chain
	Wess-Zumino Interpretation of the Circular Spin Chain Model
	Instantons and Tubular Neighborhoods
	Derivation of the Cramér Function
	Step (i): Identifying the vector potential
	Steps (ii) and (iii): Identifying the Current-Density and Density Distributions
	Step (iv): Finding the Cramér Function for the Topological Current
	Final Expressions and Two-Channel Single-State Markov Chain


	Summary and Conclusions
	Acknowledgements
	Appendix A: Topological Structure of the Configuration Space
	Appendix B: Derivation of the Cramér Function for the Spin-Chain Model: Details
	Vector potential in the WKB region
	Current Tubes in the WKB Region
	Computation of the Relevant Determinants

	Appendix C: Two-Channel Single-State Markov Chain
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


