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Abstract We study boundary conditions in N = 4 super Yang-Mills theory that preserve
one-half the supersymmetry. The obvious Dirichlet boundary conditions can be modified
to allow some of the scalar fields to have a “pole” at the boundary. The obvious Neu-
mann boundary conditions can be modified by coupling to additional fields supported at
the boundary. The obvious boundary conditions associated with orientifolds can also be
generalized. In preparation for a separate study of how electric-magnetic duality acts on
these boundary conditions, we explore moduli spaces of solutions of Nahm’s equations that
appear in the presence of a boundary. Though our main interest is in boundary conditions
that are Lorentz-invariant (to the extent possible in the presence of a boundary), we also ex-
plore non-Lorentz-invariant but half-BPS deformations of Neumann boundary conditions.
We make preliminary comments on the action of electric-magnetic duality, deferring a more
serious study to a later paper.

Keywords Quantum field theory · Boundary conditions

1 Introduction

Supersymmetric boundary conditions in two-dimensional supersymmetric sigma models
have been much studied, because of their role in string theory and their importance in under-
standing mirror symmetry. There has been comparatively very little study of supersymmetric
boundary conditions in four-dimensional supersymmetric gauge theories. In this paper, we
begin such a study, focusing on the case of boundary conditions in N = 4 super Yang-Mills
theory that preserve one-half of the supersymmetry.

One obvious choice comes from Neumann boundary conditions for gauge fields, suit-
ably extended to the rest of the supermultiplet; another obvious choice comes from Dirich-
let boundary conditions for gauge fields. A hybrid of the two can be constructed using an
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involution (a symmetry of order two) of the gauge group. Special cases of these bound-
ary conditions arise in string theory from D3-NS5 systems, D3-D5 systems, and D3-branes
interacting with an orientifold five-plane. All three of these constructions have significant
generalizations, as we explain in Sect. 2 of this paper, where we attempt a systematic survey
of superconformal boundary conditions that preserve one-half of the supersymmetry.

Dirichlet boundary conditions, and its cousins, lead to an unusual phenomenon. A su-
persymmetric vacuum of N = 4 super Yang-Mills theory on a half-space is not uniquely
determined by the boundary conditions and the values of the fields at infinity; even after this
data is fixed, the theory has a moduli space of supersymmetric vacua that appear as solutions
of Nahm’s equations. This phenomenon is explored in Sect. 3.

The S-dual of this property of Dirichlet boundary conditions is that gauge theory with
gauge group G and Neumann boundary conditions can be coupled to a boundary supercon-
formal field theory with G symmetry. Here we make only a few preliminary remarks about
S-duality, deferring a more serious study to a subsequent paper.

Though our main focus is on boundary conditions that preserve Lorentz invariance (to the
extent that this is possible in the presence of a boundary) and even conformal symmetry, we
also in Sect. 4 explore deformations of Neumann boundary conditions that preserve one-half
of the supersymmetry but violate Lorentz invariance.

Because Nahm’s equations play an important role in this paper, we mention a few refer-
ences. These equations were originally introduced [1] to study solutions of the Bogomolny
equation for monopoles. See [2] for a review in that context. They were originally related to
D-branes in [3]. Subsequent D-brane work [4, 5] uncovered some of the issues involving D-
branes, impurities, and discontinuities in Nahm’s equations that will be relevant in Sect. 3.
As we explain most fully in Sect. 2.6, the study of supersymmetric boundary conditions is
closely related to the study of supersymmetric defects. Early references on supersymmetric
defects via branes include [6–8].

A rough analog of our problem in statistical mechanics is to analyze Kramers-Wannier
duality for the Ising model on a lattice of finite spatial extent. Kramers-Wannier duality
exchanges order and disorder, so it exchanges ordered and disordered boundary conditions.
The four-dimensional problem we study is somewhat similar. One of the main differences
is that as the boundary is three-dimensional, the complexities of three-dimensional quantum
field theory can enter in the analysis of boundary conditions.

2 Half-BPS Boundary Conditions

Our goal is to describe supersymmetric boundary conditions—and more generally super-
symmetric domain walls—in four-dimensional N = 4 supersymmetric Yang-Mills theory.
More specifically, we will describe boundary conditions that are maximally supersymmet-
ric, which means that they preserve half of the full underlying supersymmetry and in fact
half of the superconformal symmetry. The full superconformal symmetry of N = 4 super
Yang-Mills is PSU(4|4) (or PSU(4|2,2), to be more precise about the signature), and the
unbroken subgroup will be OSp(4|4).

N = 4 super Yang-Mills theory is conveniently obtained [9] by dimensional reduc-
tion from ten dimensions. We begin in R

1,9, with metric gIJ , I, J = 0, . . . ,9 of signature
− + +· · ·+. Gamma matrices �I obey {�I ,�J } = 2gIJ , and the supersymmetry genera-
tor is a Majorana-Weyl spinor ε, obeying �ε = ε, where � = �0�1 · · ·�9. The fields are a
gauge field AI and Majorana-Weyl fermion � , also obeying �� = � . Thus, ε and � both



Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills 791

transform in the 16 of SO(1,9). The supersymmetric action is

I = 1

e2

∫
d10x Tr

(
1

2
FIJ F IJ − i��IDI�

)
. (2.1)

The conserved supercurrent is

J I = 1

2
Tr�JKFJK�I�, (2.2)

and the supersymmetry transformations are

δAI = iε�I�, (2.3)

δ� = 1

2
�IJ FIJ ε. (2.4)

We reduce to four dimensions by simply declaring that the fields are allowed to depend
only on the first four coordinates x0, . . . , x3. This breaks the ten-dimensional Lorentz group
SO(1,9) to SO(1,3) × SO(6)R , where SO(1,3) is the four-dimensional Lorentz group and
SO(6)R is a group of R-symmetries. Actually, the fermions transform as spinors of SO(6)R ,
and the R-symmetry group of the full theory is really Spin(6)R , which is the same as SU(4)R .
The ten-dimensional gauge field splits as a four-dimensional gauge field Aμ, μ = 0, . . . ,3,
and six scalars fields A3+i , i = 1, . . . ,6 that we rename as �i . They transform in the funda-
mental representation of SO(6)R . The supersymmetries ε and fermions � transform under
SO(1,3) × SO(6)R as (2,1,4) ⊕ (1,2,4), where (2,1) and (1,2) are the two complex con-
jugate spinor representations of SO(1,3) and 4,4 are the two complex conjugate spinor
representations of SO(6)R .

Now we want to restrict to a half-space x3 ≥ 0 and introduce a supersymmetric boundary
condition. We sometimes write y for x3. We will consider (until Sect. 4) only boundary con-
ditions that are invariant under SO(1,2) Lorentz transformations that leave fixed the plane
y = 0, and moreover, are also invariant under the larger group SO(2,3) of conformal trans-
formations that preserve this plane. It is impossible to also preserve the full R-symmetry
group SO(6)R , because, as we explain momentarily, invariance under SO(1,2) × SO(6)R

would imply invariance under all of the supersymmetries, or none. Preserving all supersym-
metries would imply preserving all translation symmetries (since the commutator of two
supersymmetries is a translation generator), and this is incompatible with having a bound-
ary at y = 0.

The problem with SO(1,2) × SO(6)R as a symmetry of a boundary condition is that
under SO(1,2), the two spinor representations of SO(1,3) are equivalent and real, and so
under SO(1,2) ⊗ SO(6)R , the supersymmetries transform as 2 ⊗ (4 ⊕ 4). Because the 4 and
4 are inequivalent complex representations, it follows that the space of supersymmetries has
no non-trivial invariant real subspace. To get such a subspace, we must reduce SO(6)R to a
suitable subgroup.

Actually, in order for a boundary condition to be conformally invariant, the subgroup
of SO(6)R must be SO(3) × SO(3), embedded in SO(6)R in the obvious way. Indeed, the
superconformal group that contains the conformal group SO(2,3) and has half of the full su-
perconformal symmetry of N = 4 super Yang-Mills theory1 is OSp(4|4), whose bosonic part

1We recall that this superconformal symmetry is PSU(4|4), with 32 supercharges, half of which are preserved
in OSp(4|4).
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is SO(4) × Sp(4,R). Recall that Sp(4,R) is a double cover of SO(2,3), and that SO(4) is a
double cover of SO(3) × SO(3). SO(4) is the R-symmetry subgroup preserved by a bound-
ary condition with OSp(4|4) symmetry, and that is why a conformally invariant boundary
condition must break SO(6)R to SO(3) × SO(3) or SU(4)R to SO(4).

Under SO(4)R , the 4 and 4 of SU(4)R are real and equivalent, both transforming as (2,2)

under SO(4)R , viewed as a double cover of SU(2) × SU(2). So we can take any linear
combination 4′ of the 4 and 4, and look for a boundary condition that preserves a subspace
2 ⊗ 4′ of the global supersymmetries. Our boundary conditions will also have manifest
conformal invariance, which will ensure the full OSp(4|4).

Although, up to isomorphism, the unbroken supergroup does not depend on which linear
combination of the 4 and 4 is chosen in this construction, the boundary conditions that we
can construct in N = 4 super Yang-Mills theory do depend very much on this choice. That
leads to much of the richness of the theory.

PSU(4|4) has a one-parameter group of outer automorphisms that is responsible for the
existence of a family of inequivalent embeddings of OSp(4|4). Represent an element M of
the superalgebra PSU(4|4) by a supermatrix

M =
(

S T

U V

)
(2.5)

where S and V are bosonic 4 × 4 blocks and U and T are fermionic ones. M is unitary
and unimodular (in the Z2-graded sense), and in PSU(4|4), M is equivalent to λM for
any scalar λ. Then PSU(4|4) has a group U(1) of outer automorphisms, acting by M →
V MV −1 with

V =
(

eiβ 0
0 1

)
, β ∈ R. (2.6)

Conjugation by U(1) generates the one-parameter family of embeddings of OSp(4|4) in
PSU(4|4).

2.1 Basic Examples

It is convenient to split the scalars �i , i = 1, . . . ,6 into two groups acted on respectively by
the two factors of SO(3) × SO(3) ⊂ SO(6)R . We take these two groups to consist of the first
three and last three �’s; we rename (�1,�2,�3) as 	X = (X1,X2,X3) and (�4,�5,�6) as
	Y = (Y1, Y2, Y3). We sometimes write SO(3)X and SO(3)Y for the two SO(3) groups.

Though the 16 of SO(1,9), in which the supersymmetries transform, is irreducible, it is
as already explained reducible as a representation of W = SO(1,2) × SO(3)X × SO(3)Y .
Indeed, the action of W commutes with the three operators

B0 = �456789,

B1 = �3456, (2.7)

B2 = �3789.

They obey B2
0 = −1, B2

1 = B2
2 = 1, and B0B1 = −B1B0 = B2, etc., and generate an action

of SL(2,R). We can decompose the 16 of SO(1,9) as V8 ⊗ V2, where V8 transforms in the
real irreducible representation (2,2,2) of SO(1,2) × SO(3)X × SO(3)Y , and V2 is a two-
dimensional space in which the Bi are represented by

B0 =
(

0 1
−1 0

)
,
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B1 =
(

0 1
1 0

)
, (2.8)

B2 =
(

1 0
0 −1

)
.

A boundary condition preserves supersymmetry if and only if it ensures that the compo-
nent of the supercurrent normal to the boundary vanishes. The supercurrent was written in
(2.2). For a supersymmetry generator ε, the condition we need is that

Tr ε�IJ FIJ �3� = 0. (2.9)

For a half-BPS boundary condition, we do not expect this to hold for all ε, but only for ε

in a middle-dimensional subspace of V8 ⊗ V2. In fact, to achieve OSp(4|4) invariance, the
condition must hold precisely for ε = v ⊗ ε0, where ε0 is a fixed element of V2 and v is an
arbitrary element of V8. The choice of ε0 is equivalent to a choice of OSp(4|4) embedding
in PSU(4|4).

The expression (ε, ε̃) = ε�3ε̃ defines an SO(1,2) × SO(6)-invariant quadratic form on
the 16 of SO(1,9). For ε = v ⊗ ε0, ε̃ = ṽ ⊗ ε̃0, we have (ε, ε̃) = 〈v, ṽ〉〈ε0, ε̃0〉, where the
two factors are antisymmetric inner products on V8 and on V2. If we think of ε0 as a column
vector

(
s

t

)
and ε0 as the row vector (t − s), then we can write the inner product on V2 as

〈ε0, ε̃〉 = ε0ε̃0.
What boundary conditions should we impose on � and the bosonic fields? In general, a

local boundary condition for fermions sets to zero half the components of the fermions. For
invariance under W = SO(1,2)×SO(3)×SO(3), the boundary condition on � must be that
�3� = � ′ ⊗ϑ , where � ′ takes values in2 V8 ⊗ g (g is the Lie algebra of G) and ϑ is a fixed
vector in V2. Note that, as �3 reverses the ten-dimensional chirality, we have

�� ′ = −� ′. (2.10)

Equation (2.9) is equivalent to

0 = ε(�μνFμν + 2�3μF3μ)� ′ϑ,

0 =
∑

μ=0,1,2

ε(�μaDμXa)�
′ϑ,

0 =
∑

μ=0,1,2

ε(�μmDμYm)� ′ϑ,

0 = ε�am[Xa,Ym]� ′ϑ,

0 = ε(2�3aD3Xa + �ab[Xa,Xb])� ′ϑ,

0 = ε(2�3mD3Ya + �mn[Ym,Yn])� ′ϑ.

(2.11)

Here Greek indices μ,ν originate from ten-dimensional indices 0,1,2, while indices a, b, c

labeling X and indices m,n,p labeling Y originate from ten-dimensional indices 4,5,6

2� takes values in the 16 of SO(1,9) and �3� in the 16′ . Multiplication by �012 exchanges these spaces
while commuting with SO(1,2) × SO(3)X × SO(3)Y and with the B’s. So for our purposes, we can identify
them both as V8 ⊗ V2.
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and 7,8,9, respectively. Summations over all relevant values are understood except where
indicated. We must pick ε0 and ϑ as well as the boundary conditions obeyed by the bosonic
fields to ensure these equations.

Writing ε = v ⊗ε0, we want to eliminate v and � ′ and write these equations just in terms
of ε0 and ϑ . To do this in the first equation, we write �3μ = − 1

2εμνλ�νλ�0123, where εμνλ is
the antisymmetric tensor in R

1,2 (with ε012 = 1). Then, using (2.10), we can replace �0123�
′

by B0�
′. At this point, the first equation in (2.11) reduces to ε0(Fμν − εμνλF

3λB0)ϑ = 0. To
similarly rewrite the second equation, we want to replace �μa with the product of a matrix
that acts in V8 and one that acts in V2. We do this via (�μa)� ′ = − 1

4 (εμνλεabc�νλ�bcB2)�
′,

where (2.10) has been used. With similar manipulations, we can write each equation just in
terms of ε0 and ϑ :

0 = ε0(Fμν − εμνλF
3λB0) · ϑ,

0 = DμXa · ε0B2ϑ,

0 = DμYm · ε0B1ϑ,

0 = [Xa,Ym] · ε0B0ϑ,

0 = ε0([Xb,Xc] − εabcD3XaB1)ϑ,

0 = ε0([Ym,Yn] − εpmnD3YpB2)ϑ.

(2.12)

(All expressions are to be evaluated at y = 0.) In analyzing these equations, we will at first
consider only boundary conditions that preserve the full gauge symmetry.

To satisfy the first equation, we have to assume that the boundary condition for the gauge
fields is

ελμνF
3λ + γFμν = 0, (2.13)

where γ is a constant (γ equals 0 for the usual Neumann boundary condition F3λ = 0 and
∞ for Dirichlet boundary conditions Fμν = 0, μ,ν 
= 3). Then in addition, we must choose
ε0 and ϑ so that

ε0(1 + γB0)ϑ = 0. (2.14)

The alternative of satisfying the first equation in (2.12) by setting ε0ϑ = ε0B0ϑ = 0 is not
viable, since it cannot be satisfied for real ε0.

The nature of the remaining equations depends on whether X or Y or both obeys Dirichlet
boundary conditions or in other words is required to vanish on the boundary. If we place
Dirichlet boundary conditions on neither X nor Y , then to obey the second, third, and fourth
equations we need 0 = ε0B0ϑ = ε0B1ϑ = ε0B2ϑ . But these conditions are overdetermined
and force ϑ = ε0 = 0.

If we place Dirichlet boundary conditions on both X and Y , then the second, third, and
fourth equations become trivial. However, the last two equations give ε0B1ϑ = ε0B2ϑ = 0.
These equations have no nonzero solution with real ε0, so also this case does not occur.

What remains is the case of Dirichlet boundary conditions on just one of X and Y . Of
course, the two cases are equivalent. For definiteness, we assume that Y obeys Dirichlet
boundary conditions. If we take the boundary condition on X to be

D3Xa + u

2
εabc[Xb,Xc] = 0 (2.15)
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for some constant u, then all equations are satisfied if

0 = ε0B2ϑ = ε0 (1 + uB1)ϑ. (2.16)

Equations (2.14) and (2.16) enable us to determine everything in terms of ε0, the assumed
generator of the unbroken supersymmetry. Let us write ε0 as a row vector; by scaling we can
put it in the form ε0 = (1a). Then viewing ϑ as a column vector, we find that up to scaling

ϑ =
(

a

1

)
. (2.17)

Moreover,

γ = − 2a

1 − a2
, u = − 2a

1 + a2
. (2.18)

Both γ and u change sign under a → −a. This results from the action on the boundary
conditions of a reflection symmetry of the underlying super Yang-Mills theory. The symme-
try acts by a reflection of one of the spatial coordinates parallel to the boundary, say x1, and
a sign change of X. A reflection of x1 with a sign change of Y rather than X corresponds to
a → 1/a, γ → −γ , u → u, which is also a symmetry of the above formulas.

2.1.1 Interpretation

Let us now discuss the interpretation of some of these boundary conditions.

NS5-Like Boundary Condition The first important case arises if ε is an eigenvector of
B2, or equivalently if a = 0 or ∞. Then γ and u vanish, meaning that the scalar fields X

and the three-dimensional gauge field Aμ, μ = 0,1,2 obey Neumann boundary conditions.
They combine together from a three-dimensional point of view into a vector multiplet. (This
statement is explained more fully in Sect. 2.3.) Meanwhile, Y and A3 combine to a hyper-
multiplet in the three-dimensional sense; it is subject to Dirichlet boundary conditions. In
fact, for G = U(N), these are the boundary conditions that arise for parallel D3-branes end-
ing on a single NS5-brane whose world-volume is parametrized by x0, x1, x2 and x4, x5, x6

(with the four-dimensional θ -angle vanishing). We refer to boundary conditions that pre-
serve such supersymmetry as NS5-like.

D5-Like Boundary Condition A second important case is that ε is an eigenvector of B1, or
a = ±1. Then γ is infinite, which means that the gauge field obeys Dirichlet boundary con-
ditions, with Fμν vanishing on the boundary for μ,ν = 0,1,2. Y also obeys Dirichlet bound-
ary conditions. Indeed, at a = ±1, Aμ and Y are a vector multiplet from a three-dimensional
point of view. The hypermultiplet is described by X and A3, and obeys modified Neumann
boundary conditions, with u = ±1 in (2.15). These rather simple boundary conditions pre-
serve the same supersymmetry of a system of D3-branes ending on a D5-brane (with the
same world-volume as the NS5-brane in the last paragraph), and we call them D5-like. But
as we discuss in Sect. 3.4, they do not correspond to the case of D3-branes ending on a
single D5-brane.

One simple but important point is that the Dirichlet boundary conditions for 	Y can be
slightly generalized (in some cases, this generalization can be realized in string theory by
displacing branes in the 	Y direction). Instead of taking 	Y simply to vanish, we can pick any
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commuting triple 	w ∈ g (that is, any three elements wm ∈ g such that [wm,wn] = 0) and take
the boundary condition to be

	Y (0) = 	w. (2.19)

Because we take 	w to be constant (independent of the spatial coordinates) and because the
gauge field Aμ vanishes on the boundary, this gives no contribution to the DμYm term in the
boundary constraint (2.12). Because the components of 	w commute, there is no contribution
to the [Ym,Yn] term, and because εB0ϑ = 0 for D5-like supersymmetry, the [Xa,Ym] term
is harmless. This establishes the supersymmetry of (2.19).

The θ Angle Finally, let us consider the case of generic a. The general conformally-
invariant boundary condition (2.13) for the gauge fields, which says that on the boundary
the normal part of the field strength is a prescribed multiple of the tangential part, is the
natural extension of Neumann boundary conditions for gauge fields in the presence of a
four-dimensional θ -angle. If one adds the θ -term to the usual Yang-Mills action, so that the
combined action takes the form

I = 1

e2

∫
d4x Tr

(
1

2
FμνF

μν

)
+ θ

8π2

∫
TrF ∧ F, (2.20)

then upon varying I with respect to A, with no restriction on the variation of A at the
boundary, one arrives at the boundary condition of (2.13) with γ = −θe2/4π2.

2.2 Boundary Conditions that Reduce the Gauge Symmetry

The boundary conditions constructed in Sect. 2.1 preserved the full gauge symmetry. It turns
out, however, that there are also half-BPS boundary conditions that break part of the gauge
symmetry. Since this idea may seem strange at first, we motivate it by starting with a natural
special case, which arises in string theory for D3-branes ending on an orientifold or orbifold
five-plane. We will present this construction for D5-type supersymmetry (which arises for an
orientifold plane in the 012456 directions or an orbifold that involves reflection of directions
3789). Or course, by exchanging 	X and 	Y , one can make a similar construction for NS5-like
supersymmetry.

Instead of formulating the discussion in terms of a boundary condition, we start with
N = 4 super Yang-Mills theory on R

1,3, with no restriction on the sign of x3. However, we
require that all fields are invariant under a reflection x3 → −x3, combined with a suitable
automorphism. Field theory on R

1,3 with this symmetry imposed is equivalent to field theory
on the half-space x3 ≥ 0 with a suitable boundary condition. The advantage of working on
the covering space is that it makes it more obvious how to reduce the gauge symmetry while
preserving supersymmetry.

To get a symmetry of N = 4 super Yang-Mills theory, a reflection of space must be
accompanied by a reflection of an odd number of the scalar fields �i (so as to preserve the
orientation of the underlying ten-dimensional spacetime R

1,9). To preserve supersymmetry,
it is necessary to reflect precisely three3 of the �i . To in addition preserve the standard
SO(3) × SO(3) R-symmetry (rather than a group conjugate to this), we choose to reflect 	X
and not 	Y , or vice-versa.

3The total number of reflected coordinates, including x3, is then 4. This is compatible with supersymmetry

since for instance (�3789)2 = 1.
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In any event, we also accompany these reflections with an automorphism τ of the gauge
group G. τ must obey τ 2 = 1 and may be either an inner automorphism or an outer au-
tomorphism. Both cases can be realized in string theory with D3-branes, by using certain
orbifolds or orientifolds for inner or outer automorphisms. This will be discussed in detail
elsewhere. Here, we simply work in field theory.

It is convenient to decompose the Lie algebra g of G as g = g+ ⊕ g−, where τ acts on g±
by multiplication by ±1. For any adjoint-valued field �, we write � = �+ +�−, where �±
take values in g±. We also write �τ for τ�τ−1. We require that all fields should be invariant
under the action of τ combined with a reflection of x3, x7, x8, x9:

Aμ(x3) = Aτ
μ(−x3), μ = 0,1,2

A3(x
3) = −Aτ

3(−x3),

	X(x3) = − 	Xτ (−x3),

	Y(x3) = 	Y τ (−x3).

(2.21)

This implies certain conditions on the behavior at the fixed plane x3 = 0. Writing �| for the
restriction of a field � to x3 = 0, we get

F+
3μ| = F−

μν | = 0,

D3X
−| = X+| = 0, (2.22)

Y −| = D3Y
+| = 0.

To describe the boundary conditions on the fermions, we write � ′ = ψ+ ⊗ ϑ+ + ψ− ⊗ ϑ−,
where ψ± is valued in V8 ⊗ g±, and ϑ± is valued in V2. By imitating the steps that led to
(2.12), (2.14), and (2.16), one now finds that the condition for maintaining one half of the
supersymmetry is that

ε0ϑ
+ = ε0B1ϑ

+ = 0,

ε0B0ϑ
− = ε0B2ϑ

− = 0.
(2.23)

These conditions are equivalent to ε0B1 = wε0, B1ϑ
± = ∓wϑ±, where w = ±1; the two

choices of w are equivalent under a reflection (say x1 → −x1) that acts trivially on x3

and reverses the sign of 	X. Since the eigenspaces of B1 are one-dimensional, everything is
determined up to scaling once w is chosen.

The two choices of w correspond to a = 0,∞; equivalently, ε0 is an eigenvector of B1.
The above boundary condition is D5-like in the sense of Sect. 2.1.1. In fact, if G = U(1)

and τ is the complex conjugation operation that acts on the Lie algebra as multiplication
by −1 (thus, τ is “charge conjugation”), then the above is the standard Dirichlet or D5-like
boundary condition—Dirichlet for Aμ and 	Y , Neumann for 	X and A3. Since multiplication
by −1 is not a symmetry of a nonabelian Lie algebra, one might be puzzled what is the
analog of this statement for nonabelian G. That will become clear in Sect. 2.2.1.

Alternatively, if we set τ = 1 and exchange 	X and 	Y , we get the simplest NS5-like
boundary condition of Sect. 2.1.1.

2.2.1 Generalization to Any H

The above construction has a generalization that may appear surprising at first sight (but
whose existence may become more obvious in Sect. 2.3.3).
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In the derivation, we decomposed g = g+ ⊕ g−, where g+ and g− are even and odd
under τ . Of course, g+ is a Lie algebra—it is the Lie algebra of the subgroup H of G that
commutes with τ . Normally, g− is not a Lie algebra. In general, we have

[g+,g+] = g
+, [g+,g−] = g

−, [g−,g−] = g
+, (2.24)

expressing the fact that g+ and g− are respectively even and odd under τ . The first equation
asserts that g+ is a Lie algebra. The second asserts that g− furnishes a representation of this
Lie algebra. The third equation asserts that H is a very special type of subgroup of G: the
quotient G/H is a symmetric space.

A close examination of the verification of the supersymmetry of the boundary conditions
of (2.22) shows that while the first two conditions in (2.24) are needed, the third is not.
Therefore, we can generalize the above construction to the case of a general subgroup H ⊂
G, not necessarily related to a homogeneous space. What we will get this way can no longer
be interpreted as the result of imposing reflection symmetry on gauge theory on R

1,3. But it
will still give a half-BPS boundary condition for gauge theory on the half-space.

In detail, we proceed as follows. We pick an arbitrary subgroup4 H of G, and decom-
pose the Lie algebra of G as g = h ⊕ h⊥, where h is the Lie algebra of H , and h⊥ is its
orthocomplement. For any adjoint-valued field �, we write � = �+ + �−, where �+ ∈ h,
�− ∈ h⊥. Now we formulate N = 4 super Yang-Mills theory on the half-space x3 ≥ 0, re-
stricting some fields (or their normal derivatives) to h and some to h⊥, according to (2.22).
In this way, we get a half-BPS boundary condition in which the gauge group is reduced
along the boundary from G to H , for any H ⊂ G. (In quantizing the theory, we divide by
gauge transformations that are H -valued along the boundary.) Of course, by exchanging 	X
and 	Y , we get a second such boundary condition. Of these two boundary conditions, the first
is D5-like and the second is NS5-like.

An important special case is the case that H is the trivial subgroup of G, consisting only
of the identity element. Then g+ = 0 and g− = g; so for any field �, we have �+ = 0,

�− = �. Then (2.22) reduces to standard Dirichlet boundary conditions (that is, Dirichlet
for Aμ and 	Y , Neumann for 	X and A3).

2.2.2 Global Symmetries

An important property of boundary conditions with reduced gauge symmetry is that they
may admit global symmetries. Let K be the subgroup of G that commutes with H . The
boundary conditions just described, in which G is reduced to H along the boundary, admit
constant gauge transformations by an element of K . These behave as global symmetries,
since at the boundary they are not equivalent to gauge transformations. A local operator at
y 
= 0 is required to be G-invariant, and so in particular K-invariant, but a local operator
at y = 0 is only required to be H -invariant. So in particular, local operators that transform
non-trivially under K exist at and only at y = 0. The S-dual of this situation involves a con-
struction that we will explain in Sect. 2.3: for NS-like boundary conditions, it is possible to
introduce matter fields supported only at the boundary. These may carry global symmetries,
and naturally local operators that transform non-trivially under those symmetries exist only
on the boundary.

A special case is that if H = 1 is the trivial group with only the identity element, then K

is all of G. In this case, G acts by global symmetries on the boundary.

4In most of this paper, our considerations are local and only the connected component of H is relevant.
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The boundary condition with H = 1 is actually not exotic at all. It coincides with the
basic D5-like boundary conditions in which the vector multiplet obeys Dirichlet boundary
conditions and the hypermultiplet obeys Neumann boundary conditions. If H = 1, then for
any field �, we have �+ = 0 and �− = �. As a result, the boundary conditions (2.22) are
equivalent to the D5-like boundary conditions summarized in Sect. 2.1.1.

2.2.3 Central Elements

In (2.22), we have placed Dirichlet boundary conditions on both 	X+ and 	Y −. Just as in our
earlier treatment of (2.19), these conditions can be slightly generalized5 so that the boundary
values of the fields in question are constant, but not zero. (This generalization will typically
break some of the global symmetries that were just described.)

First of all, we let Z(g+) denote the center of g+, and we let Z(g−) denote the subspace
of g− that commutes with g+. Let 	v and 	w be triples of elements of Z(g+) and Z(g−),
respectively, such that the components of 	w commute with each other. The components of
	v automatically commute with each other since Z(g+) is abelian, and the components of
	w commute with those of 	v since 	w commutes with g+, which contains 	v. So in fact all
components of 	v and 	w commute.

Then without breaking supersymmetry, the simple Dirichlet boundary conditions
	X+(0) = 	Y −(0) = 0 can be replaced by

	X+(0) = 	v,

	Y −(0) = 	w.
(2.25)

Indeed, using (2.23) and the fact that all components of 	v and 	w commute with each other
and with Aμ(0), one can verify the vanishing of all contributions to (2.12) that depend on 	v
or 	w.

2.3 Coupling the NS System to Matter

We have constructed quite a few half-BPS boundary conditions, but nonetheless an attempt
to understand the action of electric-magnetic duality on the boundary conditions we have
seen so far would fail. Generically, duality maps boundary conditions that we have described
to ones that we have not yet described. We explain an important extension for the NS5 case
here and an important extension for the D5 case in Sect. 2.4.1. It will turn out that these two
extensions make it possible to describe the action of S-duality (though in this paper we take
only preliminary steps in that direction).

We begin with the NS5-like boundary condition summarized in Sect. 2.1.1, in which Aμ

and three scalars obey Neumann boundary conditions, while A3 and the other three scalars
obey Dirichlet boundary conditions. However, we will make a small change of notation from
Sect. 2.1. In that section, we considered a one-parameter family of possible choices of the
unbroken supersymmetry, always denoting as 	Y the scalars that obey Dirichlet boundary
conditions. The parameter that enters the choice of supersymmetry is important, and we
further explore its role elsewhere [10]. But in the rest of the present paper, we will con-
sider only boundary conditions that have the same supersymmetry as the D3-D5 system, or
equivalently, if we exchange 	X and 	Y , the same supersymmetry as the D3-NS5 system.

5Equation (2.19) is equivalent to the special case of what follows in which H is trivial, g+ = 0 and g− = g.
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We will describe several different constructions, and will want to combine them together.
This is more straightforward if they all preserve the same supersymmetry. So in the rest
of this paper, we always assume that the generator ε of the unbroken supersymmetry is an
eigenvector of B1. A related statement is that, in a sense that will become clear, though we
will consider many different boundary conditions for vector multiplets and hypermultiplets,
in the rest of this paper, 	X will always transform in a hypermultiplet and 	Y will always be
part of a vector multiplet.

To put in this framework the simplest NS5-like boundary conditions, we make a change
of notation relative to Sect. 2.1, and exchange 	X and 	Y . Thus, the boundary conditions that
we will generalize, without changing the unbroken supersymmetry, are Neumann bound-
ary conditions for Aμ and 	Y , together with Dirichlet boundary conditions for 	X, suitably
extended to the rest of the supermultiplet.

2.3.1 Three-Dimensional Theory with Infinite-Dimensional Gauge Group

In particular, in our starting point, at the boundary y = 0 there are gauge fields of the full
G symmetry. This being so, one can introduce additional degrees of freedom that carry the
G symmetry and are supported at the boundary. These additional degrees of freedom must
have N = 4 superconformal symmetry if the combined system is to have that property, but
otherwise they are arbitrary.

Of course, we should ask here whether a bulk system with N = 4 supersymmetry (in the
four-dimensional sense) can be coupled to a boundary system with N = 4 supersymmetry
(in the three-dimensional sense), in such a way as to preserve the full supersymmetry of
the boundary theory. A rather similar question, involving defects instead of boundaries, was
addressed in reference [6]. Rather than performing a similar calculation, we will take a
short-cut, first of all to show that the supersymmetric coupling exists at the classical level.
We will assume to begin with that the boundary theory is described by hypermultiplets that
parametrize a hyper-Kahler manifold Z with G symmetry.

The first step will be to describe the gauge theory on the half-space y ≥ 0 as a three-
dimensional theory with an infinite-dimensional gauge group. We let L be the half-line
y ≥ 0, and we think of the half-space y ≥ 0 as R

1,2 × L. We let Ĝ be the group of maps
from L to G. The Lie algebra of Ĝ is spanned by g-valued functions on L. On this Lie
algebra, there is a natural positive definite inner product; if a and b are two such functions,
we define 〈a, b〉 = − ∫

dy Trab, where −Trab is a positive definite invariant inner product
on L. So formally we can write down in the usual way a supersymmetric gauge theory action
on R

1,2, with N = 4 supersymmetry in the three-dimensional sense, for a vector multiplet
with gauge group Ĝ. The fields in this theory are the three-dimensional gauge field Aμ,
μ = 0,1,2 (but not A3), plus the scalars 	Y (but not 	X), and half of the fermions of N = 4
super Yang-Mills theory.

This theory, though formally supersymmetric, is not really well-behaved unless we also
add suitable hypermultiplets. The reason is that the kinetic energy contains no derivatives in
the y direction. For example, the gauge theory part of the action is

1

2e2

∫
R1,2

d3x

∫
L

dy
∑

μ,ν=0,1,2

TrFμνF
μν. (2.26)

Here the integral over R
1,2 is part of the definition of three-dimensional gauge theory, and

the integral over L arises because it is part of the definition of the quadratic form on the Lie
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algebra. Clearly, (2.26) is part of the usual Yang-Mills action in four dimensions, but the
terms involving F3μ and containing derivatives in the y direction are missing.

To complete the theory, we need hypermultiplets, namely the additional fields A3 and
	X. They parametrize an infinite-dimensional flat hyper-Kahler manifold. The hyper-Kahler
metric is

ds2 = −
∫

L

dy Tr

(
δA2

3 +
∑

i

δX2
i

)
. (2.27)

The three hyper-Kahler forms are

ωi =
∫

L

dy Tr(δA3 ∧ δXi + δXi+1 ∧ δXi−1), i = 1,2,3, (2.28)

where we set Xi+3 = Xi . This formula is covariant under SO(3) rotations of Xi and ωi ,
though not written so as to make this manifest.

These equations describe an infinite-dimensional flat hyper-Kahler manifold on which Ĝ

acts by gauge transformations. One point to mention here is that the fields Xa transform in
the adjoint representation of Ĝ, but A3, because of its inhomogeneous gauge transformation
law δA3 = −D3u = [u,A3] − ∂3u (where u is the generator of a gauge transformation),
transforms in what one might call an “affine deformation” of the adjoint representation.
This has no close analog for finite-dimensional groups.

Nonetheless, the pair ( 	X,A3) form a hypermultiplet, that is, they parametrize a hyper-
Kahler manifold with Ĝ action. So following the standard recipe, we can formally write
down the three-dimensional supersymmetric action for the coupling of this hyper-Kahler
manifold to the vector multiplet of Ĝ. The sum of this action with the vector multiplet
action described earlier is the action of four-dimensional N = 4 super Yang-Mills theory on
the half-space. For example, the kinetic energy of the hypermultiplet gives the F 2

3μ term that
was missing in (2.26).

From this point of view, there is no problem to add additional hypermultiplets, with G

symmetry, that are supported at y = 0. First of all, there is a natural homomorphism from Ĝ

to G by evaluation at y = 0. Thus, if g(y) : L → G is an element of Ĝ, we simply map g(y)

to its boundary value g(0). So if Z is any space with G symmetry, we can regard it as a space
with Ĝ symmetry: an element g(y) ∈ Ĝ acts on Z via the given action of g(0). If therefore
Z is a hyper-Kahler manifold with G action, we can view it as a hyper-Kahler manifold
with Ĝ action. Then we just write down the standard N = 4 theory in the three-dimensional
sense, with the vector multiplets being those of the group Ĝ, and the hypermultiplets being
(A3, 	X) and the fields parametrizing Z.

This construction gives a four-dimensional theory with a boundary hypermultiplet.
The theory is conformally invariant at the classical level if and only if the purely three-
dimensional theory with target Z is conformally invariant. In turn, that is so precisely if the
hyper-Kahler manifold Z is conical, for example if Z is a linear manifold R

4n for some n.
It is also possible to modify this construction by taking the metric on the Lie algebra of

Ĝ to be 〈a, b〉 = − ∫
dye(y)−2 Trab, with an arbitrary positive definite function e(y)2. This

gives a construction of the half-BPS Janus configuration, first described in field theory in
[11], for the case that the gauge coupling e is a function of y but the angle θ is constant. For
the generalization to varying θ , see [10].

2.3.2 Shifted Boundary Condition of 	Y
By computing the hyper-Kahler moment map of (A3, 	X), we can get a new understanding
of some known results about coupling of bulk gauge fields to localized hypermultiplets
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[6]. To compute the hyper-Kahler moment map, we must contract ωi with the vector fields
δA3 = −D3α, δXi = [α,Xi] that generate the action of the gauge group. We call this vector
field V (α). Its contraction with ωi is

ιV (α)ωi =
∫

dy Tr(−D3αδXi − δA3[α,Xi]
+ α[Xi+1, δXi−1] − α[δXi+1,Xi−1]). (2.29)

The definition of the hyper-Kahler moment map μi(α) is that δμi(α) = ιV (α)ωi . A short
calculation, with some integration by parts, shows that

μi(α) =
∫

dy Tr

(
α

(
DXi

Dy
+ [Xi+1,Xi−1]

))
+ TrαXi(0). (2.30)

In integrating by parts, we have included a surface term at y = 0, but a possible surface term
at y = ∞ vanishes if the energy is finite and will not be important.

The consequences of this formula may be clearer if instead of writing the pairing of the
moment map 	μ with an arbitrary element α of the Lie algebra of Ĝ, we write out 	μ as a
g-valued function on L:

	μ(y) = D 	X
Dy

+ 	X × 	X(y) + δ(y) 	X(0). (2.31)

Now we can get a somewhat better understanding of the NS boundary condition summarized
in Sect. 2.1.1. In general, for coupling to any hypermultiplets, the action contains a term∫

d3x( 	μ, 	μ). In the present context, this means − ∫
R2,1 d3x

∫
L

dy Tr 	μ2. Because of the delta
function in 	μ, the action is finite only if 	X(0) = 0, which (modulo the exchange of 	Y and
	X) is the boundary condition that we found in Sect. 2.1.

Now we can generalize this to the case that a boundary hypermultiplet is present, para-
metrizing a hyper-Kahler manifold Z. Z has its own hyper-Kahler moment map 	μZ , and the
hyper-Kahler moment map of the combined system is obtained by adding this to (2.31):

	μ(y) = D 	X
Dy

+ 	X × 	X(y) + δ(y)( 	X(0) + 	μZ). (2.32)

To keep the action finite, it now must be that in the presence of the boundary hypermultiplet,
the boundary condition on 	X is shifted from 	X(0) = 0 to

	X(0) + 	μZ = 0. (2.33)

This closely parallels a result in [6].

2.3.3 Analog for General H

We can now get a new understanding of the boundary conditions found in Sect. 2.2.1 with
the gauge symmetry reduced from G to H along the boundary.

For any subgroup H of G, we define a subgroup ĜH of Ĝ that consists of maps
g : L → G such that g(0) ∈ H . We take (Aμ, 	Y) to be the vector multiplets of a three-
dimensional theory with gauge group ĜH . And we interpret (A3, 	X) as hypermultiplets of
this symmetry, valued in the adjoint representation but with the boundary condition that
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	X(0) is valued in h⊥. As above, the condition on 	X(0) can be explained by computing the
delta function contribution to the moment map, which turns out to be the projection of 	X(0)

to h (the projection arises simply because the Lie algebra of ĜH is spanned by functions
α : L → g with α(0) ∈ h).

The N = 4 supersymmetric theory with this vector multiplet and hypermultiplet is one
that we have already constructed. It arises from gauge theory on a half-space R

1,2 × L with
the boundary condition constructed in Sect. 2.2.1 in which the gauge symmetry is reduced
from G to H on the boundary.

Moreover, it should be clear now that this system can be coupled to any boundary hyper-
multiplets that parametrize a hyper-Kahler manifold Z with H action. The group ĜH has
a homomorphism to H by mapping a function g(y) representing an element of ĜH to its
boundary value g(0). So Z can be regarded as a hyper-Kahler manifold with ĜH symme-
try. Hence, we can simply borrow the standard formulas for coupling vector multiplets and
hypermultiplets in three dimensions.

Equation (2.33) still holds and shows that in the presence of the boundary hypermultiplet,
the boundary condition on 	X becomes

	X+(0) + 	μZ = 0, (2.34)

where 	X+(0) is the projection of 	X(0) to h.

2.3.4 Coupling to a More General Boundary Theory

Hopefully, we have given a fairly clear recipe for coupling N = 4 super Yang-Mills in bulk
to boundary hypermultiplets. One can also, without any difficulty, add vector multiplets
that are supported on the boundary and couple to the same hypermultiplets. One simply
replaces the group Ĝ in the above by Ĝ×J , where J is a finite-dimensional compact gauge
group that “lives” at y = 0. The boundary hypermultiplets can then be coupled to J as well
as Ĝ. Therefore, this recipe extends to the coupling of the bulk theory to any boundary
theory of hypermultiplets and vector multiplets. The recipe is also useful for understanding
the coupling to a more general CFT if that theory arises by renormalization group flow
from a weakly coupled theory of vector multiplets and hypermultiplets with G action. Many
interesting three-dimensional CFT’s arise in this way.

To understand the coupling of N = 4 super Yang-Mills theory in bulk to a completely
general CFT would require a more abstract approach that we will not develop here. One
simple comment is that if this CFT has a Higgs branch, the description we have given is valid
for describing the low energy coupling of the bulk N = 4 theory to that Higgs branch. (A full
understanding that is not just valid at low energy would require returning to the underlying
CFT.) Another useful point is that (2.33) holds in general, provided 	μZ is understood as
a suitable CFT operator (whose expectation value on the Higgs branch coincides with the
classical hyper-Kahler moment map).

Going back to the simple case that Z parametrizes R
4n with a linear action of G, we

would like to know that the coupling is conformally invariant quantum mechanically and
not just classically. For a detailed treatment of a similar problem (involving bulk rather than
boundary impurities), see [6]. A partial shortcut is to observe that global N = 4 super-
symmetry in this situation actually implies superconformal symmetry. A collection of free
hypermultiplets supported on a hyperplane or a boundary (and coupled to gauge fields in
bulk) simply does not admit any possible counterterm of scaling dimension 3 or less that
preserves global N = 4 supersymmetry.
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2.3.5 Shifting the Boundary Conditions

Finally, we want to describe from the present point of view the possibility, explained in Sect.
2.2.3, to shift the boundary conditions on 	X and 	Y by constants.

In general, in coupling a vector multiplet to hypermultiplets, one is free to add a constant
to the moment map, as long as this preserves gauge invariance. The resulting parameters are
usually called Fayet-Iliopoulos (FI) parameters. In the present context, this means that we
can pick any triple 	v valued in the center of h, and shift the moment map by a boundary
term proportional to 	v. Equation (2.32) then becomes

	μ(y) = D 	X
Dy

+ 	X × 	X(y) + δ(y)( 	X(0) + 	μZ − 	v), (2.35)

and the boundary condition (2.34) on 	X becomes

	X+(0) + 	μZ = 	v. (2.36)

This is the boundary condition of Sect. 2.2.3, or more precisely the generalization of it to
include the coupling to a boundary matter system with moment map 	μZ .

Now let us discuss the other term in (2.25), the shift in the boundary value of 	Y − by
elements 	w ∈ g− that commute with each other and with h. As they commute with H , the
components of 	w are elements of the Lie algebra of the global symmetry group K described
in Sect. 2.2.2. As they commute with each other, the components of 	w can be conjugated to
a maximal torus TK of K . Thus, they lie in an abelian group of global symmetries.

In three-dimensional N = 4 supersymmetry with a finite dimensional gauge group cou-
pled to hypermultiplets, an abelian group F of global symmetries leads to parameters—often
called mass terms—that can be incorporated in the theory. The standard way to describe
these parameters is to weakly gauge F , give expectation values to the scalar fields in the
vector multiplet of F , and then turn off the gauge coupling of F .

It is not clear to us whether, in our situation with an infinite-dimensional gauge group, one
can introduce the mass parameters in precisely this way.6 We therefore offer the following
alternative for introducing the mass parameters 	w in our situation.

We recall first that the Lie algebra of ĜH consists of functions φ : L → g such that
φ(0) ∈ h, or equivalently φ−(0) = 0. For any element c ∈ Z(g−) (the subspace of g− that
commutes with h = g+), we can deform the adjoint representation of g to the space of
functions φ : L → g that obey φ−(0) = c. Such a continuous deformation of a representation
has no analog for a finite-dimensional compact group.

Now we modify the ĜH vector multiplet as follows. We make no change in the three-
dimensional ĜH gauge fields Aμ, or in the fermions. But instead of interpreting 	Y as three
scalar fields valued in the adjoint representation of ĜH , and thus obeying the boundary con-
dition 	Y −(0) = 0, we consider each component Ym, m = 1,2,3 to take values in a deformed
adjoint representation with c = wm.

Though the fields Ym are not quite adjoint-valued, their commutators with each other
or with adjoint-valued fields such as the other fields in the vector multiplet are adjoint-
valued. And their commutators with hypermultiplet fields take values in the same spaces as

6One can gauge the global symmetry TK , which means the following. Let H ′ = H × TK . Then repeating
the analysis of Sect. 2.3.3 with H ′ replacing H , we arrive at a theory in which TK has been gauged. But it
does not seem to be natural to vary the TK gauge coupling independently of the bulk G gauge coupling. This
problem has no analog for finite-dimensional gauge groups.
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at wm = 0. To verify these statements, one uses the fact that the wm commute with each other
and with H , so that their presence does not affect the relevant properties of commutators.
Given these facts, the three-dimensional supersymmetric action with gauge group ĜH can
be defined, and supersymmetry verified, in the usual way, despite the deformation of the
adjoint representation.

2.4 The D5 System and Nahm’s Equations

A vector multiplet with Neumann boundary conditions can be coupled to boundary degrees
of freedom, as described in Sect. 2.3. What can be the dual of this for a vector multiplet
with Dirichlet boundary conditions? This question may seem puzzling, because if a gauge
field is required to vanish on the boundary, there is no obviously natural way to couple it
to boundary degrees of freedom. The answer to this question turns out to be that half-BPS
boundary conditions with Dirichlet boundary conditions on gauge fields are automatically
coupled, in effect, to certain boundary degrees of freedom.

N = 4 super Yang-Mills theory on R
1,3 has supersymmetric vacua parametrized by ex-

pectation values of 	X and 	Y . To ensure supersymmetry, these expectation values must all
commute. What happens on a half-space? It no longer makes sense, of course, to look for
vacua with unbroken four-dimensional Poincaré supersymmetry, but we can look for vacua
with three-dimensional Poincaré supersymmetry. Three-dimensional Poincaré invariance re-
quires that Fμν and F3μ should vanish. It allows 	X and 	Y to have expectation values, de-
pending only on y. We want to determine the condition on 	X(y) and 	Y(y) that ensures
supersymmetry.

The supersymmetry variation of the fermion fields � of N = 4 super Yang-Mills theory
is conveniently written

δ� = 1

2
ε�IJ FIJ . (2.37)

The condition for supersymmetry is simply that the right hand side must vanish:

ε�IJ FIJ = 0. (2.38)

This is the same as the condition (2.9) for a supersymmetric boundary condition, except that
the factor �3� is missing. Consequently, the equations resulting from (2.37) are the same
as (2.12) that characterize supersymmetric boundary conditions, with the very important
difference that the factor of ϑ should be omitted—so that in effect we must satisfy (2.12)
for all choices of ϑ .

After imposing three-dimensional Poincaré invariance, we are left with three equations:

0 = [Xa,Ym] · ε0B0,

0 = ε0 ([Xb,Xc] − εabcD3XaB1) , (2.39)

0 = ε0
([Ym,Yn] − εpmnD3YpB2

)
.

The first tells us that all components of 	X and 	Y commute. The second tells us that unless ε0

is an eigenvector of B1, we have D 	X/Dy = [ 	X, 	X] = 0. As a result, 	X coincides everywhere
with its value at spatial infinity (up to a gauge transformation), and the different components
of 	X must commute. The third equation similarly tells us that unless ε0 is an eigenvector
of B2, 	Y is a commuting constant and coincides with its value at spatial infinity. Thus,
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for generic ε0, all components of 	X and 	Y commute with each other and are covariantly
constant.

Something interesting happens only if ε0 is an eigenvector of B1 or B2. We will take ε0

to be an eigenvector of B1. (As usual, the case that ε0 is an eigenvector of B2 simply differs
by exchanging 	X and 	Y .) If ε0B1 = ±ε0, then the condition for supersymmetry gives

DX1

Dy
= ±[X2,X3], (2.40)

and cyclic permutations. It also implies that 	Y is a covariant constant whose components
commute with each other and with 	X:

D 	Y
Dy

= [ 	Y , 	Y ] = [ 	Y , 	X] = 0. (2.41)

More briefly, the components of 	Y generate unbroken gauge symmetries.
Equations (2.40) are known as Nahm’s equations [1], and arise frequently as conditions

for supersymmetry. Even after specifying the behavior of 	X at infinity, Nahm’s equations
have an interesting moduli space of solutions, which we will explore in Sect. 3. The ex-
istence of this moduli space means that, when vector multiplets obey Dirichlet boundary
conditions, as happens in the D5-like case, there are in a sense boundary degrees of free-
dom already present in the theory. The dual of this for gauge fields with Neumann boundary
conditions is that in that case, boundary degrees of freedom can be naturally added, as in
Sect. 2.3.

2.4.1 Poles

Nahm’s equations have another important consequence. Poles in the solutions of Nahm’s
equations can be used to generate new half-BPS boundary conditions. Though it may sound
exotic, this idea is not new; it reflects the familiar fact [3, 12] that D3-branes ending on
D5-branes can be described by solutions of Nahm’s equations with poles. For related rea-
sons, such poles played a crucial role in Nahm’s original use of his equation [1]. Defining
a new boundary condition by requiring a pole of a specified type is somewhat analogous to
defining ’t Hooft operators in gauge theory (or disorder operators in statistical mechanics)
by requiring a singularity of a prescribed type.

The basic singular solution of Nahm’s equation is simple to describe. With one choice of
sign, Nahm’s equations can be written

dX1

dy
+ [X2,X3] = 0, (2.42)

and cyclic permutations. Now let t1, t2, t3 be any elements of g that obey the su(2) com-
mutation relations [t1, t2] = t3, and cyclic permutations. Thus, specifying the t i amounts to
specifying a homomorphism of Lie algebras ρ : su(2) → g. Having made such a choice, we
obtain a solution of Nahm’s equations with a pole at the origin:

Xi(y) = t i

y
. (2.43)

So far, when we have discussed gauge theory on the half-space y ≥ 0, we have considered
fields that are regular on this half-space, including its boundary at y = 0, and the question has
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been what types of boundary values are allowed. Somewhat as in the definition of ’t Hooft
operators, we can introduce a new type of boundary condition by requiring a singularity of a
prescribed type at y = 0. If we wish in this way to get a supersymmetric boundary condition,
we must select a singularity that is compatible with supersymmetry. The singularity Xi ∼
t i/y clearly has this property, since it is compatible with Nahm’s equations.

So for every choice of a non-zero homomorphism ρ : su(2) → g, we get a new half-
BPS boundary condition as follows. Setting t i to be the images of a standard set of su(2)

generators, we require that the behavior of Xi near y = 0 is Xi ∼ t i/y.
This preserves the same supersymmetry that is preserved by Dirichlet boundary condi-

tions on gauge fields, since that is the supersymmetry that is preserved by Nahm’s equations.
A boundary condition of this type breaks the gauge symmetry from G to the subgroup G′
that commutes with ρ. This gives a different type of half-BPS boundary condition with re-
duced gauge symmetry from what was described in Sect. 2.2.1. For the same reason as in
that case, there is a group of global symmetries. This group is F , the commutant of ρ in G

(that is, the subgroup of G that commutes with ρ).
As we explain next, the two constructions can be combined, roughly speaking by gauging

a subgroup of F .

2.5 Combining the Constructions

We have described a significant generalization of each of the most obvious half-BPS bound-
ary conditions. Neumann boundary conditions were generalized in Sect. 2.3 by including a
boundary CFT. Dirichlet boundary conditions were generalized in Sect. 2.4 using a homo-
morphism ρ : su(2) → g. And orbifold boundary conditions were generalized in Sect. 2.2.1
to depend on a choice of an arbitrary subgroup H of the gauge group. It is possible to com-
bine all three constructions, preserving the same supersymmetry, which we take to be of
D5-type.

We will make the construction in three steps. Choosing an su(2) embedding ρ, we require
that 	X should have the familiar pole 	X ∼ 	t/y.

Fields that do not commute with ρ will all vanish at the boundary, because of terms in the
Hamiltonian that involve commutators with 	X. Denoting therefore as f the Lie algebra of F

(the commutant of ρ), what remains is to describe supersymmetric boundary conditions for
the f -valued parts of all fields. For this, in brief, we can use any supersymmetric boundary
condition in F gauge theory. We pick any subgroup H of F and decompose f = f + ⊕ f −,
where f + = h and f − is the orthocomplement. Then as in Sect. 2.2.1, we expand any field
� as �+ +�−, with �± ∈ f ±. We impose the boundary conditions described in Sect. 2.2.1:

F+
3μ| = F−

μν | = 0,

D3X
−| = X+| = 0, (2.44)

Y −| = D3Y
+| = 0.

The condition F−
μν = 0 means that the curvature restricted to the boundary is h-valued, so

that the gauge group along the boundary is H .
If we take H to be trivial, so that for every field �, �+ = 0 and � = �−, this reduces to

the boundary condition of Sect. 2.4.1. Whatever H may be, since the gauge symmetry along
the boundary is H , we can introduce boundary hypermultiplets (or more general boundary
variables) with H symmetry and couple them to the bulk gauge fields. When we do this, the
boundary condition on 	X shifts from 	X+| = 0 to 	X+| + 	μZ = 0, where 	μZ is the moment
map for the boundary variables.



808 D. Gaiotto, E. Witten

A unified way to describe the whole construction is to follow the logic of Sect. 2.3. We
construct a three-dimensional supersymmetric gauge theory with an infinite-dimensional
gauge group ĜH consisting of maps g : L → G such that g(0) ∈ H . The bulk vector mul-
tiplets are (Aμ, 	Y). We couple to hypermultiplets ( 	X,A3) that are adjoint-valued but such
that 	X is required to have the pole 	X ∼ 	t/y determined by ρ. We add additional bound-
ary hypermultiplets (and possibly vector multiplets) as desired. The supersymmetric action
we want then arises from the standard construction of a three-dimensional supersymmetric
gauge theory with vector multiplets and hypermultiplets.

At this stage, we can follow the logic of Sect. 2.3.5 and introduce some additional pa-
rameters. These parameters are a triple 	v of elements of the center of h, and a triple 	w of
elements of f − that commute with each other and with h. The parameters are introduced by
shifting the boundary conditions, which become

	X+| + 	μZ = 	v,

	Y −| = 	w.
(2.45)

The general maximally supersymmetric boundary condition that we know of7 thus in-
volves a triple (ρ,H,B), where ρ is a homomorphism from su(2) to g, H is a subgroup of
G that commutes with ρ, and B is an N = 4 supersymmetric field theory with H symmetry.
The parameters that such a boundary condition depends upon (after fixing the parameters
of the bulk theory) are a triple 	v in the center of h, a triple 	w ∈ f − whose components
commute with each other and with h, and the parameters of the theory B .

2.5.1 A Brane Construction

Since this general construction may seem rather elaborate, we illustrate it with a brane con-
figuration (Fig. 1). However, the reader may find the description of this brane configuration
clearer after reading Sect. 3.

In the figure, we consider a U(n) gauge theory associated to n parallel D3-branes, whose
worldvolumes extend in directions 0123. These D3-branes extend to infinity in y = x3 in
one direction. They terminate in the other direction on D5-branes that extend in the 012456
directions and NS5-branes that extend in the 012789 directions. Reading the figure from
right to left, first several D3-branes end on the same D5-brane. This gives a pole in Nahm’s
equations with a non-trivial embedding ρ : su(2) → u(n). Then, several D3-branes end one
each on its own D5-branes. This gives a subalgebra of u(n) in which 	X (which represents
motion in the 456 directions) obeys Neumann boundary conditions and 	Y (which repre-
sents motion in the 789 directions) obeys Dirichlet boundary conditions. Finally, several
D3-branes end on an NS5-brane, giving a subalgebra of u(n) in which 	X obeys Dirichlet
boundary conditions and 	Y obeys Neumann boundary conditions.

The figure is drawn for n = 7, so the gauge group is G = U(7). The embedding ρ :
su(2) → u(7) is of rank 3 and reduces the gauge symmetry to F = U(4) × U(1), and as the
number of D3-branes ending on the NS5-brane is 2, the group H that remains as a gauge
group at the boundary is H = U(2). If the number of NS5-branes is greater than 1, the H

gauge theory is coupled to a non-trivial boundary conformal field theory.

7Some of these boundary conditions can be generalized to include the θ angle [10]. The unbroken supersym-
metry is then not of D5-type, but rotated by an outer automorphism of PSU(4|4).
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Fig. 1 A brane configuration whose purpose is to illustrate the general half-BPS boundary condition. A col-
lection of semi-infinite D3-branes with worldvolume in the 0123 directions (portrayed by horizontal solid
lines) ends on a collection of D5-branes that run in the 012456 directions (portrayed by vertical dotted lines)
and one or more coincident NS5-branes that run in the 012789 directions (portrayed by the symbol

⊗
). In

this and subsequent pictures, the horizontal direction parametrizes x3 and the vertical direction represents the
456 directions in spacetime

The parameters 	v by which the boundary conditions on 	X can be shifted arise from
displacing the NS5-brane (or branes) in the 456 directions. The parameters 	w by which the
boundary conditions on 	Y can be shifted arise from displacing the D5-branes in the 789
directions.

In the figure, to make the physics easier to describe, the various fivebranes have been
displaced from each other in the y direction. To reduce to the case of gauge theory on a half-
space with a boundary condition, one must take the limit in which all fivebranes become
coincident in y.

This example thus illustrates all of the ideas that are used in constructing boundary con-
ditions.

2.6 Domain Walls

A close cousin of the problem of supersymmetric boundary conditions is the problem of
supersymmetric domain walls. The theory of half-BPS domain walls in N = 4 super Yang-
Mills theory is known to be quite rich; many examples have been constructed in the string
theory literature.

In fact, we do not really need anything new to describe such domain walls in field theory,
since the problem of domain walls can be reduced to the problem that we have already
considered of boundary conditions. Suppose that we want N = 4 super Yang-Mills theory
with one gauge group G1 in the half-space x3 < 0, and another gauge group G2 in the
half-space x3 > 0. What sort of half-BPS domain walls can interpolate between these two
theories?

We can reduce this question to one that we have already studied by a simple “folding”
trick. Instead of saying that there is one gauge theory to the left of the domain wall and one
to the right, we can flip the “left” theory over to the right and say that the theory is trivial for
x3 < 0, and has gauge group G1 × G2 for x3 > 0.
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In folding or unfolding, we also must reverse the sign of three of the scalar fields in the
gauge theory factor that is flipped between x3 > 0 and x3 < 0; merely changing the sign of
x3 is not a symmetry of the theory. To preserve D5-type supersymmetry, we should reverse
the sign of 	X.

So the problem of finding a domain wall that interpolates between G1 and G2 is equiv-
alent to describing boundary conditions in the theory with gauge group G1 × G2. For this,
we can use any of the constructions that we have seen above, all of which are applicable to
a general compact gauge group, not necessarily simple.

2.6.1 First Example

Let us give a few illustrative examples, in which we assume that ε0 is an eigenvector of B1

or B2. Take G1 = G2 = G, so that the gauge group away from the boundary is G × G. Let
H be a copy of G diagonally embedded in G × G. As in Sect. 2.2.1, we can find in G × G

gauge theory a half-BPS boundary condition that breaks the G×G gauge symmetry in bulk
down to H on the boundary. In fact, we do not really need the arguments of Sect. 2.2.1
for this particular example; since we have taken G1 = G2 = G, the unfolded theory simply
has gauge group G everywhere and is ordinary N = 4 super Yang-Mills with that gauge
group. (One can verify that the arguments of Sect. 2.2.1 give the same result as “folding”
N = 4 super Yang-Mills to a theory with gauge group G × G on a half-space.) According
to Sect. 2.3.3, we can furthermore modify the folded theory by coupling to boundary hy-
permultiplets that parametrize any hyper-Kahler manifold Z with H action. In the unfolded
theory, what we have done is to couple N = 4 super Yang-Mills theory with gauge group G

to hypermultiplets that are supported on the hyperplane x3 = 0. An example coming from
the D3-D5 system has been treated in detail in [6].

2.6.2 Generalization

To generalize this, take any group G and subgroup G′, with an embedding i : G′ → G. Let
H be a copy of G′, regarded as a subgroup of G × G′ via the diagonal embedding i × 1 :
H → G × G′. Consider G × G′ gauge theory on a half-space, with the half-BPS boundary
conditions constructed in Sect. 2.2.1 that break G × G′ down to H on the boundary. In the
unfolded theory, this corresponds to a supersymmetric domain wall with gauge group G′ on
one side and G on the other. Various examples have been constructed in string theory via
branes and fluxes. The model can be modified to include hypermultiplets with an arbitrary
action of H supported on the domain wall.

This example can also be generalized to allow 	X to have a pole at y = 0, along the
lines of (2.43). (The pole is in 	X rather than 	Y because of our choice of the unbroken
supersymmetry.)

In this example, it is not necessary to assume that G′ is a subgroup of G. We can take an
arbitrary pair of gauge groups G and G′, and a third group H with two embeddings i : H →
G and i ′ : H → G′. We regard H as a subgroup of G × G′ via the diagonal embedding
i × i ′ : H → G × G′, and consider a half-BPS boundary condition with G × G′ gauge
symmetry in a half-space reduced to H on the boundary, possibly coupled to boundary
hypermultiplets with H action. In the unfolded theory, this sort of construction gives half-
BPS domain walls interpolating between gauge group G on one side and G′ on the other.
The subgroup of G × G′ that commutes with H acts as global symmetries at the boundary.
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3 Moduli Spaces of Solutions of Nahm’s Equations

As we explained in Sect. 2.4, in N = 4 super Yang-Mills theory on a half-space with suit-
able D5-like boundary conditions, supersymmetric vacua arise from solutions of Nahm’s
equations

dXi

dy
+ [Xi+1,Xi−1] = 0, i = 1,2,3 (3.1)

on the half-line L : y ≥ 0. 	X must also commute with the constant value of 	Y at y = ∞;
until Sect. 3.7, we assume that this constant value vanishes.

What we really want to define is the moduli space of vacua of the half-space theory for
a given choice of the vacuum at infinity. The vacuum at infinity is specified by a choice (up
to conjugation by a constant gauge transformation) of the value of 	X at y = ∞. We write
	X∞ = (X1,∞,X2,∞,X3,∞) for this limiting value; the components of 	X∞ must commute.
It is convenient to first consider the case that 	X∞ is regular, in the sense that the subgroup
of G that commutes with all components of 	X∞ is precisely a maximal torus T . We let M
denote the moduli space of solutions of Nahm’s equations with some appropriate condition
at y = 0, and with 	X(y) → 	X∞ (up to conjugation) for y → ∞.

For the relevant boundary conditions, 	X is part of a hypermultiplet, and therefore it is
natural to think of M as a Higgs branch of vacua. On general grounds, M is a hyper-
Kahler manifold. In fact, the relevant spaces of solutions of Nahm’s equations were used
by Kronheimer [13, 14] to define hyper-Kahler metrics on certain spaces that arise in rep-
resentation theory. For reviews and some later refinements, see [15, 16]. We will try to give
a fairly self-contained explanation of the facts we need about Nahm’s equations, but essen-
tially everything we explain is contained in the above-cited references, or in the literature
on Nahm’s equations applied to BPS monopoles in three dimensions (where those equations
originally arose [1]). For a recent survey of the extensive literature on Nahm’s equations and
monopoles, see [2]. For previous results from a D-brane perspective, see [3–5].

3.1 The Hyper-Kahler Quotient

The proof that M is hyper-Kahler (see [14], Sect. 3) uses the fact that it can be interpreted as
a hyper-Kahler quotient. We follow the logic of Sect. 2.4. We complete 	X to a hypermultiplet
by adding A = A3, the component of the gauge field in the y direction. We pick a maximal
torus T with Lie algebra t, and we pick a regular triple 	X∞ ∈ t. We require that 	X → 	X∞
for y → ∞. (For the moment, we place no restriction on 	X(0) except that it should be non-
singular.) And we require that A is t-valued at infinity. 	X and A together parametrize a flat
hyper-Kahler manifold W . The three symplectic forms of W are

ωi =
∫

L

dy Tr(δA ∧ δXi + δXi+1 ∧ δXi−1), i = 1,2,3. (3.2)

We let Ĝ be the group of gauge transformations g : L → G such that g(0) = 1, and g is
T -valued for y → ∞. Ĝ acts on W with a hyper-Kahler moment map

μi = DXi

Dy
+ [Xi+1,Xi−1], i = 1,2,3, (3.3)

as in (2.31). (Because g(0) = 1, there is no delta function in the moment map at y = 0.) On
general grounds, the hyper-Kahler quotient of W by Ĝ is a hyper-Kahler manifold M. The
hyper-Kahler quotient is obtained by setting to zero the moment map and dividing by Ĝ.
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A convenient way to describe M is to eliminate A. There is always a unique map g :
L → G, with g(0) = 1, such that a gauge transformation by g sets A to zero. After setting
A = 0, the condition 	μ = 0 becomes Nahm’s equations. However, g is not necessarily an
element of Ĝ, since it may not be T -valued for y → ∞. So after eliminating A, we can no
longer claim that 	X(y) → 	X∞ for y → ∞. Rather, 	X(y) approaches a limit for y → ∞ and
this limit is conjugate to 	X∞ by a constant gauge transformation.

The hyper-Kahler manifold obtained this way depends on 	X∞, of course, so we some-
times denote it as M( 	X∞). M( 	X∞) is smooth as long as 	X∞ is regular (which is needed for
the above construction to make sense as stated) because the condition that g(0) = 1 ensures
that the gauge group acts freely on W . Smoothness of M( 	X∞) for regular 	X∞ will also be
clear in Sect. 3.2 when we describe M as a complex manifold. M( 	X∞) can be continued
to non-regular values—for instance, 	X∞ = 0—but as will also be clear in Sect. 3.2, it then
develops singularities.

The original finite-dimensional group G acts on M( 	X∞), by gauge transformations at
y = 0. To compute the moment map for the G action, we just repeat the computation of
(2.31), and then define 	μ = ∫

dy 	μ(y). Now we pick up a delta function contribution at
y = 0, since we do not require g(0) = 1; indeed, since we are imposing Nahm’s equations,
the delta function is all we get. So the hyper-Kahler moment map for the G action is

	μ = 	X(0). (3.4)

3.1.1 Including a Pole

As in Sect. 2.4.1, we can construct a more general boundary condition by choosing a homo-
morphism ρ : su(2) → g and requiring that for y → 0

Xi(y) = ti

y
+ · · · . (3.5)

Here ti are the images under ρ of a standard basis of su(2); the ellipses refer to terms regular
at y = 0.

We denote the subgroup of G that commutes with ρ as H , and we call its Lie algebra
h. We modify the above construction by requiring that A is h-valued at y = 0, so that A(0)

commutes with the polar part of 	X.
The hyper-Kahler quotient now gives a hyper-Kahler manifold Mρ( 	X) that (after gaug-

ing away A) parametrizes solutions of Nahm’s equations with the behavior of (3.5) for
y → 0, and with 	X → 	X∞ up to conjugation for y → ∞.

Mρ( 	X) admits an action of H . The hyper-Kahler moment map is

	μ = 	Xh(0). (3.6)

Here 	Xh is the orthogonal projection of 	X from g to h. Of course, 	Xh is regular at y = 0,
even though 	X has a pole.

3.2 The Complex Manifold

For our purposes, the most useful way to understand the hyper-Kahler manifold H is to
describe it as a complex manifold in one of its complex structures. (We continue to follow
[14], Sect. 3.) We first consider the case that 	X has no pole at y = 0.
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We let X = X1 + iX2, A = A+ iX3. In one complex structure on the infinite-dimensional
hyper-Kahler manifold W , the fields X and A are complex coordinates. In this complex
structure, two of Nahm’s equations combine to a single holomorphic equation

D X
Dy

= 0. (3.7)

Here D X /Dy = dX /dy + [A, X ] is the covariant derivative of X with respect to the
complex-valued connection A. In solving (3.7), we require that X (y) → X∞ for y → ∞,
where X∞ = X1,∞ + iX2,∞.

Equation (3.7) is invariant under complex-valued gauge transformations, acting in the
usual way X → gX g−1, D → gDg−1, where now g(y) : L → GC takes values in the com-
plexification GC of G. We also require that g(0) = 1, and that g for large y is valued in
TC, the complexification of T ; these conditions mean that g(y) is an element of ĜC, the
complexification of the group Ĝ that was used in the construction of M as a hyper-Kahler
quotient.

By a standard type of argument,8 imposing the third Nahm equation and dividing by Ĝ

is equivalent to simply dividing by ĜC. But dividing by ĜC is a very simple operation. If
we relax the requirement that g(y) is TC-valued at infinity, then there is a unique GC-valued
gauge transformation, with g(0) = 1, that sets A = 0. Since g(∞) may not commute with
X∞, after we make this gauge transformation X (y) is conjugate for y → ∞ to X∞ but need
not equal X∞.

In the gauge A = 0, the complex Nahm equation (3.7) reduces to dX /dy = 0, telling us
that X is a constant. The boundary condition at y = 0 (which just says that X is finite there)
puts no restriction on the constant, and the boundary condition at infinity simply tells us that
X is conjugate to X∞.

So as a complex manifold, M is isomorphic to the conjugacy class of X∞ in the complex
Lie algebra gC. In particular, this implies that if X∞ is regular semi-simple (diagonalizable
with distinct eigenvalues) then M is smooth. If 	X∞ is regular, then X∞ is regular semi-
simple for a generic choice of coordinate axes (that is, a generic choice of which components
of 	X we identify as X1 + iX2).

3.2.1 Conjugacy Classes in Complex Lie Algebras

Because of this result and related results that will soon appear, we need a few simple results
on conjugacy classes in complex Lie groups.

Let G be a compact Lie group of dimension d , and let GC be its complexification. Then
the complex dimension of GC is also d . Let x be an element of gC, and S the subgroup of
GC that commutes with x. Let s be the complex dimension of S. The orbit Ox of x in gC is
a complex manifold of complex dimension d − s.

The smallest possible value of s is r , the rank of G. For example, suppose that x can be
conjugated to the Lie algebra tC of a (complex) maximal torus TC. Then x at least commutes
with TC, of dimension r , so s ≥ r . If x is a generic element of TC, then S = TC and s = r . x

is said to be semisimple if it can be conjugated to a maximal torus, and regular if s = r .
The starting point in our analysis was an assumption that 	X∞ is regular, meaning that the

value of 	X at infinity breaks the gauge group G to its maximal torus T . ( 	X∞ is automatically

8Stability is not an issue if X∞ is regular semi-simple, which for regular 	X is true for a generic choice of the

coordinate axes in 	X space.
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semisimple; indeed, supersymmetry requires that the components of 	X∞ commute and so
can be simultaneously conjugated to a maximal torus.) Then to avoid some technicalities we
oriented the coordinate axes in a generic fashion, so that X∞ = X1,∞ + iX2,∞ is also regular
semi-simple. This means that the gauge symmetry breaking is fully reflected in X∞.

3.2.2 Turning Off the Symmetry Breaking

It is also of interest to ask what happens when we turn off the gauge symmetry breaking at
infinity. An important subtlety will arise, so to get our bearings we start with the example
of G = SU(2). If X∞ is regular semi-simple, then it is conjugate to diag(w,−w) for some
w ∈ C. As a result, the quadratic Casimir invariant u = Tr X 2 is nonzero; in fact, u = 2w2.
u is a natural gauge-invariant measure of the symmetry breaking.

What happens if we take u → 0? One might think that means that X goes to zero and its
orbit collapses to a point. That is actually not the case. The following nonzero element of
sl(2,C) has u = 0:

x =
(

0 1
0 0

)
. (3.8)

x is regular, since the subgroup S of SL(2,C) that commutes with x is one-dimensional,
being generated by x itself. In general, for every value of the Casimir invariants of a complex
Lie group, there is a unique regular orbit. For SL(2,C), u is the only independent Casimir
orbit; the orbit x is the regular orbit with u = 0. For every u, a regular element wu of sl(2,C)

with Trw2
u = u can be written as follows:

wu =
(

0 1
u/2 0

)
. (3.9)

This family contains every regular conjugacy class precisely once.
The orbit Ox of x = w0 can easily be described explicitly. Any element

(
a b

c d

)
(3.10)

of sl(2,C) is conjugate to x if and only if

ad − bc = 0 (3.11)

and a, b, c, d are not all zero.
Obviously, the orbit Ox is not closed in sl(2,C). To take its closure, we must relax the

condition that a, b, c, and d are not all zero. If we do relax this condition, we get a subspace
of sl(2,C) that is known as the nilpotent cone N . It parametrizes all nilpotent elements
of the Lie algebra, conjugate to x or not. For our example of SL(2,C), N is the union of
two orbits; one orbit is Ox , and the second orbit is a single point, the orbit O0 of the zero
element of sl(2,C) with a = b = c = d = 0. In fact, O0 is a singularity of N . The equation
ad − bc = 0 that defines N is a standard description of the A1 singularity. Topologically,
for SL(2,C), N is C

2/Z2 or equivalently R
4/Z2.

We can describe explicitly the family of solutions of the original real Nahm equations
(3.1) that is parametrized by N :

Xi(y) = g
ti

y + f −1
g−1. (3.12)
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Here ti are the standard 2 × 2 Pauli matrices, with [t1, t2] = t3, etc., f is a non-negative
real constant, and g ∈ SU(2). For f = 0, 	X(y) identically vanishes; this is the trivial zero
solution of Nahm’s equations, which corresponds to the singular point in N . For all f ≥ 0,
	X(y) is regular on the whole half-line, including y = 0, and vanishes for y → ∞.

It is not difficult to describe the topology of the manifold M that parametrizes this family
of solutions of Nahm’s equations. f takes values in the half-line R≥0, and (since g and −g

are equivalent in (3.12)) g takes values in SU(2)/Z2 = S3/Z2. So M = S3/Z2 × R≥0. But
this is the same as R

4/Z2, which is the same as C
2/Z2 and coincides with the nilpotent

cone N for SL(2,C). In fact, one can readily verify that in this family of solutions, X (0) =
X1(0)+ iX2(0) is always nilpotent, and that every nilpotent element of sl(2,C) equals X (0)

for precisely one choice of g (up to sign) and f .
Going back to the original problem, for G = SU(2), if 	X∞ is regular, then the moduli

space M of solutions of Nahm’s equations is a smooth manifold that, in a generic complex
structure, is the orbit of a regular semisimple element of sl(2,C). But if we turn off the
symmetry breaking and set 	X∞ = 0, then M becomes the nilpotent cone N .

Starting from 	X∞ = 0, if we turn on X1,∞ and X2,∞, then N is deformed and becomes the
smooth orbit of a regular semi-simple element X∞ = X1,∞ + iX2,∞. But if we keep X1,∞ =
X2,∞ = 0 and turn on X3,∞, then the singularity of N is resolved, rather than deformed.

3.2.3 Analog for Any G

The analog for any G is as follows. The complex Nahm equation

D X
Dy

= 0 (3.13)

implies that the Casimir invariants of X are independent of y. The Casimir invariants of
X (0) therefore coincide with those of X∞. X (0) is gauge-invariant (since we only divide
by gauge transformations that equal 1 at y = 0). Up to a complex gauge transformation, the
complex Nahm equation has a unique solution for every choice of X (0) that has the same
Casimir invariants as X∞.

If X∞ is regular, then any element of gC with the same Casimir invariants is conjugate
to X∞. Hence the moduli space H of solutions of Nahm’s equations is simply the orbit of
X∞ in gC. We denote this orbit as O X∞ , and we denote as O X∞ the space of all elements of
gC with the same Casimir invariants as X∞. These two spaces coincide precisely if X∞ is
regular.

Even if X∞ is not regular, it is always possible to find a regular element x ∈ gC with
the same Casimir invariants as X∞. For instance, generalizing the example for SL(2,C), for
GC = SL(n,C), if X∞ = 0, we can take x to be an n×n matrix with 1’s just above the main
diagonal and all other matrix elements zero:

x =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

. . .

0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

. (3.14)

(The subgroup of SL(n,C) that commutes with x is generated by x, x2, . . . , xn−1, and so
has the same dimension as a maximal torus.) The moduli space H = O X∞ of solutions of



816 D. Gaiotto, E. Witten

Nahm’s equations is always the closure of the orbit Ox of x in gC. The closure is obtained
by adding to Ox the orbits of non-regular elements x ′ that have the same Casimir invariants
as x. In our example with SL(2,C), x was a regular nilpotent element and the only relevant
non-regular x ′ was x ′ = 0; in general, finitely many non-regular orbits appear. The dimen-
sion of a regular orbit is greater than that of any non-regular orbit (since a regular element,
by definition, has a centralizer of the minimum dimension) and the non-regular orbits Ox′
appear as singularities in H, just as in our example.

Physically, an important special case is the case that symmetry breaking is absent at
y = ∞. This means that 	X∞ = 0 = X∞, and therefore the Casimir invariants of X∞ all
vanish. An element X (0) of gC has vanishing Casimir invariants if and only if it is nilpotent.
Therefore, in this situation, the moduli space H of solutions of Nahm’s equations coincides
with the nilpotent cone N consisting of all nilpotent elements of gC. These make up finitely
many conjugacy classes.

The orbit Ox of a regular nilpotent element x is a dense open set in N . N actually
equals Ox , the closure of Ox ; N has singularities corresponding to non-regular nilpotent
orbits. Symmetry breaking at infinity (by the choice of 	X∞) causes these singularities to be
deformed and resolved; if one chooses 	X∞ to break G to its maximal torus, then the moduli
space of vacua becomes smooth.

3.2.4 More on Nilpotent Orbits

As we have just seen, nilpotent orbits in complex Lie algebras are important in our subject.
So we pause for a few words on these orbits.

A nilpotent element of sl(n,C) is simply an n × n nilpotent matrix. Any n × n complex
matrix can be conjugated to a Jordan canonical form. The Jordan canonical form of a nilpo-
tent matrix x has all matrix elements vanishing except for 1’s in some of the entries just
above the main diagonal. For some decomposition n = n1 + n2 + · · · + nk , with positive in-
tegers ni , where we can assume n1 ≥ n2 ≥ · · · ≥ nk , x takes a block-diagonal form in which
the diagonal blocks are regular nilpotent np × np matrices, 1 ≤ p ≤ k, each taking precisely
the form in (3.14). The off-diagonal blocks vanish.

An alternative description is useful for generalizing to any group. Let ρ : su(2) → gC

be any homomorphism, and as usual write t1, t2, t3 for the images of standard generators of
su(2). The “raising” operator t+ = t1 + it2 is then nilpotent. Conversely, according to the
Jacobson-Morozov Theorem, every nilpotent element of a complex semi-simple Lie algebra
arises in this way from some su(2) embedding.

Let us verify this assertion in the case of SL(n,C). The Lie algebra su(2) has, up to iso-
morphism, one irreducible representation of each positive integer dimension 1,2,3, . . . . So
up to isomorphism, the embedding ρ : su(2) → sl(n,C) is determined by a decomposition
n = n1 + n2 + · · · + nk , with positive integers ni that we can assume to be non-increasing.
Moreover, in an irreducible p-dimensional representation of su(2), the raising operator is a
regular nilpotent element, conjugate to the p × p case of the matrix described in (3.14). So
the two descriptions agree.

One advantage of the description by su(2) embeddings is that it gives a convenient way
to determine the dimension of an orbit. Let t+ be a nilpotent element of gC that is the raising
operator for some su(2) embedding ρ, and let Oρ be its orbit. The dimension of Oρ will be
d − s, where d is the dimension of GC and s is the dimension of the subgroup S that com-
mutes with t+. (All dimensions here are complex dimensions.) What is s? Let us decompose
gC in irreducible representations Tj of su(2):

gC = ⊕s
j=1 Tj . (3.15)
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Elements of gC that commute with the raising operator t+ are precisely the highest weight
vectors in the summands Tj . Each Tj has a one-dimensional space of highest weight vectors.
Therefore the number s of summands in (3.15) is the dimension of the centralizer S of t+.
The dimension of the orbit of t+ is therefore d − s.

Let us check this calculation for the case of a regular nilpotent element x. This is the case
that ρ : su(2) → sl(n,C) is associated with an irreducible n-dimensional representation of
su(2). For this representation, the Lie algebra sl(n,C) decomposes as a direct sum of su(2)

modules of dimensions 3,5,7, . . . ,2n− 1. There are n− 1 pieces in all, so s = n− 1, as we
computed before in another way.

Some More Examples It will be helpful to give a few more examples of nilpotent orbits.
As we have already explained, for every simple Lie group G, there is a unique regular

nilpotent orbit. For G = SU(n), it corresponds to an irreducible embedding ρ : su(2) →
su(n). The regular nilpotent orbit is a dense open set in the nilpotent cone N .

If G is simply-laced, there is also a unique subregular nilpotent orbit O′—one whose
complex dimension is precisely 2 less than the dimension of N . O′ therefore appears as a
locus of singularities in N , and (in keeping with the hyper-Kahler nature of N ) these are
orbifold singularities C

2/�, where � is a finite subgroup of SU(2). In fact, � is the finite
subgroup of SU(2) that corresponds to G in the usual mapping between such subgroups and
simple groups of type A-D-E.

For G = SU(2) = A1, the subregular nilpotent element is simply the zero element. The
fact that the nilpotent cone N has an A1 singularity corresponding to the zero element is a
special case of the general relation of subregular nilpotent orbits to A-D-E singularities.

More generally, for G = SU(n), the subregular nilpotent orbit is the raising operator t+
of an SU(2) embedding that corresponds to a decomposition n = (n−1)+1. A computation
as above shows that the centralizer of such a t+ has dimension n + 1, which exceeds by 2
the rank n − 1 of SU(n). This accounts for the fact that the orbit O′ is of codimension 2 in
the nilpotent cone.

At the other extreme, the zero element of gC is the unique nilpotent element whose or-
bit consists of a single point. There is also a unique nilpotent orbit of smallest positive
dimension—usually called the minimal (non-zero) nilpotent orbit. For G = SU(n), it corre-
sponds to the decomposition n = 2+1+1+· · ·+1. A computation as above shows that the
corresponding orbit must have dimension 2n−2. In fact, this orbit consists of n×n matrices
M of rank 1 with M2 = 0. Such a matrix can be written Mi

j = BiCj , where
∑

i B
iCi = 0;

this way of writing M is unique modulo B → λB , C → λ−1C.

3.3 Solutions of Nahm’s Equations with Poles

In Sect. 3.1.1, we considered Nahm’s equations with a pole at y = 0 determined by a homo-
morphism ρ : su(2) → g. As we explained there, the solutions of Nahm’s equations, with
boundary conditions that 	X is conjugate at infinity to a commuting triple 	X∞, are parame-
trized by a hyper-Kahler manifold Mρ( 	X).

We proceed, following [13], just as in the case of trivial ρ. Setting X = X1 + iX2, A =
A + iX3, two of Nahm’s equations combine to a form familiar from (3.7):

D X
Dy

= 0. (3.16)

Now, however, X and A are not regular at y = 0. Rather, we have

X = t1 + it2

y
+ · · · = t+

y
+ · · · , (3.17)
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A = it3

y
+ · · · , (3.18)

where the ellipses denote regular terms.
As before, Nahm’s three real equations modulo real gauge transformations are equivalent

to the complex equation (3.16) modulo complex gauge transformations. Now, however, we
cannot use a complex gauge transformation to set A = 0. The reason for this is that we
are restricted to gauge transformations that are trivial at y = 0. A gauge transformation that
would remove the singularity from A would have to have a singularity at y = 0.

We can, however, make a gauge transformation to set A = it3/y everywhere. Just as in
our previous analysis, the gauge transformation that does this may not commute with X∞
for y → ∞. So after setting A = it3/y, we should require that X (y) is conjugate to X∞ for
y → ∞, not that the two are equal.

After setting A = it3/y, it is straightforward to solve the complex Nahm equation. We
pick a basis vα of g of vectors of definite weight

[it3, vα] = mαvα, (3.19)

where mα ∈ Z/2. (For example, [it3, t±] = ±t±, so we can take t± for two of the vα .) Then
the complex Nahm equation has the general solution

X =
∑

α

εα

vα

ymα
(3.20)

with coefficients εα . However, we want solutions in which the singular part at y = 0 is
precisely t+/y. So we must have

X = t+
y

+
∑
mα≤0

εαvαy
−mα . (3.21)

This is not the whole story, because the gauge transformation that sets A = it3/y is not
unique. This form is preserved by a further gauge transformation generated by

φ =
∑

α

fαvαy
−mα , (3.22)

with arbitrary coefficients fα . However, since we are supposed to allow only gauge trans-
formations that vanish at y = 0, we must actually restrict the coefficients so that φ =∑

mα<0 fαvαy
−mα . By a gauge transformation that shifts X by [φ, X ] with φ of this form,

we can remove everything from X except the singular term t+/y and the terms in which vα

is a lowest weight vector, annihilated by t−. So we reduce to

X = t+
y

+
∑
α∈P−

εαvαy
−mα , (3.23)

where P− labels the lowest weight vectors.
The Slodowy slice St+ transverse to a nilpotent orbit Ot+ is defined to be the subspace of

g consisting of elements of the form

t+ +
∑
α∈P−

εαvα, (3.24)



Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills 819

with arbitrary coefficients εα . St+ meets Ot+ in a single point (the point with all εα = 0) and
has nice or “transverse” intersections with all orbits that it meets.

Clearly, functions X (y) of the form given in (3.23) are in one-to-one correspondence
with points in the Slodowy slice St+ ; the correspondence is made by setting y = 1 in (3.23).
However, the moduli space M of vacua is not simply the Slodowy slice. We must impose
the condition that the characteristic polynomial of X coincides with that of X∞. The char-
acteristic polynomial of X is independent of y because of the complex Nahm equation, so
we can just evaluate this condition at y = 1. We learn that X (1) takes values in the intersec-
tion of St+ with Õ X∞ , the subspace of g consisting of elements with the same characteristic
polynomial as X∞. If X∞ is regular, then Õ X∞ is the same as O X∞ , the orbit of X∞. In gen-
eral, it is the closure Ox of the orbit Ox of a regular element x with the same characteristic
polynomial as X∞.

What we learn, then, is that as a complex manifold, the moduli space Mρ( 	X) of solutions
of Nahm’s equations with a pole determined by ρ is the intersection St+ ∩ Ox . In particular,
from this we can determine the dimension of this space. If as before s denotes the number
of summands when g is decomposed in representations of su(2), then the dimension of St+
is precisely s, since each irreducible representation of su(2) has a one-dimensional space of
lowest weight vectors. Requiring that X (1) should have the same characteristic polynomial
as X∞ reduces the complex dimension by r . So the dimension of Mρ( 	X) is s − r .

3.3.1 Some Examples

At one extreme, if t+ = 0, the corresponding transversal slice St+ is all of gC. So Mρ=0( 	X∞)

is simply (if X∞ is regular) the orbit O(X∞), as before.
At the other extreme, if t+ is a regular nilpotent element, the Slodowy slice St+ has

dimension s = r , the rank of G. Its intersection with a regular orbit (or the closure of one)
is therefore of dimension zero, and should consist of a finite set of points. But since the
Slodowy slice St+ meets the regular orbit Ot+ in precisely one point (the element t+ ∈ g), it
likewise meets every regular orbit in just one point.

One can verify this by hand for SL(n,C). A transversal to the orbit of the regular nilpotent
element t+ given in (3.14) that is not actually the Slodowy slice, but arises from it by a
different gauge fixing of the gauge invariance (3.22), consists of elements of the form

x =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

. . .

0 0 0 . . . 1
an an−1 an−2 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

, (3.25)

with coefficients an, an−1, . . . , a2,0 in the bottom row. (We set the lower right entry to zero
to ensure that this matrix is in sl(n,C); in gl(n,C), this element would be another coefficient
a1.) Every set of values of the Casimir operators Trxk , k = 2, . . . , n arise precisely once in
this family. So this transversal slice meets every regular orbit precise once.

So we learn that if ρ corresponds to a regular nilpotent orbit, then the moduli space
Mρ( 	X∞) consists of only a single point. As we will see, this result is important in under-
standing duality of supersymmetric boundary conditions.

For any other ρ, s is larger so the relevant moduli space has a positive dimension. For
example, if G is simply-laced and t+ is a subregular nilpotent element, then s−r = 2 and the
moduli space is of dimension 2. For X∞ = 0, it equals C

2/�, where � is the finite subgroup
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of SU(2) related to G, and for other X∞, it is a deformation of C
2/�. This is explained

in [13].

3.4 Nahm’s Equations and Brane Constructions

Now we will extend the analysis of Nahm’s equations to allow for discontinuities as well
as poles. Instead of proceeding in an abstract way, as we have done so far, we consider a
specific (and well known) string theory situation. This is useful in understanding the action
of duality, though in the present paper we take only limited steps in that direction.

We consider (Fig. 2) a system of n parallel D3-branes, transversely intersecting a D5-
brane. The D3-branes are parametrized by x0, x1, x2, x3, and support a four-dimensional
U(n) gauge theory with N = 4 supersymmetry; the values of x4, . . . , x9 are observed in
this theory as scalar fields 	X and 	Y .

The D5-brane is supported at x3 = x7 = x8 = x9 = 0. The D5-brane supports a U(1)

gauge field. From the standpoint of the D3-brane system, which we will focus on, this U(1)

can be regarded as a global symmetry of the D3-brane theory (modulo a caveat noted below),
and the fluctuations in the D5-brane position can be ignored.

In the D3-brane theory, there is a hypermultiplet Z in the fundamental representation
of U(n), supported at the intersection with the D5-brane. This intersection is at x3 = 0; as
usual, we write y for x3. Z is a “bifundamental” hypermultiplet, meaning that it is also
charged under the U(1) symmetry coming from the D5-brane. But the action of this U(1) is
the same as that of the center of U(n). Since U(n) is gauged, this U(1) is not really observed
as a global symmetry of the D3-brane theory. Global symmetries will arise from D5-brane
symmetries when there is more than one D5-brane, as in other cases that we treat below.

For the same reasons as in the examples that we have already treated, supersymmetric
vacua of the combined system are given by solutions of Nahm’s equations. However, we
must include the contribution of Z in Nahm’s equations. Essentially the same derivation9

that led to (2.32), with 	X and 	Y exchanged, shows that the hyper-Kahler moment map for

Fig. 2 Here and later, horizontal
solid lines denote D3-branes
whose world-volume is
parametrized by x0, x1, x2, x3.
Vertical dotted lines denote
D5-branes supported at
x3 = x7 = x8 = x9 = 0

9Because we are now on the full line −∞ < y < ∞, rather than the half-line y ≥ 0, integration by parts does

not produce a term δ(y) 	X(0), which appears in the previous derivation.
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the combined system consisting of hypermultiplets 	X, A = A3, and Z is

	μ(y) = D 	X
Dy

+ 	X × 	X + δ(y) 	μZ, (3.26)

where 	μZ is the hyper-Kahler moment map for the hypermultiplet Z. The extension of
Nahm’s equation is therefore

D 	X
Dy

+ 	X × 	X + δ(y) 	μZ = 0. (3.27)

The meaning of the delta function is that 	X(y) is discontinuous at y = 0. The jump � 	X in
crossing y = 0 obeys

� 	X + 	μZ = 0. (3.28)

We now want solutions of this extended Nahm equation in which 	X approaches one limit
	X∞,− for y → −∞, and another limit, 	X∞,+ for y → +∞. Of course, the components of
	X∞,− commute with each other, as do the components of 	X∞,+. We want to describe the
space M( 	X∞,−, 	X∞,+) of possible vacua of the combined system, for specified vacua at the
far left and far right.

The usual arguments show that M is hyper-Kahler. But as in Sect. 3.2, a useful way
to understand M is to describe it as a complex manifold in one of its complex structures.
Proceeding in the usual way, we introduce the complex fields X = X1 + iX2, A = A + iX3,
which obey a complex version of (3.27):

D X
Dy

+ δ(y)μZ
C

= 0. (3.29)

Here μZ
C

= μZ
1 + iμZ

2 is the complex moment map of Z. M is the moduli space of solutions
of this equation, with X (y) → X∞,± for y → ±∞, and modulo complex gauge transforma-
tions that preserve this asymptotic condition. As before, the analysis is most straightforward
if X∞,± are regular. (Actually, we will formulate the argument below in a way that remains
valid as long as one of the two, say X∞,−, is regular; a singularity develops only when both
become non-regular.)

As usual, we can gauge away A by a complex gauge transformation g(y) that does not
necessarily preserve the asymptotic condition. In fact, we can set g(−∞) = 1, but then
g(∞) may not commute with X∞,+. (Of course, we can everywhere reverse the roles of +∞
and −∞.) A convenient way to proceed is to make a gauge transformation with g(−∞) = 1
that sets A = 0 everywhere. In this gauge, Nahm’s equations reduce to

dX
dy

+ δ(y)μZ
C

= 0, (3.30)

saying simply that X is piecewise constant, with a jump at y = 0. Moreover, the boundary
condition requires that X (y) = X∞,− for y < 0. After reducing Nahm’s equation to this form
with this boundary condition, we are still free to make a constant gauge transformation by
an element of the group TC that commutes with X∞,−.

Now let us count parameters. A hypermultiplet in the fundamental representation of U(n)

has 2n complex parameters. After solving (3.30), we must impose n complex constraints
to ensure that X (y) has the same characteristic polynomial as X∞,+. We also remove n
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Fig. 3 A system of parallel
D3-branes interacting with two
parallel D5-branes. The
D3-branes can “break” in
crossing the D5-branes. The
position of a D3-brane that
connects two D5-branes is
parametrized by the value of a
hypermultiplet

parameters in dividing by the residual group TC of gauge transformations. The net effect is
that in this particular example, the moduli space M is zero-dimensional. In fact, it consists
of precisely one point, as we will learn in Sect. 3.4.1.

Several D5-Branes We can apply similar methods to a more general problem with k D5-
branes supported at points y = yα , α = 1, . . . , k. At each position yα is supported a hyper-
multiplet Zα in the fundamental representation of U(n).

Nahm’s equation now becomes

D 	X
Dy

+ 	X × 	X +
k∑

α=1

δ(y − yα) 	μZα = 0. (3.31)

After gauging A to zero and requiring that X (y) = X∞,− for y � 0, the complex Nahm
equation becomes

dX
dy

+
k∑

α=1

δ(y − yα)μ
Zα

C
= 0. (3.32)

So again, in this gauge X is piecewise constant, with jumps at y = yα , α = 1, . . . , k.
We count parameters as before. Each fundamental hypermultiplet Zα contributes 2n pa-

rameters. We remove n parameters in dividing by the residual gauge symmetry, and n more
for requiring that X (y) for y � 0 has the same characteristic polynomial as X∞,+. So the
total number of parameters is 2n(k − 1).

So far it does not matter if the points yα are distinct. If they are, there is actually a
standard way to obtain the counting of parameters from a brane picture (Fig. 3). Between
each pair of successive D5-branes, the n D3-branes can break away and move freely. The
position of a D3-brane is part of a hypermultiplet, so this gives n hypermultiplets for each
pair of successive D5-branes. With altogether k D5-branes, there are k − 1 successive pairs,
and so n(k − 1) hypermultiplets in all. A single hypermultiplet corresponds to 2 complex
parameters, so there are 2n(k − 1) complex parameters to specify the vacuum.

3.4.1 Uniqueness of the Vacuum

Going back to the case of a single D5-brane, we want to show that for prescribed 	X∞,±, the
vacuum is unique. Since we know that the moduli space M of vacua is of dimension zero,
it consists of a finite set of points; it suffices to count these points in a special case. We will
take X∞,− = diag(S1, S2, . . . , Sn), with all Si distinct and nonzero, while X∞,+ = 0.
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To analyze this situation, it helps to describe more explicitly the moment map of a funda-
mental hypermultiplet Z. From a complex point of view, Z consists of n chiral superfields
Bi , i = 1, . . . , n in the fundamental representation of U(n), and n such superfields Cj ,
j = 1, . . . , n in the antifundamental representation. The complex moment map is the rank 1
matrix10 M whose matrix elements are Mi

j = BiCj . Putting the complex Nahm equation in
the form (3.30), and writing X ′ and X ′′ for the values of X for y < 0 and y > 0, respectively,
we have

X ′′ = X ′ − M. (3.33)

Of course, X ′ = X∞,−.
Since we are taking X+ = 0, we need X ′′ to be nilpotent. The group TC = (C∗)n of

diagonal matrices can be used to set all components Bi (in the basis in which X∞,− is
diagonal) to 1 or 0. If any of these matrix elements vanishes, it is impossible for X ′ − M to
be nilpotent. For example, for n = 2, if B1 = 0, B2 = 1, then X ′ − M takes the form

(
S1 0
0 S2

)
−

(
0 0
C1 C2

)
. (3.34)

This matrix has S1 as one of its eigenvalues and is not nilpotent.
So we take

B =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ . (3.35)

The condition that X ′ − M is nilpotent is equivalent to det(z − (X ′ − M)) = zn. The left
hand side in general equals zn + fn−1z

n−1 + · · · + f1z + f0, and we must set the coefficients
fn−1, . . . , f0 to zero. These coefficients are linear functions of C1, . . . ,Cn because M has
rank 1. So there is precisely one solution.

3.4.2 One Extra Brane

Our next goal is to describe what happens when there are unequal numbers of D3-branes on
the two sides of a D5-brane. We begin with the case that the difference is 1, say n D3-branes
for y < 0 and n + 1 for y > 0 (Fig. 4). First we describe what we claim is the appropriate
description of this situation; then we will try to justify it.

What is depicted in Fig. 4 is an example of a supersymmetric domain wall interpolating
between N = 4 super Yang-Mills theories with two different gauge groups—in the present
case, U(n) for y < 0 and U(n+1) for y > 0. Such domain walls were discussed in Sect. 2.6.
It turns out that from a field theory point of view, the supersymmetric domain wall of Fig. 4
can be described by the construction of Sect. 2.6.2 if we take G = U(n+ 1) and G′ = U(n),
and take H to be a copy of U(n) that is a diagonal product of G′ and a U(n) subgroup of G.
We also set G̃ = U(n) × U(n + 1).

For finding supersymmetric vacua, the relevant facts are as follows. There are no extra
matter fields at y = 0; a supersymmetric vacuum is to be described by solving Nahm’s

10If M : V → V is a linear map, we define the rank of M to be the dimension of the image of M , that is, of
the subspace MV of V .
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Fig. 4 In this example, the
number of D3-branes jumps by 1
in crossing a D5-brane

equations for 	X. For y < 0, the gauge group is U(n) so the components of 	X are n × n

matrices. But for y ≥ 0, they are (n + 1) × (n + 1) matrices. What happens at y = 0 is
simply that the smaller matrix is embedded as an n × n submatrix of the large one; the extra
row and column are arbitrary.

For example, if n = 2, then 	X is a 2 × 2 matrix for y < 0:

(∗ ∗
∗ ∗

)
. (3.36)

For y ≥ 0, an extra row and column appear:

⎛
⎝∗ ∗ ×

∗ ∗ ×
× × ×

⎞
⎠ . (3.37)

The upper left block is continuous at y = 0, and the other matrix elements are unconstrained
at y = 0. Nahm’s equations determine the dependence on y.

With some care, the recipe stated in the last paragraph can be extracted from (2.22). The
most relevant part of (2.22) is 	X+| = D3 	X−| = 0. As explained in Sect. 2.2.1, (2.22) can
be used in N = 4 super Yang-Mills theory with any gauge group G̃ and subgroup H , if
one understands �+ as the projection of an adjoint-valued field � from g̃ to h, and �−

as the projection to h⊥. In the present case, we take G̃ = U(n) × U(n + 1) and H the
diagonal U(n) subgroup described above. Then as described in Sect. 2.6, we “unfold” the
theory to convert this boundary condition to a supersymmetric domain wall interpolating
between gauge groups U(n) and U(n + 1). After unfolding, we arrive at the picture in the
last paragraph.

An important detail is that in unfolding, we reverse the sign of 	X in one group, say
U(n + 1). So the condition that 	X+| = 0 in the folded theory is equivalent after unfolding
to the statement that the U(n) part of 	X is continuous at y = 0. This is the main claim in
(3.37).

Now we wish to analyze the supersymmetric vacua in this situation. As in Sect. 3.4, we
pick commuting triples 	X∞,− and 	X∞,+ to specify choices of vacuum for large negative and
large positive y. We denote as M( 	X∞,+, 	X∞,−) the moduli space of vacua in the full system
when the vacua at infinity are fixed. It is the moduli space of solutions of Nahm’s equations
(for matrices whose size jumps as above at y = 0) with 	X(y) → 	X∞,± for y → ±∞. The
allowed gauge transformations are by a function g(y) that is U(n)-valued for y < 0 and
U(n + 1)-valued for y > 0. At y = 0, g(y) takes values in the subgroup U(n) of U(n + 1).
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Fig. 5 By displacing a D3-brane
that is on the right of the
D5-brane very far from the others
in the x4 − x5 − x6 directions,
we can reduce to a case with
equals numbers of D3-branes on
both sides

To describe M, we use again its relation to the complex Nahm equation

0 = D X
Dy

= dX
dy

+ [A, X ], (3.38)

where X and A are complex-valued matrices whose size jumps at y = 0 as above. As usual,
in one of its complex structures, M is the moduli space of solutions of this equation such
that X (y) → X∞,± for y → ±∞, modulo complex gauge transformations. We analyze this
problem in the familiar way by making a gauge transformation with g(y) → 1 for y →
−∞ to set A = 0. The rest of the argument is quite similar to steps we have already seen.
Eqnuation (3.38) implies that X is constant for y < 0 and hence equals X∞,−. At y = 0, it
acquires 2n + 1 new complex coefficients (from the extra row and column). Of these, n can
be removed by a gauge transformation that commutes with X∞,−, and n + 1 are fixed by
requiring that X (y) for y > 0 has the same characteristic polynomial as X∞,+. So counting
parameters, we see that the moduli space M is of dimension zero.

In fact, M consists of a single point. The argument for this closely follows Sect. 3.4.1. We
assume that X∞,− is diagonal with distinct and nonzero eigenvalues and we take X∞,+ =
0. By a constant gauge transformation that commutes with X∞,−, we can set all matrix
elements in the last column in (3.37) to 1 except the bottom one, and then the condition that
X (y) is nilpotent for y > 0 gives n + 1 linear equations that uniquely determine the bottom
row in (3.37).

Comparison to the D3-D5 System We now want to show that what has just been described
is consistent with what we know about the D3-D5 system. (See [17] for a more thorough
treatment of similar issues in the context of monopoles.)

If one of the D3-branes that are at y > 0 in Fig. 4 moves far away, we reduce (Fig. 5) to
the case of n D3-branes meeting a D5-brane. A bifundamental hypermultiplet must appear.
Let us see how this happens.

We suppose that X∞,+ has one large eigenvalue, which we call W , and we take W → ∞
keeping all other eigenvalues of X∞,+ fixed. (We also keep X∞,− fixed.) For instance, for
n = 2 we have

X∞,+ =
⎛
⎝∗ ∗ 0

∗ ∗ 0
0 0 W

⎞
⎠ , (3.39)

and the matrix elements denoted ∗ will be held fixed while W → ∞. We write X ′∞,+ for the
upper left n × n block of X∞,+.
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After gauging A to zero and setting X (y) = X∞,− for y < 0, we are supposed to pick the
last row and column in (3.37) so that X (y), for y > 0, is conjugate to X∞,+. In our example
of n = 2, X∞,− is a 2 × 2 matrix that “grows” an extra row and column for y > 0. In fact,
we pick the last row and column so that for y > 0

X (y) =
⎛
⎝ ∗ ∗ W 1/2B1

∗ ∗ W 1/2B2

W 1/2C1 W 1/2C2 W

⎞
⎠ , (3.40)

where the upper left block equals X∞,−, and the coefficients Bi , Cj , i, j = 1, . . . , n are kept
fixed for W → ∞.

Second order perturbation theory shows that for large W , one eigenvalue of X (y) equals
W and the others are the eigenvalues of the n × n matrix

X∞,− − M, (3.41)

where M has matrix elements Mi
j = BiCj . Our problem is now to choose M so that this

matrix is conjugate to X∞,+. But this is precisely the problem that we encountered for the
D3-D5 system, with the pair Bi,Cj playing the role of the bifundamental hypermultiplet.
This shows how the physics of the D3-D5 intersection follows from our proposal concerning
the asymmetric configuration with an extra D3-brane at y > 0.

Flowing in the Opposite Direction It is also possible to run this in reverse. We begin
with a D3-D5 system with n + 1 D3-branes on each side of the D5-brane. Then we move
one of the D3-branes at y < 0 very far from the others. We do this by giving X∞,− one
large eigenvalue W , while keeping fixed its other eigenvalues as well as X∞,+. We take
X∞,− = diag(w1,w2, . . . ,wn,W), where w1, . . . ,wn are the small eigenvalues. For large W ,
we should reduce to the problem with n D3-branes at y < 0 and n + 1 at y > 0.

As in (3.33), we are supposed to satisfy

X∞,− − M = X ′′, (3.42)

where X ′′ should be conjugate to X∞,+ and in particular has all eigenvalues fixed as
M → ∞. For this, we take M of the form

M =
⎛
⎝ · · ×

· · ×
× × W + ×

⎞
⎠ (3.43)

(illustrated here for n = 2), where coefficients denoted × are kept fixed as W → ∞, while
coefficients denoted · vanish for W → ∞ and are adjusted so that M is of rank 1. With
this ansatz, the problem of satisfying (3.42) for large W is equivalent to what we got from
Nahm’s equations with matrices that jump in rank in crossing y = 0. The quantities labeled
× in (3.43) simply map to the quantities labeled the same way in (3.37).

3.4.3 D3-Branes Ending on a D5-Brane

When the difference between the numbers of D3-branes on the two sides of a D5-brane
exceeds 1, poles appear in the solutions of Nahm’s equations. To isolate the essential sub-
tleties, we begin with the extreme case of n D3-branes at y > 0 and none at y < 0 (Fig. 6a).
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Fig. 6 (a) All D3-branes to the
right of a D5-brane. (b) A
configuration with equal numbers
of D3-branes on both sides can
be reduced to the one-sided
configuration in (a) by moving all
D3-branes on one side to large
values of x7,8,9

We approach this starting from the case of n D3-branes on each side, where everything is
computable in weakly coupled string theory, and then we reduce to the case we want by
removing the D3-branes on one side. To do this (Fig. 6b), we take the eigenvalues of 	X∞,−
to be large, while 	X∞,+ remains small or zero.

In the description by the complex Nahm equations, we use the usual gauge in which X
is piecewise constant, equaling X ′ or X ′′ for y < 0 or y > 0. X ′ must coincide with X∞,−
(which we assume to be regular), and X ′′ must have the same characteristic polynomial as
X∞,+. To achieve the situation depicted in Fig. 6b, we take the eigenvalues of X∞,− to be
distinct and large, and we take X∞,+ = 0. It follows that X ′′ is nilpotent, and hence its rank
is at most n − 1.

Writing (3.33) in the form X ′ = X ′′ + M , it says that the rank n matrix X ′ must be the
sum of a rank 1 matrix M and the matrix X ′′. Hence X ′′ must have rank at least n − 1. In
view of the observation in the last paragraph, this means that X ′′ has rank exactly n − 1.
Consequently, it is a regular nilpotent element, conjugate to the matrix in (3.14).

Let us suppose that 	X∞,+ vanishes (and not just its complex part X∞,+), so that 	X(y) →
0 for y → +∞. We know the form of a solution of Nahm’s equations that approaches zero
at infinity and for which X is a regular nilpotent. It is

	X = 	t
y + c−1

, (3.44)

where 	t are the generators of an irreducible su(2) subalgebra of su(n), and c is a positive
constant. Any solution on the half-line y ≥ 0 with the stated properties has this form.

The constant c depends on the choice of X∞,−. To reduce to the problem of D3-branes
ending on a D5-brane (Fig. 6a), we wish X∞,− to have very large eigenvalues. Nahm’s
equations are invariant under the scaling 	X → s 	X, y → s−1y, for positive s. Under this
operation, we have c → sc. So when we take s → ∞ to send X∞,− to infinity, we also get
c → ∞. The limiting form of the solution for y > 0 is then

	X = 	t
y

. (3.45)

We have learned that the appropriate boundary condition for n D3-branes ending on a
D5-brane at y = 0 is that 	X must have a pole at y = 0 corresponding to an irreducible su(2)

embedding. The same reasoning applies for a Dp-D(p + 2) system for any p. While this
is a striking and perhaps surprising result, it has been discovered and explained in the past
in several different ways. The original analysis of the Dp-D(p + 2) system and its relation
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to Nahm’s equations and monopoles [3] implied this behavior, in view of the role of such
poles in the theory of monopoles [1]. The pole has an elegant interpretation in terms of a
distortion of the D5-brane by the “pull” of the D3-branes [18]; the different viewpoints have
been related in [12].

What happens if we take 	X∞,+ to be nonzero, and we keep it fixed while scaling 	X∞,−
to infinity? As we learned in our study of the Slodowy slice, for every choice of 	X∞,+, there
is a unique solution of Nahm’s equations on the half-line y > 0 that has the singularity of

(3.45) for y → 0 and approaches 	X∞,+ for y → ∞. This is the behavior that we will get for
y > 0 in the situation just described.

3.4.4 A More General Case

Now we consider the general case of a D5-brane with m D3-branes ending on one side
(Fig. 7) and n > m on the other side. We have already treated the cases that n = m + 1, or
m = 0. Here we assume that n ≥ m + 2 > 0.

It is possible to guess what happens on the following grounds. We could simply remove
m of the D3-branes by detaching them from the D5-brane and displacing them in 	Y . This
leaves n−m D3-branes on one side of the D5-brane and none on the other side. In that case,
we have just seen that a supersymmetric configuration of the remaining n − m D3-branes
is described by a solution of Nahm’s equations with a pole associated to an irreducible
embedding ρ : su(2) → su(n − m). Now if we move the extra D3-branes back, the simplest
possibility is that they do not disturb this pole.

This suggests that the system is described by a solution of Nahm’s equations with the
following properties. For y < 0, 	X is an m × m matrix-valued solution of the equations,
regular at y = 0. For y > 0, 	X is an n × n matrix-valued solution. Near y = 0, 	X looks like

( 	A 	B
	C 	D

)
(3.46)

where the entries are as follows. 	A is an m × m matrix (or rather a trio of such matrices)
and coincides with the limit of 	X(y) as y approaches zero from below. The lower right hand

Fig. 7 Two extra D3-branes to
the right of a D5-brane
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block is an (n − m) × (n − m) block with

	D = 	t
y

+ · · · ; (3.47)

here 	t are generators of an irreducible embedding ρ : su(2) → su(n − m), and the ellipses
are regular terms. The other blocks 	B and 	C are merely required to be regular for y → 0.

This example is a domain wall of the type described in Sect. 2.6.2, with G = U(n),
G′ = U(m), a pole in Nahm’s equations that breaks G × G′ to U(m) × U(m), and H a
diagonal subgroup of U(m) × U(m).

Notice that if we set n − m = 1, then 	t = 0 (its components generate a trivial one-
dimensional representation of su(2)) so there is no pole in (3.46), which actually then re-
duces to what we have analyzed in Sect. 3.4.2.

A Useful Trick Now let us discuss the solutions of Nahm’s equations in this example. As
in the other examples with only a single D5-brane, once one specifies 	X∞,±, the relevant
moduli space of solutions of Nahm’s equation is zero-dimensional. In order to show this,
we need to understand the effects of the pole at y = 0. In a one-sided problem that we have
already studied in Sect. 3.3, the analysis of the pole leads to the Slodowy slice transversal
to a nilpotent orbit. Rather than making a similar analysis in a new situation, we will use a
trick to reduce to the previous case. The trick in question also has other applications.

We let M+ denote the space of n × n solutions of Nahm’s equations on the half-line
y > 0, with the form given in (3.46) near y = 0 and approaching 	X∞,+ (up to conjugacy)
for y → ∞. Thus, 	X has a pole at y = 0 associated with an su(2) embedding of rank n−m.
The group U(m) acts on M+, by gauge transformations at y = 0 that commute with the
pole.11 The moment map for the action of U(m) on M+ is

	μ+ = 	A, (3.48)

where as in (3.46), 	A is the value at y = 0 of the upper left block of 	X. This formula was
obtained in (3.4) (except that here we restrict to those global gauge transformations that
commute with the pole). The complex dimension of M+ is s − n, where s is the number of
summands when the Lie algebra u(n) is decomposed in irreducible representation of su(2)

(embedded in u(n) via n = (n − m) + 1 + 1 + · · · + 1). Performing this computation, we
find that

dim M+ = m2 + m. (3.49)

On the other hand, we can solve Nahm’s equations in m × m matrices on the half-line
y ≤ 0. Now we require the solution to be regular at y = 0 and to approach 	X∞,− (up to
conjugacy) for y → −∞. We denote the moduli space of solutions as M−. As a complex
manifold, it is isomorphic to the orbit of X∞,− if that element is regular, and in any event its
complex dimension is

dim M− = m2 − m. (3.50)

11The symmetry group is really U(m) × U(1), but the second factor will not be important. The moment map

for the second factor is Tr 	D.
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The group U(m) acts on M− by gauge transformations at y = 0, and the hyper-Kahler
moment map is

	μ− = − 	X(0) = − lim
y→0−

	X(y). (3.51)

The reason for the minus sign is that we are now solving Nahm’s equations on the half line
y ≤ 0 rather than y ≥ 0, and this reverses the sign of the endpoint contribution that results
from integration by parts.

The product M+ × M− is a hyper-Kahler manifold acted on by U(m). Let us take its
hyper-Kahler quotient by U(m). This entails setting to zero the combined moment map 	μ =
	μ+ + 	μ− and dividing by U(m). Setting 	μ = 0 means that limy→0− 	X(0) = 	A. This means
that the two partial solutions on the half-lines y ≤ 0 and y ≥ 0 fit together to a solution on the
whole line, with the right singularity at y = 0 and the right matching condition as described
in (3.46) to represent a supersymmetric vacuum of the full system. Also, in constructing
M+ we have divided by gauge transformations for y > 0, and in constructing M− we have
divided by gauge transformations for y < 0. So after also dividing by U(m) to construct the
hyper-Kahler quotient of M+ × M− by U(m), we have divided by all gauge transformations
on the line.

The upshot is that the desired moduli space M of supersymmetric vacua of the com-
bined system is the hyper-Kahler quotient of M+ × M− by U(m), often denoted (M+ ×
M−)///U(m). Taking the hyper-Kahler quotient by a w-dimensional group reduces the
complex dimension by 2w. Since the dimension of U(m) is m2, we see, using (3.49) and
(3.50), that M is zero-dimensional.

3.5 Pole of General Type

We are now ready to consider a much more general problem. We consider supersymmet-
ric boundary conditions of D5-type in U(n) gauge theory. From a field theory point of
view, such a boundary condition can be constructed for any choice of a homomorphism
ρ : su(2) → u(n). In Sect. 3.4.3, we explained that the case that ρ is an irreducible su(2) em-
bedding corresponds to D3-branes ending on a D5-brane. This makes it relatively straight-
forward to understand the S-dual of this boundary condition.

As a basis for understanding S-duality in general, we would like to find a D-brane con-
struction of the boundary condition associated to an arbitrary ρ. At first sight, this may
appear difficult. A general ρ is specified by a decomposition n = n1 + n2 + · · · + nk , where
the ni are positive integers and we can assume that n1 ≥ n2 ≥ · · · ≥ nk . How can we encode
this information in terms of D-branes?

Roughly speaking, we do this by letting the n D3-branes end on k different D5-branes—
with ni D3-branes ending on the ith D5-brane, for i = 1, . . . , k. However, it is not clear what
this is suppose to mean if all the D5-branes are located at y = 0. In that case, how do we
make sense of the question of which D3-brane ends on which D5-brane?

To make sense of it, we displace the D5-branes from each other, as in Fig. 8. Thus we con-
sider a system with D5-branes at points yα , α = 1, . . . , k; we assume that ñα D3-branes end
on the αth D5-brane. Thus the total number of D3-branes is reduced by ñα when one crosses
the αth D5-brane from right to left. The numbers ñα will equal the ni up to permutation—but
it will be crucial, as we will see, to choose the right permutation.

From Sect. 3.4, we know what field theory construction corresponds to the configuration
of Fig. 8. Supersymmetric vacua, for example, are described by a solution of Nahm’s equa-
tions for matrices 	X(y) whose rank jumps whenever y = yα for some α, and which have
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Fig. 8 To the right of this
picture, there are six D3-branes.
Reading from right to left, three
of them end on the first
D5-brane, two end on the second,
and one ends on the third and last

Fig. 9 To the right of the
picture, there are five parallel
D3-branes. Reading from right to
left, in (a), two of them end on
the first D5-brane and three on
the second, while in (b), the
numbers are reversed. This is the
special case n = 5, n1 = 3,
n2 = 2 of a decomposition
n = n1 + n2

a pole for y → y+
α whenever ñα ≥ 2. Moreover, Fig. 8 is useful because it is described in

terms of branes; this will be our starting point in a separate paper in analyzing its S-dual.
Our hypothesis then, is that for some choice of the ñα , which will equal the ni up to

permutation, the brane configuration of Fig. 8 is equivalent, in the limit that all yα → 0, to a
field theory construction based on a corresponding su(2) embedding. The su(2) embedding,
of course, is the one associated with the decomposition n = n1 +n2 +· · ·+nk . In Sect. 3.5.1,
we justify this claim by analyzing the moduli space of supersymmetric vacua. But first, we
determine exactly how the ñα must be related to the ni .

To explain the issue, we first consider the example k = 2. Thus, there are precisely two
D5-branes; n1 end on one and n2 on the other. There are two possible arrangements (Fig. 9),
depending on whether the D5-brane on which the larger number of branes end is on the right
or the left.

In Sect. 3.5.1, we will use Nahm’s equations to describe the moduli space M of super-
symmetric vacua (for a given limit 	X∞ at infinity) in this situation. But for now, we count
the parameters directly from the brane diagram.

Each D3-brane that is free to move between two D5-branes contributes one hyper-Kahler
modulus or two complex moduli. In Fig. 9a, there are n1 such branes and in Fig. 9b, there
are n2 such branes. (The figure is drawn for n1 = 3, n2 = 2.) So the number of complex
moduli is 2n1 in one case and 2n2 in the other.
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Fig. 10 Reading from right to
left, the numbers of D3-branes
ending on successive D5-branes
are 3, 3, 2, and 1. This is a
non-increasing sequence of
numbers, so this configuration
has a nice limit when the
D5-branes become coincident

Let us compare this to a boundary condition in Yang-Mills theory on a half-space given
by a solution of Nahm’s equation with a pole at y = 0. We suppose that the pole is deter-
mined by a homomorphism ρ : su(2) → u(n) associated with a decomposition n = n1 + n2.
The moduli space M of vacua, according to Sect. 3.3, has complex dimension s − n, where
s is the number of summands when the Lie algebra u(n) is decomposed as a direct sum of
irreducible representations of su(2). Assuming that n1 ≥ n2, one finds that s = n+ 2n2. The
complex dimension of M is therefore 2n2.

This shows that the configuration of Fig. 9b, but not that of Fig. 9a, may as y1, y2 → 0
approach the conformally invariant boundary condition determined by ρ. We believe this
to be the case. We are not certain what is the limit for y1, y2 → 0 of the configuration of
Fig. 9a, but we believe that it may be that the n1 −n2 extra hypermultiplets simply decouple
in this limit.

In Sect. 3.5.1, we will confirm the hypothesis about Fig. 9b by analyzing M as a complex
manifold. For now, however, we just explain the counting for the case that ρ is an su(2)

embedding associated with a general decomposition n = n1 + n2 + · · · + nk , with n1 ≥
n2 ≥ · · · ≥ nk . The number of irreducible su(2) modules in the decomposition of u(n) is
s = n + 2

∑
i<j nj = n + 2

∑k

j=1(j − 1)nj . The hyper-Kahler dimension of M is therefore

(s − n)/2 =
k∑

j=1

(j − 1)nj . (3.52)

We stress that this is the dimension of M if and only if the ni are labeled in non-ascending
order.

Equation (3.52) agrees with the number of parameters suggested by the brane diagram
if and only if, as one approaches the boundary from the bulk, the number of D3-branes
ending on one D5-brane is at least as great as the number ending on the next one (Fig. 10).

Indeed, the number of hyper-Kahler parameters suggested by the brane picture is
∑k−1

j=1 bj ,

where bj is the number of D3-branes between the j th and j + 1th D5-brane. If ñj D3-
branes end on the j th D5-brane (counting them from right to left), then bj = ∑k

s=j+1 ñs , so∑k−1
j=1 bj = ∑k

j=1(j −1)ñj . Assuming that the numbers ñj are supposed to be a permutation
of the nj , this number coincides with (3.52) if and only if nj = ñj , so that the ñj are non-
ascending.

This has a heuristic explanation if one thinks of the D3-branes ending on a D5-brane as
creating a “spike” in a D5-brane [18]. The condition of Fig. 9 then makes it possible for the
various spikes to avoid intersecting each other (Fig. 11).
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Fig. 11 (a) D3-branes ending on a D5-brane can be represented by a “spike.” (b) The condition that the
numbers of D3-branes ending on successive D5-branes are non-increasing (from right to left) ensures that
one spike can fit inside the next

Fig. 12 These two
configurations correspond to two
different problems in U(3) gauge
theory, as described in the text.
The configuration of (b) has a
straightforward limit as the two
NS5-branes approach each other,
and that of (a) does not

3.5.1 Analysis of M as a Complex Manifold

We are now going to compare the complex manifolds associated with the brane diagrams of
Figs. 10a and b to the answer coming from the corresponding su(2) embedding. To make it
easy to write explicit formulas, we will just describe the case n = 3, n1 = 2, n2 = 1 (Fig. 12).
The general case is similar. We want to compare three complex manifolds:

(1) M parametrizes supersymmetric vacua in U(3) gauge theory on the half-space y ≥ 0,
with a pole at y = 0 given by the su(2) embedding (associated with the decomposition
3 = 2 + 1), and with 	X(y) → 	X∞ for y → ∞.

(2) M′ parametrizes supersymmetric vacua in the brane picture of Fig. 12a; one D3-brane
ends on a D5-brane at y = y1 > 0 and the other two continue to y = 0.

(3) M′′ parametrizes supersymmetric vacua corresponding to Fig. 12b; now two D3-branes
end at y = y1 and the other two continue to y = 0.

We can describe case (1) using (3.23). If we choose ρ to map su(2) to matrices supported
in the upper left 2 × 2 block of a 3 × 3 matrix (so that in particular the pole in X lives in that
block), then the general form of a solution of the complex Nahm equations in case (1) is

X =
⎛
⎝ a y−1 0

by a cy1/2

dy1/2 0 e

⎞
⎠ , (3.53)
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where a, b, c, d and e are complex parameters. After fixing three parameters to specify the
characteristic polynomial of X , we see that M is two-dimensional.

In case (2), on the interval 0 ≤ y ≤ y1, we solve Nahm’s equations via 2 × 2 matrices
with a pole at y = 0. The general allowed form is again given by (3.23):

X =
(

a y−1

by a

)
. (3.54)

So far so good: this agrees with the upper left block in (3.53). However, when we cross
y = y1, the matrix simply grows a new row and column with no restriction on the new
matrix elements:

X =
⎛
⎝ a y−1 c

by a d

e f g

⎞
⎠ . (3.55)

Now there are seven complex parameters, and after adjusting three to fix the characteristic
polynomial of X , we find that M′ has complex dimension four and hyper-Kahler dimension
two. This agrees with what we would expect from the brane picture in Fig. 12a, and shows
that M′ cannot coincide with M.

In case (3), on the interval 0 ≤ y ≤ y1, we solve Nahm’s equations with 1 × 1 matrices.
In particular, in the usual gauge, X is simply a complex constant e. Upon crossing y = y1,
two new rows and columns appear, and there is a pole at y = y1 in the new 2 × 2 block. The
general allowed form is

X =
⎛
⎝ a (y − y1)

−1 0
b(y − y1) a c(y − y1)

1/2

d(y − y1)
1/2 0 e

⎞
⎠ . (3.56)

The parameters correspond to those in (3.53) in an obvious way.
So the moduli space of vacua derived from the brane picture of Fig. 12b agrees with the

one associated with the embedding ρ : su(2) → u(3). This makes it reasonable to expect
that for y1 → 0, the model derived from the brane picture converges to N = 4 super Yang-
Mills theory with the superconformal boundary condition derived from ρ. This will be our
starting point elsewhere in studying duality.

3.6 Moduli Space of Vacua with More General Boundary Conditions

Most of what we have done so far is to analyze Nahm’s equations in the presence of a
boundary condition associated to a homomorphism ρ : su(2) → g. The moduli space Mρ

(or Mρ( 	X∞)) has turned out to be a Slodowy slice transverse to the raising operator t+
associated to ρ, intersected with the closure of an orbit. A group F that is the commutant of
ρ in G acts as a group of symmetries of Mρ . The hyper-Kahler moment map for the action
of F is

	μ = 	X(0)f , (3.57)

that is, the projection of 	X(0) to f . The derivation of this statement is exactly the same
as the derivation of (3.4), except that here we consider only gauge transformations that are
F -valued at y = 0, so we project the formula to f .

In Sect. 2.5, we described more general supersymmetric boundary conditions in which,
roughly speaking, after picking ρ, we gauge a subgroup H of F and couple it to boundary
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degrees of freedom with H symmetry. Our next goal is to describe the moduli space of
supersymmetric vacua in this more general context.

First we describe the effect of gauging H without adding boundary variables. Away from
y = 0, supersymmetry still requires that 	X should obey Nahm’s equations. According to
(2.45), the boundary condition requires 	X(0)+ = 	v, where 	v is a triple of elements of the
center of h. (We omit the 	μZ term as we are not yet including boundary variables.) We also
must divide by the action of H , since this is now part of the gauge group. As the gauge
symmetry has been reduced to H at the boundary, 	X(0)+ is just the projection of 	X(0)

from f to h. So, according to (3.57), 	X+(0) is a moment map for the action of H on Mρ .
But as usual, we are free to add central elements to the moment map, and so 	X+(0) − 	v is
an equally good moment map. The combined operation of setting 	X+(0) = 	v and dividing
by H is therefore a hyper-Kahler quotient. Thus the moduli space Mρ,H of solutions of
Nahm’s equations for the boundary condition associated to a general H is the same as the
hyper-Kahler quotient by H of Mρ :

Mρ,H = Mρ///H. (3.58)

The hyper-Kahler quotient is taken for a specified value of the FI constants 	v.
There is no problem to add a boundary theory B with H action. B has its own moduli

space of vacua, say H, also a hyper-Kahler manifold with H action. If 	μB is the moment
map for the action of H on H, then the incorporation of the boundary variables has the effect
of replacing the boundary condition 	X(0)+ = 0 by 	X(0)+ + 	μB = 0. This was demonstrated
in (2.33).

So when boundary variables are added, we construct the moduli space of vacua by begin-
ning with Mρ × H, imposing the boundary condition 	X(0)+ + 	μB = 	v, and dividing by H .
On the other hand, 	X(0)+ + 	μB − 	v is a moment map for the action of H on Mρ × H, so
setting this to zero and dividing by H amounts to a hyper-Kahler quotient. The moduli space
of vacua of the combined system is therefore

Mρ,H,B = (Mρ( 	X∞) × H)///H. (3.59)

3.7 Including 	Y∞

We have written explicitly the dependence of Mρ on 	X∞ in (3.59) to emphasize that this
analysis does incorporate the value of 	X at infinity. However, throughout this section, we
have taken 	Y∞ = 0. It is now time to incorporate 	Y∞. In doing so, we assume that 	X∞ and
	Y∞ taken together are regular and break G to a maximal torus T .

Supersymmetry requires that in bulk 	Y must obey (2.41)

D 	Y
Dy

= [ 	Y , 	Y ] = [ 	Y , 	X] = 0, (3.60)

and thus, the components of 	Y generate symmetries of the solution of Nahm’s equations. We
must supplement this with additional information associated with the boundary conditions.

As summarized in Sect. 2.5, the most general half-BPS boundary conditions depends on
the choice of a triple (ρ,H,B), where ρ : su(2) → g is a homomorphism, H is a subgroup
of G that commutes with ρ, and B is a boundary theory with H symmetry. To explain the
main points most directly, we first suppose that ρ and B are trivial.
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The boundary condition on 	Y was described in (2.45). We decompose g = g+ ⊕ g−,
where g+ = h and g− is the orthocomplement. Then we pick elements 	w ∈ g− that commute
with each other and with h, and require

	Y −(0) = 	w. (3.61)

Equivalently, we require

	Y (0) = 	w mod h. (3.62)

This equation plus the covariant constancy of 	Y , which is part of (3.60), says that 	Y∞
must be conjugate to 	w mod h. If this is not the case, then the moduli space of supersym-
metric vacua is empty. For most choices of H , that is the situation for a generic choice of
	Y∞ and 	w. For example, suppose that H is trivial and 	w = 0. Then the condition is that
	Y∞ must be conjugate to 0, that is, it must vanish. Otherwise, there are no supersymmetric
vacua.

If 	Y∞ is conjugate to 	w, this may be so in inequivalent ways. For example, suppose that
G = SU(4) and H = SU(2), consisting of matrices of the form

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗

⎞
⎟⎟⎠ . (3.63)

Let 	w = diag(	a,−	a,0,0) (so 	w ∈ g−, and its components commute with each other and
with H ), 	X = diag(	x1, 	x2, 	x3, 	x4), 	Y = diag(	y1, 	y2, 	y3, 	y4). Conjugating 	Y to equal 	w mod
h means finding i and j such that 	yi = 	a and 	yj = −	a. Generically this cannot be done (and
the moduli space of supersymmetric vacua is empty), but it can happen that there is more
than one way to do this. (This occurs if the 	yi are pairwise equal, but 	xi is generic enough
that the collection 	X, 	Y is regular.) When that is the case, each choice leads potentially to a
component of the moduli space of vacua.

Making a particular choice of how to conjugate 	Y∞ to be in the form

	Y∞ = 	w + h, (3.64)

with h ∈ H , let us describe the associated component of the moduli space. It is convenient
to think of H as a fixed subgroup of G, and 	w and 	Y∞ as fixed elements of g, rather than all
this being given up to conjugacy.

Now in solving Nahm’s equations, we have worked in a gauge with A3 = 0. Since 	Y is
covariantly constant, it is actually constant in this gauge. According to (3.60), the solution
of Nahm’s equations takes values in the subgroup G 	Y of G that commutes with 	Y . This has
the important consequence that for all y, 	X+(y) takes values in H 	Y , the subgroup of H that
commutes with 	Y . This is so even before we specialize to the boundary, y = 0.

In Sect. 3.6, we found that the effect of having H non-trivial is that, after constructing
the moduli space of solutions of Nahm’s equations, we must take the hyper-Kahler quotient
by the action of H . There are two related reasons that this is not the right thing to do when
	Y∞ 
= 0.

First, a key part of the hyper-Kahler quotient was to set to zero the hyper-Kahler moment
map 	X+(0) − 	v. (We recall that 	v are constants valued in the center of h.) In the present
context, part of 	X+(y) already vanishes before setting y = 0, namely the part that does not
commute with 	Y . It only makes sense at the boundary to add a condition on the projection of
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	X+ to h 	Y (the centralizer of 	Y in h). So we may as well regard the constraint 	X+(0)− 	v = 0
as an equation in h 	Y , the Lie algebra of H 	Y . This is the moment map for the action of H 	Y ,
not the action of H .

Second, the other part of the hyper-Kahler quotient is to divide by H . But, with 	Y 
= 0
and equal to a specified constant, there is no H symmetry, so we cannot divide by H . We
can divide only by H 	Y .

The conclusion from each of the last two paragraphs is that what we want is a hyper-
Kahler quotient by H 	Y . After making a choice α of how to put 	Y∞ in the form (3.64),
we should construct the corresponding moduli space Mα

	Y ( 	X∞) of G 	Y -valued solutions of

Nahm’s equations in which 	X is conjugate at infinity (by an element of G 	Y ) to 	X∞, and take
its hyper-Kahler quotient by H 	Y . After summing over α, we get the moduli space of vacua:

MH, 	Y =
⋃
α

Mα
	Y ///H 	Y . (3.65)

This discussion is not changed in an essential way by including a homomorphism ρ :
su(2) → g or a boundary CFT with H symmetry. The boundary CFT just gives another
factor H (its moduli space of vacua) that must be included in the hyper-Kahler quotient. The
effect of ρ is just that, as usual, in solving Nahm’s equations we must require 	X(y) to have
a pole at y = 0. Equation (3.64) in any case implies that 	Y commutes with ρ.

3.8 Duality: First Steps

Though we defer a serious study of how duality acts on half-BPS boundary conditions to
a subsequent paper, we make here some preliminary observations that may help place in
context some of the constructions that we have described.

A basic question is to ask what is the S-dual of the simplest Neumann boundary condi-
tions, described in Sect. 2. With these boundary conditions, the vacuum is uniquely deter-
mined if one specifies the value of 	X at infinity. For fixed 	X∞, the moduli space of super-
symmetric vacua consists of only a single point.

The duality transformation S : τ → −1/τ transforms the unbroken supersymmetries of
N = 4 super Yang-Mills in a non-trivial fashion, which is described for example in (2.25)
of [19]. For simplicity, let us specialize to the case that τ is imaginary (or in other words the
case that the θ angle vanishes). The transformation of the unbroken supersymmetries is then

ε → 1 − �0123√
2

ε, (3.66)

and this has the effect of exchanging the supersymmetry preserved with Neumann boundary
conditions with the supersymmetry preserved by Dirichlet conditions. (The generalization
of (3.66) to θ 
= 0 is given in (4.35).)

One might think that the dual of Neumann boundary conditions would be Dirichlet
boundary conditions. This, however, cannot be the case, because Dirichlet boundary con-
ditions lead to a non-trivial moduli space of solutions of Nahm’s equations, which has no
analog for the Neumann case. The dual of Neumann boundary conditions must be a bound-
ary condition which preserves the same supersymmetry as Dirichlet, but which does not lead
to a non-trivial moduli space.

We have learned that for each choice of ρ : su(2) → g, we can generalize Dirichlet
boundary conditions to a more general boundary condition that preserves the same super-
symmetry. The resulting moduli space of solutions of Nahm’s equations is a Slodowy slice
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associated to ρ, and is trivial if and only if ρ is the principal su(2) embedding. So this,
rather than naive Dirichlet boundary conditions, is the natural candidate for the S-dual of
Neumann boundary conditions.

For the case of G = U(N), this proposal can be confirmed by considering the D3-NS5
and D3-D5 systems.12 For N D3-branes ending on an NS5-brane, we get U(N) gauge theory
with Neumann boundary conditions. The S-dual consists of N D3-branes ending on a D5-
brane. As we have learned, this corresponds not to naive Dirichlet boundary conditions but to
Dirichlet boundary conditions modified with the principal embedding ρ : su(2) → g. (This
fact seems to underlie many occurrences of the principal su(2) embedding in the geometric
Langlands program.)

A converse question is to ask what is the S-dual of ordinary Dirichlet boundary condi-
tions (with ρ = 0). The answer involves Neumann boundary conditions modified by cou-
pling to a certain boundary superconformal field theory. To elucidate the nature of this the-
ory, and to answer analogous questions for other boundary conditions described in Sect. 2,
will be our goal in a separate paper.

3.9 Other Moduli Spaces of Solutions of Nahm’s Equations

In our study of Nahm’s equations so far, the goal has been to describe the moduli space
of vacua of gauge theory on a half-space y ≥ 0, with BPS boundary conditions at y =
0 and specified values of 	X and 	Y at y = ∞. Here we will briefly describe some other
related spaces of solutions of Nahm’s equations. (Apart from their intrinsic interest, these
are relevant to a more detailed study of S-duality of boundary conditions that will appear
elsewhere.)

3.9.1 Hyper-Kahler Analog of a Lie Group

The most basic of these [13] is the moduli space of solutions of Nahm’s equations on a finite
interval 0 ≤ y ≤ �. We consider the gauge-invariant form of Nahm’s equations

D 	X
Dy

+ 	X × 	X = 0 (3.67)

for a pair 	X,A, modulo gauge transformations that equal 1 at both y = 0 and y = �. By the
usual reasoning, the moduli space, which we will call G�, is a hyper-Kahler manifold. (A
simple scaling argument shows that the �-dependence of the hyper-Kahler metric of G� is a
simple factor of 1/�. The same is true of the generalizations introduced below.) Moreover,
the group G × G acts on G�. One copy of G acts by gauge transformations at y = 0 and the
second copy acts by gauge transformations at y = �. We write GL and GR for G acting on
the left or right, that is at y = 0 or at y = �.

We can calculate the moment map 	μL and 	μR for the left and right action of G as in
(3.4), leading to

	μL = 	X(0),

	μR = − 	X(�).
(3.68)

12For the other classical groups SO(N) and Sp(N), a similar argument can be given by combining the branes
with an orientifold threeplane.
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(The minus sign in the second line comes in integration by parts.) As an example of the use
of this formula, let us compute the hyper-Kahler quotient G///GR . We do this by setting
	μR = 0 and dividing by GR . Since 	μR = 	X(�) and Nahm’s equations are of first order in
	X, a solution with 	μR = 0 has 	X identically zero. Dividing by GR , after already dividing
by gauge transformations that are 1 at y = 0, �, means that we divide by all gauge trans-
formations that are 1 at y = 0. This enables us to set A = 0 in a unique fashion. So the
hyper-Kahler quotient of G by GR—or likewise its hyper-Kahler quotient by GL—is a sin-
gle point.

As a second example, pick two positive numbers � and �′, and consider the group G

acting on the right on G� and on the left on G�′ . We claim that the hyper-Kahler quotient,
which we abbreviate as G� ×G G�′ , is simply G�+�′ . To get this result, we think of G� as the
moduli space of pairs 	X,A that obey Nahm’s equations on the interval [0, �], and G�′ as
the moduli space of pairs 	X′,A′ that obey Nahm’s equations on the interval [�, � + �′]. In
each case we divide by gauge transformations that are 1 on the boundary of the interval. To
compute the hyper-Kahler quotient by the diagonal product of the right action of G on the
first factor and the left action on the second factor, we set to zero the moment map, which is
μ̂ = − 	X(�) + 	X′(�), and then divide by gauge transformations acting on all fields at y = L.
Once we set μ̂ = 0 and divide by gauge transformations at y = L, the quantities 	X,A and
	X′,A′ fit together to a single solution of Nahm’s equations on the full interval [0, � + �′],
modulo gauge transformations that are 1 on the boundary. Hence

G� ×G G�′ = G�+�′ . (3.69)

In any one of its complex structures, G� is isomorphic to T ∗GC, the cotangent bundle of
the complex Lie group GC (in particular, as a complex manifold, it is independent of �). To
see this, as usual we introduce the variables X = X1 + iX2 and A = A + iX3. In one of its
complex structures, G� is equivalent to the moduli space of solutions of the complex Nahm
equation

D X
Dy

= 0 (3.70)

modulo complex-valued gauge transformations that equal 1 at y = 0, �. The gauge-invariant
data characterizing this solution is X (0) and the “Wilson line” or holonomy

g = P exp

(
−

∫ �

0
A

)
. (3.71)

(We need not include X (�) since the complex Nahm equation implies that it coincides with
gX (0)g−1.) Here g takes values in GC and we can consider X (0) to take values in the
cotangent bundle of GC at the point g. They are subject to no additional restrictions, so we
can identify G� holomorphically, in any one of its complex structures, with T ∗GC.

The subgroup of G × G leaving fixed a given point in G is always a subgroup of G, with
a diagonal embedding in G × G. In fact, a symmetry of a solution of Nahm’s equations
must be generated by a covariantly constant gauge parameter, which is determined by its
restriction to y = 0. Any solution with the full G symmetry has 	X = 0. The gauge-invariant
data contained in the solution is then the G-valued holonomy P exp(− ∫ �

0 A). This may be
any element of G, so solutions with 	X = 0 furnish a copy of G embedded in G�, and these
are the solutions for which the unbroken symmetry is maximal. By identifying a solution of
Nahm’s equations with the initial values 	X(0) plus the holonomy P exp(− ∫ �

0 A), one can
show that as a manifold with G × G action, G is equivalent to G × g3, with a natural action
of G × G.
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3.9.2 Hyper-Kahler Analog of a Homogeneous Space

The space G� is in a sense the hyper-Kahler analog of a Lie group. There is also [15] a
hyper-Kahler analog of a homogeneous space. For this, we solve Nahm’s equations on the
interval [0, �), modulo gauge transformations that are 1 on the boundary, but now we pick a
homomorphism ρ : su(2) → g and we require that 	X should have a pole of type ρ at y = �:

	X ∼ 	t
y − �

. (3.72)

(As usual, 	t is the image under ρ of a standard set of su(2) generators.) We call the moduli
space T ρ

� . It is a hyper-Kahler manifold, as usual. The group G acts by gauge transforma-
tions at y = 0, with moment map

	μ = 	X(0). (3.73)

The hyper-Kahler quotient T ρ

� ///G is empty, because (for non-zero ρ) it is impossible to
solve Nahm’s equations with the initial condition 	X(0) = 0 and with the polar behavior
(3.72) at y = �.

We denote as G� ×G T ρ

�′ the hyper-Kahler quotient of G� × T ρ

�′ by G, with G acting on
the right on the first factor and as just stated on the second factor. The same steps that led to
(3.69) give

G� ×G T ρ

�′ = T ρ

�+�′ . (3.74)

If ρ has a nontrivial centralizer H ⊂ G, then T ρ

� admits an action of H , by gauge trans-
formations at y = �, commuting with the action of G. The moment map is 	μH = 	X(�)h,
where 	X(�)h is the projection of 	X(�) to h. The unbroken subgroup of G × H at any point
in T ρ

� is a subgroup of H , with a diagonal embedding in H × H ⊂ G × H . To see this, ob-
serve that a symmetry that leaves fixed a given solution of Nahm’s equations is generated by
a gauge parameter that is covariantly constant, and whose restriction to y = � must commute
with the Nahm pole. A solution whose unbroken symmetry is actually H can be obtained
by setting A = 0 and 	X = 	t/(y − �).

Just like G�, T ρ

� can be described explicitly as a complex manifold in any one of its
complex structures. It is parametrized by a pair (g, η), where g ∈ GC and η ∈ g is a lowest
weight vector with respect to ρ (in other words, [ρ(t−), η] = 0). We cannot quite define g

as the holonomy operator (3.71); this holonomy does not converge, since A has a pole at
y = �. Instead, we define g as a regularized version of the holonomy:

g = lim
δ→0

[
(−δ)it3P exp

(
−

∫ �−δ

0
A

)]
. (3.75)

Similarly, η is defined as a regularized version of X (�). (It is simpler to use X (�) rather
than X (0), since the conditions that it obeys are more simply stated.) In a gauge in which
A = it3/(y −�) in a neighborhood of y = �, the solution for X is given essentially by (3.23):

X (y) = t+
y − �

+
∑

α

εαvα(y − �)−mα , (3.76)

where εα are complex constants and the vα are a basis of lowest weight vectors with
[it3, vα] = mαvα , mα ≤ 0. So we define

η = (−δ)it3(X (� − δ) + t+/δ)(−δ)−it3 , (3.77)
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which is independent of δ for small δ.
We can go one step farther and define S ρ,ρ′

� to be the moduli space of solutions of Nahm’s
equations on the interval [0, �] with poles of type ρ and ρ ′, respectively, at the two endpoints.
(These are the boundary conditions used by Nahm in the original work [1] relating Nahm’s
equations to BPS monopoles.) This more general moduli space can be constructed from the
ones that we have already considered as a hyper-Kahler quotient:

S ρ,ρ′
�+�′ = (T ρ

� × T ρ′
�′ )///G. (3.78)

This can be shown by following the derivation of (3.69).

3.9.3 Including an NS5-Brane

Our last topic is to consider what happens to Nahm’s equations in the presence of an NS5-
brane.13

We suppose that the NS5-brane is located at y = 0. We assume that there are n D3-branes
ending on this NS5-brane on its left, and m on its right. The low energy physics is well
known. For y < 0, there is a U(n) gauge theory with N = 4 supersymmetry. For y > 0, the
gauge group is U(m). At y = 0, there is a bifundamental hypermultiplet of U(n) × U(m).
We write Z for the space parametrized by the bifundamental hypermultiplet and 	μZ

L , 	μZ
R for

the moment maps for the action on Z of U(n) and U(m), respectively.
Similarly, we write 	XL and 	XR for the fields 	X for y < 0 and y > 0, respectively. Like

	μZ
L and 	μZ

R , they take values in the adjoint representations of U(n) and U(m), respectively.
In a supersymmetric configuration, 	XL and 	XR must obey Nahm’s equations away from
y = 0. The appropriate boundary conditions at y = 0 are special cases of (2.33):

− 	XL(0) + 	μL = 0,

	XR(0) + 	μR = 0.
(3.79)

(The minus sign in the first line comes from integrating by parts in determining the boundary
contribution to the moment maps.)

To get some insight, we look at the space of solutions of Nahm’s equations as a complex
manifold in one of its complex structures. We introduce XL = XL,1+i2, XR = XR,1+i2. Also,
from the point of view of one complex structure, the bifundamental hypermultiplet is equiv-
alent to a pair A,B where A is an n × m matrix and B is an m × n matrix. The complex
moment maps are μC,L = AB , μC,R = −BA, and the boundary conditions are therefore

XL(0) = AB,

XR(0) = BA.
(3.80)

Of course, Nahm’s equations imply that XL(y) and XR(y) are conjugate for all y to XL(0)

and XR(0).
It follows from (3.80) that the nonzero eigenvalues of XL and XR are the same. If n >

m, then XL is at most of rank n. If n = m, then XL and XR have the same characteristic
polynomials and are conjugate if they are regular, but in general not otherwise.

13To preserve the same supersymmetry as that of D3-branes that span directions 0123 and D5-branes that
span directions 012456, the NS5-brane should span directions 012789.
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We briefly conclude with some examples (which will be useful elsewhere). For n = 2
and m = 1, (3.80) says that XL(0) can be any 2 × 2 matrix of rank 1, and that XR(0) =
Tr XL(0). Now let us embed this problem in a larger one. We assume that we want to solve
Nahm’s equations on the interval (−�, �], by 2 × 2 matrices for y < 0, 1 × 1 matrices for
y > 0, and with an NS5-brane at y = 0. Also, let us ask for a regular Nahm pole at y =
−� and Dirichlet boundary conditions at y = �. All nonzero conjugacy classes arise in the
Slodowy slice transverse to a regular Nahm pole, so these boundary conditions allow XL(0)

to be any nonzero matrix, and in particular any matrix of rank 1. Thus, a solution with the
indicated boundary conditions does exist. Since XL(0) must be nonzero, the hypermultiplets
A and B are likewise nonzero. The group U(1) acts on the space of solutions, by gauge
transformations at y = �. Because A and B are nonzero, a solution with these boundary
conditions cannot be U(1)-invariant.

Finally, let us consider n = m = 2, with the same boundary conditions on the interval
(−�, �], still with a regular Nahm pole at y = −�, Dirichlet boundary conditions at y = �,
and a fivebrane at y = 0. The group that acts on the space of solutions by gauge transfor-
mations at y = � is now G = U(2). It is possible to find a solution with these boundary
conditions that is invariant under a non-central subgroup of U(2) consisting of matrices of
the form diag(1,∗). To do this, simply embed the m = 1 solution of the last paragraph in the
m = 2 problem.

4 Supersymmetry without Lorentz Invariance

What were described in Sect. 2 were Lorentz-invariant half-BPS boundary conditions. Here
we will discuss what happens if the requirement of Lorentz invariance is dropped. By the
Lorentz group in this context we mean SO(1,2), the group of Lorentz transformations that
act trivially on y = x3. As we will see, it is possible to break Lorentz invariance but still
preserve eight supersymmetries.

Though it is possible to explain this purely in field theory, and we will do so, we will
introduce the subject by describing brane constructions that give significant examples. We
will simply deform the usual D3-D5 and D3-NS5 systems by turning on a flux on the five-
brane, in a way that “rotates” the unbroken supersymmetries while preserving their number.
The deformation breaks both the SO(1,2) Lorentz symmetry and the SU(2)X R-symmetry,
but leaves SU(2)Y and translation symmetry in the 012 directions.

4.1 Deforming the D3-D5 System

We start with the D3-D5 system in Type IIB superstring theory. This theory in R
1,9 has 32

supersymmetries, consisting of two copies εL and εR of the 16 of SO(1,9). Here εL and εR

arise respectively from left- and right-moving excitations on the string worldsheet. Now as
usual we introduce four-dimensional U(N) gauge theory by considering N D3-branes with
worldvolume extending in the directions 0123. Half of the supersymmetry is broken; the
unbroken supersymmetries obey

εR = �0123εL = −B0εL. (4.1)

(The Bi were defined in (2.7).) Then we introduce a D5-brane extending in directions
012456. This again reduces the supersymmetry by a factor of two; in the absence of any
flux, the unbroken supersymmetries obey εR = �012456εL = −B0B1εL.
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The D5-brane supports a U(1) gauge field, whose curvature we will call F and measure
in string units. We take F to be a two-form with constant coefficients on the D5-brane world-
volume, preserving translation invariance but breaking Lorentz invariance. The condition for
unbroken supersymmetry due to the presence of the D5-brane is deformed to

εR = − exp(�IJ F IJ /4)B0B1εL. (4.2)

Generically, the two conditions (4.1) and (4.2) are inconsistent and there are no unbroken
supersymmetries. Indeed, we can combine the two equations into

εL = −B0wB0B1εL (4.3)

where w = exp(�IJ F IJ /4). We can think of W = −B0wB0B1 as an element of Spin(1,6),
the double cover of SO(1,6), the Lorentz group acting on directions 0123456. For generic
F , 1 is not an eigenvalue of W (acting on spinors) and there are no unbroken super-
symmetries. For F = 0, W = B1, which is the lift to Spin(1,6) of the SO(1,6) element
diag(1,1,1,−1,−1,−1,−1). Equation (4.3) then has an eight-dimensional space of so-
lutions. In general, for W to preserve one-half of the supersymmetries, it must belong
to an SU(2) subgroup of Spin(1,6) (embedded via SU(2) ⊂ SU(2) × SU(2) = Spin(4) ⊂
Spin(1,6)). On the other hand, the explicit form of W shows that it anticommutes with
�3, so one of its eigenvalues in the 7 of SO(1,6) is −1. So W must be conjugate to
diag(1,1,1,−1,−1,−1,−1). In particular, W 2 = 1, which is equivalent to

B1wB1 = w−1. (4.4)

That equation holds if

B1F = −FB1. (4.5)

Conversely, (4.5) gives a component of solutions of (4.4), namely the component of solu-
tions that come by deformation from F = 0. We will only consider this component.

For F of the form found in the last paragraph, B0w = w−1B0, so the condition (4.3) for
unbroken supersymmetry simplifies to εL = w−1B1εL. If we introduce a natural square root
of w by

h = exp(�IJ F IJ /8), (4.6)

the condition becomes

h−1B1hεL = εL. (4.7)

The matrix h is an element of SO(1,5) (acting on directions 012456), and the eight-
dimensional subspace of unbroken supercharges is conjugate under h−1 to the standard space
of unbroken supersymmetries of the D3-D5 system.

4.1.1 Field Theory Interpretation

We will now reinterpret purely in field theory terms the brane construction just described.
One advantage of this is that the field theory description is valid for arbitrary gauge group,
not just for gauge groups (such as U(N)) that are conveniently realized by branes.

So far we could be considering intersecting branes or D3-branes ending on a D5-brane.
We now focus on that latter case.
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At F = 0, the appropriate boundary condition for N D3-branes ending on a D5-brane
was described in Sect. 3.4.3. 	Y obeys Dirichlet boundary conditions, as do the three-
dimensional gauge fields Aμ. However, the scalar fields Xa do not obey simple Dirichlet
or Neumann boundary conditions, but have a pole at the boundary:

Xa ∼ ta

y
+ · · · . (4.8)

Here y = x3 vanishes at the boundary and ta are the images of standard su(2) generators for
a principal embedding ρ : su(2) → g. The unbroken supersymmetries obey

B1ε = ε. (4.9)

When we turn on F , the D5-brane is still located at 	Y = 0, so there is no change in the
Dirichlet boundary conditions for 	Y . However, the boundary conditions on Aμ and 	X do
change.

The boundary condition (4.8) is supersymmetric because the polar behavior of the Xa is
consistent with Nahm’s equations

DXa

Dy
+ 1

2
εabc[Xb,Xc] = 0. (4.10)

This equation is consistent with supersymmetry because Nahm’s equations are the dimen-
sional reduction of the selfdual Yang-Mills equations, which are of course compatible with
supersymmetry. Here we are considering the selfdual Yang-Mills equations in the 3456
plane, even though the covariant derivatives Da = ∂a + Aa in the 456 direction have been
replaced by matrices Xa .

The selfdual Yang-Mills equations in any four-dimensional plane preserve the same
amount of supersymmetry. Therefore, we can make an SO(1,5) rotation of the polar behav-
ior that is assumed in (4.10). (Of course, we use the SO(1,5) that fixes the 3 direction and
acts on 012456.) We take three orthonormal linear combinations of the 012456 directions,
and postulate that the corresponding fields Ci (which are orthonormal linear combinations
of Aμ, μ = 0,1,2 and Xa, a = 4,5,6) have a pole Ci ∼ t i/y. This preserves supersymme-
try, just like the special case of (4.8), since it is a special solution of the selfdual Yang-Mills
equations (or a dimensional reduction thereof) in a certain four-dimensional subspace.

We thus get a family of boundary conditions that are all associated with a principal em-
bedding ρ : su(2) → g. They are obtained by making an SO(1,5) rotation of the pole at
y = 0, even though SO(1,5) is not a symmetry of the theory. The unbroken supersymmetry
is obtained by making the same SO(1,5) rotation from the 3456 plane to the appropriate
four-plane.14 Thus, we can immediately characterize the supersymmetry left unbroken by a
boundary condition of this type. For some element h ∈ SO(1,5), the unbroken supersym-
metries obey the rotated version of (4.9), namely

h−1B1hε = ε (4.11)

or

B1hε = hε. (4.12)

14The relevant rotation group is SO(1,5), not SO(1,6), because we do not rotate the y = x3 direction. This
direction is distinguished by the fact that the boundary is at y = 0.
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This coincides with the condition (4.7) that we found for the D3-D5 system (in the present
field theory approach, we denote εL simply as ε).

It is convenient to also introduce the six-dimensional chirality operator �′ = �012456 and
make a chiral decomposition ε = ε+ + ε−, where

�′ε± = ±ε±. (4.13)

Since B1 anticommutes with �′, (4.12) is equivalent to

hε− = B1hε+. (4.14)

Because of (4.13), we can replace B1 = �3456 by �∗ = �0123 and write

hε− = −�∗hε+. (4.15)

This will be useful in Sect. 4.3.
The condition (4.15) is invariant under h → qh for q ∈ Q = SO(1,2) × SO(3)X (which

commutes with �∗). So we can think of h as taking values in the nine-dimensional space
Z̃9 = Q\SO(1,5). (Of course, nine is also the number of components of F , given that it has
one index of type 012 and one of type 456.) Thus, this construction gives a nine-dimensional
family Z̃9 of half-BPS boundary conditions that are associated with the principal embedding
ρ : su(2) → g. This generalizes what we found from the D3-D5 system for G = U(N).

4.2 Rotating the D3-NS5 System

Similarly it is possible to “rotate” the unbroken supersymmetry of the D3-NS5 system. This
is particularly simple if the four-dimensional θ -angle vanishes.

We first rewrite (4.2) in the form
(

εR

εL

)
= − exp

(
1

4
�IJ F IJ

(
1 0
0 −1

))
B0B1

(
0 1
1 0

)(
εR

εL

)
. (4.16)

At θ = 0, the duality transformation S : τ → −1/τ maps a D5-brane to an NS5-brane and
transforms εR, εL to (

ε′
R

ε′
L

)
= 1√

2

(
1 1

−1 1

)(
εR

εL

)
. (4.17)

The supersymmetry condition in the presence of an NS5-brane can be deduced from (4.16)
and is (

ε′
R

ε′
L

)
= − exp

(
− 1

4
�IJ F IJ

(
0 1
1 0

))
B0B1

(
1 0
0 −1

)(
ε′
R

ε′
L

)
. (4.18)

If also D3-branes are present, we must supplement this with

ε′
R = −B0ε

′
L, (4.19)

which follows from (4.1). With a little algebra, one can eliminate ε′
R and obtain the condition

on ε′
L:

(1 − cosh(�IJ F IJ /4)B2 + sinh(�IJ F IJ /4)B1)ε
′
L = 0. (4.20)

(In deriving this, note that �IJ F IJ commutes with B2, and anticommutes with B0 and B1.)
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As preparation for interpreting this result in field theory, we again make a chiral decom-
position ε′

L = ε+ + ε−, where

�′ε± = ±ε±. (4.21)

(In field theory, we omit the primes and the subscript L and denote the supersymmetry
generator simply as ε.) We can use (4.20) to solve for ε− in terms of ε+:

ε− = 1

1 − cosh(�IJ F IJ /4)B2
sinh(�IJ F IJ /4)B1ε+. (4.22)

We can make a small simplification as follows. We have B2ε+ = −ε+ (since �′ε+ =
ε+ and ε+ has positive ten-dimensional chirality). Also B2 commutes with �IJ F IJ and
anticommutes with B1. Using these facts, one can omit B2 in (4.22), which becomes

ε− = 1

1 − cosh(�IJ F IJ /4)
sinh(�IJ F IJ /4)B1ε+. (4.23)

Expanding this in powers of F , the first term is

ε− = 1

4
�IJ F IJ B1ε+. (4.24)

Using the fact that explicitly B1 = �3456, and that F has one index of type 012 and one of
type 456, we see we can write this as

ε− =
∑

I<J<K

�IJKqIJK�3ε+, (4.25)

where here the indices I, J,K take values 012456, and qIJK is a third rank antisymmetric
tensor that depends on F .

It is convenient to regard q = ∑
I<J<K qIJKdxI ∧ dxJ ∧ dxK as a three-form on R

1,5

with constant coefficients. It is not immediately obvious that q is selfdual or anti-selfdual,15

but in fact, because �′ε+ = ε+, the anti-selfdual part of q does not contribute, and hence
we can project q to its selfdual part. Let �012 and �456 be the Hodge � operators in the 012
and 456 directions. We can pick conventions so that �2

012 = �2
456 = 1, �012�456 = �456�012; the

six-dimensional � operator is � = �012�456. The relation between q and F in linear order is

q = (�012 + �456)F

8
(4.26)

and here q is selfdual.
Though this analysis has been only to linear order in F , in fact, (4.23) is precisely equiv-

alent to (4.25), with the selfdual three-form q in general a nonlinear function of F . To see
this, we observe that gamma matrices �7,�8,�9 are absent in (4.23) and �3 appears only
as a linear factor in B1 multiplying ε+. So (4.23) takes the form ε− = ��3ε+, where � is
constructed from gamma matrices �I , with I ranging over 012456. � must be of odd order

15We define an antisymmetric tensor εIJKLMN with ε012456 = 1. Indices I, J,K will take values

0,1,2,4,5,6. Self-duality for a third rank antisymmetric tensor q means that qIJK = εIJKLMNqLMN/3!.
In Lorentz signature in six dimensions, a third rank real antisymmetric tensor can be selfdual or anti-selfdual.
For example, with this definition, the three-form −dx0 ∧ dx1 ∧ dx2 + dx4 ∧ dx5 ∧ dx6 is selfdual.
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in the �I , since it must reverse the six-dimensional chirality; and because ε+ obeys (4.21),
we can reduce to the case � = �ISI + ∑

I<J<K �IJKqIJK , with a one-form S and selfd-
ual three-form q . Moreover, the one-form is absent for a reason that will be explained in
Sect. 4.4.

Thus, the unbroken supersymmetry can be characterized by a selfdual three-form in six
dimensions. However, the construction as described so far does not lead to the most general
selfdual three-form. Indeed, as in Sect. 4.1, F depends on only nine parameters, but a self-
dual three-form (with constant coefficients) in R

1,5 depends on ten parameters. The missing
parameter is the four-dimensional θ angle, which preserves half of the supersymmetry (and
actually preserves Lorentz invariance). It is absent from the above formulas because we ob-
tained them starting with S-duality from the D3-D5 system at θ = 0. This tenth parameter
will be included in Sect. 4.2.1 as well as Sect. 4.4.

If we restrict to θ = 0, we get a nine-parameter family Z9 of half-BPS (but not Lorentz-
invariant) deformations of the D3-NS5 system. They are S-dual to the corresponding nine-
parameter family Z̃9 of deformations of the D3-D5 system, described in Sect. 4.1, in the
sense that the strong coupling limit of one is the weak coupling limit of the other.

The reason that we have not seen a tenth parameter for the D3-D5 system is that S-
duality becomes more complicated when θ 
= 0; it does not simply exchange weak and
strong coupling. As soon as θ 
= 0, the S-dual of a strongly coupled D3-NS5 system is no
longer a weakly coupled D3-D5 system.

4.2.1 Realization in Field Theory

We will now re-examine the deformation of the D3-NS5 system just described from the
point of view of field theory. As usual, one advantage of this is that the discussion is valid
for any gauge group.

D3-branes ending on a single NS5-brane without any flux are governed by Neumann
boundary conditions for the vector multiplet Aμ and 	X and Dirichlet boundary conditions
for 	Y . This was described in Sect. 2. Can we modify these boundary conditions in a way that
depends on a selfdual or anti-selfdual third rank tensor and preserves the half-BPS property?
In fact, in a special case this has essentially been done in Sect. 2.

In that analysis, a deformation was considered from Neumann boundary conditions for
gauge fields, which assert that F3λ = 0 on the boundary for λ = 0,1,2, to a more general
boundary condition with three-dimensional Lorentz invariance:

ελμνF
3λ + γFμν = 0. (4.27)

The physical meaning of the term linear in γ was explained in (2.20). It corresponds to
adding to the action a term proportional to

∫
TrF ∧ F , or equivalently, after integrating by

parts to convert this to a surface term, it corresponds to adding a boundary interaction

− γ

2e2

∫
∂M

d3xεμνλ Tr

(
Aμ∂νAλ + 2

3
AμAνAλ

)
. (4.28)

Here M is spacetime, and ∂M is its boundary at y = 0. The interaction that we have added
is of dimension three and therefore preserves conformal invariance.

SO(1,2) invariance allows us to add one more conformally-invariant interaction con-
structed from bosons. This is

− u

3e2

∫
∂M

d3xεabc TrXa[Xb,Xc]. (4.29)
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If we do add this interaction, then Neumann boundary conditions for X are modified to

DXa

Dy
+ u

2
εabc[Xb,Xc] = 0. (4.30)

If we are willing to relax SO(1,2) invariance, we can add additional bosonic interactions
that preserve global scale invariance. Define quantities ZI , I = 0,1,2,4,5,6, as follows.
For I = 4,5,6, set ZI = Xa . And for I = 0,1,2, set ZI equal to the covariant derivative
DI = ∂I +AI . Then we can add to the action a dimension three term that we loosely describe
as ∫

∂M

d3xqIJK TrZI [ZJ ,ZK ], (4.31)

where q is an arbitrary third-rank antisymmetric tensor. The special case involving the com-
ponent q012 corresponds to the Chern-Simons interaction in (4.28), and the case involving
q456 corresponds to the Lorentz-invariant coupling in (4.29). Other components of q give
couplings that violate Lorentz invariance; they are schematically of the form TrXaFμν or
TrXaDμXb, with μ,ν = 0,1,2, a, b = 4,5,6.

Now the question arises of whether the bosonic interaction (4.31) can be completed to a
supersymmetric theory by suitably modifying the fermion boundary conditions (or equiva-
lently, by adding boundary interactions bilinear in fermions). If so, will a constraint come in
related to selfduality or anti-selfduality? We would expect this from the discussion of (4.25).

Happily, we do not really need to do a new calculation. For the Lorentz-invariant case,
with q012 and q456 the only non-zero matrix elements of q , a half-BPS boundary condition
was constructed in Sect. 2.1. The quantities γ and u were not independent but were parame-
trized by

γ = − 2a

1 − a2
, u = − 2a

1 + a2
. (4.32)

NS5-brane and NS5-antibrane boundary conditions correspond to a = ∞ and a = 0. Ex-
panding to first order in 1/a near a = ∞ or to first order in a near a = 0, we have γ = ∓u,
which corresponds to the expected selfduality or anti-selfduality of the tensor q . The condi-
tion γ = ∓u means that the three-form q is

q = u(∓dx0 ∧ dx1 ∧ dx2 + dx4 ∧ dx5 ∧ dx6) (4.33)

and so is Lorentz-invariant. Note that this particular three-form cannot be expressed in terms
of F as in (4.26), so we are here indeed describing the tenth parameter that was missing in
that derivation.

4.2.2 Canonical Form of q

One might think that the supersymmetry of the construction of Sect. 2 that we have just
reviewed is only a special case. But in a certain sense it is actually generic. Let us count the
number of parameters of a general selfdual three-form that, by an SO(1,5) transformation,
can be put in the form of (4.33). One parameter, namely u, is visible in (4.33). We must also
allow 9 more parameters generated by SO(1,5) transformations. (SO(1,5) has dimension
15; its subgroup that leaves q fixed is SO(1,2)×SO(3), of dimension 6; the difference is 9.)
This gives a total of 1 + 9 = 10 parameters. But 10 is the dimension of the space of selfdual
or anti-selfdual three-forms, so a generic such form is of this type.
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The half-BPS boundary condition derived from D3-branes ending on an NS5-brane ac-
tually has a direct analog in 6 + 1-dimensional super Yang-Mills theory. In string theory,
this can be understood by replacing the D3-branes ending on an NS5-brane by D6-branes
which end on the NS5-brane.16 From a field theory point of view, we simply allow all fields
to depend on three more coordinates x4, x5, x6, and replace the three scalar fields Xa with
covariant derivatives Da + Aa in the x4, x5, x6 directions. This substitution makes sense
because Xa enters the N = 4 super Yang-Mills Lagrangian only via its commutators with
other fields and with covariant derivatives.

The boundary condition for D6-branes ending on an NS5-brane has SO(1,5) symmetry.
So after lifting the D3-NS5 system to 6+1 dimensions, and making the deformation involv-
ing the three-form in (4.33), we can make an SO(1,5) rotation. Then we can reduce back to
3 + 1 dimensions, taking the fields to be once again independent of x4, x5, x6, and turning
the covariant derivatives Da + Aa back into scalar fields Xa .

What we gain by the detour through 6 + 1 dimensions is the knowledge that we can, in
effect, make an SO(1,5) transformation of the deformed boundary conditions even though
SO(1,5) is not a symmetry of the theory. Hence, without any need for further computation,
there is a half-BPS boundary condition in which (4.33) is replaced by a general selfdual
three-form.

This construction gives a ten-dimensional family Z10 of half-BPS boundary conditions.
The Neumann boundary conditions of the D3-NS5 system, with any number of D3-branes
and a single NS5-brane, represent a point in Z10. The generic point represents a half-BPS
but not Lorentz-invariant deformation. At a generic point, the unbroken supersymmetry is
described by

ε− =
∑

I<J<K

�IJKqIJK�3ε+ (4.34)

for a selfdual three-form q . As we explain in Sect. 4.4, the family Z10 also contains points
“at infinity” that cannot be described in this way. (These include points describing D3-branes
ending on an NS anti-fivebrane.)

Only the sublocus Z9 describes deformations that have a simple S-duality relationship to
the analogous family Z̃9 of deformations of the D3-D5 system. For a given q , how can we
determine if the corresponding deformation of the D3-NS5 system lies in Z9? One neces-
sary and sufficient criterion is that it must be possible to parametrize q via (4.23) in terms of
a two-form F . An equivalent criterion is that the space of unbroken supersymmetries, char-
acterized by (4.34), must transform under S : τ → −1/τ into a space of supersymmetries
that can be characterized in terms of the analogous formula (4.11) of the D3-D5 system.

To use the last-mentioned criterion, we need to know how the space of unbroken super-
symmetries transforms under duality. This can be deduced from string theory formulas pre-
sented earlier, but can also be understood purely in four-dimensional terms. In general, under
a duality transformation that transforms the coupling parameter τ by τ → (aτ +b)/(cτ +d),
the supersymmetry generators ε transform by

ε →
( |cτ + d|

cτ + d

)−i�∗/2

ε, (4.35)

16Since the NS5-brane, which is supposed to provide the boundary, has a six-dimensional world-volume, we
cannot make a construction like this above 6 + 1 dimensions. This can also be understood from a field theory
point of view; the Dirichlet boundary conditions on the three scalar fields Yp do not have analogs if one or
more of those scalars is replaced by covariant derivatives in extra dimensions.
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with �∗ = �0123. (For example, see [19], (2.25).) For the transformation S : τ → −1/τ , with
θ = 0 so that τ is on the imaginary axis, this becomes

ε → 1 − �∗
√

2
ε. (4.36)

4.3 An Example

Now we are going to consider an example: we will take a boundary condition representing a
point in Z10, and show that it actually represents a point in Z9, and so is S-dual to a D3-D5
boundary condition with a pole.

As explained in Sect. 4.2.2, a generic selfdual three-form q can be put in the canonical
form of (4.33). But it is not true that every selfdual three-form can be put in this form.
A counterexample can be written

q = 1

4
(dx0 + dx4) ∧ (dx1 ∧ dx5 + dx2 ∧ dx6). (4.37)

This three-form cannot be put in the form (4.33) by an SO(1,5) transformation, because
when that is done, |u| is an invariant. However, q can be rescaled by a Lorentz boost in the
04 plane, and hence cannot be characterized by any nonzero invariant.

A deformation of the D3-NS5 system associated with this choice of q appears in the
gauge theory approach to geometric Langlands.17 The fact that the S-dual of this particular
boundary condition is associated with a point in Z̃9, and thus is associated with a principal
embedding ρ : su(2) → g, is important in geometric Langlands, and has until now been
mysterious from the gauge theory point of view.

We can relate this particular deformation of the D3-NS5 system to a D3-D5 defor-
mation using either of the two approaches mentioned at the end of Sect. 4.2.2. First,
we can show directly that with q as above, the deformed NS5 supersymmetry relation
ε− = ∑

I<J<K �IJKqIJK�3ε+ is equivalent to the deformed D5 relation (4.23), with F a
multiple of dx1 ∧ dx6 − dx2 ∧ dx5. (The precise multiple is determined below by another
method.) The evaluation of (4.23) is simple for F of this form because M = �16 −�25 obeys
M3 = −4M , reflecting the fact that it is a generator of an SU(2) subgroup of Spin(1,5).

Alternatively, we can proceed by analyzing the unbroken supersymmetries. As usual, we
write the generator of an unbroken supersymmetry as ε = ε+ + ε−, where

�′ε± = ±ε±, (4.38)

and moreover

ε− =
∑

I<J<K

qIJK�3IJKε+ = 1

4
�3(−�0 + �4)(�15 + �26)ε+. (4.39)

17In (12.31) of [19], boundary conditions are given for a gauge theory description of the “canonical
coisotropic brane.” These boundary conditions can be obtained by perturbing N = 4 super Yang-Mills by
a boundary interaction associated with a three-form, as in (4.31). The necessary three-form is the one indi-
cated in (4.37). To see this, one must take into account a clash in notation between the present paper and
[19]. The boundary direction that we call x3 is called x1 in [19], and the directions that we label 012456 are
023567 in [19].
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According to (4.36), the duality transformation S : τ → −1/τ maps ε to ε̃ = 1√
2
(1 − �∗)ε,

or equivalently ε = 1√
2
(1 + �∗)ε̃. Since �∗ anticommutes with �′, it exchanges ε±, so this

becomes

ε+ = 1√
2
(ε̃+ + �∗ε̃−),

ε− = 1√
2
(ε̃− + �∗ε̃+).

(4.40)

If we set M = 1
4�3(−�0 + �4)(�15 + �26), so that (4.39) reads ε− = Mε+, then the S-dual

version is ε̃− + �∗ε̃+ = M(ε̃+ + �∗ε̃−), or

(1 − M�∗)ε̃− = −�∗(1 + �∗M)ε̃+. (4.41)

Upon evaluating M�∗ε̃− and �∗Mε̃+, using (4.38), we find after some gamma matrix alge-
bra that (4.41) is equivalent to

P ε̃− = −�∗P ε̃+, (4.42)

where

P = 1 + �16 − �25

2
. (4.43)

If P were an element of SO(1,5), this relation would be in the desired form (4.15),
showing that the S-dual of the boundary condition that we started with does represent a
point in Z̃9. It is actually not true that P is an element of SO(1,5). However, both P and �∗
commute with

T = 1 − �1256

2
+ 1 + �1256

2
√

2
, (4.44)

so (4.43) is equivalent to

T P ε̃− = −�∗T P ε̃+. (4.45)

Here18

T P =
(

1 − �1256

2
+ 1 + �1256

2
√

2

)(
1 + �16 − �25

2

)
= exp

(
π

8
(�16 − �25)

)
(4.46)

is an element of SO(1,5), in fact an element of the one-parameter subgroup of SO(1,5)

generated by �16 − �25. So (4.45) is of the form of (4.15).

4.4 General Formulation

Until this point, we have relied upon explicit constructions using either branes or field theory.
Here, we will study conceivable half-BPS boundary conditions from a more general point
of view. This will give a clearer understanding of some things that we originally described
by hand.

18To obtain the second equality in (4.46), observe that both sides equal 1 when acting on spinors ψ with
�1256ψ = −ψ , and then evaluate the two sides assuming �1256ψ = ψ .
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First of all, if one has a boundary at x3 = 0, then regardless of the nature of the boundary
condition, there is no translation invariance in the x3 direction. Hence if ε and ε̃ are two
generators of supersymmetries that remain valid in the presence of the boundary, we must
have

ε�3ε̃ = 0. (4.47)

For a half-BPS boundary condition, 8 of the possible 16 supersymmetries are unbroken. We
can interpret the condition (4.47) as follows. Let V16 be the 16-dimensional real vector space
(the irreducible positive chirality spinor representation of SO(1,9)) in which ε takes values.
The expression (ε, ε̃) = ε�3ε̃ defines a non-degenerate quadratic form on this space, of sig-
nature (8,8). The condition (4.47) asserts that ε takes values in a subspace T ⊂ V16 such that
the quadratic form vanishes when restricted to T . A maximal subspace with this property is
eight-dimensional, and the half-BPS condition asserts precisely that T is maximal.

Regardless of what we pick T to be, the condition that ε, ε̃ ∈ T does not suffice to set
ε�με̃ = 0 for any value of μ other than 3. Hence, a half-BPS boundary condition, though
not necessarily Lorentz-invariant, is invariant under translations in the 0,1, and 2 directions.

Let S be the space of all eight-dimensional null subspaces of V16. Every half-BPS bound-
ary condition determines a point in S . S is a homogeneous space for a group H = SO(1,8)

that formally rotates the coordinates xI , I 
= 3. SO(1,8) is not really a symmetry group of
N = 4 super Yang-Mills theory; only its subgroup SO(1,2) × SO(6) is a group of symme-
tries. (SO(1,2) is the Lorentz group that acts on the 0,1 and 2 directions, and SO(6) is the
group of R-symmetries.) But the action of SO(1,8) on S will be useful in the following
analysis of half-BPS boundary conditions that lack SO(1,2) symmetry.

We make a preliminary simplification along the following lines. We will only consider
half-BPS boundary conditions that can be obtained by marginal (scale-invariant) deforma-
tion of a Lorentz-invariant one. As explained in Sect. 2.1, any SO(1,2)-invariant half-BPS
boundary condition has Dirichlet boundary conditions on precisely three of the scalars, de-
noted there as 	Y . Since the only fields in N = 4 super Yang-Mills theory of conformal
dimension 1 are the scalar fields 	X and 	Y , the only possible marginal deformation of the
Dirichlet boundary condition 	Y | = 0 is to rotate 	Y to a linear combination of 	X and 	Y .
Making such a rotation does not give anything essentially new, so we will stick with 	Y | = 0.

Furthermore, we will consider only half-BPS boundary conditions that are invariant un-
der the group SO(3)Y that rotates 	Y . It is now useful to decompose the space V16 under
the action of SO(1,5) × SO(3)Y , where SO(1,5), which rotates the directions 012456, is
the subgroup of SO(1,8) that commutes with SO(3)Y . We can decompose V16 as W8 ⊗ W2,
where SO(3)Y acts on W2 in the spinor representation, and SO(1,5) likewise acts on W8

in the spinor representation. (Both SO(1,5) chiralities are included in W8.) For ε = μ ⊗ ν,
ε̃ = μ̃ ⊗ ν̃, we can decompose the inner product as

(ε, ε̃) = 〈μ, μ̃〉〈ν, ν̃〉′, (4.48)

where 〈 , 〉 is an inner product on W8 and 〈 , 〉′ is one on W2. The second inner product 〈 , 〉′
is antisymmetric (the spinor representation of SO(3)Y admits only an antisymmetric inner
product), so 〈 , 〉 is also antisymmetric.19 The decomposition V16 = W8 ⊗ W2 is obviously

19This does not follow from SO(1,5) invariance alone; since W8 is the direct sum of the two spinor repre-
sentations of SO(1,5) of opposite chirality, it admits both a symmetric and an antisymmetric invariant inner
product. This is clear from the group theory described below.
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similar to a decomposition made in Sect. 2.1, but here we make this decomposition using a
different subgroup of SO(1,8).

Now let us return to the eight-dimensional null subspace T ⊂ V16 that parametrizes the
supersymmetries left unbroken by a half-BPS boundary condition. If the boundary condition
is to be SO(3)Y -invariant, we must have T = U ⊗ W2, where U is a four-dimensional null
subspace of W8.

It will help to know something about such null subspaces. For this, we need some
SO(1,5) group theory. Let us write 4 and 4′ for the positive and negative chirality spinor
representations of SO(1,5). Thus, we have W8

∼= W4 ⊕ W4′ , where W4 and W4′ transform,
respectively, in the representations 4 and 4′. We denote the trivial representation, the vec-
tor representation, and the second rank antisymmetric tensor representation of SO(1,5)

as 1,6, and 15, respectively. Finally, the third rank tensor representation has dimension
6 · 5 · 4/3! = 20, but decomposes as a direct sum of two representations 10 and 10′ that
consist respectively of anti-selfdual and selfdual third rank tensors.

The tensor products of spinor representations of SO(1,5) decompose as follows:

4 ⊗ 4 = 6A ⊕ 10S,

4′ ⊗ 4′ = 6A ⊕ 10′
S,

4 ⊗ 4′ = 1 ⊕ 15.

(4.49)

The subscripts A and S refer respectively to the antisymmetric and symmetric parts. For
example, the first line means that the antisymmetric part of 4 ⊗ 4 is 6 and the symmetric
part is 10.

From (4.49), we see that an invariant inner product between two spinors must pair a 4 and
a 4′. So W4 and W4′ are two examples of null subspaces of V8. It is not hard to describe half-
BPS boundary conditions associated with these subspaces. The condition that μ ∈ W4 is that
�′μ = μ, where we set �′ = �012456 = εIJKLMN�IJKLMN/6!. We can write the condition on
μ in terms of ε = μ ⊗ ν as �′ε = ε. Equivalently, since ε has positive chirality for SO(1,9),
and thus obeys �012...9ε = ε, the condition is

B2ε = −ε, (4.50)

where (as in (2.7)) B2 = �3789. Likewise, the condition μ ∈ W4′ corresponds to

B2ε = ε. (4.51)

As we know by now, many different boundary conditions preserve the supersymmetry of
(4.50) or (4.51). As explained in Sect. 2.1.1, a particularly simple example arises for a system
of D3-branes ending on an NS5-brane (or NS5-antibrane; the two choices correspond to the
two possible conditions B2ε = ±ε). This corresponds to Neumann boundary conditions
for gauge fields and for the scalar fields 	X, extended to the fermions in a supersymmetric
fashion.

Now let us describe what a generic choice of U would look like. We write μ = η ⊕ ζ ,
η ∈ W4, ζ ∈ W4′ . Thus

�′η = η, �′ζ = −ζ. (4.52)

For a suitable choice of basis, the inner product of μ with μ̃ = η̃ ⊕ ζ̃ is

〈μ, μ̃〉 =
4∑

a=1

(ηaζ̃a − ζaη̃
a). (4.53)
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Since this inner product on W8 is antisymmetric, a convenient way to proceed is to think
of μ,η, and ζ as fermionic variables, and then the inner product can be described via a
quadratic function of μ:

F(μ) =
4∑

a=1

ηaζa. (4.54)

A subspace U ⊂ W8 is null if F(μ) = 0 for μ ∈ U . The simplification here is that there is
no need to mention a second spinor μ̃.

In this formulation, it is straightforward to describe the generic four-dimensional null
subspace U . A generic four-dimensional subspace of W8 can be defined by a condition

ζa =
∑

b

fabη
b (4.55)

for some tensor fab . In order for this equation to imply that 0 = F(μ) = ∑
a ηaζa , the condi-

tion we need is that f should be symmetric, fab = fba . Here f transforms as the symmetric
product 4′ ⊗ 4′, that is, like a selfdual three-form q (with constant coefficients) on R

1,5. For
q = ∑

I<J<K qIJKdxI ∧ dxJ ∧ dxK (with I, J,K taking values in 012456), we can write
(4.55) in terms of gamma matrices in the form20

ζ =
∑

I<J<K

qIJK�IJKη. (4.56)

In terms of the supersymmetry generator ε, which we decompose as ε = ε+ + ε− where
�′ε± = ±ε±, the condition is

ε− =
∑

I<J<K

qIJK�IJK�3ε+. (4.57)

This condition is familiar from (4.25), whose structure is hopefully now more clear.
Each choice of q gives a maximal null subspace U , but not every such subspace arises

this way. The ones that so arise are precisely those that have trivial intersection with W4′ ,
or in other words contain no vector with η = 0. Conversely, every maximal null subspace
whose intersection with W4 is trivial can be defined by an equation

ηa =
∑

b

gabζb, (4.58)

where again gab is symmetric. Thus, gab transforms as an anti-selfdual three-form q̃ on R
1,5.

As in (4.56), we can equivalently write

η =
∑

I<J<K

q̃IJK�IJKζ. (4.59)

For NS5-brane boundary conditions, q vanishes; so for a small perturbation of those
boundary conditions, q is small. When q is small, (4.56) is a good description. Close to the
NS5-antibrane case, q̃ is small and (4.59) is more useful.

20If q is anti-selfdual, then as �′η = η, we have qIJK�IJKη = 0, giving another explanation for why in
(4.56), q is selfdual.
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