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Abstract We investigate a class of anharmonic crystals in d dimensions, d ≥ 1, coupled
to both external and internal heat baths of the Ornstein-Uhlenbeck type. The external heat
baths, applied at the boundaries in the 1-direction, are at specified, unequal, temperatures
TL and TR. The temperatures of the internal baths are determined in a self-consistent way by
the requirement that there be no net energy exchange with the system in the non-equilibrium
stationary state (NESS). We prove the existence of such a stationary self-consistent profile of
temperatures for a finite system and show that it minimizes the entropy production to leading
order in (TL −TR). In the NESS the heat conductivity κ is defined as the heat flux per unit area
divided by the length of the system and (TL − TR). In the limit when the temperatures of the
external reservoirs go to the same temperature T , κ(T ) is given by the Green-Kubo formula,
evaluated in an equilibrium system coupled to reservoirs all having the temperature T . This
κ(T ) remains bounded as the size of the system goes to infinity. We also show that the
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corresponding infinite system Green-Kubo formula yields a finite result. Stronger results
are obtained under the assumption that the self-consistent profile remains bounded.

Keywords Thermal conductivity · Green-Kubo formula · Self-consistent thermostats ·
Entropy production · Nonequilibrium stationary states

1 Introduction

The rigorous derivation of Fourier’s law of heat conduction for classical systems with Hamil-
tonian bulk dynamics (or for quantum systems with Schrödinger evolution) with boundaries
kept at different temperatures is an open problem in mathematical physics [9]. The situation
is different for systems with purely stochastic dynamics, e.g. for the Kipnis, Marchioro, Pre-
sutti (KMP) model [14], where such results can be readily derived [13, 19]. An interesting
area of current research are hybrid models in which the time evolution is governed by a com-
bination of deterministic and stochastic dynamics. The deterministic part of the dynamics is
given by the usual Hamiltonian evolution. The stochastic part can be of two different types.
In the first type, the stochastic part is constructed to strictly conserve the energy, as studied
in [5], or conserve also momentum, as in [1, 2]. In the second type, studied in [7] and [8],
the stochastic part is implemented by coupling the particles of the system to “internal” heat
baths with which they can exchange energy. To obtain a heat flow between external reser-
voirs at specified temperatures TL, TR, acting at the left and right boundaries of the system,
the temperatures of the internal heat baths are chosen in a self-consistent manner by the
requirement that in the nonequilibrium stationary state (NESS) there be no net energy flux
between these baths and the system [7, 8]. Because of this self-consistency condition, there
is an average constant energy flux across the system in the NESS, supplied by the external
reservoirs at specified, unequal, temperatures coupled to the boundaries of the system, and
then carried by the Hamiltonian dynamics. A proof of Fourier’s law for both types of hybrid
models has been obtained for the case when the Hamiltonian dynamics is linear [5, 8], i.e.,
for a system of coupled harmonic oscillators.

In the present work we investigate the self-consistent model for anharmonic crystals.
Unlike the case of the harmonic system, where it is known that Fourier’s law does not hold
when the “noise” is turned off (the heat conductivity then becoming infinite), one expects
that in the anharmonic system with a pinning self-potential the conductivity will stay finite,
i.e., it will satisfy Fourier’s law, even when the strength of the noise goes to zero. We are
quite far from proving this, however. What we do show here is that, for these anharmonic
systems, conductivity for the finite system, defined by first letting both TL and TR approach
the same value, is given by a Green-Kubo formula. We also prove that this Green-Kubo
conductivity is bounded in the system size, whenever the noise is finite.

These results are obtained by studying the entropy production in the reservoirs in the
NESS specified by the temperatures of all the reservoirs. We prove that the self-consistent
profile minimizes, among all possible temperature profiles, the entropy production to the
leading order in the difference of the boundary temperatures TL − TR. We then prove a
uniform bound for the entropy production of a stationary state with a profile linear in the
inverse temperatures. This leads to a bound on the leading term of the conductivity of the
self-consistent system, given by the Green-Kubo formula for the finite system with all reser-
voirs at the same temperature T .

Furthermore, we show that the corresponding Green-Kubo formula for the infinite sys-
tem, giving the conductivity of the infinite system as a space-time integral of the energy-
current correlations, is convergent. The bound we derive implies that the conductivity van-
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ishes in the limit of infinitely strong coupling to the reservoirs. This behavior is also appar-
ent in the explicit expression of the conductivity of the corresponding harmonic system (see
(7.10) in [8]). The violent contact with the reservoirs most likely makes local equilibrium so
strong that eventually no transmission is possible.

There are no comparable results for anharmonic crystals with the first type of hybrid
dynamics, but only some bounds on the conductivity [2]. Under the assumption that the
self-consistent temperature profile remains bounded, we show that the conductivity of the
finite systems with a fixed TL −TR > 0 is uniformly bounded in the size of the system. (This
assumption is “clearly” correct but we are unable to prove it, see Sect. 9.)

The model considered is described in Sect. 2 while Sect. 3 contains a summary of the re-
sults proven in this paper. The existence of a NESS with a self-consistent temperature profile
is proven in Sect. 4. Entropy production in the NESS is discussed in Sect. 5, and in Sect. 6
we prove that the stationary state corresponding to the self-consistent profile minimizes, at
the leading order in the temperature difference (TL − TR), the entropy production. Thermal
conductivity in the NESS is discussed in Sect. 7 and for the infinite homogeneous system in
Sect. 8. Finally, in Sect. 9 we present some concluding remarks.

2 Time Evolution

Atoms are labeled by x = (x1, . . . , xd) ∈ {−N, . . . ,N}d = �N , N ≥ 1. Each atom is in
contact with a heat reservoir at temperature Tx . The interactions with the reservoirs are
modeled by Ornstein-Uhlenbeck processes at corresponding temperatures. The atoms have
all the same mass m = 1. Their velocities are denoted by px and the “positions” by qx , with
qx,px ∈ R. We consider a mixture of fixed and periodic boundary conditions. The fixed
boundary conditions are applied in the 1-direction, and the corresponding boundary sites
will be used to make contact with external heat reservoirs. In the remaining directions, we
apply periodic boundary conditions. Explicitly, let ∂�N denote the set with |x1| = N + 1
and let [x]i = −N + (xi + N) mod (2N + 1), for i ≥ 2. The boundary conditions are then
qx = 0, for x ∈ ∂�N . In addition, we let the inner boundary of �N consist of those x with
|x1| = N , and we denote it by ∂�N .

As we will show, the heat flux in the stationary state will be entirely in the 1-direction
and the properties of the system will be uniform in the d − 1 periodic directions. We define
�′

N = {x ∈ �N : −N ≤ x1 < N} to label the bonds in the 1-direction.
The Hamiltonian of the system is given by

HN =
∑

x∈�N

Ex,

Ex = p2
x

2
+

d∑

j=1

V (qx − qx−ej
) + V (qx+ej

− qx)

2
+ W(qx), x ∈ �N,

(2.1)

where the ei , i = 1, . . . , d , denote the Cartesian basis vectors. We assume that V and W are
smooth positive symmetric functions on R with quadratic growth at infinity:

lim
λ→∞W ′′(±λ) = W ′′

∞ > 0, lim
λ→∞V ′′(±λ) = V ′′

∞ > 0. (2.2)

Clearly then, there are C1,C2 > 0 such that

C1(q
2 − 1) ≤ V (q) ≤ C2(q

2 + 1), C1(q
2 − 1) ≤ W(q) ≤ C2(q

2 + 1). (2.3)
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The dynamics is described by the following system of stochastic differential equations:

dqx = pxdt,

dpx = −∂qx HN dt − γxpx dt + √
2γxTx dwx(t),

(2.4)

with γx > 0 for all x ∈ �N . Here wx(t), x ∈ �N , are independent standard Brownian mo-
tions (with 0 average and diffusion equal to 1). The generator of this process has the form

LN =
∑

x∈�N

(∂px HN∂qx − ∂qx HN∂px ) +
∑

x∈�N

γx(Tx∂
2
px

− px∂px )

= A + S, (2.5)

where A is the Hamiltonian part, anti-symmetric in the momentum variables, and S is the
symmetric part corresponding to the action of the reservoirs. Then

LN Ex =
d∑

i=1

(jx−ei ,x − jx,x+ei
) + Jx, x ∈ �N (2.6)

with Jx = γx(Tx − p2
x) and

jx,x+ei
= 0, if [x] /∈ �N or [x + ei] �∈ �N, (2.7)

jx,x+ei
= −1

2
(p[x] + p[x+ei ])V

′(q[x+ei ] − q[x]), otherwise. (2.8)

In particular, then jx,x+e1 can be non-zero only if x ∈ �′
N .

In Sect. 3 of [16] it is shown that, for any choice of the temperatures T = {Tx ≥ 0}, there
exists an explicit Lyapunov function for the corresponding stochastic evolution, as long as
γx > 0 for all x. This implies the existence of the corresponding stationary measure that we
will denote by μ(T).

If at least one Tx > 0, then the generator LN defined in (2.5) is (weakly)-hypoelliptic, in
the sense that the Lie algebra generated by the vector fields {A,∂px , x ∈ �N } has full range
in the tangent space of the phase space (R2d)�N . In particular, the dynamics has probability
transitions with smooth densities with respect to the Lebesgue measure on the phase space.
If all Tx > 0, also the corresponding control problem has a strong solution (cf. Sect. 3 in
[16], or [11]) and uniqueness of the stationary measure follows from these properties. These
methods could be extended to the case Tx ≥ 0, at least if HN(p,q) is strictly convex [17].
The investigation of the uniqueness of the stationary measure goes beyond the purposes of
the present paper, in particular, since zero temperatures will be relevant only in the general
proof of existence of a self-consistent temperature profile in Sect. 4. So we will assume the
uniqueness even in the case of temperatures not strictly positive.

The spatial periodicity will be exploited in the following to remove (most likely irrele-
vant) technical difficulties associated with irregular boundary behavior. To this end, we will
assume that also the heat bath couplings respect this periodicity, i.e., we will always assume
that γx depends only on x1. Then in the case where also Tx depends only on x1, the sto-
chastic dynamics is fully invariant under periodic translations. Since the stationary measure
μ(T) is unique, then also any of the corresponding expectation values must be invariant.

We denote the constant temperature profile, Tx = To for all x ∈ �N , as To. Then μ(To) =
μTo , the Gibbs measure at temperature To, defined by

μTo = Z−1
To

exp(−HN(p,q)/To)dp dq = GTo(p, q)dp dq. (2.9)
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We use μTo as a reference measure and denote the related expectation by 〈·〉0.
Computing the adjoint of LN with respect to the Lebesgue measure we have1

L
∗(1)
N = −A +

∑

x∈�N

S∗(1)
x (2.10)

where S∗(1)
x = γx(Tx∂

2
px

+1+px∂px ). We denote by fN = fN(T) the density of the stationary

state μ(T) with respect to Lebesgue measure. This is the solution of L
∗(1)
N fN = 0. Due to

hypoellipticity, fN is a smooth function of (p, q), and this implies also smoothness in T. To
see this, note that ∂Ty fN is the solution of the equation

L
∗(1)
N ∂Ty fN = −γy∂

2
py

fN . (2.11)

Since the right hand side is smooth in (p, q), this equation has a smooth solution, and
smoothness in T follows by a standard iteration of the argument.

3 Summary of Results

Given the temperatures �R = {�y}y∈R in a set R ⊂ �N , we say that a temperature profile
T = {Tx}x∈�N

is self-consistent, if Tx = �x for all x ∈ R, and the corresponding stationary
state has the property

〈p2
x〉 = Tx, for all x ∈ �N \ R, (3.1)

where 〈·〉 denotes expectation with respect to the NESS, μ(T), assumed to be unique. Even-
tually we may choose R = ∂�N or part of it. But the following result is independent from
the geometry.

Theorem 1 For any choice of a non-empty R ⊂ �N , and for any choice of temperatures
�R = {�y}y∈R not all equal to 0, there exists a self-consistent temperature profile T =
{Tx}x∈�N \R . In addition, if R and �R are invariant under translations in all of the d − 1
periodic directions of �N , then a self-consistent profile invariant under these translations
can be found.

The main body of our results concerns the case where the reservoirs on the two sides in
the non-periodic direction are fixed to constant but unequal temperatures. We call this case
the boundary layer setup. More explicitly, we then define R = ∂�N = ∂L�N ∪ ∂R�N , where
∂L�N = {x : x1 = −N} and ∂R�N = {x : x1 = N}, and we fix on the left the temperatures
Tx = TL for x ∈ ∂L�N , and on the right Tx = TR for x ∈ ∂R�N , TR < TL. We also set βL =
T −1

L , and βR = T −1
R . Uniqueness of the self-consistent profile is not claimed in Theorem 1,

and this remains an open problem in the generality of the theorem. However, by restricting
to small temperature differences and then relying on the implicit function theorem, we can
get a self-consistent profile which is essentially unique.

1We wish to reserve the standard notation for adjoint for certain weighted L2-spaces, to be introduced later.

Hence the notation L
∗(1)
N

for the adjoint here.
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Theorem 2 For any given To > 0 and N , there are ε0, δ > 0 with the following property:
In the boundary layer setup with TL, TR such that |TL − To|, |TR − To| < 1

2ε0 there is a self-
consistent extension of the temperature profile, Tsc(TL, TR), and the extension is unique in
the sense that no other profile T with maxx |Tx − To| < δ is self-consistent. In addition, Tsc

is invariant under translations in all of the d − 1 periodic directions of �N , and the map
(TL, TR) �→ Tsc(TL, TR) is smooth.

As an aside, let us remark that a careful inspection of the proof of Theorem 2 shows
that its assumptions could be greatly relaxed, allowing for more general sets R and almost
arbitrary potentials V and W . However, since the range of its applicability, determined by ε0,
can depend on N and might go to zero as N → ∞, we have included the proof of the more
general result in Theorem 1. Furthermore, the assumptions about the asymptotic quadratic
behavior of V and W will be used in latter proofs, and thus cannot be neglected. From
now on, we assume that TL − TR is sufficiently small for applying Theorem 2, and let Tsc

denote the corresponding self-consistent extension of the temperature profile, which is thus
invariant under periodic translations and leads to a unique, periodically invariant, stationary
state.

For a generic profile T, we define the entropy production in a reservoir in the steady
state μ(T) as the energy flux entering that reservoir divided by its temperature [4]. The total
steady state entropy production is then given by

σ(T) =
∑

x∈�N

〈−Jx〉
Tx

=
∑

x∈�N

γx

( 〈p2
x〉

Tx

− 1

)
. (3.2)

By using the local energy conservation (2.6) and denoting βx = T −1
x , we can write this as

σ(T) =
d∑

i=1

∑

x∈�′
N

(βx+ei
− βx)〈jx,x+ei

〉. (3.3)

It is well known [4] that σ(T) ≥ 0.
For the self-consistent profile Tsc, there are no fluxes to the reservoirs for x �∈ ∂�N and

consequently, as will be shown below, 〈jx,x+e1〉 = j̄N for all x ∈ �′
N . The entropy production

(3.3) is then equal to

σ(Tsc) = (2N + 1)d−1(βR − βL)j̄N . (3.4)

Thus we can estimate the magnitude of the self-consistent current by estimating the entropy
production.

Theorem 3

σ(Tsc) ≤ (2N + 1)d−2(βR − βL)
2C(Tsc, γ ) (3.5)

where, up to a constant c depending only on the potentials V and W ,

C(Tsc, γ ) = c
maxx γxT

sc
x

minx γ 2
x

(
1 + max

x
T sc

x

)
. (3.6)

Consequently, the average self-consistent current is bounded by

0 ≤ j̄N ≤ C(Tsc, γ )
βR − βL

2N + 1
. (3.7)
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We expect, but are not able to prove, that the self-consistent profiles remain uniformly
bounded in N . From such a bound it would follow that j̄N = O(N−1). We expect in fact
that Tx ∈ [TR, TL], as in the harmonic case [8], c.f., Sect. 9. What we can prove is that the
first order term of j̄N in an expansion in the imposed temperature gradient is O(N−1). This
is possible even without explicit knowledge about the asymptotics of the self-consistent
profile. To this end, we consider also profiles Tβlin which are extensions in the boundary
layer setup to a profile with linear βx ; we define

(T βlin
x )−1 = 1

2

(
βR − βL

N
x1 + βR + βL

)
, x ∈ �N. (3.8)

For these profiles, the entropy production satisfies

σ(Tβlin) = βR − βL

2N

∑

x∈�′
N

〈jx,x+ei
〉Tβlin , (3.9)

and we can derive a more precise bound for it.

Theorem 4 Given b > 0, there exists a constant C2(γ ;b), depending only on γ , V , W , and
b, such that for all TR ≤ TL ≤ b,

σ(Tβlin) ≤ (2N + 1)d−2(βR − βL)
2C2(γ ;b). (3.10)

Obviously, if To is any constant temperature profile, we have σ(To) = 0. Furthermore,
∂σ
∂Tx

(To) = 0, and the second order derivatives can also be computed, yielding the following
theorem.

Theorem 5 The Taylor expansion of σ around a constant profile To at the second order
gives

σ(To + εv) = ε2

T 2
o

Q(v;To) + O(ε3), Q(v;To) =
∑

x,y∈�N

Jy,xvyvx, (3.11)

where, with 〈·〉0 denoting the expectation in μ(To),

Jy,x = γxδy,x − γxγy〈hx(−LN(To))
−1hy〉0, hx = p2

x

To
− 1. (3.12)

The matrix J is positive, and if Jy,x is restricted to x, y ∈ �N \ ∂�N , it becomes strictly
positive.

We now denote δT = TL − TR and To = (TL + TR)/2. The next result says that the self-
consistent profile minimizes entropy production, at least up to the leading order in the gra-
dient of the imposed temperature difference, δT .

Theorem 6 The self-consistent profile Tsc is a smooth function of TL and TR. For a fixed To,
its first order Taylor expansion

T sc
x = To + gsc(x)δT + O(δT 2), x ∈ �N, (3.13)

is such that v = gsc is the unique minimizer of Q(v;To) for fixed v(x) = ± 1
2 , x ∈ ∂�N ,

where we choose the +-sign for x ∈ ∂L�N , and − for x ∈ ∂R�N .
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Consequently, the self-consistent profile minimizes the entropy production up to errors of
the order of δT 3. In particular, the leading term of the self-consistent profile can be obtained
by minimization of the entropy production. This is consistent with the general belief that for
small deviations from the equilibrium state imposed by external constraints, the stationary
state will be such that it minimizes the entropy production with respect to variation in the
unconstrained parameters [12]. The entropy production has also been studied by Bodineau
and Lefevere [6] in this model, and originally by Maes, et al., [15] in the context of heat
conduction networks.

We define the thermal conductivity in the self-consistent stationary state (of the finite
system) as

κ sc
N (To) = lim

δT →0

2N+1

δT
j̄N . (3.14)

This is related to the entropy production by (3.4), yielding

κ sc
N (To) = Q(gsc;To)/(2N+1)d−2, (3.15)

where, as in Theorem 5, we have defined

Q(v;To) = v · J (To)v = T 2
o lim

ε→0

σ(To + εv)

ε2
. (3.16)

Since gsc minimizes Q(·), we find using (3.10)

κ sc
N (To) ≤ (2N+1)2−dT 2

o lim
δT →0

σ(Tβlin)

δT 2
≤ T −2

o C2(γ ;2To). (3.17)

In particular, since the bound does not depend on N , this proves that the self-consistent
conductivity defined by (3.14) is uniformly bounded in N . It also has a Green-Kubo type of
representation, as summarized in the following theorem.

Theorem 7 The self-consistent conductivity is uniformly bounded in N and satisfies

κ sc
N (To) = 1

T 2
o

∫ ∞

0

∑

x∈�′
N

(−(2N+1)∇e1 gsc(x))〈jx,x+e1(t)j0,e1(0)〉0 dt (3.18)

where 〈·〉0 denotes the mean over the initial conditions distributed according to the equilib-
rium measure at the temperature To with the time evolution given by the dynamics corre-
sponding to To, i.e., all the reservoirs are at temperature To. Here ∇e1 gsc(x) = gsc(x + e1)−
gsc(x) denotes a discrete gradient.

A similar Green-Kubo formula can be obtained for the entropy production in the station-
ary state of the profile Tβlin. We will prove that

(2N+1)2−dT 2
o lim

δT →0

σ(Tβlin)

δT 2
= lim

δT →0

2N+1

δT

1

|�′
N |

∑

x∈�′
N

〈jx,x+e1〉μ(Tβlin)

=
(

1 + 1

2N

)
1

T 2
o

∫ ∞

0

1

|�′
N |

∑

x,y∈�′
N

〈jy,y+e1(t)jx,x+e1(0)〉0 dt. (3.19)
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By (3.17), this is always an upper bound for κ sc
N (To). We expect the self-consistent profile to

become linear away from the boundaries in the limit ε → 0, and to find ∇e1 gsc(x) ≈ − 1
2N

,
whenever x1 is not too close to ±N . Although a proof of this property is still missing, we
conjecture accordingly that both κ sc

N (To) and the right hand side of (3.19) have the same
limit as N → ∞.

The last result concerns the Green-Kubo representation of the conductivity in the infinite
system. Consider the infinite system on Z

d with all γx = γ and all thermostats at tempera-
ture To. This infinite dynamics has a unique invariant measure given by the Gibbs measure
on (R2d)Z

d
at temperature To, defined by the usual DLR relations. We denote also the in-

finite volume Gibbs measure by μTo . The existence of the dynamics of this infinite system
in equilibrium at any given temperature can be proven by standard techniques (cf. [18],
where a similar result is proven for an analogous system in continuous space). A proof of
the existence of the dynamics in dimension 2 for a certain set of non-equilibrium initial
configurations is proven in [10]. Consequently, we look at the dynamics starting from this
equilibrium distribution, and let E denote the expectation over the corresponding stochastic
process.

Theorem 8 There is a unique limit for

1

T 2
o

lim
λ→0

∑

x∈Zd

∫ ∞

0
e−λt

E[jx,x+e1(t)j0,e1(0)] dt = κ(To) ≤ C

γ
, (3.20)

where C = E[(V ′(qe1(0) − q0(0)))2]/To is finite and depends only on To.

As we have mentioned in the introduction, the above bound for the conductivity goes to
zero when γ → ∞.

As argued earlier, we expect the self-consistent conductivity and the Green-Kubo formula
for the linear profile to have the same limit as N → ∞. However, inspecting the definition
of the latter quantity in (3.19) shows that this limit should be given by (3.20), provided
the current-current correlations 〈jx,x+e1(t)jy,y+e1(0)〉0 have a sufficiently fast uniform decay
both in t and in the spatial separation |x − y| (the limiting infinite system dynamics are
translation invariant also in the first direction, which should be employed to cancel the sum
over y in (3.19)). Therefore, we also conjecture that κ sc

N (To) → κ(To), at least along some
subsequence of N → ∞.

4 Self-consistent Profiles: Existence

The following Lemma shows that zero temperatures cannot appear in self-consistent tem-
perature profiles. (We will also give a second proof of local existence of self-consistent
profiles in Sect. 6 which does not rely on the assumptions made about profiles containing
zero temperatures.)

Lemma 1 If {Tx, x ∈ �N } are not all identically zero, then 〈p2
y〉 > 0 for all y ∈ �N .

Proof This is a consequence of the smoothness of the density of the transition probability
Pt(q

′,p′;q,p) of the process. Since
∫

Pt(q
′,p′;q,p)dq dp = 1, for any (q ′,p′) there exists

an open set of positive Lebesgue measure A = A(q ′,p′, t) such that
∫

A

Pt (q
′,p′;q,p)dq dp > 0. (4.1)
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If there exists x such that 〈p2
x〉 = 0, then

0 =
∫

μ(T;dq ′, dp′)
∫

p2
xPt (q

′,p′;q,p)dq dp (4.2)

which clearly is in contradiction with (4.1). �

Proof of Theorem 1 Given any collection of parameters u ∈ [0,∞)Rc
, x ∈ Rc , let us define

the corresponding temperature profile T(u) by

T (u)x = T (u;�)x =
{

ux, if x ∈ Rc,

�x, if x ∈ R.
(4.3)

As before, we denote the density of the corresponding stationary measure by fN(q,p;
T(u),V ,W). We have seen in Sect. 2 that, by the hypoelliptic properties of the dynam-
ics (cf. [16]), fN is a smooth function of (q,p) and consequently of T. By a straightforward
scaling argument, we then have for any u and λ > 0,

λMfN(
√

λq,
√

λp;T(u),V ,W) = fN(q,p;T(u)/λ,Vλ,Wλ) (4.4)

where Vλ(q) = λ−1V (
√

λq) and Wλ(q) = λ−1W(
√

λq). An argument similar to that used at
the end of Sect. 2 to prove regularity in T shows that fN(q,p;T(u)/λ,Vλ,Wλ) is smooth
in λ. Under the conditions assumed on V and W , we have limλ→∞ Vλ(q) = V∞(q) and
limλ→∞ Wλ(q) = W∞(q) with V∞(q) = 1

2V ′′∞q2 and W∞(q) = 1
2W ′′∞q2.

We apply the scaling relation to prove that for high enough temperatures the system
behaves essentially like a Gaussian. More precisely, consider arbitrary sequences λn → ∞
and b(n) ∈ [0,∞)�N , such that b(n) converges to b ∈ [0,∞)�N . Define further T (n)

x = λnb
(n)
x ,

x ∈ �N . Then by the scaling relation (4.4), for any x ′,

1

λn

〈p2
x′ 〉(T(n), V ,W) = 〈p2

x′ 〉(b(n), Vλn ,Wλn) −→
n→∞ 〈p2

x′ 〉(b,V∞,W∞). (4.5)

The last expectation is with respect to the stationary state of a purely harmonic system. This
system was studied in [8], where it was proved, in Sects. 3 and 7, that there is a doubly
stochastic matrix M , with strictly positive entries, such that for any profile of temperatures
b and for all x ′,

〈p2
x′ 〉(b,V∞,W∞) =

∑

y∈�N

Mx′yby.

(Strictly speaking, the result was proven only for periodic profiles in [8]. However, the above
properties, linearity in b, as well as positivity and double stochasticity of M , are easily gener-
alized for non-periodic profiles, although we do not go into details here.) Since

∑
y Mxy = 1

for all x, this implies

〈p2
x′ 〉(b,V∞,W∞) ≤ max

y
by = ‖b‖∞, (4.6)

and the equality holds if and only if b is a constant vector, i.e., bx is independent of x.
We can now prove the existence of a self-consistent profile. Let Rc = �N \ R, and con-

sider the mapping F : X → X, X = [0,∞)Rc
defined for u ∈ [0,∞)Rc

, x ∈ Rc , by

F(u)x = 〈p2
x〉(T(u),V ,W). (4.7)
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Since some of the temperatures are kept fixed to non-zero values, the hypoelliptic properties
of L

∗(1)
N imply that F is everywhere continuous. For any L > 0 define XL = [0,L]Rc ⊂ X.

We will soon prove that there is an L > 0 such that F(XL) ⊂ XL. Since XL is homeomorphic
to the unit ball of R

|Rc | and F is continuous on XL, we can conclude from the Brouwer fixed
point theorem that there is at least one u ∈ XL such that F(u) = u. By Lemma 1, if there
is x such that ux = 0, then F(u)x > 0, and such u cannot be fixed points. Thus for any
fixed point 0 < ux ≤ L < ∞ for all x, and T(u) is then a proper self-consistent temperature
profile.

We prove the existence of a constant L, for which F(XL) ⊂ XL, by contradiction. If
no such L exists, then for all L > 0 there is u(L) ∈ XL such that ‖F(u(L))‖∞ > L. Then
necessarily ‖u(L)‖∞ → ∞, since otherwise there would exists a convergent subsequence,
which is incompatible with ‖F(u(L))‖∞ → ∞. Let λL = ‖u(L)‖∞ and v(L) = λ−1

L u(L), so
that λL → ∞ and ‖v(L)‖∞ = 1. The sequence (v(L)) belongs to a compact subset of X, and
we can find a subsequence such that v(L) → v in X. For this final subsequence we can apply
(4.5) and (4.6), which shows that for all x

lim sup
L

λ−1
L F (λLv(L))x < ‖v‖∞ = 1. (4.8)

Equality is not possible here, as the limit b of λ−1
L T(λLv(L)) has at least one component

equal to one, but bx = 0 for all x ∈ R, and thus b cannot be a constant vector. However,
by construction, for every L there is x(L) such that F(λLv(L))x(L) > L ≥ ‖u(L)‖∞ = λL,
which leads to contradiction. This proves the existence of L > 0 with the required properties
and concludes the proof of the first part of the theorem.

For the second part, let us first point out that, if R is invariant under all periodic transla-
tions of �N , it must be of the form R = R1 × I d−1

N , where IN = {−N, . . . ,N} and R1 ⊂ IN

is non-empty. Similarly, �x can only depend on x1. Let Rc
1 = IN \ R1, let P1 denote the

projection on the first axis in Z
d , and define R′ = P1R

c = Rc
1 × {0}, which is a subset of

Rc = �N \ R. If R′ is empty, R = �N and there is nothing to prove. Otherwise, let us con-
sider the map F ′ : X′ → X′, X′ = [0,∞)R′

, defined by F ′(u)x = 〈p2
x〉(T′(u),V ,W), where

T ′(u)x =
{

uP1x, if x ∈ Rc,

�x, otherwise.
(4.9)

Every such T ′(u) is clearly invariant under all periodic translations. We can then repeat the
analysis made above for F ′ and conclude that it has a fixed point ū with 0 < ūx < ∞. Since
T̄ = T ′(ū) is periodic, the dynamics is completely invariant under periodic translations, im-
plying that also expectation values in the unique stationary state are invariant. Therefore, for
any x ∈ Rc, we have 〈p2

x〉(T̄ ) = 〈p2
P1x〉(T̄ ) = uP1x = T̄x . This proves that T̄ is an invariant,

self-consistent profile. �

5 Entropy Production Bound

In this section we prove the entropy production bounds stated in Theorems 3 and 4. Given a
generic profile of temperatures T, we recall the notation fN = fN(T) for the density of the
stationary measure μ(T) with respect to Lebesgue measure, and let 〈·〉 denote expectation
with respect to μ(T). A simple computation shows that 〈A lnfN 〉 = 0 for A defined in (2.5).
Therefore, by stationarity we have

0 = −〈LN lnfN 〉 = −
∑

x

〈Sx lnfN 〉 (5.1)



1108 F. Bonetto et al.

where Sx = γx(Tx∂
2
px

− px∂px ). Let ψx = fN/GTx , where GT = Z−1
T e−HN /T , as in (2.9).

Then we can rewrite the last term as

−〈Sx lnfN 〉 = −
∫

(Sx lnψx)ψxGTx dp dq −
∫

Sx(lnGTx )fNdp dq. (5.2)

Since pxGTx = −Tx∂px GTx and Sx(lnGTx ) = −γx(Tx − p2
x)/Tx = −Jx/Tx , we find by in-

tegration by parts that

−〈Sx lnfN 〉 = Txγx

∫
(∂px ψx)

2

ψx

GTx dp dq + 〈Jx〉
Tx

. (5.3)

So by (5.1), the entropy production satisfies

σ(T) = −
∑

x∈�N

〈Jx〉
Tx

=
∑

x∈�N

Dx, (5.4)

where

Dx = γxTx

∫
(∂px ψx)

2

ψx

GTx dp dq. (5.5)

In particular, σ(T) ≥ 0, and by using the local conservation of energy, (2.6), (3.3) holds.
Let us for the remainder of this section assume that T is a temperature profile which

is invariant under the periodic translations. The results then hold for both Tsc and Tβlin.
Obviously, then by (3.3)

σ(T) =
∑

x∈�′
N

(βx+e1 − βx)〈jx,x+e1〉. (5.6)

Therefore, it will suffice to find a bound for |〈jx,x+e1〉|.
Applying the definition of the current observable, (2.7) and (2.8), and then integration by

parts, shows that

〈jx,x+e1〉 = −1

2

∫
V ′(rx)

1∑

n=0

.ψx′px′GTx′ |x′=x+ne1dp dq

= −
1∑

n=0

Tx′

2

∫
V ′(rx)GTx′ ∂px′ ψx′dp dq

∣∣∣
x′=x+ne1

(5.7)

where rx = qx+e1 − qx . We use that 1 = ψ
1/2
x′ /ψ

1/2
x′ whenever ψx′ �= 0, and then apply the

Schwarz inequality. This shows that

|〈jx,x+e1〉|2 ≤ max
y∈�N

Ty

γy

〈V ′(rx)
2〉1

2

1∑

n=0

Dx+ne1 . (5.8)

Therefore, we have obtained the following relation between the total sum of currents and
the entropy production

( ∑

x∈�′
N

|〈jx,x+e1〉|
)2

≤ max
y∈�N

Ty

γy

∑

x∈�′
N

〈V ′(rx)
2〉

∑

x∈�′
N

1

2

1∑

n=0

Dx+ne1
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≤ σ(T) max
y∈�N

Ty

γy

∑

x∈�′
N

〈V ′(rx)
2〉. (5.9)

For this bound to be useful, we still need to consider
∑

x∈�′
N
〈V ′(rx)

2〉. Since LN(q2
x ) =

2qxpx , we have 〈qxpx〉 = 0 for all x. Similarly, LN H = ∑
x∈�N

γx(Tx − p2
x) implies∑

x γxTx = ∑
x γx〈p2

x〉. Now

LN

( ∑

x∈�N

pxqx

)
=

∑

x∈�N

p2
x −

∑

x∈�N

qx∂qx H −
∑

x∈�N

γxpxqx, (5.10)

and thus

∑

x∈�N

γxTx ≥ min
y

γy

∑

x∈�N

〈p2
x〉 = min

y
γy

〈 ∑

x∈�N

qx∂qx H
〉
. (5.11)

From the asymptotics of V and W we can conclude that there are C > 0 and C ′ ≥ 0 such
that

V ′(r)2 ≤ C(rV ′(r) + C ′) and rW ′(r) ≥ −C ′. (5.12)

But since

∂qx H = W ′(qx) +
d∑

j=1

(V ′(qx − qx−ej
) − V ′(qx+ej

− qx))

+ 1

2
(1(x ∈ ∂R�N)V ′(−qx) − 1(x ∈ ∂L�N)V ′(qx)), (5.13)

with 1 denoting the characteristic function, we have

∑

x∈�N

qx∂qx H =
∑

x∈�N

[
qxW

′(qx) +
d∑

j=2

rV ′(r)|r=qx+ej −qx

]

+
∑

x∈�′
N

rxV
′(rx) + 1

2

∑

x∈∂R�

qxV
′(qx) + 1

2

∑

x∈∂L�

(−qx)V
′(−qx).

≥
∑

x∈�′
N

rxV
′(rx) − |�N |C ′(d + 1). (5.14)

Combining this with (5.11) shows that

∑

x∈�′
N

〈V ′(rx)
2〉 ≤ C|�N |

(
C ′(d + 2) + maxy γyTy

miny γy

)
. (5.15)

Consequently, there is c > 0, which depends only on V and W , such that

( ∑

x∈�′
N

|〈jx,x+e1〉|
)2

≤ cσ (T)|�N |maxx γxTx

minx γ 2
x

(1 + max
x

Tx). (5.16)
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Let us next consider the case T = Tβlin. Applying the definition of Tβlin to (5.6) shows
that then (3.9) holds, i.e., σ(Tβlin) = βR−βL

2N

∑
x∈�′

N
〈jx,x+ei

〉. Then by (5.16) and using the

fact that T βlin
x ≤ TL

σ(Tβlin) ≤ c′|βR − βL|2(2N + 1)d−2(1 + TL)
2, (5.17)

where c′ is a constant depending only on γ , V , and W . Therefore, we have now proven
Theorem 4.

Finally, let us consider the self-consistent case, T = Tsc. For the corresponding stationary
measure we find from (2.6),

d∑

j=1

(〈jx,x+ej
〉 − 〈jx−ej ,x〉) = 0, x /∈ ∂�N. (5.18)

Since the system, including the self-consistent profile, is periodic in any of the Cartesian
directions ei , i ≥ 2, also the unique stationary measures are invariant under translations in
these directions. Therefore,

〈jx,x+ei
〉 = 〈jx−ei ,x〉, i �= 1, x ∈ �N. (5.19)

Consequently, by (5.18) and (2.6),

〈jx,x+e1〉 = 〈jx−e1,x〉, x �∈ ∂�N,

〈jx,x+e1〉 = 〈Jx〉 = γx(TL − 〈p2
x〉), x ∈ ∂L�N,

〈jx−e1,x〉 = −〈Jx〉 = γx(〈p2
x〉 − TR), x ∈ ∂R�N.

(5.20)

We denote the constant current by j̄N , i.e., now we have 〈jx,x+e1〉 = j̄N , for all x ∈ �′
N .

Therefore, by (5.6),

σ(Tsc) = j̄N

∑

x∈�′
N

(βx+e1 − βx) = j̄N (βR − βL)(2N + 1)d−1, (5.21)

which proves (3.4). This immediately implies that sign(TL − TR)j̄N ≥ 0. But on the other
hand, j̄N = 1

|�′
N

|
∑

x∈�′
N
〈jx,x+e1〉, and thus also for the self-consistent profile σ(Tsc) =

βR−βL

2N

∑
x∈�′

N
〈jx,x+ei

〉. Applying (5.16) then completes the proof of Theorem 3.

6 Minimization of Entropy Production

For a given To > 0, we use the Gibbs measure μTo = GTodp dq as a reference measure and
we denote the related expectation by 〈·〉0. We consider the generator L on the Hilbert space
L2(μTo). Recall that for any temperature profile T = {Tx, x ∈ �N } we have L = L(T) =
A + S(T). Its adjoint is

L∗ = −A +
∑

x∈�N

S∗
x (6.1)
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where Sx = γx(Tx∂
2
px

− px∂px ), and thus

S∗
x = Sx + γx


Tx

To
(−2px∂px + hx) (6.2)

with 
Tx = Tx − To and

hx = p2
x

To
− 1. (6.3)

Observe that 〈hxhx′ 〉0 = 2δx,x′ and −Sx,Tohx = 2γxhx .
Set L0 = L(To) and consequently L∗

0 = −A + S(To)
∗ = −A + S(To).

Lemma 2 For all y, x

∂Ty 〈p2
x〉μ(T)|T=To = γy〈hy(−L0)

−1hx〉0 = γy〈hx(−L0)
−1hy〉0. (6.4)

Proof Let us denote by f = f (T) the density of μ(T) with respect to μTo . Then f is solu-
tion of the equation L∗(T)f (T) = 0. Since the coefficients in L∗(T) are smooth in T, f is
smooth in T and fy = ∂Ty f (T) solves the equation

L∗(T)fy(T) = −(∂Ty L
∗)(T)f (T) = −γy

To
(To∂

2
py

− 2py∂py + hy)f (T). (6.5)

Since f (To) = 1, we have found that fy(To) is solution of

−L∗
0fy(To) = γy

To
hy. (6.6)

Notice that fy has a bounded L2(μTo) norm (cf. [20]), and by a standard argument (multiply
equation (6.6) by fy and integrate with respect to μTo ) we obtain a bound

∑

x

γx〈(∂px fy)
2〉0 ≤ γyT

−1
o . (6.7)

Now, since hxGTo = −∂px (pxGTo),

〈hx〉μ(T) = 〈px∂px f (T)〉0. (6.8)

Then differentiating with respect to Ty we have

∂Ty 〈hx〉μ(T) = 〈px∂px fy(T)〉0 (6.9)

and taking the limit T → To

∂Ty 〈hx〉μ(T)|T=To = 〈px∂px fy(To)〉0 = 〈hxfy(To)〉0 = γy

To
〈hx(−L∗

0)
−1hy〉0. (6.10)

Observe that, since h is an even function of p, one can, by a change of variables p → −p,
replace L∗

0 with L0 in (6.10). This proves (6.4). �

Define F : R
�N+ → R

�N as

Fx(T) = 〈Jx〉μ(T) = γx(Tx − 〈p2
x〉μ(T)). (6.11)
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Its Jacobian at T = To is given by

Jy,x = γxδy,x − γx∂Ty 〈p2
x〉μ(T)|T=To = γxδy,x − γxγy〈hx(−L0)

−1hy〉0. (6.12)

Observe that J is symmetric and that F(To) = 0 for any value of To. It follows that 0 is an
eigenvalue of J , and we will show shortly that J ≥ 0, and the eigenspace corresponding to 0
is one-dimensional and generated by the constant vector. Then the matrix M = (Jx,y)x,y∈Rc

is invertible, and thus there is a neighborhood in (TL, TR) containing (To, To) such that the
implicit function theorem can be applied to obtain a self-consistent profile. This implies that
constants ε0 and δ for the first part of Theorem 2 can be found. It also follows that Tsc(TL, TR)

is smooth. To see that it must also be invariant under the periodic translations, we first point
out that in the boundary layer setup clearly any translate of a self-consistent profile is also
self-consistent. Since the translations correspond to a permutation of indices, they remain in
the neighborhood determined by δ, and thus by the uniqueness of the self-consistent profile
in this neighborhood, T sc(TL, TR) must itself be invariant.

Therefore, to complete the proof of Theorem 2 we only need to prove the following
Lemma.

Lemma 3 J ≥ 0, and J a = 0 implies ax is a constant in x.

Proof Let a ∈ R
�N , and define h = ∑

x∈�N
axhx . It follows from the antisymmetry of A

and the symmetry of S0:

〈(Ah)(−L0)
−1(Ah)〉0 = 〈h(−S0)h〉0 − 〈(S0h)(−L0)

−1(S0h)〉0. (6.13)

Since S0h = −2
∑

x axγxhx , we obtain

〈(Ah)(−L0)
−1(Ah)〉0 = 〈h(−S0)h〉0 − 4

∑

x,y

axayγxγy〈hx(−L0)
−1hy〉0

= 4
∑

x

γxa
2
x − 4

∑

x,y

axayγxγy〈hx(−L0)
−1hy〉0

= 4
∑

x,y

axay Jx,y . (6.14)

Therefore, to prove that J has the properties stated above, it suffices to study the left hand
side of (6.13), and to prove that it is always positive, and equal to zero if and only if a is a
constant vector. (Studying real vectors a suffices here, as J is a symmetric matrix.)

In fact, define u = (−L0)
−1(Ah). Since for any observable F belonging to the domain

of A, 〈F(AF)〉0 = 0, we have then

〈(Ah)(−L0)
−1(Ah)〉0 = 〈u(−S0)u〉0 =

∑

x

γxTo〈(∂px u)2〉0 ≥ 0. (6.15)

This proves the required positivity. In addition, if the left hand side is zero, then u(p,q)

cannot depend on p, and thus

−L0u = −Au = −
∑

x

px∂qx u(q) = Ah = − 2

T0

∑

x

axpx∂qx H. (6.16)
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It follows, for all x,

2

To
ax∂qx H = ∂qx u(q). (6.17)

Thus the function

G(q) = To

2
u(q) −

∑

x∈�N

axW(qx) (6.18)

satisfies, by (5.13),

∂qx G(q) = ax

[
d∑

j=1

(V ′(qx − qx−ej
) − V ′(qx+ej

− qx))

+ 1

2
1(x ∈ ∂R�N)V ′(−qx) − 1

2
1(x ∈ ∂L�N)V ′(qx)

]
. (6.19)

For x ∈ �′
N and k = 1,2, . . . we differentiate (6.19) with respect to qx+ek

and obtain

−axV
′′(qx+ek

− qx) = ∂2
qx ,qx+ek

G(q) = −ax+ek
V ′′(qx+ek

− qx). (6.20)

Since there exists an r0 such that V ′′(r0) > 0, this implies a = const. �

We can now conclude that for any To > 0, there is ε0 > 0 such that for all |ε| < ε0 a
self-consistent profile corresponding to TL = To + ε

2 , TR = To − ε
2 can be found. This profile

is differentiable with respect to ε and the derivative satisfies for x �∈ ∂�N

0 = ∂

∂ε
Fx(T(ε;To)) =

∑

y∈�N

∂Ty

∂ε
∂Ty Fx(T(ε;To)). (6.21)

Therefore, we have
∑

y∈�N
Jx,y

∂Ty (0)

∂ε
= 0. This shows that for x �∈ ∂�N ,

∂Tx(ε;To)

∂ε

∣∣∣∣
ε=0

=
∑

y /∈∂�N

(M−1)x,y

1

2

( ∑

y′∈∂R�N

Jy,y′ −
∑

y′∈∂L�N

Jy,y′

)
, (6.22)

where M = (Jx,y)x,y �∈∂�N
is a strictly positive matrix, and thus invertible.

Recall the definition of entropy production given in (3.2). By (5.4) we have then always
σ(T) ≥ 0, with equality when T = To, a constant profile given by To > 0. Since

∂σ

∂Tx

(T) = −γx

〈p2
x〉

T 2
x

+
∑

y

γy

∂Tx 〈p2
y〉

Ty

, (6.23)

we have for the constant profile

∂σ

∂Tx

(To) = −T −1
o γx + T −1

o

∂

∂Tx

(∑

y

γy〈p2
y〉

)

T=To

. (6.24)
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As mentioned earlier, for any profile
∑

y γy〈p2
y〉 = ∑

y γyTy , and thus we have proven that

∂σ

∂Tx

(To) = 0. (6.25)

A similar, but a slightly longer calculation, shows that

∂2σ

∂Tx∂Ty

(To) = 1

T 2
o

(Jx,y + Jy,x) = 2

T 2
o

Jx,y . (6.26)

By dividing �N into R �= ∅ (the fixed thermostats) and Rc , we can conclude from the
previous results that the symmetric matrix M = (Jx,y)x,y∈Rc is strictly positive. By (6.25)
and (6.26), the Taylor expansion of σ around To yields

σ(To + εv) = ε2

T 2
o

∑

x,y∈�N

Jx,yvxvy + O(ε3). (6.27)

This proves Theorem 5. For fixed ε and vx , x ∈ R, the quadratic form corresponding to the
leading term has a unique minimizer, given by v(min)

x = vx , x ∈ R, and

v(min)
x = −

∑

y∈Rc

∑

y′∈R

(M−1)xy Jy,y′vy′ , for x ∈ Rc. (6.28)

Let us next consider the case studied earlier, with the opposite boundaries fixed at two
different temperatures TL and TR. Denote δT = TL − TR, which we assume to be positive,
and To = (TL + TR)/2. Let us consider a sequence of TL, TR for which To remains fixed and
δT → 0. We assume that T is a sequence of profiles with boundary values on R equal to TL

and TR, and which has a Taylor expansion

Tx = To + g(x)δT + O(δT 2) (6.29)

where g is a function for which g(x) = 1/2 for x ∈ ∂L�N and g(x) = −1/2 for x ∈ ∂R�N .
By (6.27), the entropy production will be of the order (δT )2, and the leading term is mini-
mized by g(x) = v(min)

x corresponding to vx = ± 1
2 , with +, if x ∈ ∂L�N , and −, if x ∈ ∂R�N .

We have proven in the beginning of this section, that the self-consistent profile can be
chosen for all sufficiently small δT so that it is differentiable in the boundary temperatures.
In particular, comparing (6.22) to (6.28) shows that

T sc
x = To + gsc(x)δT + O(δT 2) (6.30)

with gsc = v(min). We have thus proven Theorem 6.

7 Conductivity of the Finite System

In the following we again set �′
N = �N\∂R�N , and consider, as in Sect. 5, a generic profile

T which is invariant under periodic translations. Let 〈·〉 be the expectation with respect to
the corresponding stationary state. It is convenient now to use as a reference measure the
inhomogeneous Gibbs measure νT = G(T;q,p)dqdp, with

G(T;q,p) = exp(−∑
x Ex(q,p)/Tx)

Z
(7.1)
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where Ex is defined in (2.1). Notice that S is automatically symmetric with respect to νT,
while the adjoint of A is given by

−A +
∑

x∈�′
N

(
1

Tx+e1

− 1

Tx

)
jx,x+e1 . (7.2)

Let us next inspect T = Tsc and denote by f̃ the density of the self-consistent stationary
state with respect to νTsc . Let us fix To = TR+TL

2 with ε = δT = TL − TR > 0, as before.
Repeating the argument used in Sect. 2, we find that f̃ is smooth in ε, so a first order
development in ε is justified. Using the expansion of the self-consistent profile, (6.29), shows
that u = ∂εf̃ |ε=0 is solution of the equation

(−A + S(To))u =
∑

x∈�′
N

∇e1 gsc(x)

T 2
o

jx,x+e1 . (7.3)

Explicit formulae for the derivatives of the self-consistent profile, gsc(x), are given in (6.22).
Recall the definition of the conductivity of the finite system, (3.14). Since we have al-

ready proven Theorems 1–6, the argument given before Theorem 7 in Sect. 3 provides a
proof that κN(To) is bounded in N . On the other hand, by (7.3),

κN(To) = lim
δT →0

2N + 1

δT

1

|�′
N |

∑

x∈�′
N

〈jx,x+e1〉

= lim
δT →0

2N + 1

δT
〈j0,e1〉 = (2N + 1)〈uj0,e1〉0. (7.4)

Define ǔ(q,p) = u(q,−p), and observe that, since jx,x+e1 is antisymmetric in p,

(A + S(To))ǔ = −
∑

x∈�′
N

∇e1 gsc(x)

T 2
o

jx,x+e1 . (7.5)

Thus

κN(To) = −(2N + 1)〈ǔj0,e1〉0 = (2N + 1)

∫ ∞

0
∂t 〈ǔ(t)j0,e1(0)〉0 dt

= 1

T 2
o

∫ ∞

0

∑

x∈�′
N

(−(2N + 1)∇e1 gsc(x))〈jx,x+e1(t)j0,e1(0)〉0 dt (7.6)

where 〈·〉0 denotes taking the initial data distribution according to the equilibrium measure
at the specified temperature To, and then considering the time-evolution corresponding to
the stochastic process with all heat-bath temperatures set to To. We have used here the prop-
erty that then 〈ǔ(t)j0,e1(0)〉0 → 〈ǔ〉0〈j0,e1〉0 = 0 for t → ∞. This completes the proof of
Theorem 7.

Repeating the same steps for T = Tβlin, for which ∂εT
βlin
x

∣∣
ε=0

= − x1
2N

, proves also the
validity of (3.19).
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8 Conductivity of the Infinite System

We prove here Theorem 8 concerning the infinite system on (R2d)Z
d

with all γx = γ and all
thermostats at temperature To. This infinite dynamics has a unique invariant measure given
by the Gibbs measure on (R2d)Z

d
at temperature To, defined by the usual DLR relations.

We denote this measure by μTo and its expectation by 〈·〉0. Consequently we look at the
dynamics starting from this equilibrium distribution.

We adapt here an argument used in [3]. Introduce on L2(μTo) a degenerate scalar product

〈〈ϕ,ψ〉〉 =
∑

x∈Zd

[〈ϕτxψ〉0 − 〈ϕ〉0〈ψ〉0], (8.1)

where τx is the translation operator. The scalar product can also be obtained via the limit

〈〈ϕ,ψ〉〉 = lim
n→∞ CovμTo

(�nϕ,�nψ) = lim
n→∞(〈�nϕ�nψ〉0 − 〈�nϕ〉0〈�nψ〉0), (8.2)

where �n maps functions into the corresponding “fluctuation averages” in �n, a square box
of linear size n centered at 0. Explicitly,

(�nψ)(q,p) = 1√|�n|
∑

x∈�n

(τxψ)(q,p). (8.3)

The scalar product is degenerate, since every function of the form φ = ψ − τxψ is in its
kernel. We denote by L2 the corresponding Hilbert space of square integrable functions.
More precisely, L2 is a space of classes of functions such that each of its elements can be
identified with a function in L2(μTo) up to a translation.

Observe that A and S are still respectively anti-symmetric and symmetric with respect to
the scalar product 〈〈·, ·〉〉. We also introduce the semi-norm

‖ϕ‖2
1 = 〈〈ϕ, (−S)ϕ〉〉 (8.4)

and let H1 denote the corresponding Hilbert space obtained by closing L2 with respect to
‖ · ‖1. To see that ‖ϕ‖1 is a semi-norm, in particular, that it is positive, we can employ the
easily derived identity

‖ϕ‖2
1 = lim

n→∞〈�nϕ(−S�nϕ)〉0. (8.5)

Since S acts only on velocities, ‖ · ‖1 has a kernel consisting of all functions which depend
only on q , the position variables. Thus also H1 is a space of equivalence classes of functions.

Let λ > 0 be given and let uλ be the solution of the resolvent equation

λuλ − Luλ = j0,e1 . (8.6)

The solution can be given explicitly in terms of the semigroup P t generated by L = A + S,

uλ(q,p) =
∫ ∞

0
e−λt (P tj0,e1)(q,p) dt. (8.7)

Obviously,

C0 := 〈〈j0,e1 , j0,e1〉〉 =
∑

x∈Zd

〈j0,e1jx,x+e1〉0 ≤ To〈(V ′(qe1 − q0))
2〉0 < ∞, (8.8)
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and thus j0,e1 ∈ L2. Then uλ ∈ L2(μTo), and by stationarity 〈uλ〉0 = 0. We will show next
that, in fact, uλ ∈ H1. From (8.6) we obtain

λ〈(�nuλ)
2〉0 + 〈(�nuλ)(−S)(�nuλ)〉0 = 〈(�nuλ)(�nj0,e1)〉0, (8.9)

where we have used translation invariance of L and antisymmetry of A. Since Sj0,e1 =
−γj0,e1 , an application of Schwarz inequality yields

〈(�nuλ)(�nj0,e1)〉0 = γ −1〈(�nuλ)(−S)(�nj0,e1)〉0

≤ γ −1〈(�nuλ)(−S)(�nuλ)〉1/2
0 〈(�nj0,e1)(−S)(�nj0,e1)〉1/2

0

= γ −1/2〈(�nj0,e1)
2〉1/2

0 〈(�nuλ)(−S)(�nuλ)〉1/2
0 . (8.10)

Consequently, we have

〈(�nuλ)(−S)(�nuλ)〉0 ≤ γ −1〈(�nj0,e1)
2〉0

n→∞−→ γ −1C0, (8.11)

which implies that

λ〈〈uλ,uλ〉〉 ≤ γ −1C0 (8.12)

and

‖uλ‖2
1 ≤ γ −1C0. (8.13)

Therefore, uλ ∈ H1 and by (8.13), we can extract a subsequence, which we still denote with
uλ, weakly convergent in H1 to u0.

Let uλ(p, q) = us
λ(p, q) + ua

λ(p, q) where us
λ and ua

λ are respectively symmetric and
antisymmetric in the p’s. Since j0,e1 is antisymmetric in the p’s, we have that 〈〈uλ, j0,e1〉〉 =
〈〈ua

λ, j0,e1〉〉. Furthermore, S preserves the parity in p, while it is inverted by A. So we can
decompose the resolvent equation as

λus
λ − Sus

λ − Aua
λ = 0,

νua
μ − Sua

ν − Aus
ν = j0,e1 .

(8.14)

Taking a scalar product of the first equation with us
ν , of the second with ua

λ, and using the
antisymmetry of A, we find

〈〈ua
λ, j0,e1〉〉 = ν〈〈ua

ν, u
a
λ〉〉 + 〈〈ua

λ, (−S)ua
ν〉〉 − 〈〈ua

λ,Aus
ν〉〉

= ν〈〈ua
ν, u

a
λ〉〉 + λ〈〈us

λ, u
s
ν〉〉 + 〈〈uλ, (−S)uν〉〉. (8.15)

Since
∫

ua
λ(p, q)μ̃To(dp) = 0, (8.16)

where μ̃To(dp) is the centered Gaussian product measure of variance To, and S has a spectral
gap γ in L2(μ̃To(dp)), we have that

〈〈ua
λ, u

a
λ〉〉 ≤ 1

γ
〈〈uλ, (−S)uλ〉〉 ≤ C0γ

−2. (8.17)
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In particular, ua
0 ∈ L2. Thus by taking first the limit as λ → 0 we have λ〈〈us

λ, u
s
ν〉〉 → 0, then

as ν → 0 we have ν〈〈ua
ν, u

a
0〉〉 → 0, and finally we obtain from (8.15)

〈〈u0, j0,e1〉〉 = 〈〈u0, (−S)u0〉〉 = ‖u0‖2
1. (8.18)

On the other hand, we have

〈〈u0, j0,e1〉〉 = lim
λ→0

〈〈uλ, j0,e1〉〉 = lim
λ→0

[λ〈〈uλ,uλ〉〉 + 〈〈uλ, (−S)uλ〉〉]

≥ lim
λ→0

λ〈〈uλ,uλ〉〉 + ‖u0‖2
1. (8.19)

This implies

lim
λ→0

λ〈〈uλ,uλ〉〉 = 0, (8.20)

and

‖uλ‖1 → ‖u0‖1. (8.21)

Therefore, uλ → u0 strongly in H1.
Uniqueness of the limit follows by the following standard argument. Suppose that λn is

the chosen subsequence such that uλn converges to u0, and suppose νm is another sequence
such that uνm converges to ũ0. Then, similarly as we have done in (8.15)

〈〈ua
λn

, j0,e1〉〉 = νm〈〈ua
νm

,ua
λn

〉〉 + λn〈〈us
λm

,us
νn

〉〉 + 〈〈uλn, (−S)uνm〉〉 (8.22)

which implies

〈〈ua
0, j0,e1〉〉 = 〈〈u0, (−S)ũ0〉〉. (8.23)

Using ua
νm

instead of ua
λn

, we find similarly

〈〈ũa
0, j0,e1〉〉 = 〈〈u0, (−S)ũ0〉〉. (8.24)

Combining these with (8.19) shows that ‖u0 − ũ0‖2 = 0, i.e., u0 = ũ0.
Thus the conductivity κ(To) defined by (3.20) is independent of the subsequence chosen

for λ. Moreover, we have

κ(To) = T −2
o 〈〈u0, j0,e1〉〉 = T −2

o ‖u0‖2
1 ≤ C0

T 2
o γ

≤ 〈V ′(qe1 − q0)
2〉0

Toγ
. (8.25)

This completes the proof of Theorem 8.

9 Concluding Remarks

While all the results obtained in this paper are as expected, the difficulty of actually prov-
ing things about the NESS of systems with nonlinear dynamics is immense. This is well
illustrated by the impossibility (for us) of obtaining a bound on the self-consistent temper-
ature T of the second oscillator in a system consisting of three oscillators with T1 = TL,
T3 = TR, and the Hamiltonian is as in (2.1) with γx = γ > 0. We certainly expect that T

will satisfy TR < T < TL, but do not know how to prove this. All we know is that there ex-
ists a T = 〈p2

2〉, and that j̄ = TL − 〈p2
1〉 = 〈p2

3〉 − TR > 0. We also know for general N that
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when TL, TR → To, then there is a self-consistent choice T → To, and that this in this limit
(2N + 1)j̄/(TL − TR) is bounded and given by the Green-Kubo formula (3.18). Beyond this
however we are stymied except when V and W are harmonic. In that case T is given by
(3.13) without a correction term for any TL, TR, and due to explicit expressions gsc(x) can
be analyzed in great detail, proving TR < T < TL.
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