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Abstract We consider a d-dimensional disordered harmonic chain (DHC) perturbed by an
energy conservative noise. We obtain uniform in the volume upper and lower bounds for
the thermal conductivity defined through the Green-Kubo formula. These bounds indicate
a positive finite conductivity. We prove also that the infinite volume homogenized Green-
Kubo formula converges.
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Disordered systems

1 Introduction

Thermal transport in Fermi-Pasta-Ulam (FPU) chains is a subject of intense research
([8, 14]). In a perfect crystal, equilibrium positions of atoms form a perfect regular con-
figuration (e.g. a sublattice of Z?). Due to interactions between nearest-neighbor atoms and
with a given substrate, real position of atoms are subject to fluctuations around equilibrium.
Lattice vibrations are the carriers of heat current. FPU models are described by Hamiltonian
of the form:

2
H=2212_+ZW(%)+ Y V—a)

lx—yl=1

Here g, € R? is the deviation of atom x from its equilibrium position, p, is its momentum
and m, its mass. Interactions between atoms are described by the potential V while the pin-
ning potential W is for the interaction with the substrate. The main problem is to understand
the dependence of the thermal conductivity «y with the size N of the system. Fourier’s law
requires a finite positive limit of « in the thermodynamic limit N — oo. In low dimen-
sional systems it is largely accepted that anomalous heat conduction takes place as soon as
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momentum is conserved (W = 0). For nonlinear systems only few rigorous results exist and
require extra assumptions ([10]) or start from kinetic approximations ([1, 18]). Moreover
numerical simulations are not very conclusive ([4] and references therein). On the other
hand homogenous harmonic chain is an exactly solvable model easy to study. Nevertheless
it does not reproduce expected behavior of real systems and it turns out that «y is of or-
der N. This is due to the fact that phonons can travel ballistically along the chain without
scattering ([19]).

Recently it has been proposed to perturb homogenous FPU chains by a conservative
stochastic noise. The perturbation of an harmonic chain is sufficient to reproduce quali-
tatively what is expected for real anharmonic chains ([2, 6, 7]). The dynamics becomes
non-linear because of the noise but remains mathematically reachable. Perturbation of an-
harmonic chains is more difficult to study and only partial but rigorous results have been
obtained ([3]).

We turn now to non homogenous chains. As it is well known, the presence of disorder
generally induces localization of the normal modes and one can expect the latter to behave
as perfect thermal insulators (xy — 0). The only analytically tractable model is the one di-
mensional disordered harmonic chain (DHC). Surprisingly the behavior of the thermal con-
ductivity depends on boundary conditions and on the properties of the thermostats. Consider
first the unpinned DHC. For fixed boundary conditions (the Casher-Lebowitz model, [11]),
kn ~ N2 while for free boundaries (the Rubin-Greer model, [21]), ky ~ N~'/2. This cu-
rious phenomenon has been studied in [16] (see also [20]) in a more general setting and it
turns out that “the exponent [of xy] depends not only on the properties of the disordered
chain itself, but also on the spectral properties of the heat baths. For special choices of baths
one gets the “Fourier behavior” . If we add a pinning potential in the DHC, ky becomes
exponentially small in N.

Recently, Dhar and Lebowitz ([17]) were interested in the effect of both disorder and
anharmonicity. The conclusions of their numerical simulations are that the introduction of a
small amount of phonon-phonon interactions in the DHC leads to a positive finite thermal
conductivity. Moreover it seems that the transition takes place instantaneously without any
finite critical value of anharmonicity.

In this paper we propose to study this question for the conservative perturbed model
introduced in [6, 7]. Our results are valid in any dimension (DHC has only been studied in
the one dimensional case). We consider DHC perturbed by a stochastic noise conserving
energy and destroying all other conservation laws. In view of the numerical simulations
of [17] one would expect the model to become a normal conductor: ky — k with « finite
and positive. The behavior of the thermal conductivity is here studied in the linear response
theory framework by using the Green-Kubo formula. Curiously behavior of the conductivity
defined through Green-Kubo formula has not been studied for DHC. It would be interesting
to know what is the order of divergence of the latter. For the perturbed DHC we obtain
uniform finite positive lower and upper bounds for the d-dimensional finite volume Green-
Kubo formula of the thermal conductivity with or without pinning (Theorem 2) so that
the thermal conductivity is always finite and positive. In particular it shows the presence
of the noise is sufficient to destroy localization of eigen-functions in pinned DHC. Linear
response approach avoids the difficulty to deal with a non-equilibrium setting where effects
of spectral properties of heat baths could add difficulties as in the case of purely DHC. In
the non-equilibrium setting, we expect that since the Green-Kubo formula for the thermal
conductivity of the perturbed DHC remains finite, it will not depend on the boundaries. As
a second result (Theorem 1) we show that the homogenized infinite volume Green-Kubo
formula k,,,, is well defined, positive and finite.
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The paper is organized as follows. In the first section we define the dynamics. In Sect. 3,
we give heuristic arguments predicting the equality between the Green-Kubo formula and
the homogenized infinite volume Green-Kubo formula. The latter is proved to exist and to
be finite and positive. In Sect. 4 we obtain uniform (in the volume) lower and upper bounds
for the finite volume Green-Kubo formula.

Notations: The canonical basis of R is noted (e, es,...,e;) and the coordinates
of a vector u € RY are noted (u',...,u?). Its Euclidean norm |u| is given by |u| =
V@) 4 ...+ (u?)? and the scalar product of u and v is u - v.

If N is a positive integer, T4 denotes the d-dimensional discrete torus of length N. We
identify T = (Z/NZ)d, ie.x=x+kNejforany j=1,...,dand k € Z.

If F is a function from Z¢ (or ’JI“,{,) into R then the (discrete) gradient of F in the direc-
tion e; is defined by Ve, F)(x) = F(x +¢;) — F(x) and the Laplacian of F' is given by

(AF)(x)= Y9 {F(x +e)) + F(x — ;) = 2F (x)}.

2 The Dynamics of the Closed System

The Hamiltonian of a non homogenous harmonic chain of length N with periodic boundary
conditions is given by

. 1
H= Z'p 3D a0 — 08)q)

d d
xeTy, xeTy,

where p, = m,v,, v, € R? is the velocity of the particle x and m, > 0 its mass. ¢, € R?
is the displacement of the atom x with respect to its equilibrium position. Parameters w
and v regulate the strength of the interaction potential V (r) = wr? and the strength of the
pinning potential W (g) = vg?. We perturb the harmonic chain by a conservative noise acting

only on the velocities such it conserves the total Kinetic energy Y p2/(2m,). We define

7, =my*v, and the generator of the noise is given by

—%iZLM

with
Y. =gl o -7, ) L

X, x+ey x—+eg n Y+<’k

We consider the stochastic dynamics corresponding to the generator
L=A+yS (€))
where A is the usual Hamiltonian vector field
E)H
T
xeTd, *
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The parameter y > O regulates the strength of the noise. In terms of the 7’s, the Hamiltonian
vector field A is given by

A= Z { x - O0g + Jin_[qux vqx] . an}

xe']l'd

and the Hamiltonian by

sy

,\E'Jl’d

i — wA)qx}

Energy of atom x is given by

|px|2 V|qx|2 w P
o=t +5 > o —al

2m, 2
yily—x|=1

The energy conservation law can be read locally as

d

ex(t)_ex(o):Z( x—eg, () — xx+ek(t) Z Ji- ek, x (t)

k=1 k=1

iSW

where J; 4, (t) is the total energy current between x and x + e up to time ¢. This can be
written as

t
Jx,x+ek (t) = / jx,x+ek (S) ds + Mx,x+ek (t) (2)
0

In the above M, ., () are martingales and the instantaneous current j, ., is given by

. . .5
Jx xtep = -’X.erek + y-]x,erek

where j , is the Hamiltonian contribution

j.v?,x+ek = _\/—7771 . (q;H»ek - qxfek)
x

5 . . S
and Jj; ., is the noise contribution

" 1 )
J)},x+ek = _Evekqnx' )

We consider the closed dynamics with periodic boundary conditions starting from the
canonical Gibbs measure with temperature T = g~

wp (dm, dq) = Zy yexp(~pH) dndq
The law of the process starting from uf,y is noted Pg.
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The conductivity in the direction e is defined by the Green-Kubo formula as the limit
(when it exists)

11({mx}) = hngoloNhl;I;o 2T2t Nd ,3<|:Z Jx x+el(t)] > (3)

e’]I‘d

Because of the periodic boundary conditions, since j* if a gradient, the corresponding terms
cancel, and we can write

t
Z Jx,x+el @) = ‘/0 Zj)[(l,x+g] (s)ds + Z Mx,XJrel ®)

=/ Jey (s) ds + M, (1) “
0

so that
2
([Nd)_lEﬁ([Z Jx,x+e1 (t)] )
' 2
= (N 'R, ([/ Jel(s)ds] >+(rNd)—1E,3 (2 ()
0

+ 21N ' Ey ([ / 3o (s)ds] smel(r)) ®)
0

The third term on the RHS of (5) is zero by a time reversal argument and the martingale
term gives a y /d contribution (see [3] for a proof).

2T2l Nd ﬂ |:Z Jx \f+el(t):|

t 2
= QT*N)'Ey ([/ Je, (s)dsi| >+
0

In order to study the large time behavior of

' 2
C(n) = lim QT*N)'Eg ([/ 3el(s)ds] )
— 00 0

we study the asymptotics as A — 0 of the Laplace transform £(1) of tC(¢)

6

UIR

£ = / ” e MtC(t)dt
0

By stationarity and integration by parts, we have
1 o]
S()\.) = 1\}1—{1(1)0 W/O dtei}ht]Eﬂ [361 (t)361 (0)]
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A normal finite conductivity corresponds (in a Tauberian sense) to a positive finite limit
of A2£(1) as A — 0. In this case, the conductivity « "' ({m,}) is equal to

Kl"({mx}):y/d—l—}im lim oodte*“N*d]Eﬁ [3e, () Je, (0] dt W)

—0N—>00 Ji

The right hand side of (7) is the sum of two terms. The first one is only due to the noise
and is of no interest. The second one is the contribution of Hamiltonian dynamics to the
conductivity and this is this term we investigate in the sequel.

All these computations are valid as soon as we can take the infinite volume limit N — oo
and then the limit A — 0. In the homogenous case (m, = m for all x), one can show that all
the limits exist and one can compute explicitly C(¢) (see Sect. 4). In the non homogenous
case, we can only prove such a convergence up to subsequences (see Corollary 1). What
we are able to do is to prove upper and lower bounds which indicate a finite and positive
contribution of the Hamiltonian dynamics to the conductivity (see Sect. 4).

3 Homogenized Infinite Volume Green-Kubo Formula

In this section, we show that the homogenized infinite volume Green-Kubo formula for the
thermal conductivity is well defined, positive and finite. We give also heuristic arguments
showing that for almost all realization of masses m = {m,}, the Green-Kubo formula (7)
coincides with the homogenized infinite volume Green-Kubo formula «;,,, defined in (9).

Assume that masses m = {m,},.z« are distributed according to an ergodic stationary
probability measure E*. A typical configuration in the phase space is noted w = (1, q) =
((my), et » (gx), et?, ). The masses of the finite volume dynamics are obtained from the in-
finite sequence {m,} by the map identity x € {0, ..., N — 1}¢ C Z¢ — T¢,. For any z € T4,
and any function f(w, m) the translation of f by z is defined by

(Tzf)(wa m) = f(rzw» sz), T, = ((nz+x))m (qz+x)x)v (sz)x =My
Observe that the dynamics is invariant under the action of the group of translation 7,. We

indicate the dependence of the instantaneous current on the masses and on the configuration
by

1
jg,el (w7 m) = T - (Qel - q*el)
mo

By translation invariance of the dynamics we have
t
N / dte g [30, (1) 30, )]
0

=N"’/O dte™ Y By [t i, 1@ m) (1,8, 1w, m)]

d
x,yeTy

1
=7 2 Fw(zom)

d
xeTy,
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where

Fy(m) = / dre™ 3" By [, (@ m [T i, 1o, m)]
0

emd
zeTy,

In appendix, we explain how to define the dynamics starting from the infinite volume
Gibbs measure 14 and we show the dynamics is stationary w.r.t. j1g. The law of the dynam-
ics is noted PPg.

For fixed positive A, we conjecture that as N goes to infinity, the finite volume dynamics
is closed to the infinite volume dynamics in the sense that

Fxtm) = [ dre 3 By g o) 2 Jenm)] | =0
0

ze74

lim
N—oo
Then, by ergodic theorem, we have

t
lim N_d dte_xt]Eﬂ [Jel (t)7 361 (O)]
0

N—oo

_E f dte™ Y By [, () T, O] ®

0 zezd

We are not able to prove the convergence (8) but we can prove the following existence
theorem for the homogenized infinite volume Green-Kubo formula.

Theorem 1 Assume that {m.,} is stationary under P* and there are positive constants m and
m such that

P*m<m,<m)=1

The Hamiltonian contribution to the homogenized Green-Kubo formula for the thermal con-
ductivity Kh';); —vy/d

Kpom — /d = lim E* / dte™ Ny By s, (7., (0] ©)

r—0
0 zezd
exists, is positive and finite.

Proof The proof closely follows [9] and [5]. With respect to the self consistent model of
[9], the symmetric part of the generator S does not have a spectral gap. To overcome this
difficulty, we prove in Lemma 1 that the antisymmetric part of the resolvent solution is an
eigenfunction of S. It turns out that it is sufficient to conclude the proof.

We define the following semi-inner product on L?(P* ® u 8)

(f.g)) =D (B [mp(fr-8) — s (Hrp(2)]}

zezd

Jim e MZ« {E* [1p (e fTy8) — mp(Hiep(2)]}
IyI<K
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We denote by IL2 the completion of the space of square integrable local functions w.r.t. this
semi-inner product. The generator L has the decomposition A + y S in antisymmetric and
symmetric part in 2. The H; norm corresponding to the symmetric part is denoted

11T = (s (=) )

and H; is the Hilbert space obtained by the completion of .2 w.r.t. this norm.
Let u; be the solution of the resolvent equation

)\MA_LMA:].&E] (10)

We have to prove that ((u,, jo.,)) converges as A goes to 0 and that the limit is positive
and finite.
We multiply (10) by u, and integrate w.r.t. ({-, -)) and we get

MGur, wn)) + v s} = (s jge,))

Since S(jg,,) = —Jg,., (see Lemma 3), by Schwarz inequality, we have
1} < €2y~

and
AM{ur, u)) < CPy !

Since (u,), is a bounded sequence in H;, we can extract a weakly converging subsequence
in H,. We continue to denote this subsequence (u; ), and we note u the limit.

Letu, (p, q) = uj(p,q)+us(p, g) be the decomposition of u, in its symmetric and anti-
symmetric part in the p’s. Since jg , is antisymmetric in the p’s, we have that ((u5, jg,, )) =
((u3, Jg.,))- Furthermore S preserves the parity in p while it is inverted by A. We have the
following decomposition

Aus —ySui — Auf =0
//,u‘li — ySuZ — Aufl = jg’el

We multiply the first equality by u;, and the second by u} and we use the antisymmetry
of A. We get

((u5s Jo.ey)) = il w)) + A 1)) + v (uns (=S)uy))
In Lemma 1, we prove that Su§ = —u. It follows that
(G, u$)) = g 17 = Nuallf = Nl 17 < C*y ™!

Remark that ¢ and u3 converge weakly in H; respectively to ug and to ugy. We first take
the limit as A — 0 and then as u — 0 and we obtain

((uo jo.e,)) = v ({uo, (=S)uo))

On the other hand, since S j& o0 =" j&q , we have
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({ut0, s, )) = Him ({5, s, )
= lim [A (s w2} + (G, (= A)us)) + y (s, (=S)uz))]
= lim [A ({12, 1))+ (3, (=S)us))]
= lim A((us, u2)) + v (o, (=S)uo))
where the last inequality follows from the weak convergence in H; of (;); to ug. It implies
Lim A{{u, ui)) =0

so that u, converges strongly to ug in H;. Hence ((u;, jo.,)) converges to y ({(uo, —Suo)).
Uniqueness of the limit follows by a standard argument.
The positivity and finiteness of the limit is postponed to Lemma 2. a

Lemma 1 Let u; be the solution of the resolvent equation
Au; — Lu, = j(‘{e]
Let u$ the antisymmetric part of u, with respect to the w’s. u§ is such that
Su§ = —uf
Proof Let X be the closure in L2 () of the space of polynomial functions in 7 and g of
degree 2. The generator L transforms a polynomial function in a polynomial function and

conserves the degree so that the image of X under L is included in X. Since jg,, isin X, u;
isin X. Let ¢ > 0 and consider v, a polynomial function of degree 2 such that

pp(us, —vel*) <e
One easily shows that
pp(luf —viP) <e

Moreover, v¢ is of the form

vi= " plx.y)mag,

XA,)'GZ‘I
where p is a function with compact support. Since Sw, = —m,, we have Svf = —vi. As ¢
goes to 0, we get
a a
Su§ = —uf O

4 Lower and Upper Bounds for the Green-Kubo Formula

The canonical measure ug’ with temperature T = ™! and periodic boundary conditions on

T4 is denoted by (-) and the scalar product associated in L*(u}) by (-, -).
The dynamics is given by (1) and {m,}, et?, is a sequence of positive masses bounded
above and below by m and . The total current in the first direction e; is given by

1
Jey = wz Jm Tz (Gztey — Ge—ey)
B z
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Before considering the non homogenous case, we compute briefly the time current-
current correlations in the homogenous case (i.e. m, = m for all x). Let us define

t 2
Cn() = (2T2tNd)’lIE/3 <[/ Jel(s)ds] )
0

Since starting from g the process is stationary we have

1 t s
Chi= s /0 ds /0 duBy [Toy @), oy O)]

performing two integration by parts, one obtains that the Laplace transform £y () of tCy ()
is equal to

l [e'e)
G0) = s fo d1e Mg [3e, (1. 3, 0]

This last quantity is equal to

1
W(C‘el, a—0L)"3,)

A simple but crucial computation shows that

Je
A=L) '3, = ——
( )" Je ity
so that £y (X) is given by
(Jeys Jey)
2 )\‘ — e ————
v T2NIA2(h + y)

Let Dy = Dy (w, v) be the constant

- 1 40 Y sin (€T /N)
Dy =T 0?2 ko ko\2y Jj=1 11
N w kg]:((qel qfel > Nd E;;j <U + 4w Z?:l Sinz(ﬂgj/N) ( )

One computes easily (J.,, Je,) and after inversion of the Laplace transform, one gets
D 1
Cn(t)=—~ (1 +—(1- eV')>
ym Ve

As N and then 7 goes to infinity, it converges to the constant D /(ym) where

4 2 d -2 j
D=/ ( @ Z’j o (2”5 ) )dg‘...dg" (12)
ge(0,11¢ \ V —|—4a)Zj:l sin”(;w&7)

One concludes that the thermal conductivity is given by

D vy
kpi({m}) = —+ =
ym d
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Observe that if the noise becomes weaker (i.e. y — 0), we obtain a purely homogenous
harmonic chain and the thermal conductivity is infinite.

In the non homogeneous case, we are not able to obtain explicitly the solution % of the
resolvent equation (A — L)h = J,, but we obtain upper and lower bounds for the Laplace
transform of the time current-current correlations function which indicate a finite positive
Hamiltonian contribution to the conductivity (for any bounded below and above sequence
of masses). This is the content of the following theorem.

Theorem 2 There exists a positive constant C > 0 independent of . and N such that

C~! < liminfliminf /O e M NTEg[Je, (1), e, (0)]dt

r—>0 N-oo

< limsuplimsup/ e M NEg[J., (1), 3o, (0)]dt < C (13)

r—0 N—oo JO

Proof We have

o0 1
/O eimNid]E[Sel @, 3e1 (0)]dt = W«Ll (A — L)713€1> (14)

The proof is based on a variational formula for the right hand side of (14) and a suitable
choice of test functions over which the supremum is carried. We need to introduce Sobolev
norms associated to the operator y S. H; ; norm is defined by

I£I13, = (= yS)f f)

and the H_, ; norm is the dual norm of the H, ; norm in Lz(/Lg)

1120, = (G =y f ) =sup(2(f, 8) — (g, - — ¥ )g))
8

where the supremum is carried over local smooth functions g(x,q) from (R¢ x R¢ )Tlljv
into R.

Recall now that the generator L is given by the sum A + y S where A is antisymmetric
and S is symmetric (in IL? (,ug )). The variational formula is the following

(Jer» O = L)'y =sup {20, 3) = ull7 , = IAul?, ;) 15)

where the supremum is carried over the set of smooth functions u(r, q) from (RY x Rd)T‘i{/.
Upper bound: By neglecting the term || Au ||2_1. , in the variational formula (15), we get

Fers A= L)"') 13, 1215 = A4+ 1) (Te2 Jer)

The last equality follows from the fact that S3J,, = —J., (see Lemma 3). Since () is the
Gaussian measure (g, the 7’s are Gaussian product independent variables and we have

(3815:‘61) :wzzz

x,y k\t

1

/Ty,

k__¢ k k ' 4
(e e, — 4o @yye, — dy—e))
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=’ Z Z (nk) (qx+el q,]x(—el )2)

< N‘Dy(w, v)sz*1

where Dy is defined by (11).
Lower bound: For the lower bound we use again the following variational formula

(Jer = L)' 3ey) = sup {2(u, o)) — w7, — 1 Au], , }

and we take the test function u in the form

u=p Z A/ My Ty - (qx+e1 - (Jx—e|)

d
xeTy,

with p a positive constant. A simple computation shows that

mx+el my
Au=,0 E - Ty * Tx4e
my mx+el

d
xeTy,

Moreover, by Lemma 3, one has

— mxe
Au=p(ty@rad) a-ys | Y[t B,
x+teq

xer

Hence, the H_, ; norm of Au is easy to compute and given by

(Au, Au)

Aull ), = ——
Aul=s = i 1 a

This last quantity is equal to

2
= 33 Nt el GG
x+te X

xer k=1

By Lemma 3, one has

lull} ;= (u, .=y SHu) = (v + 1) (u?)

d
= ()/ + )\.))02 Z me((n§)2(q,]x(+el - q)lrcfel)2>

d k=
xeTy, k=1

and

. 3e)=p Y Z TGy — a5

xeTd, k=1
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Thermal Conductivity for a Noisy Disordered Harmonic Chain 429

Hence, we get

[P Cln
W(\Jela()"_l‘) 1\561)

> pCo— Cyp* (16)

with Cy, C, positive constants given by

m

yQ+d2)+A

2(@ _ ﬂ)Z
Co=2Dy,  Ci=(y+MmDy+ =

With the optimal choice p = Cy/2C; we get

liirliélflijvnlioréf /O ~ e M NEg[Je, (1), Je, (0)]dt
L AT =) !
=0+ Sy
with D given by (12). a

Remark 1

1. As y — 0, the lower bound obtained is of the form Cyy and the upper bound of the form
C1y~'. Moreover the large pinning limit v — oo gives null upper and lower bounds.

2. The same result can be proved for the microcanonical version of the Green-Kubo formula
meaning with the replacement of the canonical measure ,ug = Z;l exp(—pBH) by the
microcanonical measure which is nothing else than the uniform measure on the shell of
constant energy {H = NY87'}.

3. The upper bound is in fact valid for a general disordered anharmonic chain with interac-
tion potentials V and pinning potential W. The reason is that we have still S(J.,) = —J.,
so that the upper bound remains in force as soon as N —d {(Jey» Jey ) < C, which is equiva-
lent to ([V'(ge, — q0)]*) < C uniformly in N.

Here we deduce from the upper bound obtained for the Laplace transform of the time
current-current correlations function an upper bound for the function itself.

Corollary 1 We have

N 'E [ / 3 (s)ds:|2 L
B o €] — ]/+171

where C is a positive constant depending on the parameters of the system.

Proof 1t is a simple consequence of a general argument valid for Markov processes ([15],
Lemma 6.1). O

Lemma 2 The Hamiltonian contribution to the infinite volume homogenized Green-Kubo
formula Khl(’”ln —y/d (see (9)) is positive and finite.
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430 C. Bernardin

Proof The proof is a simple rephrasing of the proof of the theorem above. We have just to
replace the inner product (-, -) by the inner product with translations ((-, -)).
We have

E* [ /0 dte™™ Y By [jf, (e, <0>]} = (e = L) o,)
z€74

and again a variational formula for the last term is available
(o> O = L) o)) = sup {2((u, jigo,)) — lluell? 5 — N Aull2, , }

where the supremum is now carried over local smooth function u(x, q) and H; ; and H_;
norms are defined by

I£1Z, 5 = (s A=y SF )

To obtain the upper bound, we neglect the term coming from the antisymmetric part Au
and remark that S j(?,el =—Jo. ¢, FOr the lower bound, we use the same test function u as in
the theorem above:

u=p Z \/Exnx : (CIx+el - qx—el) O

xezd

Remark 2 Suppose {m,} forms a stationary sequence of random masses with law E* and let
us denote . = E*(1/mg). Assume that

A—>0N—oo

? 4 tim Jim / e NE(@), JO)dt =1 (ma))
0

exists. We expect k"1 ({m,}) to depend only on the statistics of 7, and not on the particular
realization of random masses and to be equal to the infinite volume homogenized Green-
Kubo formula K]i (’,,ln' (see (8)). Upper bounds show in fact that

1,1 1,1

Kpom, <17 ({1/u})
where we recall that k"' ({1/u}) is the thermal conductivity of the homogenous chain with
mass 1/ (also called in the homogenization literature the “effective conductivity”). It is an
open problem to know if this inequality is in fact an equality or not.
Acknowledgements We thank A. Dhar, J.L. Lebowitz and S. Olla for their interest in this work. We ac-
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Appendix

Lemma3 Letx € T4 and k,¢,m € {1,...,d}. We have

. S(nf) = —nf
o S(|mc ) =d~'A(I72])
o S(minl,, )=—(Q +d’2)71)’§nf+€m
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Proof 1t is a simple computation. ]

We prove here the existence of a measurable set €2 of initial conditions with full measure
w.r.t. to the infinite volume Gibbs measure 114 such that the infinite volume dynamics start-
ing from w € Q exist. This defines a strongly continuous semigroup (P,),;>o on L2(R, “g)
with generator L. Moreover the set of square integrable local smooth functions D is a core
for L. These arguments are by now standard (see [13]) and we repeat them for the conve-
nience of the reader.

The dynamics is given by the following stochastic differential equations:

{dq)r =m, . dt (17)

dm, =m; P (0Ag —vg)dt — ymdt + Jymend W — Jym1dWe

where {W,; x € Z} are independent standard Brownian motions. We note F; the o -algebra
generated by {W, (s),s <t;x € Z}.

The first problem is do define the infinite volume Gibbs measure pg. Indeed, it is well
known that

o) ifv>0o0rd=>3
u,@’(qé)= O(ogN) ifv=0andd=2
O(N) ifv=0andd=1

Hence, in dimension d = 1, 2, if v = 0, the infinite volume Gibbs measure is not well de-
fined. To overcome this difficulty we go over the gradient field n, yy = ¢, — ¢q,, [x —y| =1,
which has zero (discrete) curl. Let x the set of vector fields  on Z¢ with zero curl. An
infinite volume Gibbs measure p on x is defined by the conditions ,u(n(zw)) < 400 and via
DLR equations. One can prove the following lemma

Lemma 4 ([13], Theorems 3.1 and 3.2) There exists a unique shift ergodic Gibbs measure
g on x such that

/mo.e,->duﬁ(n) =0 (18)
X

Clearly the dynamics for (x,q) in (17) can be read as a dynamics for the gradient
field n(,y). Moreover the quantities of interest like the current are functions of the n’s.
Hence, only the existence of the dynamics for the gradient field is needed. Nevertheless to
simplify the argument we restrict the proof to the one dimensional pinned case for which
wp(gq?) < +oo for any x € Z.

Let © = (R x R)Z be the configuration space equipped with the product topology. A typ-
ical configuration is of the form w = (7, gy ) ez With m, = m;l py and g, p, the position
and momentum of the atom x with mass m, we assume to be uniformly bounded above an
below by finite positive constants.

Lemma 5 (Existence of the infinite volume dynamics) There exists a measurable set 2y C
(R x R)Z with full measure w.rt. g such that for any initial condition w(0) € Q there
exists a F;-adapted continuous stochastic process {w(t)} which satisfies (17). Moreover, jig
is a stationary probability measure for {w(t)}.
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Proof We introduce Qo = {w € Q; |lwl> = Y,z e M (Iml* + |gx|*) < +00} which is a
measurable set with full measure w.r.t. ug. Since the right hand side of (17) is uniformly

Lipschitz continuous w.r.t. the £> norm | - || an iteration procedure gives the existence and
uniqueness of a strong solution to (17). The fact that ug is invariant for {w(f)} is stan-
dard ([13]). O

By this way we define a semigroup (P;),>o on the Banach space B(£2p) of bounded
measurable functions on €2¢. For any f € B(€2), we have

Yo e Q, (P f)w)=E, [f(wf)]

where w; is the strong solution of (17). Moreover (P,), is contractive w.r.t. the IL?-norm asso-
ciated to pg. It follows that P, can be extended to a semi-group of contraction on L2(Q, u 8)-

Let Dy be the set of local smooth bounded functions on 2. By continuity of the paths
and the bounded convergence theorem, we have that for any ¢ € D,

lim 125 (P, — $)*) =0

Since any function in L2(£2, 15) can be approximated by a sequence of elements of Dy and
P, is contractive, it follows that P, is a strongly continuous semigroup of contractions on
L2(82, wp).

Let D be the space of smooth (not necessarily bounded) square integrable local functions
on 2. By Itd’s formula, we have that for any ¢ € D

Yo € Qo, (Pr¢)(w)=(Po¢)(w)+/ (P;Lo)(w)ds
0

where L is the formal generator defined in Sect. 2. This shows that any ¢ € D belongs to the
domain of the generator L of the L>-semigroup (P;);>o and that L and L coincide on D. By
Lemma 2.11 and Proposition 3.1 of [12], D is a core for L. we have proved the following
lemma

Lemma 6 There exists a closed extension of L in L?(2, ) such that the space D of square
integrable smooth local functions on 2 is a core. This closed extension is the generator of
the strongly continuous semigroup (P,); defined above.
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