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Abstract The purpose of this paper is to prove connections among the asymptotic behav-
ior of the magnetization, the structure of the phase transitions, and a class of polynomials
that we call the Ginzburg–Landau polynomials. The model under study is a mean-field ver-
sion of a lattice spin model due to Blume and Capel. It is defined by a probability distri-
bution that depends on the parameters β and K , which represent, respectively, the inverse
temperature and the interaction strength. Our main focus is on the asymptotic behavior of
the magnetization m(βn,Kn) for appropriate sequences (βn,Kn) that converge to a second-
order point or to the tricritical point of the model and that lie inside various subsets of the
phase-coexistence region. The main result states that as (βn,Kn) converges to one of these
points (β,K), m(βn,Kn) ∼ x̄|β − βn|γ → 0. In this formula γ is a positive constant, and
x̄ is the unique positive, global minimum point of a certain polynomial g. We call g the
Ginzburg–Landau polynomial because of its close connection with the Ginzburg–Landau
phenomenology of critical phenomena. For each sequence the structure of the set of global
minimum points of the associated Ginzburg–Landau polynomial mirrors the structure of
the set of global minimum points of the free-energy functional in the region through which
(βn,Kn) passes and thus reflects the phase-transition structure of the model in that region.
This paper makes rigorous the predictions of the Ginzburg–Landau phenomenology of crit-
ical phenomena and the tricritical scaling theory for the mean-field Blume–Capel model.
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1 Introduction

In this paper we prove unexpected connections among the asymptotic behavior of the mag-
netization, the structure of the phase transitions, and a class of polynomials that we call
the Ginzburg–Landau polynomials. The investigation is carried out for a mean-field version
of an important lattice spin model due to Blume and Capel, to which we refer as the B-C
model [2, 5–7]. This mean-field model is equivalent to the B-C model on the complete graph
on N vertices. It is certainly one of the simplest models that exhibit the following intricate
phase-transition structure: a curve of second-order points; a curve of first-order points; and
a tricritical point, which separates the two curves. A generalization of the B-C model is
studied in [3].

The main result in the present paper is Theorem 3.2, a general theorem that gives the as-
ymptotic behavior of the magnetization in the mean-field B-C model for suitable sequences.
With only changes in notation, the theorem also applies to other mean-field models including
the Curie–Weiss model [11] and the Curie–Weiss–Potts model [15].

The mean-field B-C model is defined by a canonical ensemble that we denote by PN,β,K ;
N equals the number of spins, β is the inverse temperature, and K is the interaction strength.
PN,β,K is defined in terms of the Hamiltonian

HN,K(ω) =
N∑

j=1

ω2
j − K

N

⎛

⎝
N∑

j=1

ωj

⎞

⎠
2

,

in which ωj represents the spin at site j ∈ {1,2, . . . ,N} and takes values in � = {1,0,−1}.
The configuration space for the model is the set �N containing all sequences ω =
(ω1,ω2, . . . ,ωN) with each ωj ∈ �.

Before introducing the results in this paper, we summarize the phase-transition structure
of the model. For β > 0 and K > 0 we denote by Mβ,K the set of equilibrium values
of the magnetization. Mβ,K coincides with the set of global minimum points of the free-
energy functional Gβ,K , which is defined in (2.4). It is known from heuristic arguments
and is proved in [14] that there exists a critical inverse temperature βc = log 4 and that for
0 < β ≤ βc there exists a quantity K(β) and for β > βc there exists a quantity K1(β) having
the following properties:

1. Fix 0 < β ≤ βc . Then for 0 < K ≤ K(β), Mβ,K consists of the unique pure phase 0, and
for K > K(β), Mβ,K consists of two nonzero values of the magnetization ±m(β,K).

2. For 0 < β ≤ βc , Mβ,K undergoes a continuous bifurcation at K = K(β), changing con-
tinuously from {0} for K ≤ K(β) to {±m(β,K)} for K > K(β). This continuous bifur-
cation corresponds to a second-order phase transition.

3. Fix β > βc . Then for 0 < K < K1(β), Mβ,K consists of the unique pure phase 0;
for K = K1(β), Mβ,K consists of 0 and two nonzero values of the magnetization
±m(β,K1(β)); and for K > K1(β), Mβ,K consists of two nonzero values of the magne-
tization ±m(β,K).

4. For β > βc , Mβ,K undergoes a discontinuous bifurcation at K = K1(β), changing dis-
continuously from {0} for K < K(β) to {0,±m(β,K)} for K = K1(β) to {±m(β,K)}
for K > K1(β). This discontinuous bifurcation corresponds to a first-order phase transi-
tion.

Because of items 2 and 4, we refer to the curve {(β,K(β)),0 < β < βc} as the second-
order curve and to the curve {(β,K1(β)),β > βc} as the first-order curve. Points on the
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Fig. 1 The sets that describe the
phase-transition structure of the
mean-field B-C model: the
second-order curve
{(β,K(β)),0 < β < βc}, the
first-order curve
{(β,K1(β)),β > βc}, and the
tricritical point (βc,K(βc)). The
phase-coexistence region consists
of all (β,K) above the
second-order curve, above the
tricritical point, on the first-order
curve, and above the first-order
curve. The extension of the
second-order curve to β > βc is
called the spinodal curve

second-order curve are called second-order points, and points on the first-order curve first-
order points. The point (βc,K(βc)) = (log 4,3/2 log 4) separates the second-order curve
from the first-order curve and is called the tricritical point. The phase-coexistence region
consists of all points in the positive β-K quadrant for which Mβ,K consists of more than
one value. Thus this region consists of all (β,K) above the second-order curve, above the
tricritical point, on the first-order curve, and above the first-order curve; i.e., all (β,K)

satisfying 0 < β ≤ βc and K > K(β) and satisfying β > βc and K ≥ K1(β). The sets that
describe the phase-transition structure of the model are shown in Fig. 1.

We now turn to the main focus of this paper, which is the asymptotic behavior of the mag-
netization m(βn,Kn) for appropriate sequences (βn,Kn) that converge either to a second-
order point or to the tricritical point from various subsets of the phase-coexistence region. In
the case of second-order points we consider two such sequences in Theorems 4.1 and 4.2,
and in the case of the tricritical point we consider four such sequences in Theorems 4.3–4.6.
Denoting the second-order point or the tricritical point by (β,K), in each case we prove as
a consequence of the general result in Theorem 3.2 that m(βn,Kn) → 0 according to the
asymptotic formula

m(βn,Kn) ∼ x̄|β − βn|γ ; i.e. lim
n→∞|β − βn|−γ m(βn,Kn) = x̄. (1.1)

In this formula γ is a positive constant, and x̄ is the unique positive, global minimum point
of a certain polynomial g. We call g the Ginzburg–Landau polynomial because of its close
connection with the Ginzburg–Landau phenomenology of critical phenomena [16]. Both γ

and x̄ depend on the sequence (βn,Kn). The exponent γ and the polynomial g arise via
the limit of suitably scaled free-energy functionals; specifically, for appropriate choices of
u ∈ R and γ > 0 and uniformly for x in compact subsets of R

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x). (1.2)

Possible paths followed by the sequences studied in Theorems 4.1–4.6 are shown in
Fig. 2. Two different paths are shown for each of the first three sequences, four different
paths for the fourth sequence, and one path for each of the last two sequences. We believe
that modulo uninteresting scale changes, these are all the sequences of the form βn = β +
b/nα and Kn equal to K(β) plus a polynomial in 1/nα , where (β,K(β)) is either a second-
order point or the tricritical point and for which m(βn,Kn) > 0.
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Fig. 2 Possible paths for the six sequences converging to a second-order point and to the tricritical point.
The curves labeled 1, 2, 3, 4a–4d, 5, and 6 are discussed in the respective Theorems 4.1–4.6. The sequences
on the curves labeled 4a–4d are defined in (4.15) and are discussed in the respective items (i)–(iv) appearing
after (4.18)

This paper puts on a rigorous footing the idea, first introduced by Ginzburg and Landau,
that low-order polynomial truncations of the free energy functional give correct asymptotic
results near continuous phase transitions for mean-field models [16]. The use of sequences
(βn,Kn) that approach second-order points or the tricritical point permits us to establish the
validity of truncating the expansion of the free-energy functional at an appropriate low order.
The higher-order terms are driven to zero by a power of n and are shown to be asymptotically
irrelevant. While the renormalization group methodology also demonstrates the irrelevance
of higher order terms in the expansion of the free-energy functional, it does so via a different
route that depends on heuristics. By contrast, our approach is rigorous and shows in (1.2)
how to obtain the Ginzburg–Landau polynomial as a limit of suitably scaled free-energy
functionals. No heuristic approximations or truncations appear.

Let (βn,Kn) be any particular sequence converging to a second-order point or the tri-
critical point from the phase-coexistence region and denote the limiting point by (β,K).
It is not difficult to obtain an asymptotic formula expressing the rate at which m(βn,Kn)

converges to 0. Since m(βn,Kn) is the unique positive minimum point of Gβn,Kn , it solves
the equation G′

βn,Kn
(m(βn,Kn)) = 0. As we illustrate in appendix B of [12] in two ex-

amples, expanding G′
βn,Kn

in a Taylor series of appropriate order, one obtains the formula
m(βn,Kn) ∼ x̄|β − βn|γ for some x̄ > 0 and γ > 0. However, this method gives only the
functional form for x̄, not associating it with the model via the Ginzburg–Landau polyno-
mial. This is in contrast to our general result in Theorem 3.2. That result identifies x̄ as
the unique positive, global minimum point of the Ginzburg–Landau polynomial, using the
uniform convergence in (1.2). The proof of that result completely avoids Taylor expansions,
making use of the fact that under appropriate conditions, the positive global minimum points
of n-dependent minimization problems converge to the positive global minimum point of a
limiting minimization problem when such a minimum point is unique.

Another contribution of the present paper is to demonstrate how the structure of the
set of global minimum points of the associated Ginzburg–Landau polynomials g mirrors
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the phase-transition structure of the subsets through which (βn,Kn) passes. In this way
the properties of the Ginzburg–Landau polynomials make rigorous the predictions of the
Ginzburg–Landau phenomenology of critical phenomena. Details of this mirroring are given
in the discussions leading up to Theorem 4.1 and Theorem 4.4; of all the sequences that we
consider, the sequence considered in the latter theorem shows the most varied behavior.

Our work is also closely related to the scaling theory for critical and tricritical points.
By choosing sequences that approach second-order points or the tricritical point from vari-
ous directions and at various rates, we are able to verify a number of predictions of scaling
theory. The sequences that approach the tricritical point reveal the subtle geometry of the
crossover between critical and tricritical behavior described in Riedel’s tricritical scaling
theory [20]. In Sect. 5 we will see that a proper application of scaling theory near the tricrit-
ical point requires that the scaling parameters be defined in a curvilinear coordinate system,
an idea proposed in [20] but, to our knowledge, not previously explored.

Some of the results proved here can be obtained non-rigorously via the methods intro-
duced by Capel and collaborators [5–8, 17–19]. These papers introduce the mean-field B-C
model and provide a general framework for studying mean-field models and obtaining the
thermodynamic properties of these systems.

In order to keep the present paper to a reasonable length, we have omitted a number of
routine calculations. Full details can be found in our unpublished, companion paper [12].
We have also omitted the material in section 6 of that paper, in which properties of the
Ginzburg–Landau polynomials, mathematical analysis, and numerical calculations are used
to determine properties of the first-order curve in a neighborhood of the tricritical point.

We end the introduction by previewing our results on the refined asymptotics of the total
spin SN = ∑N

j=1 ωj , which are the main focus of the sequel to the present paper [13]. When
N = n—i.e., when the system size N coincides with the index n parametrizing the sequence
(βn,Kn)—these refined asymptotics reveal a fascinating relationship between the asymp-
totic formulas for m(βn,Kn) obtained here and the finite-size expectation 〈|Sn/n|〉n,βn,Kn

with respect to Pn,βn,Kn . For a wide class of sequences (βn,Kn) converging to a second-
order point or the tricritical point, including the six sequences considered in the present
paper, we prove that there exists a positive constant α0 depending on the sequence and hav-
ing the following properties. For α ∈ (0, α0) the finite-size expectation 〈|Sn/n|〉n,βn,Kn is
asymptotic to m(βn,Kn). In this case (βn,Kn) converges slowly, and the system is in the
phase-coexistence regime, where it is effectively infinite. On the other hand, when α > α0,
m(βn,Kn) is not related to the finite-size expectation. In this regime, the fluctuations of
|Sn/n| as measured by this expectation are much larger than m(βn,Kn), which converges to
0 at a much faster rate. When α > α0, (βn,Kn) converges quickly, and the system is in the
critical regime. The theory of finite-size scaling predicts that for such α, critical singularities
are controlled by the size of the system rather than by the distance in parameter space from
the phase transition [1, 4, 9, 22].

The contents of the present paper are as follows. In Sect. 2 we summarize the phase-
transition structure of the mean-field B-C model. In Sect. 3 we prove our main result (1.1)
on the asymptotic behavior of m(βn,Kn) → 0 (Theorem 3.2). In Sect. 4 that result is applied
to six different sequences (βn,Kn), the first two of which converge to a second-order point
and the last four of which converge to the tricritical point. In Sect. 5 we relate the results
obtained in the preceding section to the scaling theory of critical phenomena. In an appendix
we state two results on polynomials of degree 6 needed in the paper.
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2 Phase-Transition Structure of the Mean-Field B-C Model

After defining the mean-field B-C model, we introduce a function Gβ,K , called the free-
energy functional. The global minimum points of this function define the equilibrium values
of the magnetization, and the minimum value of this function over R gives the canonical
free energy. We then summarize the phase-transition structure of the model in terms of the
behavior of the magnetization. This structure consists of a second-order phase transition, a
first-order phase transition, and a tricritical point, which separates the two phase transitions.

The mean-field B-C model is a lattice spin model defined on the complete graph on N

vertices 1,2, . . . ,N . The spin at site j ∈ {1,2, . . . ,N} is denoted by ωj , a quantity taking
values in � = {1,0,−1}. The configuration space for the model is the set �N containing
all sequences ω = (ω1,ω2, . . . ,ωN) with each ωj ∈ �. In terms of a positive parameter K

representing the interaction strength, the Hamiltonian is defined by

HN,K(ω) =
N∑

j=1

ω2
j − K

N

⎛

⎝
N∑

j=1

ωj

⎞

⎠
2

for each ω ∈ �N . Let PN be the product measure on �N with identical one-dimensional
marginals ρ = 1

3 (δ−1 + δ0 + δ1). Thus PN assigns the probability 3−N to each ω ∈ �N . For
N ∈ N, inverse temperature β > 0, and K > 0, the canonical ensemble for the mean-field
B-C model is the sequence of probability measures that assign to each subset B of �N the
probability

PN,β,K(B) = 1

ZN(β,K)
·
∑

ω∈B

exp[−βHN,K(ω)] · 3−N .

In this formula ZN(β,K) = ∑
ω∈�N exp[−βHN,K(ω)] · 3−N .

The analysis of the canonical ensemble PN,β,K is facilitated by absorbing the noninter-
acting component of the Hamiltonian into the product measure PN , obtaining

PN,β,K(dω) = 1

Z̃N(β,K)
· exp

[
NβK(SN(ω)/N)2

]
PN,β(dω). (2.1)

In this formula SN(ω) equals the total spin
∑N

j=1 ωj , PN,β is the product measure on �N

with identical one-dimensional marginals

ρβ(dωj ) = 1

Z(β)
· exp(−βω2

j ) ρ(dωj ), (2.2)

Z(β) is the normalization equal to
∫

�
exp(−βω2

j )ρ(dωj ) = (1 + 2e−β)/3, and Z̃N (β,K) is
the normalization equal to [Z(β)]N/ZN(β,K).

In order to summarize the phase-transition structure of the model, we introduce the cu-
mulant generating function cβ of ρβ , which for β > 0 and t ∈ R is defined by

cβ(t) = log
∫

�

exp(tω1) ρβ(dω1) = log

(
1 + e−β(et + e−t )

1 + 2e−β

)
. (2.3)

For β > 0, K > 0, and x ∈ R we also define

Gβ,K(x) = βKx2 − cβ(2βKx). (2.4)
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The large deviation principle in Theorem 3.3 of [14] and the convexity analysis in Proposi-
tion 3.4 of [14] shows that if x is not a global minimum point of Gβ,K , then any sufficiently
small interval containing x has an exponentially small probability with respect to the PN,β,K -
distributions of SN/N ; i.e., x is not observed in the canonical ensemble. Since the global
minimum points of Gβ,K lie in [−1,1], we define the set Mβ,K of equilibrium values of the
magnetization by

Mβ,K = {x ∈ [−1,1] : x is a global minimum point of Gβ,K(x)}. (2.5)

We call Gβ,K the free-energy functional of the mean-field B-C model because the canonical
free energy ϕ(β,K), defined as − limN→∞ N−1 logZN(β,K), equals minx∈R Gβ,K(x).

In section 2 of [12] the Ginzburg–Landau phenomenology is applied to Gβ,K in order
to motivate the phase-transition structure of the model [16]. The next two theorems give
the structure of Mβ,K first for 0 < β ≤ βc = log 4 and then for β > βc. These theorems
make rigorous the predictions of the Ginzburg–Landau theory. The first theorem, proved in
Theorem 3.6 in [14], describes the continuous bifurcation in Mβ,K for 0 < β ≤ βc. This
bifurcation corresponds to a second-order phase transition. The quantity K(β) is denoted
by K(2)

c (β) in [14] and by Kc(β) in [10].

Theorem 2.1 For 0 < β ≤ βc , we define

K(β) = 1/[2βc′′
β(0)] = (eβ + 2)/(4β). (2.6)

For these values of β , Mβ,K has the following structure.

(a) For 0 < K ≤ K(β), Mβ,K = {0}.
(b) For K > K(β), there exists m(β,K) > 0 such that Mβ,K = {±m(β,K)}.
(c) m(β,K) is a positive, increasing, continuous function for K > K(β), and as K →

(K(β))+, m(β,K) → 0+. Therefore, Mβ,K exhibits a continuous bifurcation at K(β).

The next theorem, proved in Theorem 3.8 in [14], describes the discontinuous bifurcation
in Mβ,K for β > βc. This bifurcation corresponds to a first-order phase transition. As shown
in that theorem, for all β > βc , K1(β) < K(β). The quantity K1(β) is denoted by K(1)

c (β)

in [14] and by Kc(β) in [10].

Theorem 2.2 For β > βc , Mβ,K has the following structure in terms of the quantity K1(β),
denoted by K(1)

c (β) in [14] and defined implicitly for β > βc on page 2231 of [14].

(a) For 0 < K < K1(β), Mβ,K = {0}.
(b) For K = K1(β) there exists m(β,K1(β)) > 0 such that Mβ,K1(β) = {0,±m(β,K1(β))}.
(c) For K > K1(β) there exists m(β,K) > 0 such that Mβ,K = {±m(β,K)}.
(d) m(β,K) is a positive, increasing, continuous function for K ≥ K1(β), and as K →

K1(β)+, m(β,K) → m(β,K1(β)) > 0. Therefore, Mβ,K exhibits a discontinuous bi-
furcation at K1(β).

In the next section we present a general asymptotic result on the behavior of m(βn,Kn)

for sequences (βn,Kn) converging either to a second-order point or to the tricritical point.
In subsequent sections the theorem will be applied to a number of specific sequences.
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3 Asymptotic Behavior of m(βn,Kn) in Terms of Ginzburg–Landau Polynomials

Theorem 3.2 is the main result in this paper. It gives the asymptotic behavior of m(βn,Kn)

for appropriate sequences (βn,Kn) lying in the phase-coexistence region and converging
either to a second-order point or to the tricritical point. The asymptotic behavior is expressed
in terms of the unique positive, global minimum point of the associated Ginzburg–Landau
polynomial.

The phase-coexistence region is defined to be all (β,K) satisfying 0 < β ≤ βc and K >

K(β) and all (β,K) satisfying β > βc and K ≥ K1(β). Thus for 0 < β ≤ βc , the phase-
coexistence region consists of the region located above the second-order curve and above
the tricritical point. For β > βc , the phase-coexistence region consists of the first-order curve
(β,K1(β)) and the region located above that curve. For all (β,K) in the phase-coexistence
region there exists m(β,K) > 0 such that {±m(β,K)} ⊂ Mβ,K . This is an equality for all
(β,K) in the phase-coexistence region except for β > βc and K = K1(β), in which case
Mβ,K = {0,±m(β,K)}.

The first theorem in this section shows that for any sequence (βn,Kn) converging either to
a second-order point or to the tricritical point, m(βn,Kn) → 0. This theorem is an essential
component in the proof of the asymptotic behavior of m(βn,Kn) given in Theorem 3.2.

Theorem 3.1 Let (βn,Kn) be an arbitrary positive sequence converging either to a second-
order point (β,K(β)),0 < β < βc , or to the tricritical point (β,K(β)) = (βc,K(βc)). Then
limn→∞ m(βn,Kn) = 0.

Proof Since Gβn,Kn is a real analytic function, Gβn,Kn(m(βn,Kn)) ≤ 0, and Gβn,Kn(x) →
∞ as |x| → ∞, Gβn,Kn has a largest positive zero, which we denote by xn. We have the
inequality 0 < m(βn,Kn) < xn. For any t ∈ R, cβ(t) ≤ log(4e|t |) = log 4 + |t |. Because
the sequence (βn,Kn) is bounded and remains a positive distance from the origin and the
coordinate axes, there exist numbers 0 < b1 < b2 < ∞ such that b1 ≤ βn ≤ b2 and b1 ≤
Kn ≤ b2 for all n ∈ N. Hence

Gβn,Kn(x) = βnKnx
2 − cβn(2βnKnx)

≥ βnKnx
2 − 2βnKn|x| − log 4 ≥ b2

1(|x| − 1)2 − b2
2 − log 4.

Therefore, if x∗ denotes the positive zero of the quadratic b2
1(|x| − 1)2 − b2

2 − log 4, then

0 < sup
n∈N

m(βn,Kn) ≤ sup
n∈N

xn ≤ x∗.

It follows that m(βn,Kn) is a bounded sequence. Thus given any subsequence m(βn1 ,Kn1),
there exists a further subsequence m(βn2 ,Kn2) and x̃ ∈ R such that m(βn2 ,Kn2) → x̃ as
n2 → ∞. We complete the proof by showing that independently of the subsequence chosen,
x̃ = 0. To prove this, we use the fact that

Gβn2 ,Kn2
(m(βn2 ,Kn2)) = inf

y∈R

Gβn2 ,Kn2
(y).

Hence for any y ∈ R, Gβn2 ,Kn2
(m(βn2 ,Kn2)) ≤ Gβn2 ,Kn2

(y). Since Gβn2 ,Kn2
(x) →

Gβ,K(β)(x) uniformly for x in compact subsets of R, it follows that for all y ∈ R

Gβ,K(β)(x̃) = lim
n2→∞Gβn2 ,Kn2

(m(βn2 ,Kn2)) ≤ lim
n2→∞Gβn2 ,Kn2

(y) = Gβ,K(β)(y).
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Therefore x̃ is a minimum point of Gβ,K(β). Because (β,K(β)) is either a second-order
point or the tricritical point, x̃ must coincide with the unique positive, global minimum point
of Gβ,K(β) at 0 (Theorem 2.1(a), Theorem 2.2(a)). We have proved that any subsequence
m(βn1 ,Kn1) of m(βn,Kn) has a further subsequence m(βn2 ,Kn2) such that m(βn2 ,Kn2) →
0 as n2 → ∞. The conclusion is that limn→∞ m(βn,Kn) = 0, as claimed. �

In Sect. 4 we consider six different sequences (βn,Kn) converging either to a second-
order point or to the tricritical point. The fact that each of these sequences lies in the phase-
coexistence region for all sufficiently large n is the first hypothesis of Theorem 3.2; this
property implies that m(βn,Kn) > 0 for all sufficiently large n and m(βn,Kn) → 0 (The-
orem 3.1). Under three additional hypotheses Theorem 3.2 describes the exact asymptotic
behavior of m(βn,Kn) → 0. Examples of sequences for which the hypotheses of the theo-
rem are valid are given in Theorems 4.1 and 4.2 for sequences converging to a second-order
point and in Theorems 4.3–4.6 for sequences converging to the tricritical point.

Theorem 3.2 Let (βn,Kn) be a positive sequence that converges either to a second-order
point (β,K(β)), 0 < β < βc, or to the tricritical point (β,K(β)) = (βc,K(βc)). We assume
that (βn,Kn) satisfies the following four hypotheses:

(i) (βn,Kn) lies in the phase-coexistence region for all sufficiently large n.
(ii) The sequence (βn,Kn) is parametrized by α > 0. This parameter regulates the speed of

approach of (βn,Kn) to the second-order point or the tricritical point in the following
sense:

b = lim
n→∞nα(βn − β) and k = lim

n→∞nα(Kn − K(β))

both exist, and b and k are not both 0; if b 
= 0, then b equals 1 or −1.
(iii) There exists an even polynomial g of degree 4 or 6 satisfying g(x) → ∞ as |x| → ∞

together with the following two properties; g is called the Ginzburg–Landau polyno-
mial.
(a) ∃α0 > 0 and ∃θ > 0 such that ∀α > 0, if u = 1 − α/α0 and γ = θα, then

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x)

uniformly for x in compact subsets of R.
(b) g has a unique positive, global minimum point x̄; thus the set of global minimum

points of g equals {±x̄} or {0,±x̄}.
(iv) There exists a polynomial H satisfying H(x) → ∞ as |x| → ∞ together with the

following property: ∀α > 0 ∃R > 0 such that, if u = 1−α/α0 and γ = θα, then ∀n ∈ N

sufficiently large and ∀x ∈ R satisfying |x/nγ | < R, n1−uGβn,Kn(x/nγ ) ≥ H(x).

Under hypotheses (i)–(iv), for any α > 0

m(βn,Kn) ∼ x̄/nθα; i.e., lim
n→∞nθαm(βn,Kn) = x̄.

If b 
= 0, then this becomes m(βn,Kn) ∼ x̄|β − βn|θ .

Proof Since Gβn,Kn(0) = 0 and Gβn,Kn is even, by hypotheses (iii) g is an even polynomial
of degree 4 or 6 satisfying g(0) = 0. Hence the global minimum points of g are either ±x̄

for some x̄ > 0 or 0 and ±x̄ for some x̄ > 0. The proof of the asymptotic relationship
m(βn,Kn) ∼ x̄/nθα is much easier in the case where the global minimum points of g are
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±x̄ for some x̄ > 0. After a number of preliminary steps, we will prove the theorem for such
polynomials g. We will then turn to the case where the global minimum points of g are 0
and ±x̄ for some x̄ > 0.

As in hypothesis (iii)(a), let α > 0 be given and define u = 1 − α/α0 and γ = θα. In
order to ease the notation, we write m̄n = nγ m(βn,Kn) and Gn(x) = n1−uGβn,Kn(x/nγ ).
For all sufficiently large n, since (βn,Kn) lies in the phase-coexistence region, we have
m(βn,Kn) > 0 and

Gβn,Kn(m(βn,Kn)) = inf
y∈R

Gβn,Kn(y).

It follows that for all sufficiently large n

Gn(m̄n) = n1−uGβn,Kn(m(βn,Kn))

= inf
y∈R

[n1−uGβn,Kn(y)] = inf
y∈R

Gn(y); (3.1)

i.e., Gn attains its minimum over R at m̄n > 0. This fact will be used several times in the
proof.

We first prove that the sequence {m̄n, n ∈ N} is bounded. If the sequence m̄n is not
bounded, then there exists a subsequence m̄n1 of m̄n such that m̄n1 → ∞ as n1 → ∞. Let
R be the quantity in hypothesis (iv). Since m(βn1 ,Kn1) > 0 and m(βn1 ,Kn1) → 0 (Theo-
rem 3.1), we have 0 < m̄n1/nγ = m(βn1 ,Kn1) < R for all sufficiently large n1, and so by
hypothesis (iv)

Gn1(m̄n1) ≥ H(m̄n1) → ∞ as n1 → ∞.

However, this contradicts the inequality

Gn(m̄n) = inf
y∈R

Gn(y) ≤ Gn(0) = 0,

which is valid for all n. This contradiction proves that the sequence m̄n is bounded.
We now prove that m(βn,Kn) ∼ x̄/nγ = x̄/nθα in the case where the global minimum

points of g are ±x̄ for some x̄ > 0. Let m̄n1 be any subsequence of m̄n. Since the sequence
m̄n1 is bounded, there exists a further subsequence m̄n2 and x̂ ≥ 0 such that m̄n2 → x̂ as
n2 → ∞. According to (3.1), for any y ∈ R, Gn2(m̄n2) ≤ Gn2(y). Since Gn(x) → g(x)

uniformly for x in compact subsets of R, it follows that

g(x̂) = lim
n2→∞Gn2(m̄n2) ≤ lim

n2→∞Gn2(y) = g(y).

Hence x̂ is a nonnegative global minimum point of g. Because g has a unique nonnegative,
global minimum point x̄, which is positive, x̂ coincides with x̄. We have proved that any
subsequence m̄n1 of m̄n has a further subsequence m̄n2 such that m̄n2 → x̄ as n2 → ∞. The
conclusion is that limn→∞ m̄n = x̄, which implies that m(βn,Kn) ∼ x̄/nγ = x̄/nθα .

We now prove that m(βn,Kn) ∼ x̄/nγ = x̄/nθα in the case where the global minimum
points of g are 0 and ±x̄ for some x̄ > 0. In this case g is a polynomial of degree 6. There
are two subcases to consider: (1) there exists an infinite subsequence n1 in N such that the
global minimum points of Gn1 are ±m̄n1 ; (2) there exists an infinite subsequence n4 in N

such that the global minimum points of Gn4 are 0 and ±m̄n4 .
In subcase 1 we will prove that any subsequence n2 of n1 has a further subsequence n3

for which m̄n3 → x̄. This implies that m̄n1 → x̄. In subcase 2 a similar proof shows that any
subsequence n5 of n4 has a further subsequence n6 for which m̄n6 → x̄. This implies that
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Fig. 3 Proof of Theorem 3.2 in subcase 1. (a) Graph of Ginzburg–Landau polynomial g having three global
minimum points, (b) graph of Gn3 showing m̄n3 → 0

m̄n4 → x̄. Now let n7 be an arbitrary subsequence in N. Then n7 contains either infinitely
many elements of the subsequence n1 or infinitely many elements of the subsequence n4. In
either case n7 contains a further subsequence n8 for which m̄n8 → x̄. The conclusion is that
m̄n → x̄, which yields the desired conclusion, namely, m(βn,Kn) ∼ x̄/nγ = x̄/nθα .

We focus on subcase 1; subcase 2 is handled similarly. In order to understand the subtlety
of the proof, we return to the argument just given in the case where the global minimum
points of g are ±x̄ for some x̄ > 0. Let n1 be the subsequence in subcase 1 and let n2 be
any further subsequence. Since the sequence m̄n2 is bounded, the same argument shows
that there exists a further subsequence n3 such that m̄n3 → x̂ as n2 → ∞, where x̂ is a
nonnegative global minimum point of g. When the global minimum points of g are ±x̄

for some x̄ > 0, we are able to conclude in fact that x̂ equals x̄. However, in the present
case where the global minimum points of g are 0 and ±x̄ for some x̄ > 0, it might turn out
that x̂ equals the global minimum point of g at 0. In this situation we would conclude that
m̄n3 → 0, which is not the asymptotic relationship that we want.

As this discussion shows, in subcase 1 it suffices to prove that there exists no subsequence
n3 of n2 for which m̄n3 → 0 as n3 → ∞. Under the assumption that there exists such a
subsequence, we will reach a contradiction of the fact that m̄n3 is the largest critical point
of Gn3 . This fact is not directly stated in [14], but it is a straightforward consequence of
Lemmas 3.9 and 3.10(a) and Theorem 3.5 in that paper. From these three results it follows
that when (β,K) lies in the phase-coexistence region, the positive global minimum point of
the function Fβ,K(z) = Gβ,K(z/2βK) is also its largest critical point. From the definition of
Gn in terms of Gβn,Kn , it then follows that m̄n is the largest critical point of Gn for all n.

Since the global minimum points of g are 0 and ±x̄ for some x̄ > 0, there exists ȳ ∈ (0, x̄)

such that g attains its maximum on the interval [0, x̄] at ȳ and attains its maximum on the
interval [−x̄,0] at −ȳ. In addition, g(±ȳ) > 0 = g(0) = g(±x̄). The graph of g is shown in
graph (a) in Fig. 3. The graph of Gn3 under the assumption that m̄n3 → 0 is shown in graph
(b) in Fig. 3. Referring to these graphs should help the reader follow the proof.

By hypothesis (iii)(a), as n3 → ∞, Gn3(z) → g(z) uniformly on compact subsets of R.
Thus for all sufficiently large n3 and each choice of sign

Gn3(±ȳ) ≥ 2g(ȳ)/3 > 0, Gn3(±x̄) ≤ g(ȳ)/3. (3.2)
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By definition of subcase 1 the global minimum points of Gn3 are ±m̄n3 , and by assumption
m̄n3 → 0 as n3 → ∞. For all sufficiently large n3, the inequality Gn3(m̄n3) < Gn3(0) = 0
and the two inequalities in (3.2) imply that there exists ȳn3 ∈ (m̄n3 , x̄) such that Gn3 at-
tains its maximum on the interval [m̄n3 , x̄] at ȳn3 and attains its maximum on the interval
[−x̄,−m̄n3 ] at −ȳn3 . Therefore, ȳn3 is a critical point of Gn3 greater than m̄n3 . This contra-
dicts the fact that m̄n3 is the largest critical point of Gn3 . The proof of subcase 1 is complete.

Subcase 2 is handled similarly. Let n4 be the subsequence in subcase 2 and let n5 be any
further subsequence. If there exists a subsequence n6 of n5 for which m̄n6 → 0 as n6 →
∞, then for all sufficiently large n6, there exists ȳn6 ∈ (m̄n6 , x̄) such that Gn6 attains its
maximum on the interval [m̄n6 , x̄] at ȳn6 and attains its maximum on the interval [−x̄,−m̄n6 ]
at −ȳn6 . Again this contradicts the fact that m̄n6 is the largest critical point of Gn6 . This
completes the proof of the theorem. �

In the next section we apply Theorem 3.2 to determine the asymptotic behavior of
m(βn,Kn) for six sequences (βn,Kn) converging from the phase-coexistence region to a
second-order point or to the tricritical point.

4 Asymptotic Behavior of m(βn,Kn) for Six Sequences

In this section we derive the asymptotic behavior of the magnetization m(βn,Kn) for six
sequences (βn,Kn). The first two sequences converge to a second-order point, and the last
four sequences converge to the tricritical point.

By definition, when (βn,Kn) lies in the phase-coexistence region, m(βn,Kn) is the
unique positive, global minimum point of the free-energy functional Gβn,Kn . For each of
the sequences considered in this section the asymptotic behavior of m(βn,Kn) is expressed
in terms of the unique positive, global minimum point x̄ of the limit of a suitable scaled
version of Gβn,Kn . This limit is a polynomial called the Ginzburg–Landau polynomial. As
we will see, properties of this polynomial reflect the phase-transition structure of the mean-
field B-C model in the region through which the associated sequence (βn,Kn) passes. This
makes rigorous the predictions of the Ginzburg–Landau phenomenology of critical phenom-
ena discussed in more detail in section 2 of [12].

We first derive in Theorems 4.1 and 4.2 the asymptotic behavior of m(βn,Kn) for two se-
quences (βn,Kn) converging to a second-order point (β,K(β)) from the phase-coexistence
region lying above the second-order curve. This asymptotic behavior is derived from the
general result in Theorem 3.2. Full details of all the calculations for these two sequences are
available in section 3 of [12].

For 0 < β < βc let (βn,Kn) be an arbitrary positive sequence converging to a second-
order point (β,K(β)). According to hypothesis (iii) of Theorem 3.2, we seek numbers u ∈
R and γ > 0 and a suitable polynomial g such that n1−uGβn,Kn(x/nγ ) → g(x) uniformly
on compact subsets of R. In order to carry this out, we consider the Taylor expansion for
nGβn,Kn(x/nγ ) to order 4 with an error term. Because Gβn,Kn(0) = 0, Gβn,Kn is an even
function, and G

(5)
β,K(y) is uniformly bounded on compact subsets of [0,∞) × [0,∞) × R,

Taylor’s Theorem implies that for all n ∈ N, any R > 0, and all x ∈ R satisfying |x/nγ | < R

nGβn,Kn(x/nγ ) = 1

n2γ−1

G
(2)
βn,Kn

(0)

2! x2 + 1

n4γ−1

G
(4)
βn,Kn

(0)

4! x4 + O

(
1

n5γ−1

)
x5. (4.1)

In this formula the big-oh term is uniform for x ∈ (−Rnγ ,Rnγ ).
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Define c4(β) = (eβ + 2)2(4 − eβ)/(8 · 4!), which is positive since 0 < β < βc = log 4,
and let εn denote a sequence that converges to 0 and that represents the various error terms
arising in the following calculation. If we substitute into the last display the formulas for
G

(2)
βn,Kn

(0) and G
(4)
βn,Kn

(0) and use the convergence (βn,Kn) → (β,K(β)) and the continuity
of K(·), then the last display implies that for all n ∈ N, any u ∈ R, any γ > 0, any R > 0,
and all x ∈ R satisfying |x/nγ | < R

n1−uGβn,Kn(x/nγ ) = 1

n2γ−1+u
β(K(βn) − Kn)(1 + εn)x

2

+ 1

n4γ−1+u
c4(β)(1 + εn)x

4 + O

(
1

n5γ−1

)
x5, (4.2)

where the big-oh term is uniform for x ∈ (−Rnγ ,Rnγ ).
The two different asymptotic behaviors of m(βn,Kn) to be considered first in this section

each depends on the choice of the sequence (βn,Kn) converging to the second-order point
(β,K(β)). Each choice controls, in a different way, the rate at which (K(βn) − Kn) in the
quadratic term in (4.2) converges to 0.

Fix 0 < β < βc . For the first choice of sequence we take α > 0, b ∈ {1,0,−1}, and a real
number k 
= K ′(β)b and define

βn = β + b/nα and Kn = K(β) + k/nα. (4.3)

Since K(βn) = K(β + b/nα) = K(β) + K ′(β)b/nα + O(1/n2α), it follows from (4.2) that
for all n ∈ N, any u ∈ R, any γ > 0, any R > 0, and all x ∈ R satisfying |x/nγ | < R

n1−uGβn,Kn(x/nγ )

= 1

n2γ+α−1+u
β(K ′(β)b − k)(1 + εn)x

2

+ 1

n4γ−1+u
c4(β)(1 + εn)x

4 + O

(
1

n2γ+2α−1+u

)
x2 + O

(
1

n5γ−1+u

)
x5. (4.4)

We now impose the condition that the powers of n appearing in the first two terms of the last
display equal 0; i.e., 2γ + α − 1 + u = 0 = 4γ − 1 + u. These two equalities are equivalent
to γ = α/2 and u = 1 − 4γ = 1 − 2α; in the notation of hypothesis (iii)(a) of Theorem 3.2
u = 1 − α/α0 and γ = θα, where α0 = 1/2 and θ = 1/2. With this choice of γ and u the
powers of n appearing in the last two terms in (4.4) are positive. It follows that as n → ∞,
we have uniformly for x in compact subsets of R

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x) = β(K ′(β)b − k)x2 + c4(β)x4. (4.5)

We now further assume that K ′(β)b − k < 0. This inequality implies that (βn,Kn) con-
verges to (β,K(β)) along a ray lying above the tangent line to (β,K(β)) (see path 1 in
Fig. 2). Thus, in accordance with hypothesis (i) of Theorem 3.2 (βn,Kn) lies in the phase-
coexistence region above the second-order curve for all sufficiently large n. Since b and k

are not both 0, hypothesis (ii) of that theorem is also valid. As required by hypothesis (iii)
of Theorem 3.2, the Ginzburg–Landau polynomial g is an even polynomial of degree 4, and
since K ′(β)b − k < 0 and c4(β) > 0, g(x) → ∞ as |x| → ∞ and g has a unique positive,
global minimum point. Substituting γ = α/2 and u = 1−2α into (4.4), one proves the lower
bound in hypothesis (iv) of Theorem 3.2 with H(x) = −2β|K ′(β)b − k|x2 + 1

2 c4(β)x4.
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For all n for which (βn,Kn) lies in the phase-coexistence region, the global minimum
points of the free energy functional Gβn,Kn are ±m(βn,Kn) (Theorem 2.1(b)), a property re-
flected in the fact that the global minimum points of the Ginzburg–Landau polynomial g are
also a pair of symmetric nonzero points. Alternatively, if K ′(β)b − k > 0, then (βn,Kn) lies
in the single-phase region under the second-order curve for all sufficiently large n, Gβn,Kn

has a unique global minimum point at 0 (Theorem 2.1(a)), and g has a unique global mini-
mum point at 0. In this way properties of g reflect the phase-transition structure of the model
in the region through which (βn,Kn) passes.

In the next theorem we describe the asymptotic behavior of m(βn,Kn) for the sequence
(βn,Kn) defined in (4.3) when K ′(β)b − k < 0. Since θ = 1/2, Theorem 3.2 implies that
m(βn,Kn) ∼ x̄/nθα = x̄/nα/2 → 0, where x̄ denotes the unique positive, global minimum
point of g. The next theorem, the proof of which has just been sketched, corresponds to
Theorem 3.1 in [12], where full details are given.

Theorem 4.1 For β ∈ (0, βc), α > 0, b ∈ {1,0,−1}, and a real number k 
= K ′(β)b, define

βn = β + b/nα and Kn = K(β) + k/nα

as well as c4(β) = (eβ + 2)2(4 − eβ)/(8 · 4!). Then (βn,Kn) converges to the second-order
point (β,K(β)). The following conclusions hold.

(a) For any α > 0, u = 1 − 2α, and γ = α/2

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x) = β(K ′(β)b − k)x2 + c4(β)x4

uniformly for x in compact subsets of R.
(b) The Ginzburg–Landau polynomial g has nonzero global minimum points if and only

if K ′(β)b − k < 0. If this inequality holds, then the global minimum points of g are ±x̄,
where

x̄ = (
β(k − K ′(β)b)/[2c4(β)])1/2

(4.6)

(c) Assume that k > K ′(β)b. Then for any α > 0, m(βn,Kn) → 0 and has the asymptotic
behavior

m(βn,Kn) ∼ x̄/nα/2; i.e., lim
n→∞nα/2m(βn,Kn) = x̄.

If b 
= 0, then this becomes m(βn,Kn) ∼ x̄|β − βn|1/2.

We now consider the second choice of the sequence (βn,Kn) converging to a second-
order point (β,K(β)) corresponding to 0 < β < βc . Given α > 0, b ∈ {1,−1}, an integer
p ≥ 2, and a real number � 
= K(p)(β), we define

βn = β + b/nα and Kn = K(β) +
p−1∑

j=1

K(j)(β)bj/(j !njα) + �bp/(p!npα). (4.7)

This sequence converges to the second-order point along a curve that coincides with the
second-order curve to order n−(p−1)α (see path 2 in Fig. 2). Since

K(βn) − Kn = (K(p)(β) − �)bp/(p!npα) + O(1/n(p+1)α)),
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the expansion (4.2) takes the form

n1−uGβn,Kn(x/nγ )

= 1

n2γ+pα−1+u

1

p!β(K(p)(β) − �)bp(1 + εn)x
2

+ 1

n4γ−1+u
c4(β)(1 + εn)x

4 + O

(
1

n2γ+(p+1)α−1+u

)
x2 + O

(
1

n5γ−1+u

)
x5. (4.8)

This formula is valid for all n ∈ N, any u ∈ R, any γ > 0, any R > 0, and all x ∈ R satisfying
|x/nγ | < R, and εn → 0. We now impose the condition that the powers of n in the first two
terms of the last display equal 0; i.e., 2γ +pα−1+u = 0 = 4γ −1+u. These two equalities
are equivalent to γ = pα/2 and u = 1 − 4γ = 1 − 2pα; in the notation of hypothesis (iii)(a)
of Theorem 3.2 u = 1 − α/α0 and γ = θα, where α0 = 1/(2p) and θ = p/2. With this
choice of γ and u, the powers of n in the last two terms in (4.8) are positive. It follows that
as n → ∞, we have uniformly for x in compact subsets of R

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x) = 1

p!β(K(p)(β) − �)bpx2 + c4(β)x4.

We now further assume that (K(p)(β) − �)bp < 0. This inequality implies that Kn >

K(βn) for all sufficiently large n. Hence in accordance with hypothesis (i) of Theorem 3.2,
(βn,Kn) lies in the phase-coexistence region above the second-order curve for all suffi-
ciently large n. Since b 
= 0, hypothesis (ii) of that theorem is also valid. As required by
hypothesis (iii) of Theorem 3.2, the Ginzburg–Landau polynomial g is an even polynomial
of degree 4, and since (K(p)(β) − �)bp < 0 and c4(β) > 0, g(x) → ∞ as |x| → ∞ and g

has a unique positive, global minimum point. As in the case of sequence (4.3), properties
of g reflect the phase-transition structure of the model in the region through which (βn,Kn)

passes. Substituting γ = pα/2 and u = 1 − 2pα into (4.8), one verifies hypothesis (iv) of
Theorem 3.2 with H(x) = − 2

p!β|K(p)(β)b − �|x2 + 1
2c4(β)x4. This completes the verifica-

tion of the hypotheses of Theorem 3.2.
In the next theorem we describe the asymptotic behavior of m(βn,Kn) for the sequence

(βn,Kn) defined in (4.7) when (K(p)(β) − �)bp < 0. Since θ = p/2, Theorem 3.2 implies
that m(βn,Kn) ∼ x̄/nθα = x̄/npα/2 → 0, where x̄ denotes the unique positive, global mini-
mum point of g. The next theorem, the proof of which has just been sketched, corresponds
to Theorem 3.2 in [12], where full details are given.

Theorem 4.2 For β ∈ (0, βc), α > 0, b ∈ {1,−1}, an integer p ≥ 2, and a real number
� 
= K(p)(β), define

βn = β + b/nα and Kn = K(β) +
p−1∑

j=1

K(j)(β)bj/(j !njα) + �bp/(p!npα)

as well as c4(β) = (eβ + 2)2(4 − eβ)/(8 · 4!). Then (βn,Kn) converges to the second-order
point (β,K(β)). The following conclusions hold.

(a) For any α > 0, u = 1 − 2pα, and γ = pα/2

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x) = 1

p!β(K(p)(β) − �)bpx2 + c4(β)x4
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uniformly for x in compact subsets of R.
(b) The Ginzburg–Landau polynomial g has nonzero global minimum points if and only

if (K(p)(β)−�)bp < 0. If this inequality holds, then the global minimum points of g are ±x̄,
where

x̄ = (
β(� − K(p)(β))bp/[2c4(β)p!])1/2

. (4.9)

(c) Assume that (K(p)(β) − �)bp < 0. Then for any α > 0, m(βn,Kn) → 0 and has the
asymptotic behavior

m(βn,Kn) ∼ x̄/npα/2 = x̄|β − βn|p/2; i.e., lim
n→∞npα/2m(βn,Kn) = x̄.

We next derive in Theorems 4.3–4.6 the asymptotic behavior of m(βn,Kn) for four se-
quences (βn,Kn) converging to the tricritical point (βc,K(βc)) from various subsets of the
phase-coexistence region. A number of new phenomena arise in this case that are not ob-
served in the cases considered earlier in this section. Full details of all the calculations for
these four sequences are available in section 5 of [12]. As in the case of the two sequences
considered earlier in this section, properties of the Ginzburg–Landau polynomials for these
four new sequences reflect the phase-transition structure of the mean-field B-C model in the
region through which the associated sequence (βn,Kn) passes. This again makes rigorous
the predictions of the Ginzburg–Landau phenomenology of critical phenomena discussed in
section 2 of [12].

Let (βn,Kn) be an arbitrary positive sequence converging to the tricritical point
(βc,K(βc)) = (log 4,3/2 log 4). According to hypothesis (iii) of Theorem 3.2, we seek
numbers u ∈ R and γ ∈ R and a suitable polynomial g such that n1−uGβn,Kn(x/nγ ) → g(x)

uniformly on compact subsets of R. In order to carry this out, we consider the Taylor ex-
pansion of nGβn,Kn(x/nγ ) to order 6 with an error term. This expansion takes the form

nGβn,Kn(x/nγ ) = 1

n2γ−1

G
(2)
βn,Kn

(0)

2! x2 + 1

n4γ−1

G
(4)
βn,Kn

(0)

4! x4

+ 1

n6γ−1

G
(6)
βn,Kn

(0)

6! x6 + O

(
1

n7γ−1

)
x7, (4.10)

which is valid for all n ∈ N, any R > 0, and all x ∈ R satisfying |x/nγ | < R. The big-oh
term is uniform for x ∈ (−Rnγ ,Rnγ ).

Define c4 = 3/16 and c6 = 9/40 and let εn denote a sequence that converges to 0 and that
represents the various error terms arising in the following calculation. If we substitute into
the last display the formulas for G

(2)
βn,Kn

(0), G
(4)
βn,Kn

(0), and G
(6)
βn,Kn

(0) and use the conver-
gence (βn,Kn) → (βc,K(βc)) and the continuity of K(·), the last display implies that for
all n ∈ N, any u ∈ R, any γ > 0, and all x ∈ R satisfying |x/nγ | < R

n1−uGβn,Kn(x/nγ )

= 1

n2γ−1+u
βc(K(βn) − Kn)(1 + εn)x

2 + 1

n4γ−1+u
c4(4 − eβn)(1 + εn)x

4

+ 1

n6γ−1+u
c6(1 + εn)x

6 + O

(
1

n7γ−1+u

)
x7. (4.11)

The four different asymptotic behaviors of m(βn,Kn) to be considered in the remain-
der of this section each depends on the choice of the sequence (βn,Kn) converging to
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the tricritical point (βc,K(βc)). Each choice controls, in a different way, the rate at which
(K(βn) − Kn) in the quadratic term in (4.11) and the rate at which (4 − eβn) in the quartic
term converge to 0.

For the first choice of sequence we take α > 0, b ∈ {1,0,−1}, and a real number k 
=
K ′(βc)b and define

βn = βc + b/nα and Kn = K(βc) + k/nα. (4.12)

Since K(βn) − Kn = (K ′(βc)b − k)/nα + O(1/n2α) and 4 − eβn = −4b/nα + O(1/n2α),
it follows from (4.11) that for all n ∈ N, any u ∈ R, any γ > 0, any R > 0, and all x ∈ R

satisfying |x/nγ | < R

n1−uGβn,Kn(x/nγ )

= 1

n2γ+α−1+u
βc(K

′(βc)b − k)(1 + εn)x
2 − 1

n4γ+α−1+u
4c4b(1 + εn)x

4

+ 1

n6γ−1+u
c6(1 + εn)x

6 + O

(
1

n2γ+2α−1+u

)
x2

+ O

(
1

n4γ+2α−1+u

)
x4 + O

(
1

n7γ−1+u

)
x7. (4.13)

We now impose the condition that the powers of n appearing in the first and third terms in
the last display equal 0; i.e., 2γ + α − 1 + u = 0 = 6γ − 1 + u. These two equalities are
equivalent to γ = α/4 and u = 1 − 6γ = 1 − 3α/2; in the notation of hypothesis (iii)(a) of
Theorem 3.2 u = 1 − α/α0 and γ = θα, where α0 = 2/3 and θ = 1/4. With this choice of
γ and u, the powers of n in the second term and the last three terms in (4.13) are positive. It
follows that as n → ∞, we have for uniformly for x in compact subsets of R

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x) = βc(K

′(β)b − k)x2 + c6x
6.

We now further assume that k > K ′(βc)b. This inequality implies that (βn,Kn) con-
verges to (βc,K(βc)) along a ray lying above the tangent line to (βc,K(βc)) (see path 3 in
Fig. 2). Hence in accordance with hypothesis (i) of Theorem 3.2, (βn,Kn) lies in the phase-
coexistence region for all sufficiently large n; (βn,Kn) is above the spinodal curve if b = 1
(see Fig. 1), above the second-order curve if b = −1, and above the tricritical point if b = 0.
Since b and k are not both 0, hypothesis (ii) of Theorem 3.2 is also valid. As required by hy-
pothesis (iii) of Theorem 3.2, the Ginzburg–Landau polynomial g is an even polynomial of
degree 6, and since K ′(βc)b − k < 0 and c6 > 0, g(x) → ∞ as |x| → ∞ and g has a unique
positive, global minimum point. As in the case of the sequence in (4.3), properties of g re-
flect the phase-transition structure of the model in the region through which (βn,Kn) passes.
Substituting γ = α/4 and u = 1 − 3α/2 into (4.13), one verifies hypothesis (iv) of Theorem
3.2 with H(x) = −2βc|K ′(βc)b − k|x2 − 8c4x

4 + 1
2c6x

6. This completes the verification of
the hypotheses of Theorem 3.2.

In the next theorem we describe the asymptotic behavior of m(βn,Kn) for the sequence
(βn,Kn) defined in (4.12) when K ′(βc)b − k < 0. Since θ = 1/4, Theorem 3.2 implies that
m(βn,Kn) ∼ x̄/nθα = x̄/nα/4 → 0, where x̄ denotes the unique positive, global minimum
point of g. The next theorem, the proof of which has just been sketched, corresponds to
Theorem 5.1 in [12], where full details are given.
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Theorem 4.3 For α > 0, b ∈ {1,0,−1}, and a real number k 
= K ′(βc)b, define

βn = βc + b/nα and Kn = K(βc) + k/nα

as well as c6 = 9/40. Then (βn,Kn) converges to the tricritical point (βc,K(βc)). The fol-
lowing conclusions hold.

(a) For any α > 0, u = 1 − 3α/2, and γ = α/4

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x) = βc(K

′(βc)b − k)x2 + c6x
6

uniformly for x in compact subsets of R.
(b) The Ginzburg–Landau polynomial g has nonzero global minimum points if and only

if K ′(βc)b − k < 0. If this inequality holds, then the global minimum points of g are ±x̄,
where

x̄ = (
βc(k − K ′(βc)b)/[3c6]

)1/4
. (4.14)

(c) Assume that k > K ′(βc)b. Then for any α > 0, m(βn,Kn) → 0 and has the asymptotic
behavior

m(βn,Kn) ∼ x̄/nα/4; i.e., lim
n→∞nα/4m(βn,Kn) = x̄.

When b 
= 0, this becomes m(βn,Kn) ∼ x̄|βc − βn|1/4.

We now consider the second choice of sequence (βn,Kn) converging to the tricritical
point. Given α > 0, � ∈ R, and �̃ ∈ R we define

βn = βc + 1/nα and Kn = K(βc) + K ′(βc)/n
α + �/(2n2α) + �̃/(6n3α). (4.15)

Since

K(βn) − Kn = (K ′′(βc) − �)/(2n2α) + (K ′′′(βc) − �̃)/(6n3α) + O(1/n4α)

and 4 − eβn = −4/nα + O(1/n2α), it follows from (4.11) that for all n ∈ N, any u > 0, any
γ > 0, any R > 0, and all x ∈ R satisfying |x/nγ | < R

Gn(x)

= 1

n2γ+2α−1+u

1

2
βc(K

′′(βc) − �)(1 + εn)x
2 − 1

n4γ+α−1+u
4c4(1 + εn)x

4

+ 1

n6γ−1+u
c6(1 + εn)x

6 + O

(
1

n2γ+3α−1+u

)
x2 + O

(
1

n2γ+4α−1+u

)
x2

+ O

(
1

n4γ+2α−1+u

)
x4 + O

(
1

n7γ−1+u

)
x7. (4.16)

We now impose the condition that the powers of n appearing in the first three terms in the
last display equal 0; i.e., 2γ + 2α − 1 + u = 0 = 4γ + α − 1 + u = 6γ − 1 + u. These three
equalities are equivalent to γ = α/2 and u = 1 − 6γ = 1 − 3α; in the notation of hypothesis
(iii) of Theorem 3.2 u = 1 − α/α0 and γ = θα, where α0 = 1/3 and θ = 1/2. With this
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choice of γ and u, the powers of n in the last four terms in (4.16) are positive. It follows that
as n → ∞, we have uniformly for x in compact subsets of R

lim
n→∞n1−uGβn,Kn(x/nγ ) = g�(x) = 1

2
βc(K

′′(βc) − �)x2 − 4c4x
4 + c6x

6. (4.17)

We write the Ginzburg–Landau polynomial as g� in order to emphasize the dependence on
the parameter �; g� does not depend on the choice of �̃ in (4.15).

For � ∈ R and suitable �̃ we now describe the region in which (βn,Kn) lies for sufficiently
large n. The discussion depends in part on the validity of Conjectures 1 and 2 stated below.
These conjectures are discussed in detail in section 5 of [12] and are supported by properties
of the Ginzburg–Landau polynomials and numerical calculations. The conjectures involve
the behavior, in a neighborhood of the tricritical point, of the first-order curve defined by
K1(β) for β > βc . Since limβ→β+

c
K1(β) = K(βc) [14, Sects. 3.1, 3.3], by continuity we

extend the definition of K1(β) to β = βc by defining K1(βc) = K(βc). We assume that the
first three right-hand derivatives of K1(β) exists at βc and denote them by K ′

1(βc), K ′′
1 (βc),

and K ′′′
1 (βc). We also define �c = K ′′(βc)−5/(4βc). Conjectures 1 and 2 state the following:

(1) K ′
1(βc) = K ′(βc), (2) K ′′

1 (βc) = �c < 0 < K ′′(βc).
Since βn − βc = 1/nα , (βn,Kn) converges to (βc,K(βc)) along the curve (β, K̃(β)),

where for β > βc

K̃(β) = K(βc) + K ′(βc)(β − βc) + �(β − βc)
2/2 + �̃(β − βc)

3/6. (4.18)

Hence we have the following picture. Possible paths for the sequences in items i–iv are
the respective curves labeled 4a–4d in Fig. 2. The spinodal curve is the extension of the
second-order curve to β > βc .

i. For � > K ′′(βc) and any �̃ ∈ R, (βn,Kn) lies in the phase-coexistence region located
above the spinodal curve for all sufficiently large n,

ii. For � = K ′′(βc) and �̃ > K ′′′(βc), (βn,Kn) lies in the phase-coexistence region located
above the spinodal curve for all sufficiently large n.

iii. We assume Conjectures 1 and 2. Then for � ∈ (�c,K
′′(βc)) and any �̃ ∈ R, (βn,Kn)

lies in the phase-coexistence region located above the first-order curve and below the
spinodal curve for all sufficiently large n.

iv. We assume Conjectures 1 and 2. Then for � = �c and any �̃ > K ′′′
1 (βc), (βn,Kn) lies in

the phase-coexistence region located above the first-order curve and below the spinodal
curve for all sufficiently large n. The curve (β, K̃(β)) defined in (4.18) coincides to
order 2 in powers of β − βc with the first-order curve.

v. We assume Conjectures 1 and 2. Then for � < �c and any �̃ ∈ R, (βn,Kn) lies in the
single-phase region located below the first-order curve for all sufficiently large n.

For � ∈ R define Mg�
to be the set of global minimum points of the Ginzburg–Landau

polynomial g� in (4.17), which are easily determined using Theorem A.1. For β > 0 and
K > 0, define Mβ,K to be the set of global minimum points of Gβ,K as in Sect. 2. We next
describe the structure of Mg�

and show that it mirrors that of Mβn,Kn , which describes the
phase-transition structure of the region through which the corresponding sequence (βn,Kn)

passes. These regions are described in items (i)–(v) after (4.18), and the phase-transition
structure is given in Theorem 2.2. In terms of �c = K ′′(βc) − 5/(4βc), Theorem A.1 gives
the following picture.

1. For � > �c , Mg�
equals {±x̄(�)}, where x̄(�) is defined in (4.19). For these values of �

and suitable �̃ given items (i)–(iii), this behavior of Mg�
mirrors the fact that for (βn,Kn)

lying above the first-order curve Mβn,Kn equals {±m(βn,Kn)}.
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2. For � = �c , Mg�
equals {0,±x̄(�c)}, where x̄(�c) = √

5/3. As specified in item (iv), for
� = �c and �̃ > K ′′′

1 (βc) this structure of Mg�
mirrors the fact that for (βn,Kn) lying on

the first-order curve Mβn,Kn equals {0,±m(βn,Kn)}.
3. For � < �c , g� has a unique global minimum point at 0. As specified in item (v), for

� < �c and �̃ ∈ R this structure of Mg�
mirrors the fact that for (βn,Kn) lying below the

first-order curve Mβn,Kn equals {0}.
4. As described in items 1–3, Mg�

undergoes a discontinuous bifurcation at � = �c , mirror-
ing the discontinuous bifurcation undergone by Mβ,K at K = K1(β) for β > βc .

In Theorem 4.4 we describe the asymptotic behavior of m(βn,Kn) for the sequence
(βn,Kn) defined in (4.15). For the choice of parameters in items i–iv after (4.18), (βn,Kn)

lies in the phase-coexistence region as required by hypothesis (i) of Theorem 3.2. For the
choice of parameters in items iii and iv, Conjectures 1 and 2 in section 5 of [12] are needed.
Hypothesis (ii) of Theorem 3.2 is obviously valid. As required by hypothesis (iii) of Theo-
rem 3.2, the Ginzburg–Landau polynomial g� is an even polynomial of degree 6, g�(x) → ∞
as |x| → ∞, and by Theorem A.1 g� has a unique positive, global minimum point for � ≥ �c .
Substituting γ = α/2 and u = 1 − 3α into (4.16), one verifies hypothesis (iv) of Theorem
3.2 with H(x) = −βc|K ′′(βc) − �|x2 − 8c4x

4 + 1
2 c6x

6 when � 
= K ′′(βc) and with a slightly
modified H when � = K ′′(βc). This completes the verification of the hypotheses of Theo-
rem 3.2. Since θ = 1/2, Theorem 3.2 implies that m(βn,Kn) ∼ x̄(�)/nθα = x̄(�)/nα/2 → 0,
where x̄(�) denotes the unique positive, global minimum point of g�. The next theorem,
the proof of which has just been sketched, corresponds to Theorem 5.2 in [12], where full
details are given.

Theorem 4.4 For α > 0, � ∈ R, and �̃ ∈ R, define

βn = βc + 1/nα and Kn = K(βc) + K ′(βc)/n
α + �/(2n2α) + �̃/(6n3α)

as well as c4 = 3/16 and c6 = 9/40. Then (βn,Kn) converges to the tricritical point
(βc,K(βc)). The following conclusions hold.

(a) For any α > 0, u = 1 − 3α, and γ = α/2

lim
n→∞n1−uGβn,Kn(x/nγ ) = g�(x) = 1

2
βc(K

′′(βc) − �)x2 − 4c4x
4 + c6x

6

uniformly for x in compact subsets of R.
(b) The Ginzburg–Landau polynomial g� has nonzero global minimum points if and only

if � ≥ �c = K ′′(βc) − 5/(4βc) = (−β2
c − 8βc + 12)/4β3

c .
(i) Assume that � > �c . Then the global minimum points of g� are ±x̄(�), where

x̄(�) =
√

10

3

(
1 +

(
1 − 3βc

5
(K ′′(βc) − �)

)1/2
)1/2

. (4.19)

(ii) Assume that � = �c . Then the global minimum points of the Ginzburg–Landau
polynomial g�(x) are 0 and ±x̄(�c), where x̄(�c) = (5/3)1/2.

(c) In each of the cases (i)–(iv) appearing after (4.18) and for any α > 0, m(βn,Kn) → 0
and has the asymptotic behavior

m(βn,Kn) ∼ x̄(�)/nα/2 = x̄(�)(βn − βc)
1/2; i.e., lim

n→∞nα/2m(βn,Kn) = x̄(�).
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We now consider the third choice of sequence (βn,Kn) converging to the tricritical point.
Given α > 0, an integer p ≥ 2, and � ∈ R, we define

βn = βc − 1/nα and Kn = K(βc) +
p−1∑

j=1

K(j)(βc)(−1)j /(j !njα) + �(−1)p/(p!npα).

(4.20)
This sequence converges to the tricritical point from the left along a curve that coincides
with the second-order curve to order n−(p−1)α (see paths 5 and 6 in Fig. 2). Since

K(βn) − Kn = (K(p)(βc) − �)(−1)p/(p!npα) + O(1/n(p+1)α)

and 4 − eβn = 4/nα + O(1/n2α), it follows from (4.11) that for all n ∈ N, any γ > 0, any
R > 0, and all x ∈ R satisfying |x/nγ | < R

n1−uGβn,Kn(x/nγ )

= 1

n2γ+pα−1+u

1

p!βc(K
(p)(βc) − �)(−1)p(1 + εn)x

2

+ 1

n4γ+α−1+u
4c4(1 + εn)x

4 + 1

n6γ−1+u
c6(1 + εn)x

6

+ O

(
1

n2γ+(p+1)α−1+u

)
x2 + O

(
1

n4γ+2α−1+u

)
x4 + O

(
1

n7γ−1+u

)
x7. (4.21)

We first consider p = 2, which gives rise to a different asymptotic behavior of
m(βn,Kn) → 0 from p ≥ 3. We impose the condition that the three powers of n appear-
ing in the first three terms in (4.21) equal 0; i.e., 2γ + 2α − 1 + u = 0 = 4γ + α − 1 + u =
6γ − 1 + u. These three equalities are equivalent to γ = α/2 and u = 1 − 6γ = 1 − 3α; in
the notation of hypothesis (iii)(a) of Theorem 3.2 u = 1−α/α0 and γ = θα, where α0 = 1/3
and θ = 1/2. With this choice of γ and u, the powers of n in the last three terms in (4.21)
are positive. It follows that as n → ∞, we have uniformly for x in compact subsets of R

Gn(x) = n1−uGβn,Kn(x/nγ ) → g(x) = 1

2
βc(K

′′(βc) − �)x2 + 4c4x
4 + c6x

6. (4.22)

We now further assume that � > K ′′(βc). This inequality implies that Kn > K(βn) for
all sufficiently large n. Hence in accordance with hypothesis (i) of Theorem 3.2, (βn,Kn)

lies in the phase-coexistence region above the second-order curve for all sufficiently large n.
Hypothesis (ii) of Theorem 3.2 is obviously valid. As required by hypothesis (iii) of Theo-
rem 3.2, the Ginzburg–Landau polynomial g is an even polynomial of degree 6, and since
K ′′(βc) − � < 0, c4 > 0, and c6 > 0, g(x) → ∞ as |x| → ∞ and by Theorem A.2 g has a
unique positive, global minimum point at the quantity x̄ defined in (4.23). As in previous
cases, properties of g reflect the phase-transition structure of the model in the region through
which (βn,Kn) passes. Substituting γ = α/2 and u = 1 − 3α into (4.21), one verifies hy-
pothesis (iv) of Theorem 3.2 with H(x) = −βc|K ′′(βc) − �|x2 + 1

2 c6(β)x6. This completes
the verification of the hypotheses of Theorem 3.2.

In the next theorem we describe the asymptotic behavior of m(βn,Kn) for the sequence
(βn,Kn) defined in (4.20) when p = 2 and � > K ′′(βc). Since θ = 1/2, Theorem 3.2 implies
that m(βn,Kn) ∼ x̄/nθα = x̄/nα/2 → 0, where x̄ denotes the unique positive, global mini-
mum point of g. The next theorem, the proof of which has just been sketched, corresponds
to Theorem 5.3 in [12], where full details are given.
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Theorem 4.5 For α > 0 and � ∈ R define

βn = βc − 1/nα and Kn = K(βc) + K ′(βc)/n
α + �/2n2α

as well as c4 = 3/16 and c6 = 9/40. Then the sequence (βn,Kn) converges to the tricritical
point (βc,K(βc)). The following conclusions hold.

(a) For any α > 0, u = 1 − 3α, and γ = α/2

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x) = 1

2
βc(K

′′(βc) − �)x2 + 4c4x
4 + c6x

6

uniformly for x in compact subsets of R.
(b) The Ginzburg–Landau polynomial g has nonzero global minimum points if and only

if � > K ′′(βc). If this inequality holds, then the global minimum points of g are ±x̄, where

x̄ =
√

10

3

(
−1 +

(
1 + 3βc

5
(� − K ′′(βc))

)1/2
)1/2

. (4.23)

(c) Assume that � > K ′′(βc). Then for any α > 0, m(βn,Kn) → 0 and has the asymptotic
behavior

m(βn,Kn) ∼ x̄/nα/2 = x̄(βc − βn)
1/2; i.e., lim

n→∞nα/2m(βn,Kn) = x̄.

This theorem completes the analysis for p = 2. We now continue with the more com-
plicated analysis for the sequences (βn,Kn) defined in (4.20) for p ≥ 3, α > 0, and
� 
= K(p)(βc). We omit the calculation showing that γ = (p−1)α/2 and u = 1−pα−2γ =
1 − (2p − 1)α is the only combination of γ and u for which the limit of n1−uGβn,Kn(x/nγ )

in (4.21) is a polynomial having a positive, global minimum point. In the notation of hy-
pothesis (iii)(a) of Theorem 3.2, u = 1 − α/α0 and γ = θα, where α0 = 1/(2p − 1) and
θ = (p − 1)/2. With this choice of γ and u, the powers of n in the last four terms in (4.21)
are positive. It follows that as n → ∞, we have uniformly for x in compact subsets of R

n1−uGβn,Kn(x/nγ ) → g(x) = 1

p!βc(K
(p)(βc) − �)(−1)px2 + 4c4x

4. (4.24)

We now further assume that (K(p)(βc) − �)(−1)p < 0. This inequality implies that
Kn > K(βn) for all sufficiently large n. Hence in accordance with hypothesis (i) of The-
orem 3.2, (βn,Kn) lies in the phase-coexistence region above the second-order curve for
all sufficiently large n. Hypothesis (ii) of Theorem 3.2 is obviously valid. As required by
hypothesis (iii) of Theorem 3.2, the Ginzburg–Landau polynomial g is an even polynomial
of degree 4, and since (K(p)(βc) − �)(−1)p < 0, g(x) → ∞ as |x| → ∞ and by g has
a unique positive, global minimum point. As in previous cases, properties of g reflect the
phase-transition structure of the model in the region through which (βn,Kn) passes. Substi-
tuting γ = (p − 1)α/2 and u = 1 − (2p − 1)α into (4.21), one verifies hypothesis (iv) of
Theorem 3.2 with H(x) = −2 1

p!βc|K(p)(βc)− �|x2 +2c4x
4. This completes the verification

of the hypotheses of Theorem 3.2.
In the next theorem we describe the asymptotic behavior of m(βn,Kn) for the sequence

(βn,Kn) defined in (4.20) when p ≥ 3 is a positive integer and (K(p)(βc) − �)(−1)p < 0.
Since θ = (p − 1)/2, Theorem 3.2 implies that m(βn,Kn) ∼ x̄/nθα = x̄/n(p−1)α/2 → 0,
where x̄ denotes the unique positive, global minimum point of g. The next theorem, the
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proof of which has just been sketched, corresponds to Theorem 5.4 in [12], where full details
are given.

Theorem 4.6 For p a positive integer satisfying p ≥ 3, α > 0, and a real number � 
=
K(p)(βc), define

βn = βc − 1/nα and Kn = K(βc) +
p−1∑

j=1

K(j)(βc)(−1)j /(j !njα) + �(−1)p/(p!npα)

as well as c4 = 3/16. Then (βn,Kn) converges to the tricritical point (βc,K(βc)). The fol-
lowing conclusions hold.

(a) For any α > 0, γ = (p − 1)α/2, and u = 1 − (2p − 1)α

lim
n→∞n1−uGβn,Kn(x/nγ ) = g(x) = 1

p!βc(K
(p)(βc) − �)(−1)px2 + 4c4x

4

uniformly for x in compact subsets of R.
(b) The Ginzburg–Landau polynomial has nonzero global minimum points if and only if

(K(p)(βc) − �)(−1)p < 0. If this inequality holds, then the global minimum points of g are
±x̄, where

x̄ = (
βc

(
� − K(p)(βc)(−1)p

)
/[8c4p!])1/2

. (4.25)

(c) Assume that (K(p)(βc) − �)(−1)p < 0. Then for any α > 0, m(βn,Kn) → 0 and has
the asymptotic behavior

m(βn,Kn) ∼ x̄/n(p−1)α/2 = x̄(βn − βc)
(p−1)/2; i.e., lim

n→∞n(p−1)α/2m(βn,Kn) = x̄.

This completes our analysis of the asymptotic behavior of m(βn,Kn) for the six se-
quences introduced in this section. In the next section we relate this asymptotic behavior to
the scaling theory of critical phenomena.

5 Relationship with Scaling Theory of Critical Phenomena

The results on the asymptotic behavior of m(βn,Kn) obtained in Sect. 4 are related to scaling
theory for critical and tricritical points [20, 23]. In this section we review scaling theory and
show that its predictions for the magnetization are consistent with the results obtained in
that section.

Scaling theory is based on the idea that the singular parts of thermodynamic functions
near continuous phase transitions are homogeneous functions of the distance to the phase
transition. If there is a single parameter controlling the approach to the phase transition,
then the content of scaling theory for a single thermodynamic quantity is simply that its
singularities are power laws. If there is more than one parameter, as is the case here, then
scaling theory has a richer content, especially near the tricritical point where the type of
phase transition changes in a small neighborhood.

We are interested in the magnetization m as a function of (βn,Kn), a sequence con-
verging either to a second-order point (β,K(β)) with 0 < β < βc or to the tricritical point
(β,K(β)) = (βc,K(βc)). In either case, the relevant parameter-space is two dimensional.
Given any phase-transition point (β,K(β)) with 0 < β ≤ βc, the natural coordinate system
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Fig. 4 Curvilinear coordinate system for scaling theory showing the coordinates μ1 and μ2; μ1 is the signed
distance from the phase transition line and μ2 the signed distance from the tricritical point along the phase
transition line. Regions I, II, and III are dominated, respectively, by the first-order, second-order, and tricritical
phase transition. A similar coordinate system can be defined for any point along the second-order curve

for scaling theory is a curvilinear system (μ1,μ2) measuring the signed distances from the
phase transition point; μ1 is the signed distance from the curve of phase transitions and μ2

the signed distance from the chosen point along the curve of phase transitions. Since we are
concerned with the phase-coexistence region, in all our considerations μ1 ≥ 0; however, μ2

may take either sign. At the tricritical point, μ2 > 0 and μ1 = 0 correspond to the first-order
line to the right of the tricritical point while μ2 < 0 and μ1 = 0 correspond to the second or-
der line to the left of the tricritical point. At a second-order point, for sufficiently small |μ2|,
(0,μ2) is also a second-order point. Figure 4 shows this coordinate system for the special
case of the tricritical point.

Scaling theory for the magnetization in a two-dimensional parameter space takes the
general form

m(μ1τ,μ2τ
a) = τ bm(μ1,μ2), (5.1)

where τ is an arbitrary scale factor and a and b are exponents to be determined [20]. The
exponents a and b are chosen so that the theory is consistent with known exponents for
the particular type of phase transition. In our case, a and b depend on whether the phase
transition point is a second-order point or the tricritical point.

We first consider the simpler case of a second-order point. Then the neighboring points
along the phase-transition curve are also second-order points, and there is no singular depen-
dence on μ2, implying that a = 0. The singular behavior of the magnetization is controlled
by β̃ , the mean-field magnetization exponent for second-order transitions, which has the
value β̃ = 1/2 [23]. Choosing b = β̃ = 1/2, we obtain from (5.1)

m(μ1τ,μ2) = τ β̃m(μ1,μ2) = τ 1/2m(μ1,μ2). (5.2)

Setting τ = 1/μ1 yields

m(μ1,μ2) = μ
β̃

1 m(1,μ2) = μ
1/2
1 f (μ2); (5.3)
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f (μ2) is a smooth function of μ2 that depends on the chosen point (β,K(β)), and the criti-
cal amplitude f (0) is presumed to be positive. Equation (5.3) reflects the standard power-law
behavior of the magnetization near a critical point.

We now show that (5.3) is consistent with Theorems 4.1 and 4.2. These theorems give
the exact asymptotic behavior of m(βn,Kn) for sequences (βn,Kn) converging to a second-
order point. For ease of exposition, we refer to the definitions of the sequences according
to the labeling in Fig. 2 in the introduction, calling them sequences of type 1 and type 2,
respectively.

We first consider the sequence of type 1, which converges to a second-order point
(β0,K(β0)) along a ray that is above the tangent line to the second-order curve at that point.
Defined in (4.3), this sequence takes the form

βn = β0 + b/nα and Kn = K(β0) + k/nα, (5.4)

where b ∈ {1,0,−1} and K ′(β0)b − k < 0. To leading order, the coordinate μ1 is given by
the distance to the tangent to the second-order curve at (β0,K(β0)); i.e.,

μ1 ≈ (K − K(β0)) − K ′(β0)(β − β0). (5.5)

Hence we obtain

μ1 ≈ (k − K ′(β0)b)/nα. (5.6)

The distance μ2 is also of order 1/nα . However, f is a smooth function of μ2 that converges
to f (0) > 0 as μ2 → 0. Hence we need only know that μ2 → 0 in order to obtain the
leading-order behavior of m from (5.3) and (5.6), namely, m ≈ (k − K ′(β0)b)1/2/nα/2. This
asymptotic formula is consistent with the exact asymptotic behavior of m(βn,Kn) given in
Theorem 4.1, correctly predicting both the exponent of n and the dependence on k and b in
the prefactor x̄ as given in (4.6) with β = β0.

We next consider the sequence of type 2, which converges to a second-order point
(β0,K(β0)) along a curve lying in the phase-coexistence region and having the same tangent
as the second-order curve at that point. Defined in (4.7), this sequence takes the form

βn = β0 + b/nα and Kn = K(β0) +
p−1∑

j=1

K(j)(β0)b
j /(j !njα) + �bp/(p!npα), (5.7)

where b ∈ {1,−1}, p ≥ 2, and (K(p)(β0) − �)bp < 0. In this case it is crucial to recall that
the scaling variables comprise a curvilinear coordinate system. In particular, the coordinate
μ1 measures the distance from the second-order curve, not the distance from the tangent
to this curve at (β0,K(β0)); as a result (5.5) is not sufficient to determine the asymptotic
behavior of m. The sequence of type 2 converges to the second-order point along a curve
that agrees with the second-order curve to order p−1 in powers of β −β0. Hence to leading
order μ1 is proportional to the difference between the last term in the definition of Kn and
the term of order p in the Taylor expansion of K(βn), namely, μ1 ≈ |�−K(p)(β0)|/(p!npα).

Substituting this expression into (5.3) yields

m ≈ (|� − K(p)(β0)|/p!npα)β̃ = (|� − K(p)(β0)|/p!)1/2/npα/2.

Again, this asymptotic formula is consistent with the exact asymptotic behavior of
m(βn,Kn) given in Theorem 4.2 and correctly captures the square-root dependence of the
prefactor x̄ on |� − K(p)(β0)| given in (4.9) with β = β0.
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If there is more than one type of phase transition in a neighborhood of a phase-transition
point, as is the case near a tricritical point, then scaling theory becomes more complicated
[20]. In the case of the tricritical point, the theory involves crossovers between the nearby
first-order, second-order, and tricritical phase transitions. Figure 4 shows the region near the
tricritical point.

The three regions I, II, and III separated by dotted lines are controlled by the first-order,
the second-order, and the tricritical phase transitions, respectively. The mean-field tricritical
crossover exponent ϕt determines the boundaries of the regions. In regions I and II we
have |μ1| � |μ2|1/ϕt while in region III |μ1| � |μ2|1/ϕt . In region II the magnetization m

is controlled by β̃ , the mean-field magnetization exponent for second-order transitions. In
region III the magnetization m is controlled by β̃t , the mean-field magnetization exponent
for tricritical transitions, while in region I the magnetization m approaches a constant value
as the first-order line is approached. These insights are incorporated in the scaling hypothesis

m(μ1τ,μ2τ
ϕt ) = τ β̃t m(μ1,μ2), (5.8)

where τ is an arbitrary scale factor [20]. This corresponds to (5.1) with a = ϕt and b = β̃t .
Setting τ = |μ2|−1/ϕt yields the alternate form

m(μ1,μ2) = |μ2|β̃t /ϕt m(μ1/|μ2|1/ϕt ,1) = |μ2|β̃t /ϕt f±(μ1/|μ2|1/ϕt ), (5.9)

where f+ is used on the first-order side of the tricritical point (μ2 > 0) and f− is used on the
second-order side of the tricritical point (μ2 < 0). The values of the three relevant mean-field
exponents are ϕt = 1/2, β̃ = 1/2, and β̃t = 1/4 [21].

We now consider the form taken by the right side of (5.9) in each of the three regions. In
region III the arguments of f+ and of f− are large. Hence in order to recover the tricritical
power-law behavior of m we require that f+(x) ≈ xβ̃t and f−(x) ≈ xβ̃t as x → ∞, yielding

m(μ1,μ2) ≈ μ
β̃t

1 = μ
1/4
1 [region III]. (5.10)

In region II with fixed μ2 we expect that the scaling is the one given in (5.2) for the
second-order curve; i.e.,

m(μ1τ,μ2) = τ β̃m(μ1,μ2) = τ 1/2m(μ1,μ2). (5.11)

The requirement that the two scaling assumptions (5.9) and (5.11) are consistent yields an
interesting result for the behavior of m in region II for small |μ2|. The asymptotic behavior
of f−(x) as x → 0+ must be of the form xβ̃ in order that second-order scaling is recovered.
Thus in region II we find

m(μ1,μ2) ≈ μ
β̃

1 |μ2|(β̃t −β̃)/ϕt = μ
1/2
1 |μ2|−1/2 [region II]. (5.12)

Near the first-order curve in region I, for small positive μ2 a similar result can be obtained
except that m(μ1,μ2) must converge to a constant as μ1 → 0+. For (5.9) to be consistent
with first-order behavior, f+(x) must also converge to a constant as x → 0+. Hence along
the first-order curve, which is defined by μ1 = 0 and μ2 > 0, we have

m(0,μ2) ≈ μ
β̃t /ϕt

2 = μ
1/2
2 [region I]. (5.13)

We now show that these results in tricritical scaling theory are consistent with Theorems
4.3–4.6.
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We first consider the sequence of type 3, which converges to the tricritical point along a
ray that is above the tangent line to the phase-transition curve at the tricritical point. This
sequence is defined as in (5.4) with β0 replaced by βc , b ∈ {1,0,−1}, and K ′(βc)b − k < 0.
For this sequence (5.6) holds with β0 replaced by βc. Thus μ1 ≈ (k − K ′(βc)b)/nα, and
μ2 is of order 1/nα . Since this sequence lies in region III, the asymptotic formula (5.10)

predicts m ≈ μ
β̃t

1 ≈ (k − K ′(βc)b)1/4/nα/4. This asymptotic formula is consistent with the
exact asymptotic behavior of m(βn,Kn) given in Theorem 4.3 and correctly predicts the
1/4-power dependence on (k − K ′(βc)b) given in (4.14).

The sequence of type 4 is defined in (4.15) in terms of real parameters � and �̃. For
� > �c = K ′′(βc) − 5/(4βc) and appropriate choices of �̃, the sequences of type 4a, 4b,
and 4c converge to the tricritical point in the crossover region between regions I and III in
a neighborhood of the first-order curve (see items i–iii after (4.18)). For these sequences
μ2 ≈ 1/nα and μ1 ≈ (� − �c)/n2α . Hence the scaling expression for the magnetization in
(5.9) becomes

m ≈ n−αβ̃t /ϕt f+(� − �c) = f+(� − �c)/nα/2.

We note that n does not appear in the argument of f+ since 1/ϕt = 2 and the powers of n can-
cel. This asymptotic formula is consistent with the exact asymptotic behavior of m(βn,Kn)

given in Theorem 4.4.
The sequence of type 4d is defined in (4.15) with � = �c and �̃ > K ′′′

1 (βc). We conjecture
that this sequence converges to the tricritical point along a curve that coincides with the
first-order curve to order 2 in powers of β − βc and lies in the phase-coexistence region
for all sufficiently large n (see item iv after (4.18)). Thus when � = �c , μ1 ≈ 0 and (5.13)
holds. Since μ2 ≈ 1/nα , we have m ≈ μ

1/2
2 ≈ 1/nα/2. This result is consistent with part (c)

of Theorem 4.4.
The sequences of type 5 and type 6 approach the tricritical point along a curve that

coincides with the second-order curve to order p − 1 in powers of β − βc. These sequences
are defined in terms of a parameter � as in (5.7) with β0 replaced by βc and b = −1; the
sequence of type 5 corresponds to the choice p = 2 while the sequence of type 6 corresponds
to p ≥ 3. Since 1/ϕt = 2, the dotted line separating regions II and III deviates quadratically
from the second-order curve. Thus the sequence of type 5, defined for � > K ′′(βc), lies in the
crossover range between region II and region III. The sequence of type 6 lies within region
II since it approaches the second-order curve faster than quadratically. For a sequence of
type 5 we have μ1 ≈ (� − K ′′(βc))/n2α and μ2 ≈ 1/nα . From the general expression (5.9)
we obtain

m ≈ n−αβ̃t /ϕt f−(� − K ′′(βc)) = n−α/2f−(� − K ′′(βc)).

Since f−(x) ≈ xβ̃ , for small x we find that m ≈ (� − K ′′(βc))
1/2/nα/2. This asymptotic

formula is consistent with the exact asymptotic behavior of m(βn,Kn) given in Theorem
4.5. It captures the correct dependence of the prefactor x̄ on �−K ′′(βc) for small �−K ′′(βc)

that follows from (4.23).
The sequence of type 6 is defined as in (5.7) with β0 replaced by βc , p ≥ 3, b = −1,

and (K(p)(βc) − �)(−1)p < 0. Because this sequence converges to the tricritical point in
region II, the scaling expression (5.12) is valid. In this case μ1 ≈ |� − K(p)(βc)|/npα and
μ2 ≈ 1/nα . Substituting these values into (5.12) yields

m ≈ (|� − K(p)(βc)|/p!)1/2/n(p−1)α/2.
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Once again this asymptotic formula is consistent with the exact asymptotic behavior of
m(βn,Kn) given in Theorem 4.6. We note that scaling theory predicts the correct square-
root dependence of the prefactor x̄ on |� − K(p)(βc)| given in (4.25).

This completes the discussion of the relationship between the results obtained in Sect. 4
with scaling theory for critical and tricritical points [23]. We have shown that scaling the-
ory, together with the known mean-field exponents, predicts many of the exact results for
m(βn,Kn), capturing both the correct power laws and, in some cases, the dependence on the
parameters defining the sequences.

In the Appendix we discuss the structure of the set of global minimum points of polyno-
mials of degree 6 that arise in this paper.
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Science Foundation (NSF-DMS-0604071).

Appendix: Properties of Polynomials of Degree 6

In this section we present without proof two elementary results on the set of global minimum
points of polynomials of degree 6. Theorem A.1 is applied in Theorem 4.4 and Theorem A.2
in Theorem 4.5.

Theorem A.1 For variable a2 ∈ R and fixed a4 > 0 and a6 > 0, define g(x) = a2x
2 −a4x

4 +
a6x

6 and ac = a2
4/4a6. If 0 ≤ a2 ≤ a2

4/3a6, then also define the positive number

x̄(a2) = 1√
3a6

(
a4 + (a2

4 − 3a2a6)
1/2

)1/2
. (A.1)

The structure of the set of global minimum points of g is as follows.

(a) If a2 > ac , then g has a unique global minimum point at 0.
(b) If a2 = ac , then the global minimum points of g are 0 and ±x̄(ac) = ±(2a2/a4)

1/2.
(c) If a2 < ac , then the global minimum points of g are ±x̄(a2).
(d) x̄(a2) is a positive, decreasing, continuous function for a2 < ac , and as a2 → (ac)

−,
x̄(a2) → x̄(ac), the unique positive, global minimum point in part (b).

The polynomials considered in the next theorem differ from those just considered in the
sign of the quartic term.

Theorem A.2 For variable a2 ∈ R and fixed a4 > 0 and a6 > 0, define h(x) = a2x
2 +a4x

4 +
a6x

6. The following conclusions hold.

(a) If a2 ≥ 0, then h has a unique global minimum point at 0.
(b) If a2 < 0, then the global minimum points of h are ±x̄(a2), where

x̄(a2) = 1√
3a6

(−a4 + (a2
4 − 3a2a6)

1/2
)1/2

. (A.2)
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