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Abstract We introduce a generalization of the extended Airy kernel with two sets of real
parameters. We show that this kernel arises in the edge scaling limit of correlation kernels
of determinantal processes related to a directed percolation model and to an ensemble of
random matrices.

Keywords Random matrices - Directed percolation - Determinantal point process

1 Introduction and Results

The Airy kernel is one of the most fundamental objects of Random Matrix Theory. The de-
terminantal random point process governed by the Airy kernel describes the behavior of the
largest eigenvalues of large Gaussian Hermitian random matrices (a.k.a. GUE—Gaussian
Unitary Ensemble), see [6, 10, 23], last passage time in directed percolation models in
a quadrant [15], asymptotics of the longest increasing subsequences of random permuta-
tions [1], and it also appears in many other problems whose list is too long to be included
here.

The Airy kernel has a time-dependent version usually referred to as the extended Airy
kernel. Originally obtained in [22] via asymptotics of a polynuclear growth model in 1 + 1
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dimensions, the extended Airy kernel arises in virtually every problem where the usual Airy
kernel comes up, provided that the probability measure in question is equipped with a nat-
ural Markov dynamics that preserves the measure. In particular, it describes the edge scaling
limit of Dyson’s Brownian motion on GUE, the change in the quadrant last passage time
when the observation point moves [16], and edge behavior of large random partitions under
the Plancherel dynamics related to the longest increasing subsequences of random permuta-
tions [4]. The Extended Airy kernel has also appeared in a much earlier note [17], and we
are very grateful to a referee for pointing this out.

In [2] it was demonstrated that the Airy kernel is not stable in the sense that it can be
naturally viewed as a point in a family of Airy-like kernels indexed by a finite set of real
numbers. In the context of GUE, those are the (scaled) eigenvalues of a deterministic per-
turbation of finite rank, and in the percolation context the parameters correspond to a few
defective rows or columns in the quadrant. For Wishart ensembles of random matrices, the
same family of kernels was later obtained in [7]. Time-dependent extensions of kernels from
this family appeared in the recent work [14] on asymptotics of the totally asymmetric simple
exclusion process (TASEP).

The main goal of this note is to introduce a new Airy-like time-dependent correlation
kernel with two sets of real parameters. We obtain it as a limit of a directed percolation in a
quadrant which has both defective rows and columns. We also show that the “static” version
of the kernel arises in the edge scaling limit of a certain Wishart-like ensemble of random
matrices. We were unable to obtain the extended version via random matrices but we do
believe that it should be possible. Our kernel generalizes all the kernels mentioned above.

Let us describe our results in more detail.

Consider a directed percolation model with exponential waiting times defined as follows.
Letmy,...,mp, 7Ty, ..., 7T, be fixed real numbers such that 7; +7; > O forany 1 <i, j < p.
Let W = (W;;); j=1,.., be a p x p array of independent exponential random variables with
E(W;;) = (m; + ﬁj)*l. For any 1 < N < p, we consider the so-called last passage time in
this percolation model:

Y(N.p):=max 3 W (1
(ij)eP

where I7 is the set of up-right paths from (1, 1) to (N, p). The random variable Y (N, p) has
a natural interpretation in terms of queuing theory, due to the result of [13]. This is the exit
time of the pth customer in a series of N files where the service times W;; depend on both the
file and the customer. This random variable also has an interpretation in terms of TASEP,
which is a model of interacting particles on Z. One starts with the initial configuration
no(i) = 1z_(i), meaning that only the negative sites are occupied. Then, if the site i + 1
is unoccupied, the particle at site i jumps to site i 4 1 after a random waiting time. The
waiting times are independent exponential random variables whose parameters depend on
the particle and the number of jumps already performed by this particle. One can think of
W;; as of the waiting time of ith particle from the right performing the jump number ;.

We first prove the following result.

Let Xy be a p x N random matrix with independent complex Gaussian entries

X,-,»~N<o, ! ) )

i+ ﬁj
Theorem 1 Let 1| be the largest eigenvalue of Xy Xy . Then, for any x,

P(Y(N, p) =x) =P =x).
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Fig. 1 The contours of the
parameterized extended Airy
kernel

A natural question is then to investigate the above connection as a process. Consider
a sequence of growing random matrices (X)i=1,..., Where X; is obtained from X; by
adding one column with random Gaussian entries (with the appropriate variance). We can
then consider the joint distribution of the largest eigenvalues of the random matrices X; X},
1 <k < p. Simultaneously, one can consider the joint distribution of the random variables
Y(k, p), 1 <k < p. Are these joint distributions the same? We cannot establish that the
equality actually holds, due to the fact that the computation of the joint eigenvalue dis-
tribution of the random matrices X; X} is not an easy task.! Nevertheless, we can study a
determinantal point process which occurs naturally in both models and obtain a new limiting
correlation kernel, which generalizes the extended Airy kernel.

Let Ji, J> be given integers, and X = {x{,x2,..., x5}, ¥ = {y1, ¥2,..., y5,} be given
sets of real numbers satisfying x; > y; forany 1 <i < J;andany 1 < j < J,.Lety and I
be the contours defined on Fig. 1.

Denote by K4;(t1, x; t2, ¥) the extended Airy kernel

JoT e M A (y 4+ M) Ai (x + V)d A, ift; >,

3
— [0 e Aj(y + M Ai(x + W)dr, if <.

Kai(ti, x;1,y) = !

Definition 1 The extended Airy kernel with two sets of parameters is defined by

Kaixy(t,x512,y)

1 ey‘rf‘r3/37,\ca+a3/3
=Kai(t, x; 1, + —— dO’/d'L’—
ai(h 2 ) (2711)2/}, r T+H—0—1

2

J1 J;
Lh+T1—X h+o-—y
-1, 4
X<l_[f1+0—xil_[fz+f—)’i ) @

i=1 i=1

TAs was pointed out to us by Peter Forrester, the equality can be established in the degenerate case when all
m; tend to the same constant using the techniques of [12], see Appendix to [11].
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where the two contours y and I” are chosen as on Fig. 1.
Remark I For any fixed values of ¢, and f,, the kernel of Definition 1 is a finite rank per-
turbation of the extended Airy kernel. Indeed, by a straightforward computation, one finds

that

Kaiixy(t, x;t2,y) — Kai (01, %; 12, y)

1 J1+J12 R X
_ t—1°/3—x0+407/3
= Z /da/ dre’
(2ir) k=17 r
—1)k th — o — t;)ktke—1
» Z Z D2 +h—-0—-1) R

ky ko
1<y < <igy <Jp 1Sj1 < <jiy < Lo+ —x) [ (t+6— Vi)
Remark 2 One does not have to stop at considering finitely many perturbation parameters.
By taking limits with number of x;’s and y;’s going to infinity, one arrives at the follow-
ing kernel. Let {a"}°, and {bF}%°, be four sequences of nonnegative numbers such that
3%, (@ + b) < oo, and let ¢* be two positive numbers. Set

= (L+b2)(1+b;z7h

+,0 o= =1
Dy pc(z = T . 6
5e(@) 1} iy ©)
Then the kernel
Kaizap,o(ti, x5 12, y)
=Kai(t1,x;0,y)
3 3
1 y1—1°/3—x0+0°/3 ¢a . !
+ - /dcr/dte < ,b,(0'+1)_1>’
(27‘[!)2 v r T+Hh—0—14 ¢a,h,c(f+t2)
where the contours are chosen so that all points 1/a;" —#; and a; — #; are to the right of

y, and all points —1 /b;r — 1, and —b; — 1, are to the left of I, is readily seen to be a limit
of kernels of Definition 1. Interestingly enough, functions (6) also parameterize stationary
extensions of the discrete sine kernel, see [3]. They also appear as generating functions
of totally positive doubly infinite sequences [8], and as indecomposable characters of the
infinite-dimensional unitary group, see [20] and references therein.

The main result of this note is the proof that the kernel K 4;.x,y arises as a scaling limit of
correlation kernels of the determinantal point processes related to the directed percolation
model in a quadrant, defined as follows. Let 0 < ¢ < 1 be a given real number and assume
that there exist two integers Ji, J», real numbers x;, 1 <i < Jj, y;, 1 < j < J, independent
of p such that:

t i . ;
7= Vi i m=1, 0>
Vitl ap'h
N Vi Vi 7
== - i=1,..., /5, 7, =0, j > Jo.
! Vi+1  ap!'s / ’ ’ T
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We consider the associated directed percolation model (1) and prove the following result.
Set

t(14 4/1))*3
s=l+2%5, Y, =Y (pay, p) and O'S=p(1+\/06—s)2.

Let also A% be the stochastic process whose finite dimensional distributions are given by

P(Af]“ <&,..., Af:[ <§,) =det(] — fKAi;X,Yf)LZ(FmXRM),

where f(t;,x) = Lisg and I'" ={t;,...,t,}. Here '™ x R™ is equipped with the product
measure du ® dA where du is the counting measure and d X denotes the Lebesgue measure.

Theorem 2 As p — oo,
p A+ V(Y — o) - AT
in the sense of convergence of finite dimensional distributions.

The paper is organized as follows. In Sects. 2 and 3, we study the directed percolation
model and its connection to the random matrix model defined in (2). This connection is
established using the Robinson-Schensted-Knuth correspondence. In Sect. 4, we study the
correlation function of the point process induced by the joint distribution of {Y (k, p)}1<k<p-
Last, in Sect. 5, we consider asymptotics of these correlation functions thus obtaining the
kernel of Definition 1.

2 Last Passage Time in Percolation Models with Exponential Waiting Times

We start with some reminders. We denote a partition by A throughout the paper. A partition

is an infinite sequence of non-negative integers (A, Az, ..., Ay, ...), Where A; > A, > .- >
Ay > ---, with finitely many nonzero entries. The Schur measure introduced in [19] is a
measure on partitions which assigns to a given partition A a weight as follows. Letay, ..., ay
and by, ..., b, be given nonnegative real numbers. In what follows we assume that a;b; < 1
for any i, j.

Definition 2 The Schur measure with parameters a = (ay,...,ay) and b = (by,...,b,) is

a probability measure M on partitions assigning to a partition A the weight

1
M@) = sz(a)Sx(b)- (N
Here Z is a constant, and s; denotes the Schur symmetric functions parameterized by A.

The normalizing constant Z is computed by the well-known Cauchy identity for Schur
functions, which implies Z = ]_[lgip,lstN(l —a;bj).

The Schur measure naturally occurs in some directed percolation models, as we now
recall. Let W = (wjj)1<i<p,1<j<n be a p x N random matrix with independent entries with
the geometric distribution:

[P’(w,-j =n) = (1 — aibj)(aibj)", for any n =0, 1, 2, e
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One can associate to this random matrix the so-called last passage time in a directed perco-
lation model defined by

L(N. p):=max }  wy. ®)
@ij)ep
where IT is the set of up-right paths from (0, 0) to (p, N). This last passage time can also
be understood as the exit time of the Nth customer in a series of p files with independent
geometric waiting times of expectation depending on both the files and customer.
The distribution of the random variable (8) can be conveniently expressed in terms of the
Schur measure, as observed by K. Johansson in [15], see also [16]. He showed that

1
P(LN, p) =m)=— 3 5 (@)s: (b). )

A =<n

This is a corollary of a more general fact that the Schur measure with parameters a and b
is the image of the random integer valued matrix W under the Robinson-Schensted-Knuth
correspondence, see [15, 16].

We now turn to the description of a continuous version of the Schur measure. Another
treatment of the same object can be found in Appendix A to [12]. Set

o i=1...p. and bj=1-

[ll‘Zl—
L

It is quite clear that the distribution random variable Y, (N, p) := %L(N , p) should converge
as L — oo to that of the last passage time in a percolation model with i.i.d. exponential
random variables with expectations 1/(st; 4+ 7;). Define Y (N, p) as in (1). Taking the limit
L — o0 in (9) and denoting x; = X; /L, one readily obtains in the case where N = p that

PY(p,p)<x)=

p
/1 ) det(e ™! ,_ det(e ™%); i, | [ dxi, (10)

p.p i1

where Z,, , = det(*)f j=1 and I = [0, x]. The probability measure defined by the density

i+

1 Sxinp
——det(e™ )], _ det(e )], (11
Zpp '

is the continuous version of the Schur measure.
The case N < p can be handled via the limit transition b; — 0, j =N +1,..., p, from
the case N = p. The analog of (10) reads

1 N _7x\N L
P(Y(N, p) <x) = 7 /]N det (f[(xj))i‘j:]det(e )i de,-, (12)
with
= g et N
KX)=—Q = =L N,
2ri J Tl (= 7))
and the integration contour going around the poles 7y, ..., 7.
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The expression det( f; (x j));t’j=1 can be obtained as the limit of the Jacobi-Trudi formula

for s, (a); it is also the limit, up to a constant, of the ratio
det (e*”“‘/)fj:1

HN+1§i<j§p(‘xi —x;)

as Xy41, ..., X, converge to 0.

3 A Random Matrix Model Associated to the Continuous Version of the Schur
Measure

The goal of this section is to prove Theorem 1.

Let X bea p x N random matrix as in (2). Set then My = Xy X} . Thus defined random
matrix ensemble is a natural generalization of the much studied complex Wishart ensemble.
In what follows we call it the generalized Wishart ensemble. We show that the probabil-
ity distribution of the largest eigenvalue of My has a density given by the right-hand side
of (11).

Let us first consider the case where p = N. Similarly to the case of the ordinary Wishart
ensemble, one sees that the generalized Wishart ensemble is defined by the probability den-
sity with respect to Lebesgue measure L, on the space of complex matrices of size p x p:

dP(X,)

iL, = const, exp{—Tr$1 X, X, —TrS$ X, X}, (13)

where S; = diag(m,, ..., m,), S, = diag(7y, ..., 7)), and const,, is a positive constant. Just
as for complex Wishart ensembles with nonidentity covariance matrix, the joint eigenvalue
distribution of the generalized Wishart ensembles can be explicitly computed.

Denote by x; > x, > --- > x, the ordered eigenvalues of the sample covariance ma-
trix X,X}. Note that these eigenvalues are also the squared singular values of X . Let
f(x1,...,x,) denote the density with respect to Lebesgue measure of the joint eigenvalue
distribution induced by the generalized Wishart ensemble.

Proposition 1 One has

fxp, oo x,) = i det (e‘”"’(f)zj‘:1 det(e_ﬁf"k)j.’,kﬁ.
Proof Introduce the polar decomposition of the p x p matrix X ,: One has

X=UDV withU eU(p), D =diag(/x1,...,/x,), and V € U(p).
The joint eigenvalue distribution induced by the probability measure (13) can now be com-

puted thanks to the celebrated Itzykson-Zuber-Harisch-Chandra (IZHC) integral. We have

2 2
f(x1,...,x,) =const- V(x)> e~ TSIUD U*dU/ e TrRVDVE gy
U(p) Ulp)

In the above expression, V (x) is the Vandermonde determinant: V (x) = [T, _ ; (x; —x;). The
IZHC formula yields

—mixi\P
/ e—TrSIUDZU*dU — det(e™™ j)i,jzl ] 0
U(p) V(x)V(m)
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282 A. Borodin, S. Péché

The proof that the largest eigenvalue of Xy X3 has the same distribution as the random
variable Y (N, p) can now be obtained from Proposition 1 and formulas of the previous
section by the limit transition Ty 1, ..., 7, = 00.

This finishes the proof of Theorem 1.

4 A Continuous Version of the Schur Process

In this section, we define a random point process which is a continuous version of the Schur
process introduced in [21]. We consider the probability distribution on []/_, R’ with density
w.r.t. Lebesgue measure given by

p—1
Z—det(e ﬂu\] )1’] | Hdet(e *7TA+1(X —X ))k+1 e_ﬁl"cll. (14)
P k=1

Here we used the convention that x,’j 41 =0forany 1 <k < p — 1, and the notation

oY) = {eimiy)’ x>y,
0, otherwise.

The probability distribution (14) naturally arises here since the distribution of
maszly,,,ﬁp{x}”} is equal to the probability density function of Y (p, p) (see (10)).

Let C (resp. C') be a contour encircling the {m;};— ., (resp. {—7;};=1,..,) such that the
two contours do not cross or contain each other. Set

1
w(v—u)
Wrs(” v) - 1r<slu<v2 N f 1_[

k=r+1

dw.
w +

The main result of this section is the following statement.

Theorem 3 The random point process on {1, ..., p} x R defined by the density (14) is
determinantal, and its correlation kernel has the form

wvfzu l‘[; 1(Z+ﬁk)
K(@r,u;s,v) = G 1)2?4 f w—z [+

P
w — TT;
< |1 — Y. (15)

Z

i=1

Let us briefly discuss the connection with the (discrete) Schur process. A version of the
Schur process has a natural interpretation in terms of the last passage percolation model
discussed in Sect. 2. Let again W = W be the p x p matrix filled with geometrically
distributed integers, and let W®, k < p, be the p x k matrix made of first k columns
of W. Denote by A% the image of W® under the Robinson-Schensted-Knuth correspon-
dence. Then the joint distribution of (A", ..., A(") is given by the Schur process: It has the
form

const - 55, (a1, -, Ap) Sy -0 (Bp) 301 j30-0 (Bp—1) * - - 5,0 0 (D1), (16)
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where the notation s,/ stands for the skew Schur function. Considering the case where
the a;’s and b;’s approach 1 (¢; =1 — n;/L, by =1 — 7;/L and L — o0), we can
then define the continuous limit of the Schur process, which leads to (14). In the
context of the percolation model, the probability distribution (14) can be understood
as the joint distribution of the random Young diagrams obtained by the RSK algo-
rithm applied to matrices filled with independent but not identically distributed ex-
ponential random variables; the expectation of the (i, j)th entry is equal to (m; +
7% j)71 .

Theorem 3 could be derived from a limiting argument for the correlation kernel of the
Schur process, but we prefer to give a self-contained random matrix oriented proof of The-
orem 3 below.

The probability distribution (14) can also be viewed in the random matrix theory context
of the previous section. For 1 < k < p, define X, to be the p x k matrix whose k columns
are the first k columns of X ,. Then, M; = X; X} is a p x p random matrix of rank k. We
denote by x¥, 1 <i <k its nonzero eigenvalues. The formula (14) provides a good candidate
for the joint distribution density of {x{‘} in the sense that its projections to {xi(k)} with fixed
k coincide with the densities of eigenvalues of M. Although we were unable to verify that
(14) is indeed the joint eigenvalue density for (M, ..., M), see the footnote on page 3 for
a reference to a partial result.

Proof of Theorem 3 We first consider an (algebraically simpler) auxiliary distribution and
then use an appropriate limit transition to compute the correlation functions associated
to (14).

Instead of (14) let us consider the probability distribution defined as follows. Let
0<Ty<Th <---<T,_y <T, be positive numbers, and 7| = 77,. Define a probability
distribution on (R%)? = {xf}; ;1. , by the density

1 o L o
7 det(@o.1 (g, xD)] iy [ Tdet@rri (7, 07,
p

r=1

X det(¢p,p+l (x;)7 x[j,Jr]))ﬁj:] (17)
where g, (xh, X) = €T, ¢,,41(x, ¥) = =107 and g, 4 (x, ), ) = e~ Set
o (xf,v) = bo.1 (xp, x1)
R

s—2 s—1
x (l_[ i k1 (X, Xk+1)) ¢s—1,5(X5—1, V) dei,

k=1 i=1
l‘[/r,p+l(u’ x}/?+l) = f _¢r,r+l(ua xr+1)
R
p—1 P
X ( I1 ¢k,k+1(xk,xk+1>>¢p,p+1(xp,x;+l> [T dx.
k=r+1 i=r+l

lpr,s (I/l, U) = 1r<5 ¢r,r+l(u» xr)
R
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284 A. Borodin, S. Péché

s—2 s—1
X ( l_[ ¢k,k+1(xk7xk+1)>¢s—l,x(xs—lv v)l_[dxi-

k=r+1 i=r

Lemma 1l Forany 1 <i, j < pandu,v > 0 we have

, 1 e 1
ol (xl v)= — —dw,
0.5 (%0, ) 2ﬂi¢w+TiBw+nk
' =
W pi(u, x ) =e " —,
k=r+1 T 7
1 &1

+00
Ai-::/ Ul (xh, W)y e (u, ) du = —,
J 0 0,s 0 r+ J Ti+7'(j s 7Tj+7Tk

1 - 1
l1’}'.s(”7 U) = 1r<slu<v N f ew(vfu) 1_[ A dw.
2mi o W + T

The integration contours are positively oriented loops that contain all poles of the inte-
grands.

The proof of Lemma 1 consists of inductions on s for llloi,(x("), v), on (p —r) for

Y, ot (u, xlf)+1), and on (s — r) for ¥, ;(u, v). The formula for A;; is proved by a straight-
forward residue computation.

Let us now apply the Eynard-Mehta theorem (see [5, 9, 16, 18, 24]) to compute the
correlation functions of (17). For 1 <r,s < p, denote

lpr?;(u, U) - 1;‘<sf__ ¢r,r+l(ua xr)
R

s=2 s—1
X ( 1_[ ¢k,k+l(xkvxk+l))¢sl,s(xslvv)l_[dxi-

k=r+1 i=r

Proposition 2 The random point process on {1, ..., p} x R, defined by the measure (17)
is determinantal, and its correlation kernel can be written in the form

ewv—zu

1
Kr(rou;s,v) = —= ¢ d d
r(r,u; s, v) i) fcl Zfé/l ww_Z

AL+ 40 ﬁ (w—7)(z+T)

3 ~ - lpr,s(ua l)), (18)
M@+ a0 U e=mw+n)
where the contour Cy encircles the w;, j =1, ..., p, the contour C; encircles the —7;, —Tj;,
for j=1,..., p,and the two contours do not cross or contain each other.

Proof The Eynard-Mehta theorem implies that the random point process in question is de-
terminantal, and that its correlation kernel can be written as

P
Kr(ryu;s,v) = Z Wr¢p+1(u,X},H)A,-‘j‘llfoﬂ(xé, v) — ¥ (u,v).

ij=1
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Using the formula for the determinant of the Cauchy matrix one explicitly computes Ai;',
which together with the formula for ¥, from Lemma 1 yields

Kr(r,u;s,v) + ¥, 5(u, v)
P P A p
1 (Tt w+T; w—7T
2 : VP“(M xl’+1) e I—[k72( k) j kd

p [Tics(w + 7) aw +7; ot T Tk

3

where the contour contains all poles of the integrand. A final residue computation yields the
integral expression (18). 0

We can now come back to the computation of correlation functions for the probability
distribution (14) and finish the proof of Theorem 3. The probability distribution (14) can be
obtained from (17) by taking the limit 7}, > T),_; > --- > T, — oo. The proof of Theorem 3
is now a straightforward corollary of Proposition 2. U

5 An Extension of the Airy Point Process

In this section, we first consider the case where 7; =0 and 7; =1 forany i =1, ..., p.
We then show that in this case, the suitably rescaled correlation functions converge in the
large- p-limit to those defined by the extended Airy kernel. Then, to define a new extended
Airy-type kernel with parameters, we will allow a certain number of these parameters to
depend on p and study the rescaled correlation functions.

5.1 The Simple Case 77; =0 and 7r; = 1 for any i: the Extended Airy Kernel

The extended Airy kernel is an extension of the well-known Airy kernel; it occurs for ex-
ample as the limiting correlation kernel for the process of largest eigenvalues of Dyson’s
Brownian Motion on Hermitian matrices.

Lemmas 2 and 3 proved in this section are also a part of Proposition 5 of [11].

Let K4;(t1, x; 12, y) be the extended Airy kernel defined in (3). Here we show that, when
suitably rescaled, the asymptotics of the correlation kernel

ebwv—pzu
K,(ru;s,v) = %dz%dw
@iy e / w—2z

) prw o
k=i !

i=1
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286 A. Borodin, S. Péché

Fig. 2 The two contours C;

, / ,
and C| C] c

which is a rescaled version of (15), is given by the extended Airy kernel. Due to the choice
of the 7;’s, and 7 j’s, one can write that

K, (r,u;s,0): = K, (r,u; s, v) + p¥, ,(pu, pv)

-7 /dz/ duwe? Fos—Fur@) L
Qim)? Je, ¢ w—2z

where F, ,(z) =uz+1In(z— 1) — ilnz.
Let 0 <t < 1 be some given real number independent of p. Let also f, #, be given. In
the following, we set

2
- [tp+p2/3wtli| =s1p, (20)
2
s = [tp+p2/3Mtz} =8P, (21)
1+ 4/3
a:%, w=(1+ /s> + “;/63 v=(14+/5)?+ 2/3. (22)

Here [x] stands for the integral part of x € R.
We first consider the case where s < r. Set I' := {te*?"/3,t € R} to be a contour ori-
ented from bottom to top and y := {re*"/3,t ¢ R, } to be oriented from top to bottom.

Lemma 2 With the above rescaling, for s <r and zo := T f we have

o
lim eP(Fur( 20)—Fy, v(ZO))K (r u; s, )

3 73
eyrz—xtl+%(t?—t§) ) /eyt’—%—xs’+%
(2mi) y r t—s'+t—1

oo
_ eyzz—xr1+%(t?—t23)/ e =) Aj (y 4+ 1) Ai (x + A)dA.
0
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Proof 1t is convenient to define u, = (1 + /s1)? and v, = (1 + /s3)*. The reason for the
above rescaling (20)—(22) is that

Fur(2) = Fy, ()1 +o(1))
= oz +1In(z — 1) —s1Inz)(1 +o(1)) := f;, (2)(1 4+ o(1)),

where the function f;, (z) has a degenerate critical point at

Zei= 1 —T_/i—l/‘;] ~z0+ 0(p~'?).
In particular, one has that:
£l = £l =0, ad f)= %fw
To obtain the leading term in the asymptotic expansion of K,, we define the following
contours. Using the notation w. = 1;/?5, set
Cri={zc+5e™3 0<s <86,)}, Ci i ={we+ teTmB 0<t <8},

where 8, > 0 and §; > 0 are constants that will be determined in the sequel. These contours
are completed as follows. Set 6, = arg(z. + 8,¢'™/3) (resp. 6, = arg(w, + 8,e%7/3)), where
arg denotes the argument of a complex number. Set

Ci.Z = {|wc —+ 51€2in/3|€i6, 01 < 0 =< 27T - 01]}7

Cio={1+lzc+8,™° —1]€", 0] <6,).

The constant §, is also large enough so that the z-contour encircles all the 7;’s (even in the
case where some of them differ from 1). It can then be checked that

) o2/ S+ )7 = s(1 = /f52) +2./52)
%g{(f" (wc+ 1+ﬁ2>> T 24 s D —sm ) =0

for any s > 0 provided /s, > 5 —+/96/2.If /52 <5—+/96/2, we set 6, to be the smallest
positive root of the polynomial X> — X (1 — ,/s3) 4+ 2./s2. Otherwise §; is arbitrarily large.
Similarly

q seln/3 _s2(1+\/§)(s2+s(1—\/§)+2\/s_1)
$m<f'” (ZC+ 1+J§1)>_ 2(s2 — s+ D (s2 4 s/51+ 51) =0

for any s > 0. We also have that if || is bounded

“)
supo |/ w)| _ 8%

S 1/3 5 1/3°
pY p

8 83
3)
’pf.vz <wc + p1/3> - pfsz (we) — sz (we) EY
Here w = w, + p% lies in a compact subset §2 of C\ {0, 1}.
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To complete the proof one needs to verify that on remaining parts of the contours the
integrand becomes exponentially small as p gets large. If we set w := |w, + 8,%7/3|e'?,
and using the fact that v, = |w. — 1|72, one can check that

a 1
91<£f;2(7ﬂ)> = —\S(U)) <U0 — m) < O,

if 6 € [0y, ]. It is an easy computation to check the remaining parts of the contours, and we
omit it.

If we assume that 7, #,, x, y lie in a compact set of R, then the above estimates imply
that

o It is enough to integrate over a neighborhood of radius p~'/3 p!/12=¢ of the critical points.
e Inside such a neighborhood the Taylor expansion holds.
Writing out this expansion explicitly yields Lemma 2. 0

In the case s > r we cannot make the integration contours go through their corresponding
critical points so that they do not intersect. We then modify the contours in a neighborhood
of width p~'/3 of z. and w, so that the w-contour remains on the left of the z—contour.
This does not modify the saddle point argument. We just need to consider the function ¥,
separately, which is done below.

Due to the rescaling of the correlation kernel, in the case where r < s, we need to consider
the asymptotics of

)

O p(Fur(zo)=Fos (o)) _P ?g prwi—n AW
p2/3 27 Yo ws—"

where y, is a contour encircling the pole w = 0.

Lemma 3 For s > r, using the scaling (20)—(22) one has
i % pFur@o)—pFuso)
lim ePruris SEUK (s s, v)

p—oo p2/3

3.3
1 =1)

0
= —MTt =3 / e M) Aj (y + V) Ai (x + A)d .
—00

Proof Setting B = 2+/t(1 4+ 4/1)*/a, one has

Y APFurGo)=pFusGo) _P 7{ prwt-uw 4%
Yo

p3 2mi ws—"

2/3 (1+\ﬁ)}i(tzfn) w)

€X
— Y WG -pFusco) _P %dw pip
Yo

p33 27i w3 a—1)+0()
1/3 ﬂz t2 t2 1
X exXpqp —4t3/2(2 —w+a(y —x)w+o(l) ) ;.
Consider
1+ /1
F(w)=8(t—1) w— Bt —t)nw.
Jt
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: and F"(z9) =
Bta —t)zy 2. A contour which satisfies the saddle point analysis requirement can be chosen
as follows: y, = y; Uy where y; = {zo + it, |t| < 2o} U {20! ™/*D 0 < 0 < 3m/4).
We obtain

It is not hard to see that the critical point of this function is wy = z9 = v

o dw
lim ——exp{pF,,(z0) — va’s(ZO)}L’% ePw=u)
p*? 2mi

pP—>00 Yo ws—"

/ B2(13—1}) P
_ lim a 1 {S ((y —x) — —357-) n S—}ds/
p=00 21 W/ F"(20) Jir ~ F"(z0) 2

/ { (y—X)s — (17 —1))s’ }ds
m V2t —1)

1 (y—x—l—t1 —122)2
:me“’{_ h—1t }

Proposition 2.3 of [16] completes the proof. O

5.2 Extended Airy Kernel with Two Sets of Parameters

We now consider the case where some of the 7;’s (resp. 77;’s) differ from 1 (resp. 0). This
allows us to obtain a new extended Airy type kernel with two sets of parameters and prove
Theorem 2.

We assume that (7) holds true and that all the x;’s and y;’s lie in a fixed compact set
of R. We also assume that x; — y; > 0 for any i, j, so that the joint distribution (14) is well
defined.

Theorem 4 With the above rescaling, one has

lim e.DFu r(z0)=pFus(z0) g p(ru; s, v) = (4)
p—>00 p 2/3

where the integration contours y and I are chosen as in Fig. 1.
Remark 3 Theorem 4 readily implies Theorem 2.

Proof The proof relies on the same saddle point analysis of the correlation kernel as in the
previous section. In the expression (19) we replace

1 r[;:,(z+ﬁk)l£[w—n,-
w—z[llo,w+a) 1 z—7

i=1 i

by

r ~ P 2+ Nioow—m
Hk:fﬁ-l(Z + ) 1—[ w — T ( 1 (nk 1wt 1li=1 z—n,-l D)
g ~ N
Hk:]2+1(w+nk) i=J 41 I— T w—Z w—2z

and observe that the second summand has no singularity at z = w. This allows us to use the
same contour deformation as in the previous section, which directly leads to the result. [
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