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Abstract In ballistic deposition (BD), (d + 1)-dimensional particles fall sequentially at
random towards an initially flat, large but bounded d-dimensional surface, and each particle
sticks to the first point of contact. For both lattice and continuum BD, a law of large numbers
in the thermodynamic limit establishes convergence of the mean height and surface width
(sample standard deviation of the height) of the interface to constants h(t) and w(t), respec-
tively, depending on time t . We show that h(t) is asymptotically linear in t , while (w(t))2

grows at least logarithmically in t when d = 1. We use duality results showing that w(t) can
be interpreted as the standard deviation of the height for deposition onto a surface growing
from a single point.

Keywords Stochastic growth model · First-passage percolation

1 Introduction

Scientific interest in growth processes associated with the deposition of particles on surfaces
is considerable; see Barabási and Stanley [3], Cumberland and Crawford [5], Vicsek [22].
One family of deposition models involves (d + 1)-dimensional particles which rain down
sequentially at random onto a d-dimensional substrate (surface); when a particle arrives on
the existing agglomeration of deposited particles, it sticks to the first particle it contacts,
which may result in lateral growth and ‘overhangs’ (if it does not contact any previous
particle, it sticks to the substrate). This is known as ballistic deposition (BD), and one reason
for studying it is as a more tractable modification of diffusion limited aggregation (see Atar
et al. [1]).

The physical sciences literature concerned with ballistic deposition in both lattice and
continuum settings is extensive (see [3] for an overview). As well as numerous simulation
studies dating back to Vold [23], this literature contains analysis by means of scaling theory
(Family [6], Family and Vicsek [7], Kardar et al. [10]). However, these arguments have not
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been made rigorous; see, e.g., p. 56 of [3]. The rigorous mathematical literature is much less
extensive, but see [1, 17, 18, 20]. The present article builds on the approach of Penrose and
Yukich [17, 18].

In all versions of BD considered here, the substrate is the set R
d ×{0}, identified with R

d ,
or is some sub-region thereof (denoted Q). Thus the substrate is assumed initially flat. All
particles are (d + 1)-dimensional solids (typically balls or cubes). Particles arrive sequen-
tially at random positions in R

d . When a particle arrives at a position x ∈ R
d , its centroid

(or some other specified point in the particle identifying its location) slides instantaneously
down the ray {x} × [0,∞), starting from infinity, until the particle hits a position adjacent
to either the substrate or a previously deposited particle, at which point its motion stops and
it is permanently fixed. The difference between lattice and continuum models is that in the
lattice model the positions at which particles arrive are restricted to be in the integer lattice
Z

d (embedded in R
d ).

One is interested in the height and width (roughness) of the interface consisting of ‘ex-
posed’ particles that are ‘visible from above’. Loosely speaking, the height and width are
interpreted here as the sample mean and standard deviation of the heights of exposed parti-
cles. Let Wt,n denote the width for deposition onto a d-dimensional box of volume n, run-
ning for “time” (i.e., average number of particles deposited per unit volume of the box) t .
Scaling theory [6, 7, 10] predicts, and subsequent experimental and theoretical studies seem
to confirm (for an overview, see [3, 22]) that there exist a roughness exponent α and a growth
exponent β , such that the surface width is governed by the dynamic scaling relation

Wt,n ≈ nαf (t/nα/β) (1.1)

where the scaling function f satisfies f (x) ∝ xβ, for x � 1, and f (x) ≈ C for x � 1. If the
scaling theory is correct, it implies that

Wt,n ∝ tβ , t � n; Wt,n ∝ nα, t � n.

Physicists believe (see e.g. p. 56 of [3]), that dimension d = 1 one has the ‘exact’ values
α = 1/2 and β = 1/3 (higher dimensional values of α and β are not known). Validating the
above theory rigorously is a challenge for mathematicians; in the present work we take some
steps in the direction of rigorously analyzing the regime with t � n.

In this paper we consider both lattice and continuum BD models. As in [18] we first
take a thermodynamic limit (deposition onto an infinite surface). In this limit we obtain
expressions for the limiting height and width, as a function of ‘time’ (the mean number of
particles deposited per unit area). The next step is to examine the growth of these functions
with time, and in doing so we go beyond the continuum analysis in [18]. We show that
the limiting height grows asymptotically linearly with time and that in one dimension, the
squared limiting width grows at least logarithmically.

The limits are taken in the opposite order in [1], while the time-parameter and the dimen-
sions of the surface are simultaneously re-scaled in Seppäläinen [20]. Gravner et al. [8, 9]
provide detailed results on a one dimensional discrete-time growth model sharing some fea-
tures with BD, which are consistent with the belief that β = 1/3. Also, the well-known first
passage percolation model shares features with BD, both in its description and in the ques-
tions one considers. Some of the related literature on first passage percolation is discussed
at the end of Sect. 2.
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2 Lattice Ballistic Deposition

We first consider a class of lattice ballistic deposition models, in which all particles are
assumed identical. Let 0 denote the origin in Z

d . Specify a displacement function D : Z
d �→

[−∞,∞) with the properties that (i) D(0) = 1, and (ii) the set N := {x ∈ Z
d : D(x) 
=

−∞} is finite but has at least two elements (one of which is the origin). For x ∈ Z
d let

Nx := {x +y : y ∈ N } and let N ∗
x := {x −y : y ∈ N }. The set N is a ‘neighbourhood’ of the

origin and Nx is the corresponding neighborhood of x. The idea of a displacement function
is that if a particle arrives at y ∈ Nx , then it cannot slide down the ray y × [0,∞) below the
position at height D(y − x).

The substrate is represented by a finite subset Q of Z
d with |Q| elements. At each site

x ∈ Q, particles arrive at times forming a homogeneous Poisson process of unit rate, inde-
pendently of other sites. We consider two alternative measures of the height of the interface
at site x, the last-arrival height ξt,Q(x) and the next-arrival height ηt,Q(x). The latter is
defined in terms of the former by

ηt,Q(x) := max{ξt,Q(y) + D(x − y) : y ∈ Z
d}, (2.1)

where we set −∞+ x := −∞ for x ∈ R, so in fact ηt,Q(x) = max{ξt,Q(y)+D(x − y) : y ∈
N ∗

x }. See Fig. 1 for an illustration of these heights.
The evolution of ξt,Q(·) proceeds as follows. Assume ξ0,Q(z) = 0 for all z ∈ Z

d , and as
a function of t , assume ξt,Q(z) is right-continuous and piecewise constant with jumps only
at the arrival times of the Poisson process of arrivals at site z. If a particle arrives at site z

at time t , then at time t the (last-arrival) height at site z is updated to the next-arrival height
just before time t , i.e. we set

ξt,Q(x) = ηt−,Q(x) := lim
s↑t

ηs,Q(x),

while the last-arrival heights at other sites remains unchanged, i.e., ξt,Q(y) = ξt−,Q(y) for
y 
= z.

Special cases include the so-called nearest-neighbor (NN) and next-nearest neighbor
(NNN) models [3]. In the NN model, one takes N = {z ∈ Z

d : ‖z‖1 ≤ 1} (i.e., the origin

Fig. 1 The dark dots represent the graph of the last-arrival height y = ξt,Q(x), and the light dots represent
the next-arrival height y = ηt,Q(x), in a realization of the NN model with d = 1 and Q = [1,22] ∩ Z
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together with its lattice neighbors), and the displacement function D is given by D(x) = 0
for x ∈ N \ 0; this is the version of ballistic deposition considered in [20], and it is this
model which is illustrated in Fig. 1. In the NNN model, one takes N = {z ∈ Z

d : ‖z‖∞ ≤ 1}
(i.e., diagonal neighbors are included) and takes D(x) = 1 for all x ∈ N ; this is the version
considered in [1].

Define the mean height functional ξ t,Q and width functional Wt,Q to be the sample mean
and sample variance, respectively, of the heights at time t , i.e., set

ξ t,Q := |Q|−1
∑

z∈Q
ξt,Q(z); Wt,Q :=

√
|Q|−1

∑

x∈Q

(ξt,Q(x) − ξ t,Q)2. (2.2)

The mean height ξ t,Q is a measure of the average amount of empty space under the surface,
while the surface width functional Wt,Q is a measure of the roughness of the interface.

We consider a particular limiting regime. First we take Q to be large with t fixed (deposi-
tion for a finite time onto a very large surface), and then we would like to take the large-time
limit.

The large-Q limit of ξ t,Q and Wt,Q is best described in terms of deposition onto an
‘infinite substrate’ represented by the whole of Z

d . Let ξt (z) be the height above site z of
this infinite interface at time t ≥ 0. Assume again that ξt (z) = 0 for all z ∈ Z

d , but now
assume particles arrive as independent Poisson processes at all sites in Z

d . With this as the
only difference from the description of ξt,Q(·), let the updating rules for ξt (·) be just the
same as before. Also, define the next-arrival height ηt (x) in an analogous manner to (2.1).
For the infinite interface process we need to check that no ‘explosions’ occur; our first result
does this and more.

Proposition 2.1 For all t ∈ (0,∞), the values of ξt (0) and ηt (0) are almost surely finite, and
for all k ∈ N, it is the case that E[(ξt (0))k] = O(tk) and E[(ηt (0))k] = O(tk) as t → ∞.

We can interpret ξt (0) as the height of a ‘typical’ point in the infinite interface. The next
result is a thermodynamic limit and shows that in the large n limit, the height functional and
squared width functional converge to the mean and variance, respectively, of the ‘typical’
height ξt (0) (analogously to results in [18] for continuum BD).

Let (Qn,n ≥ 1) be a sequence of finite subsets of Z
d . Let ∂Qn denote the set of boundary

sites in Qn. Assume that

0 ∈ Qn for all n; (2.3)

lim inf(Qn) = Z
d , i.e.

∞⋃

n=1

∞⋂

m=n

Qm = Z
d; (2.4)

|∂Qn|/|Qn| → 0 as n → ∞. (2.5)

For example, Qn could be a lattice box of side n centered at the origin.

Proposition 2.2 For all p ∈ [1,∞) and all t ∈ (0,∞),

ξ t,Qn

Lp−→ E[ξt (0)] := h(t) as n → ∞; (2.6)

W 2
t,Qn

Lp−→ Var[ξt (0)] := w2(t) as n → ∞. (2.7)
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It is possible to give central limit theorems associated with the above laws of large num-
bers. For continuum BD, such results have been given in [18]. Similar arguments apply in
the lattice case under consideration here, where one can use the general lattice central limit
theorem of Penrose ([16], Theorem 3.1).

It is of great interest to estimate the limiting constants h(t) and w(t) in Proposition 2.2,
and especially, to understand the growth of h(t) and w(t) as t becomes large. Our main
results are concerned with this. Heuristically, one expects h(t) to grow linearly in t since
the expected height should vary directly with the deposition intensity t . The next result
demonstrates this, and more.

Theorem 2.3 There is a constant ρ1 ∈ (0,∞) such that t−1h(t) → ρ1 as t → ∞. Moreover,
for any p ∈ [1,∞) we have the Lp convergence

t−1ξt (0) → ρ1 as t → ∞. (2.8)

In the special case of the NN model, it can be deduced from Theorem 1 of Seppäläinen
[20] that (2.8) holds with almost sure convergence. Our approach is somewhat different from
that of [20], and is needed for subsequent results.

As for the width, the scaling theory mentioned in Sect. 1 predicts that w2(t) = Θ(t2β).
Even without scaling theory, one expects at least that w2(t) = O(t) on the basis of sim-
ulations of Zabolitzky and Stauffer ([24], p. 1529), and also on the following heuristic
grounds. If N = {0} then the heights ξt,n(x), x ∈ Qn are independent Poisson variables so
that w2(t) = t . If N 
= {0} so as to give non-trivial interactions, these interactions should
have a ‘smoothing’ effect so that w2(t) should not be any bigger than in the case N = {0}.

Rigorous analysis of the large-t behavior of w(t) appears to be difficult: the following
result makes a start.

Theorem 2.4 For any d , it is the case that

lim inf
t→∞ w2(t) > 0, (2.9)

and if d = 1 and N is a lattice interval, then

lim inf
t→∞ (w2(t)/ log t) > 0. (2.10)

The proof of Theorem 2.4 uses a duality relation between the ballistic deposition process
and a dual BD process, denoted (ξ̂t (x), x ∈ Z

d)t≥0 with corresponding next-arrival process
(η̂t (x), x ∈ Z

d)t≥0, defined in an identical manner to the original BD process ξt (x) and next-
arrival process ηt (x), except that now one uses the dual displacement function D̂ given by

D̂(x) = D(−x), x ∈ Z
d , (2.11)

and takes as initial configuration a single particle at height 0 at the origin, i.e., one takes

ξ̂0(x) =
{

0 if x = 0,

−∞ otherwise.
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We also define a further process (η̃t (x), x ∈ Z
d)t≥0, by

η̃t (x) = η̂(t−T )+(x)

where T is exponentially distributed with mean 1, independent of the process (η̂s(x), x ∈
Z

d)s≥0. In other words, the process (η̃t (·), t ≥ 0) is obtained by waiting an exponentially
distributed amount of time before ‘kicking off’ the dual next-arrival process η̂. We shall
refer to η̃ as the delayed dual BD process.

Theorem 2.5 Let t > 0. Then the distribution of ηt (0) is the same as that of the maximum
depth supz∈Zd η̂t (z) in the dual BD process. The distribution of ξt (0) is the same as that of
the maximum depth supz∈Zd η̃t (z) in the delayed dual BD process.

Theorem 2.5 shows that w2(t) = Var(supz∈Zd η̃t (z)). The dual BD process is a random
interface growing from a single seed; in this it resembles the classical first passage perco-
lation (FPP) model, in which edges of the nearest-neighbor lattice Z

d carry independent
identically distributed weights (representing passage times for each edge) and the agglom-
eration at time t consists of those sites (elements of Z

d ) accessible from the origin by paths
through the lattice with total weight at most t .

Our proof of (2.10) uses ideas from the proof by Pemantle and Peres [13] of an analogous
logarithmic lower bound for the variance of first passage times for FPP in Z

2 with exponen-
tially distributed edge weights. Using different methods, Newman and Piza [12] generalize
this lower bound to FPP with a more general class of edge weights, and also show that the
variance of first passage times in any direction of positive curvature diverges faster than
n(1/4)−ε for any ε > 0. It would be interesting to try to extend the methods of [12] to obtain
a lower bound for w(t) with power law growth in the BD model.

The best upper bound on the growth rates of the variance in FPP seems to be the linearly
growing bound of Kesten [11] (in the special case of an edge-weight distribution supported
by two points, Benjamini et al. [2] provide a logarithmic improvement). It would be of
interest to establish an upper bound for w2(t) with linear growth, but we have not done so.
Further progress in estimating the growth rate of the variance for first passage times has
proved elusive; by analogy, the same could well be true in the case of w2(t).

3 Continuum Ballistic Deposition

We consider a continuum ballistic deposition model, defined as follows. The substrate Q̃

is a Borel-measurable region of R
d (for example, a cube of side n) and |Q̃| denotes the

Lebesgue measure of Q̃. Particles are assumed to be (d + 1)-dimensional Euclidean balls of
possibly random independent identically distributed radii which are uniformly bounded by
a finite constant Rmax (in fact the results presented here could easily accommodate a more
general class of random shapes, such as convex shapes of uniformly bounded diameter). Let
F denote the common cumulative distribution function of the radii of incoming particles;
assume that F(0) = 0 and F(Rmax) = 1.

Each incoming particle arrives perpendicularly to the substrate Q̃ × {0} and sticks to the
first previous particle it encounters, or to the substrate if it does not encounter any previ-
ous particle. In other words, its motion stops when it encounters a previous particle or the
substrate, and remains stationary thereafter.
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Fig. 2 The mean value of the function whose graph is given by the bold arcs is Ht,n, and its variance is
W2

t,n. The horizontal line represents Q̃n × {0}

For simplicity we assume Q̃ is given by one of the sets Q̃n(n ≥ 1) defined by

Q̃n := Qn ⊕ [0,1)d = {x + y : x ∈ Qn,y ∈ [0,1)d},
with the sequence of finite sets Qn ⊂ Z

d assumed to satisfy the conditions (2.3)–(2.5).
Let P be a homogeneous Poisson point process of unit intensity in R

d × [0,∞), each
point carrying a mark with distribution F . Denote by Pt,n the restriction of P to Q̃n ×[0, t],
and denote by Pt the restriction of P to R

d × [0, t].
Represent points in P by (X,T ), where X ∈ R

d denotes the spatial location (center) of
the incoming particle and T its time of arrival. Given n, t , the BD process driven by Pt,n

is defined as follows. The spatial locations of incoming particles are given by the spatial
locations of the points of Pt,n, the order in which they arrive is determined by the time-
coordinates of these points (i.e., they arrive in order of increasing time-coordinate), and
their radii are given by the marks the points carry.

Let At,n denote the agglomeration of particles for the BD process driven by Pt,n, together
with the substrate Q̃n ×{0} (a subset of R

d+1). For each x ∈ Q̃n let Ht,n(x) denote the height
of the interface above x, i.e., let

Ht,n(x) := sup{h : (x,h) ∈ At,n}. (3.1)

The bold line in Fig. 2 represents the graph of the function Ht,n(·).
We define the average height Ht,n and width Vt,n of the interface at time t as follows. We

set Ht,n to be the mean of the function Ht,n(x), x ∈ Qn, and Vt,n to be the root-mean-square
deviation of this function from Ht,n. That is, we set

Ht,n := |Qn|−1
∫

Q̃n

Ht,n(x)dx; (3.2)

Vt,n :=
√

|Qn|−1

∫

Q̃n

(Ht,n(x) − Ht,n)2dx. (3.3)

These definitions of height and width are slightly different from those used in Penrose and
Yukich [18] but no less natural.

The following result gives meaning to the height of the interface above an infinite sub-
strate.
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Proposition 3.1 For all t ≥ 0, x ∈ R
d the limit

Ht(x) = lim
n→∞Ht,n(x) (3.4)

exists almost surely and is almost surely finite. Also, the distribution of Ht(x) does not
depend on x. Moreover, for all k ∈ N it is the case that E[(Ht(0))k] = O(tk) as t → ∞.

Thus the infinite-substrate height function is given by Ht(x), x ∈ R
d . The following ther-

modynamic limits are variants of results in [18]. They are continuum analogues to Propo-
sition 2.2. In particular, they show that the variance of the random variable Ht(0) (height
above a typical point of the infinite substrate) is the large-n limit of the width functionals
V 2

t,n (sample variance of the heights above a bounded substrate).

Proposition 3.2 For all t ∈ (0,∞) and p ∈ [1,∞),

Ht,n

Lp−→ E[Ht(0)] as n → ∞; (3.5)

V 2
t,n

Lp−→ Var[Ht(0)] as n → ∞. (3.6)

Now we give a continuum analogue to Theorem 2.3

Theorem 3.3 There is a constant ρ2 ∈ (0,∞) such that t−1E[Ht(0)] → ρ2 as t → ∞.
Moreover, for any p ≥ 1,

t−1Ht(0) → ρ2 in Lp as t → ∞. (3.7)

The next result is the continuum analogue to Theorem 2.4.

Theorem 3.4 For any d , it is the case that

lim inf
t→∞ Var[Ht(0)] > 0, (3.8)

and if d = 1, then

lim inf(Var[Ht(0)]/ log t) > 0. (3.9)

Also of independent interest is the duality result given by Proposition 5.2 below, which
is the continuum analogue of Theorem 2.5.

4 Proofs for Lattice BD

For x ∈ Z
d , let S1(x), S2(x), S3(x), . . . denote the ordered arrival times of the Poisson

process at site x. The proofs for lattice BD are based on a directed graph representation.
For each t > 0, define a directed graph Gt and a directed graph G̃t , both with vertex set Vt

defined by

Vt := {(z, Si(z)) : z ∈ Z
d , i ∈ N, Si(z) < t} ∪ {(x,0), (x, t);x ∈ Z

d}.
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Informally, each Poisson arrival at site x ∈ Z
d before time t is represented by a point (x, T ) ∈

Z
d × [0,∞). Two points (x, T ) and (y,U) of Vt are joined by a directed edge in Gt from

(x, T ) to (y,U) if T < U and y ∈ Nx . They are joined by a directed edge in G̃t from (x, T )

to (y,U) if T < U and y ∈ N ∗
x .

A path in Gt is a sequence π of vertices in Vt denoted (x0, T0), . . . , (xn, Tn) say, such that
T0 = 0 and Tn = t and for i = 1,2, . . . , n there is an edge of Gt from (xi−1, Ti−1) to (xi, Ti).
We say the path starts at (x0,0) and ends at (xn, t). The length of the path is n. The height
of the path, denoted h(π), is

∑n

j=1 D(xj − xj−1).

A path in G̃t is defined similarly, except that now the requirement is that for each i

there is an edge of G̃t from (xi−1, Ti−1) to (xi, Ti), and the (dual) height ĥ(π) of a path
π = ((xi, Ti))

n
i=0 in G̃t is given by

∑n

j=1 D̂(xj − xj−1), with D̂(·) defined by (2.11).
The skeleton of a path π in Gt is its projection onto Z

d , i.e., the sequence (x0, . . . , xn).
Given a sequence (x0, . . . , xn) ∈ (Zd)n+1 with xi − xi−1 ∈ N for 1 ≤ i ≤ n, a maximal path
with skeleton (x1, . . . , xn) is a path ((x0, T0), . . . , (xn, Tn)) in the graph Gt , with T0 = 0 and
Tn = t , and with the property that for 1 ≤ i ≤ n, there are no Poisson arrivals at xn in the
time-interval (Ti−1, Ti).

We now express the next-arrival heights ηt (z) for the BD process and η̂t (z) for the dual
BD process as defined in Sect. 2, in terms of the graphs Gt and G̃t .

Lemma 4.1 Let t > 0 and z ∈ Z
d . Suppose the maximum length of all paths in Vt ending at

(z, t) is finite. Then ηt−(z) := lims↑t ηs(z) is given by

ηt−(z) = sup{h(π) : π a path in Gt ending at (z, t)}, (4.1)

and η̂t−(z) := lims↑t η̂s (z) is given by

η̂t−(z) = sup{ĥ(π) : π a path in G̃t starting at (0,0) and ending at (z, t)}, (4.2)

with the convention that the supremum of the empty set is −∞.

Proof If π is a finite path ending at (z, t), then we assert that ηt−(z) ≥ h(π). Indeed, if
π = (xi, Ti)

n
i=0 then by monotonicity of the processes ξt and ηt , for each i with 1 ≤ i < n

we have

ξTi
(xi) ≥ ηTi−(xi) ≥ ξTi−1(xi−1) + D(xi − xi−1)

so that

ηt−(z) ≥ ξTn−1(xn−1) + D(xn − xn−1) ≥
n∑

i=1

D(xi − xi−1) = h(π).

Conversely, there is at least one path of height at least ηt−(z) that ends at (z, t). This is
proved by induction on the maximum length of paths ending at (z, t). It is clearly true when
this maximum path length is 1; suppose it is true when the maximum path length is in the
range {1,2, . . . , k}. Now suppose the maximum path length is k + 1. Then

ηt−(z) = max{ξt−(y) + D(z − y) : y ∈ N ∗
z }

so that for some y∗ ∈ N ∗
z (i.e., with z ∈ Ny∗ ) we obtain

ηt−(z) = ξt (y
∗) + D(z − y∗),
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and if L denotes the last Poisson arrival time before time t at site y∗, we have

ηt−(z) = ξL(y∗) + D(z − y∗) = ηL−(y∗) + D(z − y∗).

Each path in GL ending at (y∗,L) has length at most k, since otherwise there would be a
path through (y∗,L) to (z, t) of length greater than k+1. Hence by the inductive hypothesis,
there is a path in GL ending at (y∗,L), of height at least ηL−(y∗), and hence by appending
(z, t) to this sequence one obtains a path in Gt , ending at (z, t), of height at least ηL−(y∗) +
D(z − y∗). This completes the induction and hence the proof (4.1). The proof of (4.2) is
similar. �

Proof of Proposition 2.1 Since ξt (0) ≤ ηt (0), it suffices to prove that ηt (0) is almost surely
finite and E[ηt (0)k] = O(tk) as t → ∞. Note that ηt (0) = ηt−(0) almost surely. Also, let
Dmax := maxz∈Zd D(z) denote the maximum value of the displacement function. By our
assumptions on this function, we have 1 ≤ Dmax < ∞.

By Lemma 4.1, if ηt−(0) ≥ m then there must be a path in Gt of height at least m, and
hence of length at least m/Dmax, that ends at (0, t). Hence, if ηt−(0) ≥ m then there is a path
in Gt of length at least m/Dmax that is maximal for its skeleton and ends at (0, t).

For any given sequence (x0, x1, . . . , xn) with xi − xi−1 ∈ N for i = 1, . . . , n, the proba-
bility that there exists a maximal path in Gt with skeleton (x0, x1, . . . , xn) and with all arrival
times less than t , equals than the probability that the sum of n − 1 independent exp(1) vari-
ables is less than t , which is the same as the probability that Po(t) ≥ n − 1, where Po(t)

denotes a Poisson variable with mean t . Hence, for any y ≥ te2 + 1, by e.g. Lemma 1.2
of [14],

P [ηt (0) ≥ yDmax] = P [ηt−(0) ≥ yDmax] ≤ |N |yP [Po(t) ≥ y − 1]
≤ |N |y exp(−((y − 1)/2) log((y − 1)/t)) (4.3)

which tends to zero as y → ∞. Hence ηt (0) is almost surely finite. Also, for k ∈ N,

E

[(
ηt (0)

Dmax

)k]
=

∫ ∞

0
P

[
ηt (0)

Dmax
≥ w1/k

]
dw.

Set c := (2|N |)2, split the region of integration into w ≤ (ct + 1)k and w ≥ (ct + 1)k , and
change variables to y = w1/k in the second integral to obtain the estimate

E

[(
ηt (0)

Dmax

)k]
≤ (ct + 1)k +

∫ ∞

ct+1
P

[
ηt (0)

Dmax
≥ y

]
kyk−1dy

≤ (ct + 1)k + ke1/2
∫ ∞

ct+1
|N |y exp(−(y/2) log(c))yk−1dy

≤ (ct + 1)k + ke1/2
∫ ∞

0
yk−1 exp(−y log 2)dy

and the last integral is finite, so that t−kE[ηt (0)k] is bounded. �

To prove Proposition 2.2 (and again in the next section), we shall use a slight generaliza-
tion of a result of Penrose [16], which we now describe. Let B denote the collection of all
non-empty finite subsets of Z

d . Suppose X = (Xx, x ∈ Z
d) is a family of independent iden-

tically distributed random elements of a given measurable space. A stationary B-indexed
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summand with respect to X is a family of random variables (Yz(Q) : Q ∈ B, z ∈ Q) with
the property that (Xx, x ∈ Q) determines the value of Yz(Q) in a stationary (i.e. translation-
invariant) manner (see section 3 of [16] for more details).

Lemma 4.2 Let p ≥ 1. Suppose (Yz(Q) : Q ∈ B, z ∈ Q) is a stationary B-indexed summand
with respect to X, such that the p-th moments of |Y0(Q)| are bounded uniformly over Q ∈ B
with 0 ∈ Q. Suppose there is a random variable Y such that Y0(Bn)

Lp−→ Y as n → ∞,
for any B-valued sequence (Bn)n≥1 with lim infn→∞(Bn) = Z

d . If (An)n≥1 is a B-valued
sequence with |∂An|/|An| → 0 as n → ∞, then

|An|−1
∑

z∈An

Yz(An)
Lp−→ E[Y ] as n → ∞.

Proof The p = 1 version of this result is the first part of Theorem 3.1 of [16]. By changing
L1 estimates to Lp estimates throughout the proof of (3.3) of [16], we may deduce the same
result with Lp convergence. The proof in [16] uses a multiparameter L1 ergodic theorem
quoted from [15], but this is also easy to extend to Lp convergence in the present setting,
using the assumption of bounded pth moments. �

Proof of Proposition 2.2 Let X = (Xx, x ∈ Z
d) be a family of independent homogeneous

Poisson processes of unit intensity. For Q ∈ B, assume the evolution of ξt,Q is governed by
the Poisson processes (Xx, x ∈ Q). Then (ξt,Q(z),Q ∈ B, z ∈ Q) is a stationary B-indexed
summand with respect to X. Also, the proof of Proposition 2.1 shows that for p ∈ N

sup{E[ξt,Q(0)4p] : Q ∈ B,0 ∈ Q} < ∞. (4.4)

For any B-valued sequence (Bn,n ≥ 1) with lim inf(Bn) = Z
d , we have as n → ∞ that

ξt,Bn(0) → ξt (0) almost surely (see the proof of Proposition 2.1, or Lemma 5.1 of [16]), and
hence in Lp by (4.4). Hence, by Lemma 4.2 applied to the stationary B-indexed summand
(ξt,Q(z),Q ∈ B, z ∈ Q), we obtain (2.6).

To prove (2.7), first expand the sum of squares in (2.2) to obtain

W 2
t,Qn

= |Qn|−1

( ∑

x∈Qn

ξt,Qn(x)2

)
− ξ

2
t,Qn

. (4.5)

By (4.4), Lemma 4.2 is applicable to the stationary B-indexed summand (ξt,Q(x)2,Q ∈
B, x ∈ Q), and this shows that the first term in the right hand side of (4.5) converges in Lp

to E[ξt (0)2].
Since (2.6), holds with convergence in L2p , the second term in the right hand side of (4.5)

converges in Lp to (E[ξt (0)])2. Combining these limiting results in (4.5), we obtain (2.7). �

Proof of Theorem 2.5 The idea of the proof is a form of time-reversal of the graphical
representation. Let ψt : Z

d × [0, t] → Z
d × [0, t] be defined by

ψt((z, s)) = (z, t − s).

Let V̂t := ψt(Vt ), and observe that the point set V̂t has the same distribution as Vt by the
properties of Poisson point processes.

Let Ĝt be defined in the same manner as G̃t but on the vertex set V̂t instead of Vt . Then
each path in Gt ending at (0, t) corresponds to a path with the same height starting at (0,0) in
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Ĝt ; the correspondence is obtained by reversing the sequence of vertices and then applying
the mapping ψt to each vertex in the sequence.

Note that ηt (0) = ηt−(0) with probability 1. By (4.1), ηt−(0) is the greatest height of all
paths in Gt which end at (0, t). By the correspondence described above, this is precisely the
same as the greatest height of all paths in the graph Ĝt which start at (0,0).

Since the point processes V̂t Vt have the same distribution, it follows that ηt (0) has the
same distribution as the greatest height of all paths in the graph G̃t which start at (0,0).
Hence by (4.2), ηt (0) has the same distribution as supz∈Zd η̂t−(z) and hence the same distri-
bution as supz∈Zd η̂t (z).

Let L be the last arrival time at 0 before time t (or L = 0 if there are no arrivals at 0 before
time t ). Then t − L has the distribution of min(T , t) where T is exponential with mean 1,
and hence L has the distribution of (t −T )+. Given L with L > 0, the distribution of ηL−(0)

is the same as that of supz∈Zd η̂L(z), by the same argument as above and the Markov property
of the time-reversed Poisson process. Whenever L > 0 we have ξt (0) = ηL−(0), and if L = 0
then ξt (0) = 0 almost surely. Combining these observations shows that ξt (0) has the same
distribution as supz∈Zd η̂(t−T )+(z), as asserted. �

From now onwards, we shall assume the delayed dual BD (next-arrival) process η̃t (z)

and also the associated last-arrival process ξ̃t (z) are defined in terms of the Poisson arrival
times (Si(x), i ≥ 1, x ∈ Z

d), as follows. For t < S1(0) we put η̃t (z) = 0 and ξ̃t (z) = −∞ for
all z ∈ Z

d . Then we put

ξ̃S1(z) :=
{

0 if z = 0,

−∞ otherwise,

and define η̃S1(0) in terms of ξ̃S1(0) in the usual manner as given at (2.1). Then we allow the
evolution of (ξ̃t , η̃t )t≥S1(0) to follow the usual rules of the BD process with displacement
function D̂ given by (2.11), driven by the Poisson arrivals {Si(z) : Si(z) > S1(0)}. Then
η̃t (x), x ≥ 0 constructed in this manner clearly follows the desired evolution prescribed in
Sect. 2, with S1(0) used as the initial ‘kicking off time’.

For t ≥ 0, u ≥ 0, let Dt be the depth (i.e., the maximum next-arrival height) of the delayed
dual BD process η̃t at time t , and let T (u) be first passage time to depth u for the delayed
dual BD process, i.e. let

Dt := sup
z∈Zd

{η̃t (z)}; T (u) := inf{t : Dt ≥ u}.

Lemma 4.3 There is a constant ρ ∈ (0,∞) such that

lim
u→∞

T (u)

u
= ρ, a.s. (4.6)

and

lim
t→∞

Dt

t
= ρ−1, a.s. (4.7)

Proof First we verify that E[T (1)2] is finite. Note that η̃t (0) ≥ Nt , where here Nt denotes
the number of arrivals at 0 up to time 1. Hence,

P [T (1) > t] ≤ P [η̃t (0) < 1] ≤ P [Nt < 2] = P [X > t]
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where here X denotes an exponential random variable with unit mean, representing the first
arrival time at 0. Hence, E[T (1)2] ≤ E[X2] < ∞.

Next, we assert that T (u) is distributionally subconvolutive, i.e. for u,v ≥ 0 we have

FT (u+v) ≥ FT (u) ∗ FT (v). (4.8)

To see this, let X(u) ∈ Z
d be chosen (in an arbitrary way if there is more than one choice)

so that η̃T (u)(X(u)) ≥ u (by definition such X(u) exists). Let T (u) + T ∗ be the time of next
Poisson arrival after T (u) at site X(u), and let (ξ̂ ∗

s , η̂∗
s )s≥0 be a version of the BD process

with displacement function D̂, with initial profile

ξ̂ ∗
0 (x) =

{
0 if x = X(u),

−∞ otherwise

and driven by Poisson arrival times {S∗
i (x)} given for each x ∈ Z

d by

{S∗
i (x)} = {Si(x) − T (u) − T ∗ : Si(x) > T (u) + T ∗},

where {Si(x)} are the arrival times driving the original dual BD process (ξ̂t , η̂t ).
Let T ∗∗(v) be the first time the process (η̂∗

s )s≥0 achieves a depth of at least v, i.e.

T ∗∗(v) = inf
{
t ≥ 0 : sup

x∈Zd

(η̂∗
t (x)) ≥ v

}
.

Then T ∗ +T ∗∗(v) has the same distribution as T (v), and is independent of T (u). Also, since
ξ̃T (u)+T ∗(X(u)) ≥ u, the depth at time T (u) + T ∗ + T ∗∗(v) is at least u + v, i.e.

sup
x∈Zd

(η̃T (u)+T ∗+T ∗∗(v)(x)) ≥ u + v,

so that T (u) + T ∗ + T ∗∗(v) ≥ T (u + v). Combining these facts gives us (4.8). Since the
variables (T (u),u ≥ 0) are also monotonically increasing in u, we can apply the Kesten-
Hammersley theorem ([21], page 20) to obtain (4.6), with 0 ≤ ρ < ∞. Also,

Dt

T (Dt)
≥ Dt

t
≥ Dt

Dt + 1
× Dt + 1

T (Dt + 1)
(4.9)

and since Dt → ∞ almost surely this with (4.6) yields (4.7) provided ρ > 0.
If ρ = 0 then by (4.6) and the second inequality of (4.9) we would have Dt/t → ∞

almost surely, so that E[Dt/t] → ∞, and so by Theorem 2.5, E[ξt (0)/t] → ∞. This con-
tradicts Proposition 2.1, and hence ρ > 0 as asserted. �

Proof of Theorem 2.3 Set ρ1 := ρ−1, with ρ as given in Lemma 4.3. By Theorem 2.5, Dt

has the same distribution as ξt (0), and so by Proposition 2.1, for any p ≥ 1 the pth moment
of (Dt/t) is bounded uniformly in t . By (4.7), (Dt/t) converges almost surely to ρ1, and by
the moment bound the almost sure convergence extends to convergence in pth moment for
any p ≥ 1. Since Dt has the same distribution as ξt (0), this convergence in pth moment also
holds for ξt (0). �

Proof of Theorem 2.4 To prove (2.9) consider the event that (i) there are no arrivals in
N \ {0} between times t − 1 and t , and (ii) there is at least one arrival at 0 in the time-
interval (t − 1, t]. This event has the same non-zero probability for all t ≥ 1. Conditioned



260 M.D. Penrose

on this event, and on everything before time t − 1, the conditional variance of ξt (0) is the
variance of the number of Poisson arrivals at 0 in the time-interval (t −1, t], i.e. the variance
of a Poisson variable with unit mean conditioned to take a value of at least 1. This variance
is a strictly positive constant and (2.9) follows.

Now suppose d = 1 and N is a lattice interval. To prove (2.10), we consider the delayed
dual BD process (ξ̃t , η̃t )t≥0. In this process, we denote by accepted arrival an arrival time
T = Si(z) such that ξ̃T (z) > −∞. Enumerate the set of all accepted arrival times (for all
sites) in increasing order as τ1, τ2, . . . . Let Nt be the number of accepted arrivals up to
time t , i.e.

Nt := sup{n : τn ≤ t}.
Let It be the size of the interface at time t , i.e., the number of sites z ∈ Z with η̃t (z) >

−∞. For n ≥ 1, let Yn := Iτn be the size of the interface after n accepted arrivals, and set
Y0 := 1. Since (Nt , t ≥ 0) is a Poisson counting process with its ‘clock’ running at speed It ,
we have that

lim
t→∞

Nt∫ t

0 Iudu
= 1, a.s. (4.10)

Next, we assert that there is a constant γ > 0 such that

lim
t→∞(It /t) = γ, a.s. (4.11)

To see this, recall that we are assuming here that N is a lattice interval including 0 and at
least one other element. It is not hard to see that It must also be a lattice interval, and that
both the right and the left endpoint of It follow renewal reward processes, where in both
cases the inter-arrival times of the underlying renewal process are exponentially distributed
and the rewards are uniformly distributed over a lattice interval. The assertion (4.11) follows
by the Strong Law of Large Numbers for a renewal reward process.

By (4.10) and (4.11) we obtain

lim
t→∞

Nt

t2
= γ

2
, a.s. (4.12)

Let M(u) be the number of accepted arrivals up to time T (u). By (4.12) and (4.6), as
u → ∞, it is the case with probability 1 that

M(u) = NT (u) ∼ (γ /2)T (u)2 ∼ (γρ2/2)u2. (4.13)

Let F be the σ -algebra generated by the locations in Z of the sequence of accepted
arrivals. Conditional on F , the distribution of T (u) is that of the sum of M(u) independent
exponentials with the j th exponential having mean Y −1

j−1. Hence,

σ 2
u := Var[T (u)|F] =

M(u)∑

j=1

Y −2
j−1. (4.14)

By definition, Nτj = j , and hence by (4.12), j/τ 2
j → γ /2 so that τj ∼ (2j/γ )1/2 as j → ∞,

almost surely. Since Yj = Iτj , by (4.11) we obtain as j → ∞ that with probability 1,

Yj ∼ γ τj ∼ (2γj)1/2, (4.15)
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so that by (4.14) and (4.13), as u → ∞ we have that

σ 2
u ∼ (2γ )−1 logM(u) ∼ γ −1 logu, a.s. (4.16)

The Berry-Esseen theorem, e.g. as given in theorem 5.4 of Petrov [19] or as quoted in
Chen and Shao [4], says that there is a constant C such that if X1, . . .Xk are independent ran-
dom variables with mean zero and finite third moments and W := ∑k

i=1 Xi has variance 1,
then

sup
x∈R

{|P [W ≤ x] − Φ(x)|} ≤ C

k∑

i=1

E[|Xi |3],

where Φ is the standard normal cumulative distribution function.
Let τ0 := 0, and for i ≥ 1 let ei := τi − τi−1. As mentioned earlier, conditional on F the

ei are independent exponentials with E[ei |F] = Y −1
i−1. Define

θu :=
M(u)∑

i=1

E[|ei − E[ei |F]|3|F]

= (12e−1 − 2)

M(u)∑

i=1

Y −3
i−1, (4.17)

since if X is exponential with mean a then E[|X − a|3] = a3(12e−1 − 2).
Set μu := E[T (u)|F]. By the Berry-Esseen Theorem,

sup
x∈R

∣∣∣∣P
[

T (u) − μu

σu

≤ x|F
]

− Φ(x)

∣∣∣∣ ≤ Cθu

σ 3
u

. (4.18)

By (4.15), the sum
∑∞

i=1 Y −3
i−1 converges almost surely. Hence by (4.16) and (4.17), we can

find u0 such that for u ≥ u0 we have P [Au] < 0.01 where

Au :=
{

Cθu

σ 3
u

> 0.01

}
∪ {σu <

√
(logu)/(2γ )}

so that Au ∈ F . Then for any y ∈ R, using (4.18) we may deduce that

P [T (u) ≤ y + 0.2(γ −1 logu)1/2|Ac
u] − P [T (u) ≤ y|Ac

u]

= P

[
T (u) − μu

σu

≤ y − μu

σu

+ 0.2(γ −1 logu)1/2

σu

|Ac
u

]

−P

[
T (u) − μu

σu

≤ y − μu

σu

|Ac
u

]

≤ P

[
T (u) − μu

σu

≤ y − μu

σu

+ (0.2)
√

2|Ac
u

]
− P

[
T (u) − μu

σu

≤ y − μu

σu

|Ac
u

]

≤ sup
x∈Rd

{Φ(x + (0.2)
√

2) − Φ(x)} + 0.02 ≤ 0.22,

and so for u ≥ u0 we have

P [T (u) ≤ y + 0.2(γ −1 logu)1/2] − P [T (u) ≤ y] ≤ 0.22 + P [Au] < 1/4. (4.19)
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For t > 0, let ν(t) be a median of the distribution of Dt . Then

P [T (ν(t)) > t] = P [Dt < ν(t)] ≤ 1/2 (4.20)

so that P [T (ν(t)) ≤ t] ≥ 1/2, and hence by (4.19), for t large enough

P [T (ν(t)) ≤ t − 0.2(γ −1 logν(t))1/2] ≥ 1/4.

By (4.7), (Dt/t) → ρ−1 in probability, so that (ν(t)/t) → ρ−1 as t → ∞. Hence,

logν(t) ∼ log t as t → ∞. (4.21)

If T (ν(t)) ≤ t − 0.2(γ −1 logν(t))1/2, then there is a site z∗ ∈ Z with

η̃t−0.2(γ −1 logν(t))1/2(z∗) ≥ ν(t).

If also at least 0.1(γ −1 log t)1/2 + 1 particles arrive at site z∗ between times t − 0.2(γ −1

logν(t))1/2 and t , then Dt ≥ ν(t) + 0.1(γ −1 log t)1/2. By (4.21), the conditional probability
of the second of these events, given the first, tends to 1 as t → ∞, so that for large t ,

P [Dt ≥ ν(t) + 0.1(γ −1 log t)1/2| > 1/8. (4.22)

Moreover, by definition P [Dt ≤ ν(t)] ≥ 1/2. Combining this with (4.22) yields (2.10). �

5 Proofs for Continuum BD

In this section, for x ∈ R
d and r > 0 we write Br(x) for the closed Euclidean ball of radius

r centered at x.
We introduce a dual continuum BD process, denoted Ĥt (x), defined in an identical man-

ner to the original continuum BD process except that now the initial profile Ĥ0(x), x ∈ R
d

is given by

Ĥ0(x) =
{

0 if x = 0,

−∞ otherwise.

In other words, the interface grows from an initial seed consisting of a single point at (0,0).
Incoming particles which miss the agglomeration have no effect.

We adapt the graphical representation to the continuum. Given a locally finite marked
point set X ⊂ R

d × [0,∞), we say a sequence of points (Xi, Ti)
k
i=1 in X forms a path in

X if T1 < T2 < · · · < Tk , and for 1 ≤ i < k, the d-dimensional ball centered at Xi (of radius
given by the mark of (Xi, Ti)) overlaps the ball centered at Xi+1 (of radius given by the
mark of (Xi+1, Ti+1)).

Given such a path, we refer to the sequence (X1, . . . ,Xk) as the skeleton of the path.
Given also x ∈ R

d , we say the path starts near x if x lies in the d-dimensional ball centered
at X1 (of radius given by the corresponding mark) and we say the path ends near x if x lies
in the d-dimensional ball centered at Xn. We say the height at x of the path is the height
of the interface above x for the BD agglomeration onto an initially flat surface determined
by the finite sequence of incoming (d + 1)-dimensional balls centered at X1, . . . ,Xk (with
radii given by the corresponding marks).

If the path starts near 0, we say the dual height of the path at x is the height of the
interface above x for the BD agglomeration determined by the finite sequence of incoming
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(d + 1)-dimensional balls centered at X1, . . . ,Xk (with radii given by the corresponding
marks), starting with the initial profile being given by the function Ĥ0 (i.e. by a single point
at (0,0) rather than an initially flat surface).

Lemma 5.1 Let t ≥ 0, x ∈ R
d . Then with probability 1:

(i) There are almost surely only finitely many paths in Pt which end near x;
(ii) the value of Ht(x) is the maximum height at x of all such paths (or is zero if no such

path exists);
(iii) Ht,n(x) is the maximum height at x of all paths in Pt which end near x for which the

skeleton is contained in Q̃n (or is zero if no such path exists), and
(iv) Ĥt (x) is the maximum dual height at x of all paths which start near 0 and end near x

(or is −∞ if no such path exists).
(v) There exists an almost surely finite random N = N(t) such that Ht(x) = Ht,n(x) for

all x ∈ [0,1)d and all n ≥ N .

Proof Part (i) follows from e.g. Corollary 3.1 of [15]. We remark here that this result in
fact shows that with probability 1 it is the case that for all x ∈ [0,1)d , there are only finitely
many paths ending near x.

In the continuum BD process, there exists a sequence of particles in the agglomeration,
each particle touching the next one in the sequence, leading from the substrate to a particle
arriving at time at most t and with (x,Ht (x)) on its surface in the agglomeration; considering
only the particles in this sequence, we have a path which ends near x and has height Ht(x)

at x. Hence the height Ht(x) is at most the maximum height at x of all such paths.
On the other hand, inserting extra points into a given (d + 1)-dimensional marked point

process cannot decrease the height over x of the interface of the corresponding BD agglom-
eration, so for any path in Pt ending near x, Ht(x) is at least the height at x of the path. This
demonstrates part (ii).

The argument for part (iii) is the same as for part (ii), except that now one ignores parti-
cles with spatial location outside Q̃n.

The argument for part (iv) is the same as for part (ii).
Part (v) follows from parts (ii) and (iii), together with the remark at the end of the proof

of part (i). �

Proof of Proposition 3.1 Let x ∈ R
d . By (2.4) and part (i) of Lemma 5.1, there exists an

almost surely finite random n0 such that for n ≥ n0, every path in Pt which ends near x has
its skeleton contained in Q̃n. Then by parts (ii) and (iii) of Lemma 5.1, we have Ht(x) =
Ht,n(x) for n ≥ n0. This demonstrates the first part of Proposition 3.1.

Since Pt is distributionally invariant under spatial translations (i.e., translations of R
d ×R

leaving the time-coordinate unchanged), the distribution of Ht(x) := limn→∞ Ht,n(x) does
not depend on x. This demonstrates the second part of Proposition 3.1.

We prove the last part only in the case where Rmax ≤ 1/2; the more general case can then
be deduced by some simple scaling arguments which we omit.

We couple our continuum BD process to a certain NNN lattice BD model, as defined
in Section 2. Partition R

d into half-open unit cubes, and for x ∈ R
d let Q(x) be the cube

in the partition that contains x. Let (ξt , ηt )t≥0 be the coupled NNN lattice BD model, in
which the arrival times at site z ∈ Z

d are given by the time-coordinates of the points of P in
Q(z)×(0,∞). By the assumption that 2Rmax ≤ 1, it is not hard to see that Ht(x) ≤ ηt (z(x)).
We can then use Proposition 2.1 to deduce that E[(Ht(0))k] = O(tk). �
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Proof of Proposition 3.2 For z ∈ Z
d let Cz := {z + y : y ∈ [0,1)d}. Let X = (Xz, z ∈ Z

d) be
the family of independent homogeneous Poisson point processes of unit intensity in [0,1)d ×
[0,∞), obtained by taking Xz to be the image of the restriction of P to Cz × [0,∞) under
the translation (X,T ) �→ (X − z,T ). For Q ∈ B, let Q̃ := {x + y : x ∈ Q,y ∈ [0,1)d}, and
for z ∈ Q, set

Yt,z(Q) :=
∫

Cz

Ht,Q(u)du (5.1)

where Ht,Q(u) denotes the height of the interface above u at time t if we ignore the points
of P lying outside Q̃ × [0,∞) (so for example, Ht,Qn(u) = Ht,n(u) as defined at (3.1)).

As in the proof of Proposition 2.2, we aim to apply Lemma 4.2; we can do so because
(Yt,z(Q), z ∈ Q,Q ∈ B) is a stationary B-indexed summand with respect to X. Also, for
p ∈ N the proof of Proposition 3.1 shows that

sup{E[Ht,Q(u)4p] : Q ∈ B, u ∈ R
d} < ∞, (5.2)

so by Fubini’s theorem and Hölder’s inequality

sup{E[Yt,0(Q)4p] : Q ∈ B,0 ∈ Q} < ∞. (5.3)

For any B-valued sequence (Bn,n ≥ 1) with lim inf(Bn) = Z
d , by Lemma 5.1 (v) we have

almost surely as n → ∞ that

Yt,0(Bn) → Yt,0 :=
∫

C0

Ht(u)du, (5.4)

and by (5.3) this convergence also holds in Lp . Hence, Lemma 4.2 is applicable to the
stationary B-indexed summand (Yt,x(Q),Q ∈ B, x ∈ Q), yielding

Ht,n = |Qn|−1
∑

z∈Qn

Yt,z(Qn)
Lp−→ EYt,0. (5.5)

By Proposition 3.1 the distribution of Ht(x) does not depend on x, so by (5.4) and Fubini’s
theorem, EYt,0 = E[Ht(0)] so (5.5) yields (3.5).

We now prove (3.6). By expanding out the square in (3.3), we obtain the identity

V 2
t,n =

(
|Qn|−1

∫

Q̃n

H 2
t,n(x)dx

)
− H

2
t,n =

(
|Qn|−1

∑

z∈Qn

Y
(2)
t,z (Qn)

)
− H

2
t,n, (5.6)

where we set

Y
(2)
t,z (Q) :=

∫

Cz

(Ht,Q(u))2du.

For any B-valued sequence (Bn,n ≥ 1) with lim inf(Bn) = Z
d , by Lemma 5.1 (v) we have

almost surely as n → ∞ that

Y
(2)

t,0 (Bn) → Y
(2)

t,0 :=
∫

C0

(Ht(u))2du. (5.7)

By (5.2), Fubini’s theorem and Hölder’s inequality, the 2pth moment of Y
(2)

t,0 (Q) is bounded,
uniformly over Q ∈ B with 0 ∈ Q, so the convergence (5.7) also holds in Lp . Hence,
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Lemma 4.2 is applicable to the stationary B-indexed summand (Y
(2)
t,z (Q),Q ∈ B, z ∈ Q),

and this shows that

|Qn|−1
∑

z∈Qn

Y
(2)
t,z (Qn)

Lp−→ E[Y (2)

t,0 ] = E[(Ht (0))2]

where the equality follows from the definition (5.7) of Y
(2)

t,0 , Fubini’s theorem and the fact
that the distribution of Ht(u) does not depend on u (Proposition 3.1).

Since (3.5) holds with convergence in L2p , the second term in the right hand side of (5.6)
converges in Lp to (E[Ht(0)])2. Combining these limiting results in (5.6), we obtain (3.6). �

For t ≥ 0 and u ≥ 0, let D̃t denote the depth (i.e. maximum height) of the dual continuum
BD model at time t , and let T̃ (u) be the first passage time to depth u of the dual continuum
BD model. i.e. let

D̃t := sup
x∈Rd

(Ĥt (x)); T̃ (u) := inf{t ≥ 0 : Dt ≥ u}.

Proposition 5.2 The distribution of Ht(0) is the same as that of D̃t .

Proof Fix t > 0, and consider the time-reversed space-time Poisson process with time-
coordinates transformed by the mapping (X,T ) �→ (X, t − T ). Under this mapping, any
path ((X1, T1), . . . , (Xk, Tk)) corresponds (by reversing the order of points) to a path in the
transformed Poisson process, namely ((Xk, t − Tk), . . . , (X1, t − T1)), the so-called time-
reversed path. If the original path ends near 0, the corresponding time-reversed path starts
near 0, and the height at 0 of the original path equals the dual height over X1 of the time-
reversed path, which is the maximal dual height of the time-reversed path.

By Lemma 5.1 (ii), Ht(0) ≥ u if and only if there is a path in Pt which ends near 0 with
height at 0 of at least u by time t , in which case the corresponding time-reversed path has
maximal height at least u. Hence, Ht(0) is the maximal dual height of time-reversed paths
in Pt starting near 0. Hence by Lemma 5.1 (iv), Ht(0) is the maximal depth at time t for
the continuum ballistic deposition process driven by the transformed Poisson process, using
initial profile Ĥ0. Since the distributions of the original and transformed Poisson processes
are identical, Ht(0) therefore has the same distribution as maximal depth in the BD process
generated by the original Poisson process with initial profile Ĥ0. In other words, it has the
same distribution as D̃t . �

The next result is a continuum analogue to Lemma 4.3.

Lemma 5.3 There is a constant ρ3 ∈ (0,∞) such that

lim
u→∞

T̃ (u)

u
= ρ3, a.s. (5.8)

and

lim
t→∞

D̃t

t
= ρ−1

3 , a.s. (5.9)
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Proof First we show that T̃ (1) has finite second moment. Choose ε1 > 0 such that F(ε1) ≤
1/2, and ε2 > 0 such that a ball of radius ε1 in R

d+1 contains a rectilinear cube of side
ε2, with the same center. Let N1(t) be the number of Poisson arrivals in Pt having spatial
coordinate with �∞ norm at most ε2/2 and having mark at least ε1. Then N1(t) is Poisson
with parameter at least ε2t/2, and Ĥt (0) ≥ ε2N1(t), so that

P [T̃ (1) > t] ≤ P [Ĥt (0) < 1] ≤ P [Po(ε2t/2) < 1/ε2] = P

[ ∑

1≤i≤�1/ε2�
e′
i > t

]

where e′
1, e

′
2, e

′
3, . . . are independent exponential random variables with mean 2/ε2, repre-

senting the inter-arrival times of a Poisson process of rate ε2/2, and �x� denotes the smallest
integer not less than x. Hence,

E[T̃ (1)2] ≤ E

[( ∑

1≤i≤�1/ε2�
e′
i

)2]
< ∞.

We assert that T̃ (u) is distributionally subconvolutive, i.e. for u,v ≥ 0 we have

FT̃ (u+v) ≥ FT̃ (u) ∗ FT̃ (v). (5.10)

To see this, let X(u) ∈ R
d be chosen (in an arbitrary way if there is more than one choice) so

that ĤT̃ (u)(X(u)) ≥ u (by definition such X(u) exists). Let (Ĥ ∗
s (x), x ∈ R

d)s≥0 be a version
of the BD process with initial profile

Ĥ ∗
0 (x) =

{
0 if x = X(u),

−∞ otherwise

and driven by the Poisson process τ−T̃ (u)(P) ∩ (Rd × (0,∞)), where τ−t denotes the shift
operator on R

d × R mapping each point (x,u) ∈ R
d × R to (x,u − t).

Let T̃ ∗(v) be the first time the process (Ĥ ∗
s )s≥0 achieves a depth at least v, i.e.

T̃ ∗(v) = inf
{
t ≥ 0 : sup

x∈Rd

(Ĥ ∗
t (x)) ≥ v

}
.

Then T̃ ∗(v) has the same distribution as T̃ (v), and is independent of T̃ (u). Also the depth at
time T̃ (u)+ T̃ ∗(v) is at least u+v, i.e. D̃T̃ (u)+T̃ ∗(v) ≥ u+v, so that T̃ (u)+ T̃ ∗(v) ≥ T̃ (u+v).
Combining these facts gives us (5.10).

Since the variables (T̃ (u), u ≥ 0) satisfy (5.10) and are also monotonically increasing in
u, we can apply the Kesten-Hammersley theorem ([21], p. 20) to obtain the desired conclu-
sion (5.8), with 0 ≤ ρ3 < ∞.

The arguments to show that (5.9) holds and ρ3 > 0 are just the same as the corresponding
arguments in the proof of Lemma 4.3. �

Proof of Theorem 3.3 The proof is entirely analogous to that of Theorem 2.3, now using
Propositions 3.1 and 5.2 along with Lemma 5.3. �

Proof of Theorem 3.4 First we prove (3.8). Let Ft be the σ -field generated by all arrivals up
to time t − 1. Then Ht−1(0) is Ft -measurable. It is clear that there is a constant ε > 0 such
that

P [Ht(0) = Ht−1(0)|Ft ] ≥ ε a.s.
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and

P [Ht(0) ≥ Ht−1(0) + 1|Ft ] ≥ ε a.s.

and combining these two estimates shows that the conditional variance Var[Ht |Ft ] is
bounded away from zero. From this we may deduce (3.8).

The proof of (3.9) is similar to that of (2.10). Now take It to be the Lebesgue measure
of the interface, i.e., of the set of sites x ∈ R

d with Ĥt (x) > −∞, and take F to be the
σ -algebra generated by the sequence of locations and marks of accepted arrivals in the dual
continuum BD process.

Then it is again the case that conditional on F , the distribution of T (u) is the sum of M(u)

independent exponentials e1, . . . , eM(u); this is because, given F , the ej are independent
exponentials. Indeed, given the positions of the first j accepted arrivals, the distribution of
ej is exponential with mean Y −1

j ; extra information about the location of this arrival and
subsequent arrivals does not affect its distribution.

Using this information, the proof of (3.9) follows that of (2.10) closely, and we omit
further details. �
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