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Abstract We prove an almost sure invariance principle for a random walker among i.i.d.
conductances in Z

d , d ≥ 2. We assume conductances are bounded from above but we do not
require that they are bounded from below.
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1 Introduction

We consider continuous-time, nearest-neighbor random walks among random (i.i.d.) con-
ductances in Z

d , d ≥ 2 and prove that they satisfy an almost sure invariance principle.

1.1 Random Walks and Environments

For x, y ∈ Z
d , we write: x ∼ y if x and y are neighbors in the grid Z

d and let Ed be the set
of non-oriented nearest-neighbor pairs (x, y).

An environment is a function ω : Ed → [0,+∞[. Since edges in Ed are not oriented, i.e.
we identified the edge (x, y) with the reversed edge (y, x), it is implicit in the definition that
environments are symmetric, i.e. ω(x, y) = ω(y, x) for any pair of neighbors x and y.

We let (τz, z ∈ Z
d) be the group of transformations of environments defined by

τzω(x, y) = ω(z + x, z + y).
We shall always assume that our environments are uniformly bounded from above. With-

out loss of generality, we may assume that ω(x, y) ≤ 1 for any edge. Thus, for the rest of
this paper, an environment will rather be a function ω : Ed → [0,1]. We use the notation
� = [0,1]Ed for the set of environments (endowed with the product topology and the cor-
responding Borel structure). The value of an environment ω at a given edge is called the
conductance.

P. Mathieu (�)
Université de Provence, CMI, 39 rue Joliot-Curie, 13013 Marseille, France
e-mail: pierre.mathieu@cmi.univ-mrs.fr



1026 P. Mathieu

Let ω ∈ �. We are interested in the behavior of the random walk in the environment ω.
We denote with D(R+,Z

d) the space of càd-làg Z
d -valued functions on R+ and let X(t),

t ∈ R+, be the coordinate maps from D(R+,Z
d) to Z

d . The space D(R+,Z
d) is endowed

with the Skorokhod topology, see [6] or [12]. For a given ω ∈ [0,1]Ed and for x ∈ Z
d , let P ω

x

be the probability measure on D(R+,Z
d) under which the coordinate process is the Markov

chain starting at X(0) = x and with generator

Lωf (x) = 1

nω(x)

∑

y∼x

ω(x, y)(f (y) − f (x)), (1.1)

where nω(x) = ∑
y∼x ω(x, y). If nω(x) = 0, let Lωf (x) = 0 for any function f .

The behavior of X(t) under P ω
x can be described as follows: starting from point x, the

random walker waits for an exponential time of parameter 1 and then chooses at random one
of its neighbors to jump to according to the probability law ω(x, .)/nω(x). This procedure
is then iterated with independent hopping times.

We have allowed environments to take the value 0 and it is clear from the definition
of the random walk that X will only travel along edges with positive conductances. This
remark motivates the following definitions: call a cluster of the environment ω a connected
component of the graph (Zd , {e ∈ Ed;ω(e) > 0}). By construction, our random walker never
leaves the cluster of ω it started from. Since edges are not oriented, the measures with
weights nω(x) on the possibly different clusters of ω are reversible.

1.2 Random Environments

Let Q be a product probability measure on �. In other words, we will now pick environ-
ments at random, in such a way that the conductances of the different edges form a family
of independent identically distributed random variables. Q is of course invariant under the
action of τz for any z ∈ Z

d .
The random variables (1ω(e)>0; e ∈ Ed) are independent Bernoulli variables with com-

mon parameter q = Q(ω(e) > 0). Depending on the value of q , a typical environment
chosen w.r.t. Q may or may not have infinite clusters. More precisely, it is known from
percolation theory that there is a critical value pc , that depends on the dimension d , such
that for q < pc , Q a.s. all clusters of ω are finite and for q > pc , Q a.s. there is a unique
infinite cluster. In the first case the random walk is almost surely confined to a finite set and
therefore does not satisfy the invariance principle (or satisfies a degenerate version of it with
vanishing asymptotic variance). We shall therefore assume that the law Q is super-critical,
i.e. that

q = Q(ω(e) > 0) > pc.

Then the event ‘the origin belongs to the infinite cluster’ has a non vanishing Q probability
and we may define the conditional law:

Q0(.) = Q(. | 0 belongs to the infinite cluster).

1.3 Annealed Results

Part of the analysis of the behavior of random walks in random environments can be done
using the point of view of the particle: we consider the random walk X started at the origin
and look at the random process describing the environment shifted by the position of the



Quenched Invariance Principles for Random Walks 1027

random walker, i.e. we let ω(t) = τX(t)ω. Thus (ω(t), t ∈ R+) is a random process taking its
values in �.

Let us also introduce the measure

Q̃0(A) =
∫

A
nω(0)dQ0(ω)∫
nω(0)dQ0(ω)

.

Observe that Q̃0 is obviously absolutely continuous with respect to Q0.
We list some of the properties of the process ω(.) as proved in [8]:

Proposition 1.1 (Lemmata 4.3 and 4.9 in [8]) The random process ω(t) is Markovian un-
der P ω

0 . The measure Q̃0 is reversible, invariant and ergodic with respect to ω(t).

Based on this proposition, the authors of [8] could deduce that the random walk X(t)

satisfies the invariance principle in the mean. Let us define the so-called annealed semi-
direct product measure

Q0.P
ω
x [F(ω,X(.))] =

∫
P ω

x [F(ω,X(.))]dQ0(ω).

Theorem 1.2 (Annealed invariance principle, [8]) Consider a random walk with i.i.d. super-
critical conductances. Under Q0.P

ω
0 , the process (Xε(t) = εX( t

ε2 ), t ∈ R+) converges in
law to a non-degenerate Brownian motion with covariance matrix σ 2Id where σ 2 is positive.

It should be pointed out that the result of [8] is in fact much more general. On one hand,
[8] deals with random walks with unbounded jumps, under a mild second moment condition.
Besides, a similar annealed invariance principle is in fact proved for any stationary law Q

rather than just product measures.
The positivity of σ 2 is not ensured by the general results of [8]) but it can be proved using

comparison with the Bernoulli case, see Remark 2.3.

1.4 The Almost Sure Invariance Principle

The annealed invariance principle is not enough to give a completely satisfactory description
of the long time behavior of the random walk. It is for instance clear that the annealed
measure Q0.P

ω
0 retains all the symmetries of the grid. In particular it is invariant under

reflections through hyperplanes passing through the origin. This is not true anymore for the
law of the random walk in a given environment. Still, one would expect symmetries to be
restored in the large scale, for a given realization of ω.

Our main result is the following almost sure version of Theorem 1.2:

Theorem 1.3 (Quenched invariance principle) Consider a random walk with i.i.d. super-
critical conductances. Q0 almost surely, under P ω

0 , the process (Xε(t) = εX( t

ε2 ), t ∈ R+)

converges in law as ε tends to 0 to a non-degenerate Brownian motion with covariance
matrix σ 2Id where σ 2 is positive and does not depend on ω.
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1.5 The Bernoulli Case and Other Cases

The main difficulty in proving Theorem 1.3 is the lack of assumption on a lower bound
for the values of the conductances. Indeed, if one assumes that almost any environment is
bounded from below by a fixed constant i.e. there exists a δ > 0 such that Q(ω(e) < δ) = 0
then the conclusion of Theorem 1.3 was already proved in [17] using the classical ‘corrector
approach’ adapted from [13].

Another special case recently solved is the Bernoulli case: let us assume that only the
values 0 and 1 are allowed for the conductances, i.e. Q is a product of Bernoulli measures
of parameter q . Remember that we assume that we are in the supercritical regime q > pc .
An environment can then be also thought of as a (unweighted) random sub-graph of the grid
and our random walk is the simple symmetric random walk on the clusters of the environ-
ment, i.e. jumps are performed according to the uniform law on the neighbors of the current
position in the graph ω.

In the Bernoulli case, quenched invariance principles have been obtained by various au-
thors in [4, 14] and [17]. These three works develop different approaches to handle the lack
of a positive lower bound for the conductances. They have in common the use of quantitative
bounds on the transition probabilities of the random walk. It is indeed known from [2] that
the kernel of the simple random walk on an infinite percolation cluster satisfies Gaussian
bounds. A careful analysis of the proofs shows that a necessary condition to obtain the in-
variance principle using any of the three approaches in [4, 14] or [17] is a Poincaré inequality
of the correct scaling (and in fact [14] shows that the Poincaré inequality is ‘almost’ suffi-
cient). To be more precise, let An be the Poincaré constant on a box of size n centered at
the origin. In other words, An is the inverse spectral gap of the operator Lω restricted to the
connected component at the origin of the graph ω ∩ [−n,n]d and with reflection boundary
conditions. Then one needs know that Q0 almost surely,

lim supn−2An < ∞. (1.2)

Such a statement was originally proved in [15] for the Bernoulli case.
It turns out that (1.2) is false in the general case of i.i.d. conductances, even if one assumes

that conductances are always positive. We can choose for instance a product law with a
polynomial tail at the origin, i.e. we assume that there exists a positive parameter γ such
that Q(ω(e) ≤ a) ∼ aγ as a tends to 0. Then it is not difficult to prove that, for small values
of γ ,

lim inf
logAn

logn
> 2.

In [10], we considered a slightly different model of symmetric random walks with random
conductances with a polynomial tail but non i.i.d. (although with finite range dependency
only) and we proved that

logAn

logn
→ 2 ∨ d

γ
,

showing that, at least in the case γ < d/2, the Poincaré constant is too big to be directly
used to prove the diffusive behavior of the random walk and one needs some new ingredient
to prove Theorem 1.3.
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Remark 1.4 In [10], we derived annealed estimates on the decay of the return probability
of the random walk. More interestingly, in the very recent work [5], the authors could also
obtain quenched bounds on the decay of the return probability for quite general random
walks with random conductances. Their results in particular show that anomalous decays do
occur in high dimension. In such situations, although the almost sure invariance principle
holds, see Theorem 1.3, the local CLT fails.

Our proof of Theorem 1.3 uses a time change argument that we describe in the next part
of the paper.1

2 A Time Changed Process

In this section, we introduce a time changed process, Xξ , and state an invariance principle
for it (Theorem 2.2).

Choose a threshold parameter ξ > 0 such that Q(ω(e) ≥ ξ) > pc . For Q almost any
environment ω, the percolation graph (Zd , {e ∈ Ed;ω(e) ≥ ξ}) has a unique infinite cluster
that we denote with Cξ (ω).

By construction Cξ (ω) is a subset of C(ω). We will refer to the connected components of
the complement of Cξ (ω) in C(ω) as holes. By definition, holes are connected sub-graphs of
the grid. Let Hξ (ω) be the collection of all holes. Note that holes may contain edges such
that ω(e) ≥ ξ .

We also define the conditioned measure

Q
ξ

0(.) = Q(.|0 ∈ Cξ (ω)).

Consider the following additive functional of the random walk:

Aξ(t) =
∫ t

0
1X(s)∈Cξ (ω)ds,

its inverse (Aξ )−1(t) = inf{s;Aξ(s) > t} and define the corresponding time changed process

Xξ(t) = X((Aξ )−1(t)).

Thus the process Xξ is obtained by suppressing in the trajectory of X all the visits to the
holes. Note that, unlike X, the process Xξ may perform long jumps when straddling holes.

As X performs the random walk in the environment ω, the behavior of the random
process Xξ is described in the following proposition:

Proposition 2.1 Assume that the origin belongs to Cξ (ω). Then, under P ω
0 , the random

process Xξ is a symmetric Markov process on Cξ (ω).

The Markov property, which is not difficult to prove, follows from a very general argu-
ment about time changed Markov processes. The reversibility of Xξ is a consequence of the
reversibility of X itself as will be discussed after equation (2.2).

1Note: after this paper was posted on the Arxiv, M. Biskup and T. Prescott wrote a preprint with a different
proof of Theorem 1.3, see [7]. Their approach is based on ideas from [4] when we prefer to invoke [14]. They
also need a time change argument, as here, and percolation results like Lemma 5.3.
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The generator of the process Xξ has the form

Lξ,ωf (x) = 1

nω(x)

∑

y

ωξ (x, y)(f (y) − f (x)), (2.1)

where

ωξ (x, y)

nω(x)
= lim

t→0

1

t
P ω

x (Xξ (t) = y)

= P ω
x (y is the next point in Cξ (ω) visited by the random walk X), (2.2)

if both x and y belong to Cξ (ω) and ωξ(x, y) = 0 otherwise.
The function ωξ is symmetric: ωξ(x, y) = ωξ(y, x) as follows from the reversibility

of X and (2.2), but it is no longer of nearest-neighbor type, i.e. it might happen that
ωξ(x, y) 
= 0 although x and y are not neighbors. More precisely, one has the following
picture: ωξ (x, y) = 0 unless either x and y are neighbors and ω(x, y) ≥ ξ , or there exists a
hole, h, such that both x and y have neighbors in h. (Both conditions may be fulfilled by the
same pair (x, y).)

Consider a pair of neighboring points x and y, both of them belonging to the infinite
cluster Cξ (ω) and such that ω(x, y) ≥ ξ , then

ωξ (x, y) ≥ ξ. (2.3)

This simple remark will play an important role. It implies, in a sense to be made precise
later, that the parts of the trajectory of Xξ that consist in nearest-neighbors jumps are similar
to what the simple symmetric random walk on Cξ (ω) does.

Finally observe that the environment ωξ is stationary, i.e. the law of ωξ under Q is in-
variant with respect to τz for all z ∈ Z

d as can be immediately seen from (2.2).

Theorem 2.2 (Quenched invariance principle for Xξ ) There exists a value ξ0 > 0 such that
for any 0 < ξ ≤ ξ0 the following holds. For Q0 almost any environment, under P ω

0 , the
process (Xξ,ε(t) = εXξ ( t

ε2 ), t ∈ R+) converges in law as ε tends to 0 to a non-degenerate
Brownian motion with covariance matrix σ 2(ξ)Id where σ 2(ξ) is positive and does not
depend on ω.

The proof of Theorem 2.2 will be given in Sect. 4. It very closely mimics the arguments
of [14]. Indeed, one uses the lower bound (2.3) to bound the Dirichlet form of the process
Xξ in terms of the Dirichlet form of the simple symmetric random walk on Cξ (ω) and thus
get the Poincaré inequality of the correct order. It is then not difficult to adapt the approach
of [15] and [2] to derive the tightness of the family Xξ,ε and the invariance principle follows
as in [14].

Remark 2.3 The positivity of σ 2 in Theorem 1.3 and the positivity of σ 2(ξ) in Theorem 2.2
can be checked using comparison arguments from [8]. Indeed it follows from the expression
of the effective diffusivity, see Theorem 4.5 part (iii) of [8], and from the discussion on
monotonicity in part 3 of [8] that σ 2 is an increasing function of the probability law Q (up
to some multiplicative factor). Therefore, if Q stochastically dominates Q′ and the effective
diffusivity under Q′ is positive, then the effective diffusivity under Q is also positive. Here
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Q stochastically dominates the law of the environment with conductances ω′(e) = ξ1ω(e)≥ξ .
The random walk in the environment ω′ is the simple random walk on a percolation cluster
which is known to have a positive asymptotic diffusivity, see [2] or the references in [14].
The same argument shows that σ 2(ξ) > 0 for any ξ such that Q(ω(e) ≥ ξ) > pc .

To derive Theorem 1.3 from Theorem 2.2, we will compare the processes X and Xξ ,
for small values of ξ . The large time asymptotic of the time change Aξ is easily deduced
from the ergodic theorem, as shown in Lemma 2.4 below and it implies that the asymptotic
variance σ 2(ξ) is continuous at ξ = 0, see Lemma 2.5.

Let

c(ξ) = Q̃0(0 ∈ Cξ (ω)).

Lemma 2.4

Aξ(t)

t
→ c(ξ) Q0 a.s.,

as t tends to ∞ and

c(ξ) → 1, (2.4)

as ξ tends to 0.

Proof Remember the notation ω(t) = τX(t−)ω. The additive functional Aξ(t) can also be
written in the form Aξ(t) = ∫ t

0 10∈Cξ (ω(s)) ds.
From Proposition 1.1, we know that Q̃0 is an invariant and ergodic measure for the

process ω(t) = τX(t−)ω and that it is absolutely continuous with respect to Q0.

Thus the existence of the limit limt→+∞ Aξ (t)

t
follows from the ergodic theorem and the

limit is c(ξ) = Q̃0(0 ∈ Cξ (ω)). To check (2.4), note that 10∈Cξ (ω) almost surely converges to
10∈C(ω) as ξ tends to 0. Since Q̃0(0 ∈ C(ω)) = 1, we get that c(ξ) converges to 1. �

Lemma 2.5 The asymptotic variances σ 2 in Theorem 1.2 and σ 2(ξ) from Theorem 2.2, and
the constant c(ξ) from Lemma 2.4 satisfy the equality

c(ξ)σ 2(ξ) = σ 2. (2.5)

As a consequence, σ 2(ξ) converges to σ 2 as ξ tends to 0.

Proof Formula (2.5) is deduced from Lemma 2.4. One can, for instance, compute the law
of the exit times from a large slab for both processes X and Xξ . Let τ(r) (resp. τ ξ (r))
be the exit time of X (resp. Xξ ) from the set [−r, r] × R

d−1. Under the annealed mea-
sure, the Laplace transform of τ(r)/r2 converges to E(exp(−λT/σ 2)) where T is the exit
time of [−1,1] by a Brownian motion. This is a consequence of the invariance principle
of Theorem 1.2. Theorem 2.2 implies that the Laplace transform of τ ξ (r)/r2 converges
to E(exp(−λT/σ 2(ξ))). (The convergence holds for Q0 almost any environment and, by
dominated convergence, under the annealed measure.)

On the other hand, we have τ ξ (r) = Aξ(τ(r)) and therefore Lemma 2.4 implies that the
Laplace transform of τ ξ (r)/r2 has the same limit as the Laplace transform of c(ξ)τ ξ (r)/r2
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and therefore converges to E(exp(−λc(ξ)T /σ 2)). We deduce from these computations that

E(exp(−λc(ξ)T /σ 2)) = E(exp(−λT/σ 2(ξ))),

and, since this is true for any λ ≥ 0, we must have c(ξ)σ 2(ξ) = σ 2.
The continuity of σ 2(ξ) for ξ = 0 is ensured by the continuity of c(ξ). �

3 How to Deduce Theorem 1.3 from Theorem 2.2

We start stating a percolation lemma that will be useful to control the contribution of holes
to the behavior of the random walk.

Lemma 3.1 There exists a value ξ0 > 0 such that for any 0 < ξ ≤ ξ0 the following holds.
There exists a constant a such that, Q almost surely, for large enough n, the volume of any
hole h ∈ Hξ (ω) intersecting the box [−n,n]d is bounded from above by (logn)a . (a = 7
would do.)

The proof of Lemma 3.1 is postponed to Sect. 5.

3.1 Tightness

In this section, we derive the tightness of the sequence of processes Xε from Theorem 2.2.

Lemma 3.2 Under the assumptions of Theorem 1.3, Q0 almost surely, under P ω
0 , the family

of processes (Xε(t) = εX( t

ε2 ), t ∈ R+) is tight in the Skorokhod topology.

Proof We read from [12], Sect. 3.26, p. 315 that a sequence of processes xε is tight if and
only if the following two estimates hold:

(i) for any T , any δ > 0, there exist ε0 and K such that for any ε ≤ ε0

P (sup
t≤T

|xε(t)| ≥ K) ≤ δ, (3.1)

(ii) for any T , any δ > 0, any η > 0, there exist ε0 and θ0 such that for any ε ≤ ε0

P
(

sup
v≤u≤T ;u−v≤θ0

|xε(u) − xε(v)| > η
)

≤ δ. (3.2)

Choose ξ as in Theorem 2.2. The sequence Xξ,ε converges; therefore it is tight and sat-
isfies (3.1) and (3.2). By definition,

Xξ,ε(t) = Xε

(
ε2(Aξ )−1

(
t

ε2

))
.

Proof of condition (i): Let us first check that Xε satisfies (3.1).
Assume that supt≤T |Xξ,ε(t)| ≤ K . Given t0 ≤ T , let x0 = Xε(t0), i.e. X(

t0
ε2 ) = 1

ε
x0 and

define s0 = ε2Aξ(
t0
ε2 ). Since Aξ(t) ≤ t , we have s0 ≤ t0.

If 1
ε
x0 belongs to Cξ (ω), then t0 = ε2(Aξ )−1(

s0
ε2 ) and Xξ,ε(s0) = Xε(t0) = x0 and there-

fore |x0| ≤ K .
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Now suppose that 1
ε
x0 does not belong to Cξ (ω) and let t1 = ε2(Aξ )−1(

s0
ε2 ) and x1 =

Xε(t1). Then t1 ≤ t0 and 1
ε
x1 belongs to Cξ (ω). The same argument as before shows that

|x1| ≤ K . On the other hand, by definition of the time changed process Xξ , 1
ε
x1 is the last

point in Cξ (ω) visited by X before time t0. Thus 1
ε
x0 belongs to a hole on the boundary of

which sits 1
ε
x1. It then follows from Lemma 3.1 that

∣∣∣∣
1

ε
x1 − 1

ε
x0

∣∣∣∣ ≤
(

log
K

ε

)a

.

Thus we have proved that

|x0| ≤ K + ε

(
log

K

ε

)a

.

We can choose ε0 small enough so that ε(log K
ε
)a ≤ K and therefore we have

sup
t≤T

|Xξ,ε(t)| ≤ K �⇒ sup
t≤T

|Xε(t)| ≤ 2K.

Since the sequence Xξ,ε satisfies (3.1), the event ‘supt≤T |Xξ,ε(t)| ≤ K’ has a large probabil-
ity; therefore supt≤T |Xε(t)| ≤ 2K has a large probability and the sequence Xε satisfies (3.1).

Proof of condition (ii): As before, we will deduce that the sequence Xε satisfies (3.2)
from the fact that the sequence Xξ,ε satisfies (3.1) and (3.2). Assume that

sup
v≤u≤T ;u−v≤θ0

|Xξ,ε(u) − Xξ,ε(v)| ≤ η.

We further assume that supt≤T |Xξ,ε(t)| ≤ K .
Given v0 ≤ u0 ≤ T such that u0 − v0 ≤ θ0, let x0 = Xε(u0), y0 = Xε(v0) and define s0 =

ε2Aξ(
u0
ε2 ), t0 = ε2Aξ(

v0
ε2 ), u1 = ε2(Aξ )−1(

s0
ε2 ) and v1 = ε2(Aξ )−1(

t0
ε2 ). Also let x1 = Xε(u1),

y1 = Xε(v1).
Since Aξ(t) − Aξ(s) ≤ t − s whenever s ≤ t , we have t0 ≤ s0 ≤ T and s0 − t0 ≤ θ0.

Besides, by definition of Aξ , we have x1 = Xξ,ε(s0) and y1 = Xξ,ε(t0). We conclude that

|x1 − y1| ≤ η.

On the other hand, the same argument as in the proof of condition (i) based on Lemma 3.1
shows that

|x1 − x0| + |y1 − y0| ≤ 2ε

(
log

K

ε

)a

.

We have proved that

sup
v≤u≤T ;u−v≤θ0

|Xε(u) − Xε(v)| ≤ η + 2ε

(
log

K

ε

)a

.

Since both events ‘supv≤u≤T ;u−v≤θ0
|Xξ,ε(u)−Xξ,ε(v)| ≤ η’ and ‘supt≤T |Xξ,ε(t)| ≤ K’ have

large probabilities, we deduce that the processes Xε satisfy condition (ii). �
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3.2 Convergence

To conclude the derivation of Theorem 1.3 from Theorem 2.2, it only remains to argue that,
for any given time t , the two random variables Xε(t) and Xξ,ε(t) are close to each other in
probability.

Lemma 3.3 Under the assumptions of Theorem 1.3, Q0 almost surely, for any t , any δ > 0,
any η > 0, then, for small enough ξ ,

lim sup
ε→0

P ω
0 (|Xε(t) − Xξ,ε(t)| > η) ≤ δ.

Proof We shall rely on Lemma 2.4. If |Xε(t) − Xξ,ε(t)| > η, then one of the following two
events must hold:

(I) =
{

sup
θc(ξ)t≤s≤t

|Xξ,ε(s) − Xξ,ε(t)| > η

2

}
,

(II) =
{

inf
θc(ξ)t≤s≤t

|Xξ,ε(s) − Xε(t)| > η

2

}
.

Here θ is a parameter in ]0,1[.
The invariance principle for Xξ,ε , see Theorem 2.2, implies that the probability of (I)

converges as ε tends to 0 to the probability P (supθc(ξ)t≤s≤t σ (ξ)|B(s) − B(t)| >
η

2 ), where
B is a Brownian motion. Since σ(ξ) is bounded away from 0, see Lemma 2.5, and since
c(ξ) → 1 as ξ → 0, we deduce that there exists a value for θ such that

lim sup
ξ→0

lim sup
ε→0

P ω
0 (I) ≤ δ. (3.3)

We now assume that θ has been chosen so that (3.3) holds. We shall end the proof of the
Lemma by showing that

lim sup
ε→0

P ω
0 (II) = 0. (3.4)

Since, from the tightness of the processes Xε , see Lemma 3.2, we have

lim sup
ε→0

P ω
0

(
sup
s≤t

|Xε(s)| ≥ ε−1
)

= 0,

we will estimate the probability that both events (II) and ‘sups≤t |Xε(s)| ≤ ε−1’ hold.
Let u = ε2Aξ( t

ε2 ) and note that u ≤ t . From Lemma 2.4, we know that u ≥ θc(ξ)t for
small enough ε depending on ω.

If Xε(t) belongs to Cξ (ω), then Xε(t) = Xξ,ε(u) and therefore (II) does not hold.
Otherwise Xε(t) belongs to a hole on the boundary of which sits Xξ,ε(u). Using the

condition sups≤t |Xε(s)| ≤ ε−1 and Lemma 3.1, we get that

|Xε(t) − Xξ,ε(u)| ≤ ε

(
log

1

ε

)a

.

For sufficiently small ε we have ε(log 1/ε)a <
η

2 and therefore (II) fails. The proof of (3.4)
is complete. �
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End of the proof of Theorem 1.3: Choose times 0 < t1 < · · · < tk . Use Lemma 3.3, to
deduce that for small enough ξ , as ε tends to 0, the law of (Xε(t1), . . . ,X

ε(tk)) comes close
to the law of (Xξ,ε(t1), . . . ,X

ξ,ε(tk)), which in turn, according to Theorem 2.2, converges to
the law of (σ (ξ)B(t1), . . . , σ (ξ)B(tk)), where B is a Brownian motion. We now let ξ tend
to 0: since σ(ξ) converges to σ , see Lemma 2.5, the limiting law of (Xε(t1), . . . ,X

ε(tk)) is
the law of (σB(t1), . . . , σB(tk)), i.e. we have proved that Xε converges in law to a Brown-
ian motion with variance σ 2 in the sense of finite dimensional marginals. The tightness
Lemma 3.2 implies that the convergence in fact holds in the Skorokhod topology.

4 Proof of Theorem 2.2

We will outline here a proof of Theorem 2.2. Our strategy is quite similar to the one recently
used in [2, 15] and [14] to study the simple symmetric random walk on a percolation cluster.
No new idea is required.

Step 0: Notation As before, we use the notation ω to denote a typical environment under
the measure Q. For a given edge e ∈ Ed (and a given choice of ω), we define

α(e) = 1ω(e)>0; α′(e) = 1ω(e)≥ξ .

As in Sect. 2, let Cξ (ω) be the infinite cluster of the percolation graph α′. For x, y ∈ Cξ (ω),
we define the chemical distance dξ

ω(x, y) as the minimal number of jumps required for the
process Xξ to go from x to y, see Sect. 5.3.

We recall the definition of the generator Lξ,ω from (2.1). Since the function ωξ is sym-
metric, the operator Lξ,ω is reversible with respect to the measure μω = ∑

z∈Cξ (ω) n
ω(z)δz.

Let Cn(ω) be the connected component of Cξ (ω) ∩ [−n,n]d that contains the origin. Let
(Xξ,n(t), t ≥ 0) be the random walk Xξ restricted to the set Cn(ω). The definition of Xξ,n is
the same as for Xξ except that jumps outside Cn are now forbidden. Its Dirichlet form is

Eξ,ω,n(f, f ) = 1

2

∑

x∼y∈Cn(ω)

ωξ (x, y)(f (x) − f (y))2.

We use the notation τn for the exit time of the process Xξ from the box [−2n + 1,

2n − 1]d , i.e. τn = inf{t;Xξ(t) /∈ [−2n + 1,2n − 1]d}.
Step 1: Carne-Varopoulos Bound The measure μω being reversible for the process Xξ ,
the transition probabilities satisfy a Carne-Varopoulos bound: for x ∈ Cξ (ω) and y ∈ Z

d , we
have

P ω
x (Xξ (t) = y) ≤ 2

√
μω(y)

μω(x)
e−d

ξ
ω(x,y)2/(4t) + e−ct ,

where c = log 4 − 1 (see [15], Appendix C). Observe that μω(y)/μω(x) ≤ 2d/ξ since we
are assuming that x ∈ Cξ (ω).

By Lemma 5.4, we can replace the chemical distance dξ
ω(x, y) by the Euclidean distance

|x − y|, provided that x ∈ [−n,n]d and n is large enough. We get that, Q
ξ

0 almost surely, for
large enough n, for any x ∈ Cn(ω) and any y ∈ Z

d such that |x − y| ≥ (logn)2, then

P ω
x (Xξ (t) = y) ≤ Ce− |x−y|2

Ct + e−ct , (4.1)

where C is a deterministic constant which does not depend on x, y, t or n.
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The same reasoning as in [15], Appendix C (using Lemma 5.4 again) then leads to upper
bounds for the exit time τn: Q

ξ

0 almost surely, for large enough n, for any x ∈ Cn(ω) and
any t , we have

P ω
x [τn ≤ t] ≤ Ctnde− n2

Ct + e−ct . (4.2)

Indeed, let N(t) be the number of jumps the random walk performs until time t and let σn be
the number of jumps of the walk until it exits the box [−2n+1,2n−1]d , so that σn = N(τn).
Note that the process (N(t), t ∈ R+) is a Poisson process of rate 1. With probability larger
than 1 − e−ct , we have N(t) ≤ 2t . If N(t) ≤ 2t and τn ≤ t , then σn ≤ 2t and there are at
most 2t choices for the value of σn. Let y be the position of the walk at the exit time and
let z be the last point visited before exiting. Note that dξ

ω(z, y) = 1. Due to Lemma 5.4, we
have

|x − y| ≤ 1

c− dξ
ω(x, y) ≤ 1

c− (dξ
ω(x, z) + 1) ≤ c+

c− (1 + |x − z|) ≤ c+

c− (1 + 2n).

Note that our use of Lemma 5.4 here is legitimate. Indeed |x − y| is of order n and, since
dξ

ω(z, y) = 1, Lemma 3.1 implies that |y − z| is at most of order (logn)7. Therefore |x − z|
is of order n and thus certainly larger that (logn)2.

Thus we see that there are at most of order nd possible choices for y. Finally, due to (4.1),

P ω
x (Xξ (s) = y) ≤ Ce− n2

Ct ,

for any s ≤ 2t , x ∈ Cn(ω) and y /∈ [−2n + 1,2n − 1]d . Putting everything together, we
get (4.2).

Step 2: Nash Inequalities and On-diagonal Decay

Lemma 4.1 For any θ > 0, there exists a constant cu(θ) such that, Q
ξ

0 a.s. for large
enough t , we have

P ω
x [Xξ(t) = y] ≤ cu(θ)

td/2
, (4.3)

for any x ∈ Cξ (ω) and y ∈ Z
d such that |x| ≤ t θ .

Proof We use the notation α′(e) = 1ω(e)≥ξ . Note that the random variables (α′(e); e ∈ Ed)

are independent Bernoulli variables with common parameter Q(α′(e) > 0) = Q(ω(e) ≥ ξ).
Since we have assumed that Q(ω(e) ≥ ξ) > pc , the environment α′ is a typical realization
of super-critical bond percolation.

The following Nash inequality is proved in [15], (5): there exists a constant β such that
Q

ξ

0 a.s. for large enough n, for any function f : Cn(ω) → R one has

Var(f )
1+ 2

ε(n) ≤ βn
2(1− d

ε(n)
)Eα′,n(f, f )‖f ‖4/ε(n)

1 ,

where

Eα′,n(f, f ) = 1

2

∑

x∼y∈Cn(ω)

α′(x, y)(f (x) − f (y))2.
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The variance and the L1 norms are computed with respect to the counting measure on
Cn(ω) and ε(n) = d + 2d

log logn

logn
. (Note that there is a typo in [15] where it is claimed that

(5) holds for the uniform probability on Cn(ω) instead of the counting measure.)
Inequality (2.3) implies that α′(x, y) ≤ ξ−1ωξ(x, y). Therefore Eα′,n and Eξ,ω,n satisfy

the inequality

Eα′,n(f, f ) ≤ 1

ξ
Eξ,ω,n(f, f ). (4.4)

Using inequality (4.4) in the previous Nash inequality, we deduce that there exists a
constant β (that depends on ξ ) such that Q

ξ

0 a.s. for large enough n, for any function f :
Cn(ω) → R one has

Var(f )
1+ 2

ε(n) ≤ βn
2(1− d

ε(n)
)Eξ,ω,n(f, f )‖f ‖4/ε(n)

1 . (4.5)

As shown in [15], Sect. 4, the Carne-Varopoulos inequality (4.1), inequality (4.2) and the
Nash inequality (4.5) can be combined to prove upper bounds on the transition probabilities.
We thus obtain that: there exists a constant cu such that, Q

ξ

0 a.s. for large enough t , we have

P ω
0 [Xξ(t) = y] ≤ cu

td/2
, (4.6)

for any y ∈ Z
d .

Using the translation invariance of Q, it is clear that estimate (4.6) in fact holds if we
choose another point x ∈ Z

d to play the role of the origin. Thus, for any x ∈ Z
d , Q a.s. on

the set x ∈ Cξ (ω), for t larger than some random value t0(x), we have

P ω
x [Xξ(t) = y] ≤ cu

td/2
, (4.7)

for any y ∈ Z
d .

In order to deduce the lemma from the upper bound (4.7), one needs control the tail of
the law of t0(0).

Looking at the proofs in [15], one sees that all the error probabilities decay faster than any
polynomial. More precisely, the Q

ξ

0 probability that inequality (4.5) fails for some n ≥ n0

decays faster than any polynomial in n0. From the proof of Lemma 5.4, we also know that the
Q

ξ

0 probability that inequality (4.1) fails for some n ≥ n0 decays faster than any polynomial
in n0. As a consequence, a similar bound holds for inequality (4.2).

To deduce error bounds for (4.6), one then needs to go to part 4 of [15]. Since the proof
of the upper bound (4.6) is deduced from (4.1, 4.2) and (4.5) by choosing t log t = bn2 for an
appropriate constant b, we get that Q

ξ

0 (inequality (4.6) fails for some t ≥ t0) decays faster
than any polynomial in t0. By translation invariance, the same holds for (4.7), i.e. for any
A > 0, there exists T such that

Q(x ∈ Cξ (ω) and t0(x) ≥ t0) ≤ t−A
0 ,

for any t0 > T . Therefore,

Q(∃x ∈ Cξ (ω); |x| ≤ t θ0 and t0(x) ≥ t0) ≤ tdθ−A
0 .

One then chooses A larger than dθ + 1 and the Borel-Cantelli lemma gives the end of the
proof of (4.3). �
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Step 3: Exit Times Estimates and Tightness We denote with τ(x, r) the exit time of the
random walk from the ball of center x and Euclidean radius r .

Lemma 4.2 For any θ > 0, there exists a constant ce such that, Q
ξ

0 a.s. for large enough t ,
we have

P ω
x [τ(x, r) < t] ≤ ce

√
t

r
, (4.8)

for any x ∈ Z
d and r such that |x| ≤ t θ and r ≤ t θ .

Proof The argument is the same as in [2], Sect. 3. We define

Mx(t) = Eω
x [dξ

ω(x,Xξ (t))]
and

Qx(t) = −Eω
x [logqω

t (x,Xξ (t))],
where qω

t (x, y) = P ω
x (Xξ (t) = y)/μω(x). Then, for large enough t and for |x| ≤ t θ , one has:

Qx(t) ≥ − log cu + d

2
log t,

Mx(t) ≥ c2 exp(Qx(t)/d),

Q′
x(t) ≥ 1

2
(M ′

x(t))
2.

The first inequality is obtained as an immediate consequence of Lemma 4.1. The second
one is proved as in [2], Lemma 3.3 and the third one as in [2], (3.10), using ideas from [3]
and [16]. Note that, in the proof of the second inequality, we used Lemma 5.4 to control the
volume growth in the chemical distance dξ

ω . One now integrates these inequalities to deduce
that

c1

√
t ≤ Mx(t) ≤ c2

√
t . (4.9)

Once again the proof is the same as in [2], Proposition 3.4. Note that, in the notation of [2],
TB = |x|1/θ so that (4.9) holds for t ≥ 1

θ
|x|1/θ log |x|. The end of the proof is identical to the

proof of (3.13) in [2]. �

Lemma 4.3 Q
ξ

0 a.s. for large enough t , we have

P ω
x [τ(x, r) < t] ≤ 27(ce)

3

(√
t

r

)3

, (4.10)

for any x ∈ Z
d and r such that |x| ≤ t θ and r ≤ t θ .

Proof Let x ′ = Xξ(τ(x, r/3)), x ′′ = Xξ(τ ′(x ′, r/3)) where τ ′(x ′, r/3) is the exit time from
the ball of center x ′ and radius r/3 after time τ(x, r/3) and let τ ′′(x ′′, r/3) be the exit time
from the ball of center x ′′ and radius r/3 after time τ ′(x, r/3). In order that τ(x, r) < t under
P ω

x we must have τ(x, r/3) < t and τ ′(x ′, r/3) < t and τ ′′(x ′′, r/3) < t . We can then use
Lemma 4.2 to estimate the probabilities of these 3 events and conclude that (4.10) holds. �
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Lemma 4.4 For small enough ξ , Q0 almost surely, under P ω
0 , the family of processes

(Xξ,ε(t) = εXξ ( t

ε2 ), t ∈ R+) is tight in the Skorokhod topology (as ε goes to 0).

Proof We shall prove that, for any T > 0, for any η > 0 and for small enough θ0 then

lim sup
ε

sup
v≤T

P ω
0

(
sup

u≤T ;v≤u≤v+θ0

|Xξ,ε(u) − Xξ,ε(v)| > η
)

≤ 27(ce)
3

(√
θ0

η

)3

. (4.11)

Indeed inequality (4.11) implies that

lim sup
θ0

1

θ0
lim sup

ε

sup
v≤T

P ω
0

(
sup

u≤T ;v≤u≤v+θ0

|Xξ,ε(u) − Xξ,ε(v)| > η
)

= 0. (4.12)

According to Theorem 8.3 in Billingsley’s book [6], this last inequality is sufficient to ensure
the tightness.

We use Lemma 4.2 with θ = 1 to check that

P ω
0

(
sup
t≤T

|Xξ,ε(t)| ≥ K
)

= P ω
0

(
τ

(
0,

K

ε

)
≤ T

ε2

)
≤ ce

√
T

K
.

(We could use Lemma 4.2 since K
ε

≤ T

ε2 for small ε.)
Next choose η > 0 and use Lemma 4.3 with θ = 3 and the Markov property to get that

P ω
0

(
sup

v≤u≤T ;u−v≤θ0

|Xξ,ε(u) − Xξ,ε(v)| > η
)

≤ P ω
0

(
sup
t≤T

|Xξ,ε(t)| ≥ K
)

+ sup
y;|y|≤K/ε

P ω
y

(
τ

(
y,

η

ε

)
≤ θ0

ε2

)
.

If we choose K of order 1/ε and pass to the limit as ε tends to 0, then, due to the previous
inequality, the contribution of the first term vanishes. As for the second term, by Lemma 4.3,
it is bounded by 27(ce)

3(
√

θ0
η

)3. Note that we could use Lemma 4.3 since K
ε

≤ (
θ0
ε2 )3 and

η

ε
≤ (

θ0
ε2 )3 for small ε. Thus the proof of (4.11) is complete. �

Step 4: Poincaré Inequalities and End of the Proof of Theorem 2.2 Applied to a centered
function f , Nash inequality (4.5) reads:

‖f ‖2+ 4
ε(n)

2 ≤ βn
2(1− d

ε(n)
)Eξ,ω,n(f, f )‖f ‖4/ε(n)

1 .

Holder’s inequality implies that

‖f ‖1 ≤ ‖f ‖2(2n + 1)d/2

since #Cn(ω) ≤ (2n + 1)d . We deduce that any centered function on Cn(ω) satisfies

‖f ‖2
2 ≤ βn2Eξ,ω,n(f, f ),

for some constant β . Equivalently, any (not necessarily centered) function on Cn(ω) satisfies

Var(f ) ≤ βn2Eξ,ω,n(f, f ).
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Thus we have proved the following Poincaré inequality on Cn(ω): there is a constant β

such that, Q
ξ

0 a.s. for large enough n, for any function f : Cn(ω) → R then

∑

x∈Cn(ω)

f (x)2 ≤ βn2
∑

x∼y∈Cn(ω)

ωξ (x, y)(f (x) − f (y))2. (4.13)

Our second Poincaré inequality is derived from [2], see Definition 1.7, Theorem 2.18,
Lemma 2.13(a) and Proposition 2.17(b): there exist constants M < 1 and β such that Q

ξ

0
a.s. for any δ > 0, for large enough n, for any z ∈ Z

d s.t. |z| ≤ n and for any function
f : Z

d → R then

∑

x∈Cξ (ω)∩(z+[−Mδn,Mδn]d )

f (x)2 ≤ βδ2n2
∑

x∼y∈Cξ (ω)∩(z+[−δn,δn]d )

ωξ (x, y)(f (x) − f (y))2.

(4.14)
In [2], inequality (4.14) is in fact proved for the Dirichlet form Eα′,n but the comparison
inequality (4.4) implies that it also holds for the Dirichlet form Eξ,ω,n.

One can now conclude the proof of the theorem following the argument in [14] line by
line starting from Sect. 2.2. �

5 Percolation Results

5.1 Prerequisites on Site Percolation

We shall use some properties of site percolation that we state below.
By site percolation of parameter r on Z

d , we mean the product Bernoulli measure of
parameter r on the set of applications ζ : Z

d → {0,1}. We identify any such application
with the sub-graph of the grid whose vertices are the points x ∈ Z

d such that ζ(x) = 1 and
equipped with the edges of the grid linking two points x, y such that ζ(x) = ζ(y) = 1.

Let l > 1. Call a sub-set of Z
d l-connected if it is connected for the graph structure

defined by: two points are neighbors when the Euclidean distance between them is less
than l.

We recall our notation |x − y| for the Euclidean distance between x and y.
A path is a sequence of vertices of Z

d such that two successive vertices in π are neigh-
bors. We mostly consider injective paths. With some abuse of vocabulary, a sequence of
vertices of Z

d in which two successive vertices are at distance not more than l will be called
a l-nearest-neighbor path. Let π = (x0, . . . , xk) be a sequence of vertices. We define its
length

|π | =
k∑

j=1

|xj−1 − xj |,

and its cardinality #π = #{x0, . . . , xk}. (#π = k + 1 for an injective path.) When convenient,
we identify an injective path with a set (its range).

Lemma 5.1 Let l > 1. There exists p1 > 0 such that for r < p1, almost any realization
of site percolation of parameter r has only finite l-connected components and, for large
enough n, any l-connected component that intersects the box [−n,n]d has volume smaller
than (logn)6/5.
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Proof the number of l-connected sets that contain a fixed vertex and of volume m is smaller
than ea(l)m for some constant a(l), see [11]. Thus the number of l-connected sets of vol-
ume m that intersect the box [−n,n]d is smaller than (2n + 1)dea(l)m. But the probability
that a given set of volume m contains only opened sites is rm ≤ pm

1 . We now choose p1

small enough so that
∑

n

∑
m≥(logn)6/5(2n + 1)dea(l)mpm

1 < ∞ and the Borel-Cantelli lemma
yields the conclusion of Lemma 5.1. �

As in the case of bond percolation discussed in the introduction, it is well known that for r

larger than some critical value then almost any realization of site percolation of parameter r

has a unique infinite connected component—the infinite cluster—that we will denote with C.

Lemma 5.2 There exists p2 < 1 such that for r > p2, for almost any realization of site
percolation of parameter r and for large enough n, any connected component of the com-
plement of the infinite cluster C that intersects the box [−n,n]d has volume smaller than
(logn)5/2.

Proof let ζ be a typical realization of site percolation of parameter r . We assume that r

is above the critical value so that there is a unique infinite cluster, C. We also assume that
1 − r < p1 where p1 is the value provided by Lemma 5.1 for l = d .

Let A be a connected component of the complement of C. Define the interior boundary
of A: ∂intA = {x ∈ A; ∃y s.t. (x, y) ∈ Ed and y /∈ A}. It is known that ∂intA is d-connected,
see [9], Lemma 2.1. By construction any x ∈ ∂intA satisfies ζ(x) = 0. Since the application
x → 1 − ζ(x) is a typical realization of site percolation of parameter 1 − r and 1 − r < p1,
as an application of Lemma 5.1 we get that ∂intA is finite. Because we already know that the
complement of A is infinite (since it contains C), it implies that A itself is finite.

We now assume that A intersects the box [−n,n]d . Choose n large enough so that
C ∩ [−n,n]d 
= ∅ so that [−n,n]d is not a sub-set of A. Then it must be that ∂intA inter-
sects [−n,n]d . Applying Lemma 5.1 again, we get that, for large n, the volume of ∂intA

is smaller than (logn)6/5. The classical isoperimetric inequality in Z
d implies that, for

any finite connected set B , one has (#∂intB)d/(d−1) ≥ I#B for some constant I . Therefore
#A ≤ I−1(logn)6d/5(d−1). Since 6d/5(d − 1) < 5/2, the proof is complete. �

Lemma 5.3 There exists p3 < 1 and a constant c3 such that for r > p3, for almost any
realization of site percolation of parameter r and for large enough n, for any two points
x, y in the box [−n,n]d such that |x − y| ≥ (logn)3/2 we have

(i) for any injective d-nearest-neighbor path π from x to y then

#{z ∈ π; ζ(z) = 1} ≥ c3|x − y|,
(ii) for any injective (1-nearest-neighbor) path π from x to y then

#(C ∩ π) ≥ c3|x − y|.

Proof We assume that r is close enough to 1 so that there is a unique infinite cluster C. We
also assume that 1 − r < p1, where p1 is the constant appearing in Lemma 5.1 for l = 1.
Then the complement of C only has finite connected components.

Part (i) of the lemma is proved by a classical Borel-Cantelli argument based on the fol-
lowing simple observations: the number of injective d-nearest-neighbor paths π from x

of length L is bounded by (cd)
L for some constant cd that depends on the dimension d
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only; the probability that a given set of cardinality L contains less than dc3L sites where
ζ = 1 is bounded by exp(λdc3L)(re−λ + 1 − r)L for all λ > 0. We choose c3 < 1

d
and λ

such that cde
−(1−dc3)λ < 1 and p3 such that γ = cde

λdc3(p3e
−λ + 1 − p3) < 1. Let now x

and y be as in the lemma. Note that any injective d-nearest-neighbor path π from x to y

satisfies #π ≥ 1
d
|x − y| ≥ 1

d
(logn)3/2. Therefore the probability that there is an injective

d-nearest-neighbor path π from x to y such that #{z ∈ π; ζ(z) = 1} < c3|x − y| is smaller
than

∑
L≥ 1

d
(logn)3/2 γ L and the probability that (i) fails for some x and y in the box [−n,n]d

is smaller than (2n+ 1)2d
∑

L≥ 1
d

(logn)3/2 γ L. Since
∑

n(2n+ 1)2d
∑

L≥ 1
d

(logn)3/2 γ L < ∞, the
Borel-Cantelli lemma then yields that, for large enough n, part (i) of Lemma 5.3 holds.

We prove part (ii) by reducing it to an application of part (i). Assume that, for some points
x and y as in the lemma, there exists an injective nearest-neighbor path π from x to y such
that #(C ∩ π) < c3|x − y|. We first modify the path π into a d-nearest-neighbor path from x

to y, say π ′, in the following way: the parts of π that lie in C remain unchanged but the parts
of π that visit the complement of C are modified so that they only visit points where ζ = 0.
Such a modified path π ′ exists because the interior boundary of a connected component of
the complement of C is d connected (as we already mentioned in the proof of Lemma 5.2)
and only contains points where ζ = 0.

Observe that C ∩ π ′ = C ∩ π and that C ∩ π ′ = {z ∈ π ′; ζ(z) = 1} so that

#{z ∈ π ′; ζ(z) = 1} < c3|x − y|.
Next turn π ′ into an injective d-nearest-neighbor path, say π ′′, by suppressing loops in π ′.
Clearly {z ∈ π ′′; ζ(z) = 1} ⊂ {z ∈ π ′; ζ(z) = 1} and therefore

#{z ∈ π ′′; ζ(z) = 1} < c3|x − y|,
a contradiction with part (i) of the lemma. �

5.2 Proof of Lemma 3.1

Lemma 3.1 only deals with the geometry of percolation clusters, with no reference to ran-
dom walks. We will restate it as a percolation lemma at the cost of changing a little our
notation. In order to make a distinction with a typical realization of an environment for
which we used the notation ω, we will use the letters α or α′ to denote typical realizations
of a percolation graphs. Thus one switches from the notation of the following proof back to
the notation of part 3 using the following dictionary:

α(e) = 1ω(e)>0, α′(e) = 1ω(e)≥ξ ,

q = Q(ω(e) > 0), p = Q(ω(e) ≥ ξ |ω(e) > 0).

This way taking ξ close to 0 is equivalent to taking p close to 1.
We very much rely on renormalization technics, see Proposition 2.1 in [1].
As in the introduction, we identify a sub-graph of Z

d with an application α : Ed → {0,1},
writing α(x, y) = 1 if the edge (x, y) is present in α and α(x, y) = 0 otherwise. Thus A =
{0,1}Ed is identified with the set of sub-graphs of Z

d . Edges pertaining to α are then called
open. Connected components of such a sub-graph will be called clusters.

Define now Q to be the probability measure on {0,1}Ed under which the random vari-
ables (α(e), e ∈ Ed) are Bernoulli (q) independent variables with

q > pc.

Then, Q almost surely, the graph α has a unique infinite cluster denoted with C(α).
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For a typical realization of the percolation graph under Q, say α, let Qα be the law
of bond percolation on C(α) with parameter p. We shall denote α′ a typical realization
under Qα , i.e. α′ is a random subgraph of C(α) obtained by keeping (resp. deleting) edges
with probability p independently of each other. We always assume that p is close enough
to 1 so that Qα almost surely there is a unique infinite cluster in α′ that we denote Cα(α′). By
construction Cα(α′) ⊂ C(α). Connected components of the complement of Cα(α′) in C(α)

are called holes.
We now restate Lemma 3.1:

There exists p0 < 1 such that for p > p0, for Q almost any α, for Qα almost any α′,
for large enough n, then any hole intersecting the box [−n,n]d has volume smaller than
(logn)a .

Renormalization: Let α be a typical realization of percolation under Q.
Let N be an integer. We chop Z

d in a disjoint union of boxes of side length 2N + 1. Say
Z

d = ⋃
i∈Zd Bi, where Bi is the box of center (2N + 1)i. Following [1], let B ′

i be the box of
center (2N + 1)i and side length 5

2N + 1. From now on, the word box will mean one of the
boxes Bi, i ∈ Z

d .
We say that a box Bi is white if Bi contains at least one edge from α and the event R

(N)

i in
(2.9) of [1] is satisfied. Otherwise, Bi is a black box. We recall that the event R

(N)

i is defined
by: there is a unique cluster of α in B ′

i , say Ki; all open paths contained in B ′
i and of radius

larger than 1
10N intersect Ki within B ′

i ; Ki is crossing for each subbox B ⊂ B ′
i of side larger

than 1
10N (see [1] for details). We call Ki the crossing cluster of α in the box Bi. Note the

following consequences of this definition.

Fact (i) If x and y belong to the same white box Bi and both x and y belong to the infinite
cluster of α, then there is a path in C(α) connecting x and y within B ′

i .
Fact (ii) Choose two neighboring indices i and j with |i− j| = 1 and such that both boxes Bi

and Bj are white. As before, let Ki and Kj be the crossing clusters in Bi and Bj respectively.
Let x ∈ Ki and y ∈ Kj. Then there exists a path in α connecting x and y within B ′

i ∪ B ′
j .

We call renormalized process the random subsets of Z
d obtained by taking the image of

the initial percolation model by the application φN , see equation (2.11) in [1]. A site i ∈ Z
d

is thus declared white if the box Bi is white.
Let Q be the law of the renormalized process. The comparison result of Proposition 2.1

in [1] states that Q stochastically dominates the law of site percolation with parameter p(N)

with p(N) → 1 as N tends to ∞.
We now introduce the extra percolation Qα . Let us call grey a white box Bi that contains

an edge e ∈ C(α) such that α′(e) = 0. We call pure white white boxes that are not grey.
Let Q′ be the law on subsets of the renormalized grid obtained by keeping pure white

boxes, and deleting both black and grey boxes. We claim that Q′ dominates the law of
site percolation with parameter p′(N) = p(N)peN (d) where eN(d) is the number of edges
in a box of side length 2N + 1. (Remember that p is the parameter of Qα .) This claim
is a consequence of the three following facts. We already indicated that Q stochastically
dominates the law of site percolation with parameter p(N). The conditional probability that
a box Bi is pure white given it is white is larger or equal than peN (d). Besides, still under the
condition that Bi is white, the event ‘Bi is pure white’ is independent of the colors of the
other boxes.

We further call immaculate a pure white box Bi such that any box Bj intersecting B ′
i is

also pure white. Call Q′′ the law on subsets of the renormalized grid obtained by keeping
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only immaculate boxes. Since the event ‘Bi is immaculate’ is an increasing function with re-
spect to the percolation process of pure white boxes, we get that Q′′ stochastically dominates
the law of site percolation with parameter p′′(N) = p′(N)3d

.
End of the proof of Lemma 3.1: Choose p0 and N such that p′′(N) is close enough to 1

so that, Q′′ almost surely, there is an infinite cluster of immaculate boxes that we call C.
For i ∈ C, let Ki be the crossing cluster in the box Bi and let K = ⋃

i∈C
Ki. Then K is

connected (this follows from the definition of white boxes, see Fact (i) and Fact (ii) above)
and infinite (because C is infinite). Thus we have K ⊂ Cα(α′).

Let A be a hole and let A be the set of indices i such that Bi intersects A. Observe that A
is connected. We claim that

A ∩ C = ∅.

Indeed, assume there exists x ∈ Bi such that i ∈ C and x ∈ A. By definition A is a subset
of C(α) and therefore x ∈ C(α). Let y ∈ Ki, y 
= x. As we already noted y ∈ Cα(α′). Since
x ∈ C(α) and y ∈ C(α) there is a path, π , connecting x and y within B ′

i , see Fact (i) above.
But Bi is immaculate and therefore B ′

i only contains edges e with α′(e) = 1. Therefore all
edges along the path π belong to α′ which imply that x ∈ Cα(α′). This is in contradiction
with the assumptions that x ∈ A. We have proved that A ∩ C = ∅.

To conclude the proof of Lemma 3.1, it only remains to choose p0 and N such that
p′′(N) ≥ p2 and apply Lemma 5.2. We deduce that the volume of A is bounded by (logn)5/2

and therefore the volume of A is smaller than (2N + 1)d(logn)5/2.

5.3 Deviation of the Chemical Distance

We use the same notation as in the preceding section. For given realizations of the perco-
lations α and α′, we define the corresponding chemical distance dα

α′ on Cα(α′): two points
x 
= y in Cα(α′) satisfy dα

α′(x, y) = 1 if and only if one (at least) of the following two con-
ditions is satisfied: either x and y are neighbors in Z

d and α′(x, y) = 1 or both x and y are
at the boundary of a hole h i.e. there is a hole h and x ′, y ′ ∈ h such that x ′ is a neighbor
of x and y ′ is a neighbor of y. In general, dα

α′(x, y) is defined as the smaller integer k such
that there exists a sequence of points x0, . . . , xk in Cα(α′) with x0 = x, xk = y and such that
dα

α′(xj , xj+1) = 1 for all j .

Lemma 5.4 There exists p4 < 1 such that for p > p4, there exist constants c+ and c− such
that for Q almost any α, for Qα almost any α′, for large enough n, then

c−|x − y| ≤ dα
α′(x, y) ≤ c+|x − y|, (5.1)

for any x, y ∈ Cα(α′) such that x ∈ [−n,n]d and |x − y| ≥ (logn)2.

Proof let dα(x, y) be the chemical distance between x and y within C(α) i.e. dα(x, y) is the
minimal length of a path from x to y, say π , such that any edge e ∈ π satisfies α(e) = 1.

Applying Theorem 1.1 in [1] together with the Borel-Cantelli lemma, we deduce that
there exists a constant c+ such that dα(x, y) ≤ c+|x − y| for any x, y ∈ C(α) such that
x ∈ [−n,n]d and |x − y| ≥ (logn)2. Since dα

α′(x, y) ≤ dα(x, y), it gives the upper bound
in (5.1).

We now give a proof of the lower bound. As for Lemma 3.1, we use a renormalization
argument. The notation used below is borrowed from the proof of Lemma 3.1 except that
the role of p0 is now played by p4.
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We wish to be able to apply Lemma 5.3(ii) to the renormalized site percolation model
with law Q′′ (i.e. the percolation model of immaculate boxes): therefore we choose p4 and N

such that p′′(N) ≥ p3 and observe that the event considered in Lemma 5.3(ii) is increasing.
Consider two points x and y as in Lemma 5.4 and let π be an injective path from x to y

within C(α). We shall prove that

#Eπ ≥ c5|x − y|, (5.2)

where Eπ = {z, z′ ∈ π ∩ Cα(α′);α′(z, z′) = 1}. By construction of the chemical distance dα
α′ ,

(5.2) implies the lower bound in (5.1) with c− = c5.
Let �′ be the sequence of the indices of the boxes Bi that π intersects. At the level of the

renormalized grid, �′ is a nearest-neighbor path from i0 to ik with x ∈ Bi0 and y ∈ Bik . Let
� = (i0, . . . , ik) be the injective path obtained by suppressing loops in �′. We may, and will,
assume that n is large enough so that i0 
= ik and so that |i0 − ik| and |x − y| are comparable.
Applying Lemma 5.3(ii) to Q′′, we get that

#(C ∩ �) ≥ c3|i0 − ik| ≥ c′
3|x − y|, (5.3)

for some constant c′
3.

Let i ∈ C ∩ � and choose z ∈ Bi ∩ π . Since the path π is not entirely contained in one
box, it must be that π connects z to some point z′ /∈ Bi. Since z′ ∈ π , we also have z′ ∈ C(α).
By definition of a white box, it implies that z ∈ Ki. Since i ∈ C, it implies that actually z ∈ K

and therefore z ∈ Cα(α′). As a matter of fact, since the box Bi is pure white, we must have
α′ = 1 on all the edges of π from z to z′. In particular z has a neighbor in C(α), say z′′,
such that α′(z, z′′) = 1. Therefore (z, z′′) ∈ Eπ . We conclude that any index in C ∩ � gives
a contribution of at least 1 to #Eπ . Therefore (5.3) implies that

#Eπ ≥ c′
3|x − y|. �
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