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Abstract The Navier-Stokes transport coefficients for binary mixtures of smooth inelastic
hard disks or spheres under gravity are determined from the Boltzmann kinetic theory by
application of the Chapman—Enskog method for states near the local homogeneous cool-
ing state. It is shown that the Navier—Stokes transport coefficients are not affected by the
presence of gravity. As in the elastic case, the transport coefficients of the mixture verify a
set of coupled linear integral equations that are approximately solved by using the leading
terms in a Sonine polynomial expansion. The results reported here extend previous calcu-
lations (Garzd, V., Dufty, J.W. in Phys. Fluids 14:1476-1490, 2002) to an arbitrary number
of dimensions and provide explicit expressions for the seven Navier—Stokes transport co-
efficients in terms of the coefficients of restitution and the masses, composition, and sizes
of the constituents of the mixture. In addition, to check the accuracy of our theory, the in-
elastic Boltzmann equation is also numerically solved by means of the direct simulation
Monte Carlo method to evaluate the diffusion and shear viscosity coefficients for hard disks.
The comparison shows a good agreement over a wide range of values of the coefficients of
restitution and the parameters of the mixture (masses and sizes).

Keywords Granular binary mixtures - Inelastic Boltzmann equation - Navier—Stokes
transport coefficients - DSMC method
1 Introduction

The simplest model for a granular fluid is a system composed by smooth hard spheres or
disks with inelastic collisions. The only difference from the corresponding model for normal

V. Garz6 (X))
Departamento de Fisica, Universidad de Extremadura, 06071 Badajoz, Spain
e-mail: vicenteg@unex.es

J.M. Montanero

Departamento de Electrénica e Ingenieria Electromecénica, Universidad de Extremadura, 06071
Badajoz, Spain

e-mail: jmm@unex.es

@ Springer



28 J Stat Phys (2007) 129: 27-58

fluids is the loss of energy in each binary collision, characterized by a (constant) coefficient
of normal restitution. For a low density gas, the Boltzmann kinetic equation conveniently
modified to account for inelastic collisions [1-3] has been used in recent years as the start-
ing point to derive the hydrodynamic-like equations of the system. Thus, assuming the ex-
istence of a normal (hydrodynamic) solution for sufficiently long space and time scales, the
Chapman-Enskog (CE) method [4] has been applied to solve the Boltzmann equation to
Navier-Stokes (NS) order and get explicit expressions for the transport coefficients. While
this goal has been widely covered in the case of a monocomponent gas [5—7], much less
is known for systems composed by grains of different masses, sizes, and concentrations
(granular mixtures).

Needless to say, the determination of the NS transport coefficients for a multicomponent
granular fluid is much more complicated than for a single granular system. Many attempts to
derive these coefficients [8—11] have been carried out by means of the CE expansion around
Maxwellians at the same temperature T for each species. The use of this distribution can
only be considered as acceptable for nearly elastic systems where the assumption of the
equipartition of energy still holds. In addition, according to this level of approximation, the
inelasticity is only accounted for by the presence of a sink term in the energy balance equa-
tion and so the expressions of the NS transport coefficients are the same as those obtained
for elastic collisions. However, as the dissipation increases, different species of a granular
mixture have different partial temperatures 7; and consequently, the energy equipartition is
seriously broken (7; # T). The failure of energy equipartition in granular fluids [12, 13]
has also been confirmed by computer simulations [14-22] and even observed in real exper-
iments [23, 24] of agitated mixtures. All the results show that deviations from equipartition
depend on the mechanical differences between the particles of each species and the co-
efficients of restitution of the system. Given that the inclusion of nonequipartition effects
increases the level of complexity of the problem, it is interesting from a practical point of
view to assess the influence of this effect on the transport properties of the system. If the
NS transport coefficients turned out to be quite sensitive to nonequipartition, the predictions
made from previous theories [8—11] should be reexamined by theories that take into account
the nonequipartition of energy. For this reason, although the possibility of nonequipartition
was already pointed out many years ago [25], a careful study of its influence on transport
has only been carried out recently. In this context, Garzé and Dufty [26] have developed a
kinetic theory for a binary granular mixture of inelastic hard spheres at low density which
accounts for nonequipartition effects. Their results show that in general the consequences of
the temperature differences for the transport coefficients are quite significant, especially for
strong dissipation [27, 28]. It is important to remark that the expressions derived in Ref. [26]
for the Navier—Stokes transport coefficients do not limit their application to weak inelastic-
ity. In fact, the results reported in this paper include a domain of both weak and strong
inelasticity, 0.5 < o < 1, where « is the (common) coefficient of restitution considered. The
accuracy of these theoretical predictions (based on a Sonine polynomial expansion) has been
confirmed by Monte Carlo simulations of the inelastic Boltzmann equation in the cases of
the diffusion coefficient [29] and the shear viscosity coefficient of a mixture heated by an
external thermostat [30]. Exceptions to this good agreement are extreme mass or size ratios
and strong dissipation, although these discrepancies are mitigated in part if one retains more
terms in the Sonine polynomial expansion [29]. For small dissipation, the results derived by
Garz6 and Dufty [26] agree with those recently obtained by Serero et al. [31] in the first
order of the order parameter €;; =1 — ozizj.

The CE method solves the Boltzmann equation by expanding the distribution function of
each species f;(r, v, t) around the local homogeneous cooling state (HCS) [12]. This state
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plays the same role for granular gases as the local equilibrium distribution for a gas with
elastic collisions. Given that the form of the distribution function fi(o) of the HCS is not
exactly known, one usually considers the first correction to a Maxwellian at the temperature
for that species, namely, a polynomial in velocity of degree four (leading Sonine correc-
tion). However, the results derived for hard spheres clearly show that the influence of these
non-Gaussian contributions to the transport coefficients are in general negligible, except in
the case of the heat flux for quite large values of dissipation [28]. Accordingly, a theory
incorporating the contributions coming from the deviations of the HCS from its Gaussian
form does not seem necessary in practice for computing the NS transport coefficients of the
mixture.

The objective of this paper is twofold. First, given that the results reported in Ref. [26]
are limited to hard spheres, we extend here this derivation to an arbitrary number of di-
mensions d. This goal is not only academic since, from a practical standpoint, many of the
experiments reported for flowing granular materials have created (quasi) two-dimensional
systems by confining grains between vertical or on a horizontal or tilted surface, enabling
data collection by high-speed video [32-37]. Regarding computer simulations, most of them
consider hard disks to save computer time and memory. For these reasons, it would be desir-
able to provide experimentalists and simulators with theoretical tools to work when studying
problems both in two and three dimensions. In addition, apart from its practical interest, it is
also interesting from a fundamental view to explore what is the influence of dimensionality
on the dependence of the transport coefficients on dissipation. As a second target, we want
also to present a simplified theory with explicit expressions for the transport coefficients.
As the algebra involved in the calculations of Ref. [26] is complex, the constitutive rela-
tions for the fluxes were not explicitly displayed in this paper. Although the work carried
out here involves complex algebra as well, the use of Maxwellians at different temperatures
for the distribution functions of each species in the reference state allows us to explicitly
obtain expressions for the seven relevant transport coefficients of the mixture in terms of the
mechanical parameters of the system: masses, sizes, composition and coefficients of resti-
tution. To assess the degree of accuracy of our (approximated) expressions, we have also
performed Monte Carlo simulations for the diffusion and the shear viscosity coefficients for
hard disks (d = 2). As shown below, the good agreement found between the results derived
in this paper with computer simulations justifies this simplification and allows one to obtain
more simplified forms of the transport coefficients.

The plan of the paper is as follows. In Sect. 2, the inelastic Boltzmann equation and
the corresponding hydrodynamic equations are recalled. The CE expansion adapted to the
inelastic binary mixtures is formulated in Sect. 3. Assuming that gradients and dissipation
are independent parameters, the Boltzmann equation is solved by means of an expansion
in powers of the spatial gradients around the local HCS distribution fi(o). It is shown that
the use of the local HCS as the reference state is not an assumption of the CE method but
a consequence of the exact solution to the Boltzmann equation in the zeroth-order approx-
imation. Section 4 deals with the expressions for the NS transport coefficients. As in the
case of elastic collisions, these coefficients are the solutions of a set of coupled linear inte-
gral equations which involves the (unknown) distributions fi(o). The integral equations are
solved by considering two approximations: First, fi(o) is replaced by its Maxwellian form
at the temperature 7;, and second, only the leading terms in a Sonine polynomial expansion
of the first-order distribution f" are retained. Technical details of the calculations carried
out here are given in Appendices 1, 2 and 3. A comparison with previous results [31] based
on the use of Maxwellians at the same temperature 7 as a ground state is also illustrated
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in Sect. 4, showing significant discrepancies between both descriptions at moderate dissi-
pation. Section 5 is devoted to the numerical solutions of the Boltzmann equation by using
the direct simulation Monte Carlo (DSMC) method [38] in the cases of the diffusion D
and shear viscosity n coefficients for hard disks. To the best of our knowledge, this is the
first time that the NS shear viscosity of a granular binary mixture at low density has been
numerically obtained from the DSMC method. The paper is closed in Sect. 6 with a brief
discussion of the results presented in this paper.

2 Boltzmann Equation and Conservation Laws

Consider a binary mixture composed by smooth inelastic disks (d = 2) or spheres (d = 3)
of masses m; and m,, and diameters o; and o,. The inelasticity of collisions among all
pairs is characterized by three independent constant coefficients of restitution oy, oy, and
ajy = any, where o;; < 1 is the coefficient of restitution for collisions between particles of
species i and j. The mixture is in presence of the gravitational field so that each particle
feels the action of the force F; = m;g, where g is the gravity acceleration. In the low density
regime, the distribution functions f;(r,v;t) (i = 1, 2) for the two species are determined
from the set of nonlinear Boltzmann equations [2]

5 2
<3¢ +v-V+g. E)ﬁ(l‘, V.1) = Z-’ij[ﬂfi(t)v Ji(®], 2.1
j=1

where the Boltzmann collision operator J;;[v] f;, f;]is

Jijvil fi, £l ZG,-(;_I /dV2/d5@(5 -£12)(6 - g12)
X [al-;zf,-(r, Vi, ) fi(r, vy, 1) — fi(r, vy, 1) fi(r, va, 1)]. (2.2)

In (2.2), d is the dimensionality of the system, o;; = (0; + ¢;)/2, & is an unit vector along
the line of centers, @ is the Heaviside step function, and g;, = v, — v, is the relative velocity.
The primes on the velocities denote the initial values {v}, v,} that lead to {v;, v} following
a binary (restituting) collision:

vi=vi—pji(l +Ol,§1)(6 - 812)0,
1 2.3)
Vo =vo+ (1 + ;) (6 - g12)G,
where (;; = m;/(m; 4+ m ). The relevant hydrodynamic fields are the number densities n;,

the flow velocity u, and the temperature 7. They are defined in terms of moments of the
distributions f; as

2
n; =/dvﬁ(v), pu=2mi/dvvf,»(v), 2.4)
i=1

2 2
nT=p=Zn,-T,-=Z%/de2f,~(v), 2.5)
i=1 i=1
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where V= v — u is the peculiar velocity, n = n; + n, is the total number density, p =
mny + man;, is the total mass density, and p is the pressure. Furthermore, the third equality
of (2.5) defines the kinetic temperatures 7; for each species, which measure their mean
kinetic energies.

The collision operators conserve the particle number of each species and the total mo-
mentum but the total energy is not conserved:

/dVJ,'j [V|f,‘, f,] = 0, (26)
2 2
ZZ /dvvj,-,-[vm,fj] =0, 2.7)

2 2
ZZmi/dvsz,-j[vlf,-,fj]:—dnT;“, (2.8)
i=1 j=1

where ¢ is identified as the total “cooling rate” due to inelastic collisions among all species.
At a kinetic level, it is also convenient to introduce the “cooling rates” ¢; for the partial
temperatures 7;. They are defined as

2 2
L= Gi= _dZ-lT. Z/dvvzfi.f[ﬂfi» il 2.9)
j=1 =1

where the second equality defines the quantities &;;. The total cooling rate ¢ can be written
in terms of the partial cooling rates ¢; as

2
=T7') xlis. (2.10)

where x; = n;/n is the mole fraction of species i.
From (2.4-2.8), the macroscopic balance equations for the mixture can be obtained. They
are given by

Vi
Din; +n;V-u+ =0, (211)
m;
Du+p'v.P=g, (2.12)
TV-ji 2
D,T — - L (V-q+P:Vu)=—¢T. 2.13
: nzmi + (Vg PV =—¢ (2.13)

i=l1

In the above equations, D, = 9, +u - V is the material derivative,
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is the mass flux for species i relative to the local flow,

2
P=Y "m / dvVV fi(v) (2.15)
i=1
is the total pressure tensor, and
2
=) — [ dvV?V§ 2.16
q ; > [ VY2V fi(v) (2.16)

is the total heat flux.

The macroscopic balance equations (2.11-2.13) are not entirely expressed in terms of
the hydrodynamic fields, due to the presence of the cooling rate ¢, the mass flux j;, the
heat flux q, and the pressure tensor P which are given as functionals of the distributions
fi- However, it these distributions can be expressed as functionals of the hydrodynamic
fields, then the cooling rate and the fluxes also will become functional of the hydrodynamic
fields through (2.9) and (2.14-2.16). Such expressions are called constitutive relations and
they provide a link between the exact balance equations and a closed set of equations for the
hydrodynamic fields. This hydrodynamic description can be derived by looking for a normal
solution to the Boltzmann kinetic equation. A normal solution is one whose all space and
time dependence of the distribution function f; occurs through a functional dependence on
the hydrodynamic fields,

fite,v,t) = filvixi(x,t), p(x,t), T(r,t),u(r, t)]. 2.17)

As in previous works [26, 28], we have taken the set {x;, p, T, u} as the d + 3 indepen-
dent fields of the two-component mixture. These are the most accessible fields from an
experimental point of view. The determination of this normal solution from the Boltzmann
equation (2.1) is a very difficult task in general, unless the spatial gradients are small. In this
case, the CE method gives an approximate solution.

3 Chapman-Enskog Solution

The CE method is a procedure to construct an approximate normal solution. It is pertur-
bative, using the spatial gradients as the small expansion parameter. More specifically, one
assumes that the spatial variations of the hydrodynamic fields n;, u, p, and T are small on
the scale of the mean free path. For ordinary gases this can be controlled by the initial or
boundary conditions. It is more complicated for granular gases, since in some cases (e.g.,
steady states such as the simple shear flow problem [39]) the boundary conditions imply a
relationship between dissipation and some hydrodynamic gradient. As a consequence, there
are examples for which the NS approximation is restricted to the quasi-elastic limit [39].
Here, we also assume that the spatial gradients are independent of the coefficients of restitu-
tion so that, the corresponding NS order hydrodynamic equations apply for small gradients
but they are not limited a priori to weak inelasticity. It must be emphasized that our pertur-
bation scheme differs from the one recently carried out by Serero et al. [31] where the CE
solution is given in powers of both the hydrodynamic gradients (or equivalently, the Knud-
sen number) and the degree of dissipation €;; = 1 — .. The results provided in Ref. [31]
only agree with our results in the quasielastic domain (small ¢; ;)- Moreover, in the presence
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of an external force it is necessary to characterize the magnitude of the force relative to gra-
dients as well. As in the elastic case [4], it is assumed here that the magnitude of the gravity
field is at least of first order in perturbation expansion.

For small spatial variations, the functional dependence (2.17) can be made local in space
through an expansion in gradients of the hydrodynamic fields. To generate it, f; is written
as a series expansion in a formal parameter 6 measuring the nonuniformity of the system,

PR O N I (3.1)

where each factor of § means an implicit gradient of a hydrodynamic field. The local refer-
ence states fl.(o) are chosen such that they verify (2.4) and (2.5), or equivalently, the remain-
der of the expansion must obey the orthogonality conditions

/ AW = 1O =0, (32)
2
> omi / dwifiv) — f2w1=0, 3.3)
i=1
2 m
Zj/dez[f,-(v) — fPw1=0. (3.4)
i=1

The time derivatives of the fields are also expanded as 9, = 8,(0) + 88,(1) + ---. The action of
the operators 8t(k) can be obtained from the balance equations (2.11-2.13) when one takes
into account the corresponding expansions for the fluxes and the cooling rate. This is the
usual CE method [4] for solving kinetic equations. The main difference in the case of in-
elastic collisions is that the reference state has a time dependence associated with the cooling
that is not proportional to the gradients. As a consequence, terms from the time derivative
3" are not zero. In addition, the different approximations fi(k) are well-defined functions of
the coefficients of restitution «;;, regardless of the applicability of the corresponding hydro-
dynamic equations truncated at that order.

3.1 Zeroth-Order Approximation

To zeroth order in the gradients, (2.1) becomes
2
o ;0 =3 "1t 101, (3.5)
j=1

where use has been made of the fact that gravity is assumed to be of first order in the
uniformity parameter §. The balance equations to this order give

0% =0%u, =0,  T9OT=p 19" p=—, (3.6)

where ¢© is determined by (2.9) and (2.10) to zeroth order in the gradients. Since fi(o) is a
normal solution, then the time derivative in (3.5) can be written as

1 ad
at(O)fi(O) — _{(0)(T3T 4 pap)fi(O) — 5;(0)W . (Vfi(O))~ (37)
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The second equality in (3.7) follows from dimensional analysis which requires that the de-
©0) ;
pendence of f; on p and T is of the form

2wy =x F”Od‘p (V/vo), (3.8)

where vy (¢t) = +/2T (m| + m,)/mm;, is a thermal velocity defined in terms of the temper-
ature 7 (¢) of the mixture and @; is a dimensionless function of the reduced velocity V /vy.
The dependence of fi(o) on the magnitude of V follows from the isotropy of the zeroth-order
distribution with respect to the peculiar velocity. Thus, the Boltzmann equation at this order
reads

_é'(o) (Vf 0)) Z -]1] f(o) f(o) (39)

j=1

Equation (3.9) has the same form as the Boltzmann equation for a strictly homogeneous
state. The latter is called the homogeneous cooling state (HCS) [12]. Here, however, the
state is not homogeneous because of the requirements (3.2-3.4). Instead it is a local HCS.
It must be emphasized that the presence of this local HCS as the ground or reference state is
not an assumption of the CE expansion but rather a consequence of the kinetic equations at
zeroth order in the gradient expansion.

The local HCS distribution is the solution of the Boltzmann equation (3.9). However, its
explicit form is not exactly known even in the one-component case [40]. An accurate approx-
imation for the zeroth-order solution fi(o) can be obtained by using low order truncation of a
Sonine polynomial expansion. The results show that in general, fi(o) is close to a Maxwellian
at the temperature for that species. Further details of this solution for hard spheres (d = 3)
can be found in Ref. [12]. An important consequence is that the kinetic temperatures of each
species are different for inelastic collisions and, consequently the total energy is not equally
distributed between both species (breakdown of energy equipartition). This violation of en-
ergy equipartition has been confirmed by computer simulation studies [14] as well as by
real experiments [23]. The condition that f,-(o) is normal in the sense of (2.17) (namely, it
depends on time only through its functional dependence on T and p) implies that the ratio
T;/ T = y;(x;) depends on the hydrodynamic state through the concentration x;.

The dependence of the temperature ratio y = y,/y, = T/ T, on the parameters of the

mixture is obtained by requiring that the partial cooling rates ;i(o) must be equal [12], i.e.,
0 0
6" =5"=¢"9. (3.10)
These partial cooling rates are nonlinear functionals of the distributions fi(o), which are not

exactly known. However, to get the temperature ratio, they can be well estimated by using
Maxwellians at different temperatures:

Ov) = f (V)=n~< i )d/zexp(—mivz) (3.11)
i M i 27TT, 2Tl . .

In this approximation, one gets [41]

2 d— 2 1/2
dF( y 0 LMt 6:6;

=1 j=1
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i 6; +0;
x (1 a)| 1= i1 o 2% |, (3.12)
2 0,
where
m 2
0;=— > m7.. (3.13)
o,

It must be remarked that the fact that 77 (¢) # T>(¢) does not mean that there are additional
hydrodynamic degrees of freedom since the partial temperatures 7; can be expressed in
terms of the granular temperature 7 as

4 1
T (1), L(t)y=——FT@). (3.14)

T = — Y
1(®) l+x(y =1 I+x(y =1

Note that the reference Maxwellians (3.11) for the two species can be quite different due to
the temperature differences. This contrasts with the ground state considered in more stan-
dard derivations [8-11, 31] where fi(o) is replaced by a Maxwellian defined at the same

temperature 7T, i.e.,
(0) m; a2 m'V2
v | —= —— . 3.15
Ji ( )—>n,<2nT> eXp< T ) (3.15)

As will show later, the approaches (3.11) and (3.15) lead to different results for the NS
transport coefficients.

The solution to (3.10) gives the temperature ratio 77/ T, for any dimension d as a func-
tion of the mole fraction x;, the mass ratio u = m;/m,, the size ratio w = o;/0,, and the
coefficients of restitution o;;. To illustrate the violation of equipartition theorem, in Fig. 1
we plot the temperature ratio versus the coefficient of restitution « for hard disks (d = 2) in
the case of an equimolar mixture x; = % for two different mixtures composed by particles

of the same material: u =4, w =2, and ©u =8, v = /8. For the sake of simplicity, we
have taken a common coefficient of restitution o = «1; = a2y = a1>. We also include the
simulation data obtained by solving numerically the Boltzmann equation by means of the
DSMC method [38]. The excellent agreement between theory and simulation shows the ac-
curacy of the estimate (3.12) to compute the temperature ratio from the equality of cooling
rates (3.10). We also observe that the deviations from the energy equipartition increase as
the mechanical differences between the particles of each species increase.

Fig. 1 Temperature ratio 2.6 ———
y = T1/ T, versus the (common) 7 _ 1
coefficient of restitution « for an 2.4 =R X, 172 -

equimolar mixture (x; = 1/2) of
hard disks (d = 2) with

w= ul/z. Two different values
of the mass ratio are considered:
=4 and u = 8. The symbols
refer to DSMC results while the
lines represent the theoretical
results obtained from the
condition (3.10)
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4 Navier-Stokes Transport Coefficients

The CE procedure allows one to determine the NS transport coefficients of the mixture in
the first order of the expansion. The analysis to first order in gradients is similar to the
one worked out in Ref. [26] for d = 3. Here, we only present the final results with some
technical details being given in Appendix 1. The mass, momentum, and heat fluxes are
given, respectively, by

(1 _ _Mmiman P (D _ (D

j ———DVx; — —D Vp—ZDVT 4.1

3 P X) » P=F ; b == 4.1)
a _ 2

P’ = pére = | Vet + Vitte = =8,V -u | (4.2)

q" =—T2D"Vx, — LVp — AVT. 4.3)

The transport coefficients in these equations are the diffusion coefficient D, the pressure
diffusion coefficient D, the thermal diffusion coefficient D’, the shear viscosity 7, the Du-
four coefficient D", the pressure energy coefficient L, and the thermal conductivity A. These
coefficients are defined as

p=—_" /de~A1, (4.4)
dmyn
mp
D[,: dp dVV B], (45)
p=-"T [ wv.c, (4.6)
dp
1 2
= i d VVID,‘, 4.7
1 (d—l)(d+2);m/ Y @7
1 2 m;
D'=———) L | dvw?V. A, 4.8
dT2; 2 / v A 4.8)
1 2 m;
L=—Y —L [ dvv*V.B;, 4.
d,; 2/ vV 4.9)
1 2 m;
r=——Y —L [ avv*v.¢;. 4.10
d; 2/ v (4.10)

As for ordinary gases [4], the unknowns A, (V), B;(V), C;(V), and D, (V) are the solutions
of the following set of coupled linear integral equations:

3c©
8X1

[—cOTa; + pdy) + LA+ M A=A + < > (pBi +TCy), (4.11a)
p».T
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9c©®
[—¢O(Tdr + pd,) + La)As + Mo Ap = Ay + ( ;x ) (pBy+TCy),  (4.11b)
1 p.T

T;(O)

[~ O(Tdr + pd,) + L — 26 V1B, + M, B, =B, + ——C;, (4.122)
;-(0)

(=T dr + pd,) + L2 — 20 V1B, + MaBy =B, + Co. (4.12b)
1 p;(o)

[—C(O)(T87+p3p)+£1 —54‘(0):|C1+M1C2:C1 ~57 Bi, (4.13a)
1 p;-(o)

[—C(O)(Tar + pd,) + Ly — EC(O)}Cz + MyC i =C; — T B, (4.13b)

[—¢O(Tar + pd,) + L£,]1D) + M D, =Dy, (4.14a)

(¢ (Tdr + pd,) + L2]Ds + My D =D;. (4.14b)

In the above equations, the quantities A;, B;, C;, and D; are given by (7.8-7.11), respec-
tively. They depend on the local HCS distribution fi(o). In addition, we have introduced the
linearized Boltzmann collision operators

LiX =—Unlf”, X1+ JulX, O+ JulX, £°D, (4.15)

M X =—Jnlf, X]. (4.16)

The corresponding expressions for the operators £, and M, can be easily obtained from
(4.15) and (4.16) by just making the changes 1 <> 2. Note that in (4.11) the cooling rate
¢© depends on x; explicitly and through its dependence on y (x;). This dependence gives
rise to significant new contributions to the integral equations for the transport coefficients.
Furthermore, the external field does not occur in (4.11-4.14). This is because the particular
form of the gravitational force.

4.1 Sonine Polynomial Approximation

So far, all the results are exact. However, explicit expressions for the NS transport coeffi-
cients requires to solve (4.11-4.14) as well as the integral equations (3.9) for the reference
distributions f.(o) . As said before, the results obtained in the HCS [12] have shown that

1

fi(o) is well represented by its Maxwellian form (3.11) in the region of thermal velocities.
For this reason and to provide simple but accurate expressions for the transport coefficients,
non-Gaussian corrections to fi(o) will be neglected in our theory. The full expressions for the
transport coefficients in the case d = 3 (including non-Gaussian corrections) can be found
in Ref. [26]. It must remarked that while the effect of these non-Gaussian corrections on the
transport coefficients is not important in the case of the mass flux and the pressure tensor,
the same does not happen for the heat flux, where the influence of them is not negligible at
high inelasticity [28]. With respect to the functions (A;, B;, C;, D;), we will expand them
in a series expansion of Sonine polynomials and will consider only the leading terms. The
procedure is described in Appendix 2 and only the final expressions will be provided here.
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4.2 Mass Flux

In dimensionless form, the transport coefficients associated with the mass flux, D, D,,, and
D’ can be written as
T nT nT

D*, D,=—D" D' =—D", “4.17
minm;Vy PYo PVo

D=

where vy = noldz_l vy is an effective collision frequency. The explicit forms are

* __ * 1 * B 9 8{* C* ®
=(v-3) (o), (), 0-5)m)

s 3 g2\
D = - et , 4.19
P xl()/l xz—l—uxl)(v 2§ +2v*) (4.19)
é-*
D :—ZU*DP. (4.20)

Here, ¢* = ¢© /vy, and v* is given by

27T(d_1)/2 91 +92 172
fe—e—e———— (14« X +x . 421
dl“(%) ( 12)( 616, ) (X221 + X1 112) (4.21)
Since ji” = —jél) and Vx; = —Vx;, D* must be symmetric while D; and D’* must be

antisymmetric with respect to the exchange 1 <> 2 . This can be easily verified by noting
that x;y; + x2y» = 1. The expressions for D*, D;‘, and D’ reduce to those recently obtained
[21, 42] in the tracer limit (x; — 0).

4.3 Pressure Tensor

The shear viscosity coefficient 1 can be written as

p
n= v—(xlyfni‘ + 20513, (4.22)
0

where the expression of the (dimensionless) partial contribution n; is

=2 Y2212 — ¢*) = 2110 4.23)
! V17208 = 20 (11 + 2) + 4(t11 T2 — T2 '

Here, we have introduced the (reduced) collision frequencies 7, and 7y, given by

97 @d—1)/2

T dd+ord)

NG o
al = 261)" /"3 +2d — 3a11)(1 +aqy)
12

+ 2x001 (1 + a12)0?/29;1/2 |:(d +3) (1202 — 12101)0; (0, + 62) 12

3—|—2d—3a’12
e

2dd+1)—4

07261 + 6,)'/?
u210, ~(61 +6,) /7 + 2d—1)

0,7 (6: + 92)—1/2] } (4.24)
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4 @=D/2 U3y 32, -1/
20720, (1 + an)

Tp=—""—+—
2T d@+rd) i

X [(d +3) (12 — 1216065 % (01 + 62)7'/?

2dd+1)—4

3+2d—30{12
+7
2(d—-1)

) 12165 (01 + 62)'/* —

9;1(91+02)*‘/2]. (4.25)
A similar expression can be obtained for n; by just making the changes 1 < 2.

4.4 Heat Flux

The case of the heat flux is more involved since it requires to consider the second Sonine

approximation. The transport coefficients appearing in the heat flux, D", L, and A can be
written as

d 2 3 3
pro 4+t n |:X1)/1 gy 2 g (ﬁ B ﬁ)D*} 4.26)
2 (my+ma)v | pi2 a1 M2 M2
d+2 T 3 3
L=-2F [x”/l o 22 (ﬁ - ﬁ)D;], @.27)
2 (my+myvg [ pi2 M1 K12 M2l
d+2 T ; X
P [x”" 2. <ﬁ - ﬁ)D/*], (4.28)
2 (mp+mo)vg | ur2 21 M2 M21

where the coefficients D*, D7, and D’ are given by (4.18-4.20), respectively. The expres-
sions of the (dimensionless) Sonine coefficients d;*, £}, and A} are

1
di = A [2[2V12Y2 — Y1 2uy — 3¢9)][Viavar — viiva + 201 + va) ¢ — 427

a *
+2 ¢ (Y3 + Y5)[2v1001 4203, — £*(Tvy — 609)]
8X1 p.T

a *
- 2v12( d ) (Y + Ye) @uyy +2m — 729 |, (4.29)
8x1 p.T

1
0= Z{—2Y3[2(U12U21 — VvV

+ £ (Tviva — Sviavay + 23, — 611" — Tvgnl* + 6¢*7)]

+2Y4v12[ 2012001 — 2011000 + 28F (V1) + V) — ¢

+ 2Y58* 2012021 + V22 (2uar — 7¢¥) + 64*7]

— 20128 " Y6[2(v11 4+ vp2) — 771, (4.30)
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1
A= Z{—Y3§'*[2U12V21 +v22(2v20 — TC*) + 6] + V12l *Ya[2(vyy + v22) — T¢¥]

—Y5[4vi2v21 (V22 — £*) + 205, (5¢* — 2vyy)
+ 2011 (Tvpl ™ — 60*%) + 502 (60* — Tvy)]
+v12Y6[4vi2v21 4+ 2011 (58" — 2v50) 4+ $F (100 — 230713, (4.31)

where

A = [4(ipv1 — Vi1vn) + 6L (V1 + v2) — 9¢*7]
x [V12v21 = Vi1V + 28 (V1) + vap) — 4¢ 7. (4.32)

In the above equations, the Y’s are defined by (8.27-8.29), while the (reduced) collision
frequencies v;; and vy, are given by (9.17) and (9.18), respectively. The expressions for d,
£3, and A can be obtained from (4.29-4.32) by setting 1 <> 2. As expected, our results for
the heat flux show that D” is antisymmetric with respect to the change 1 <> 2, while L and A
are symmetric. Consequently, in the case of mechanically equivalent particles (m; = m, =
m, o) =0, =0, a;; = ), the coefficient D” vanishes.

In the three-dimensional case (d = 3), all the above expressions for the transport co-
efficients reduce to those previously derived for hard spheres [26, 28] when one takes
Maxwellian distributions (3.11) for the zeroth-order approximations fi(o). For mechanically
equivalent particles, the results obtained by Brey and Cubero [43] for a d-dimensional mono-
component gas are also recovered. This confirms the self-consistency of the results derived
here.

4.5 Comparison with Other Theories

Before checking the accuracy of our expressions by comparing them with computer simu-
lations, it is instructive first to make some comparison with previous results [8, 31]. These
results assume energy equipartition (7; = T') and so, they are based on a standard CE ex-
pansion around the Maxwellian (3.15) instead of the local HCS distribution. Figures 2 and 3
show the dependence of the reduced pressure diffusion coefficient D, (a)/D,(1) and the
reduced thermal conductivity coefficient X(c)/A(1), respectively, as a function of the (com-
mon) coefficient of restitution «;; = a for d =3, w = 1, x; = 0.2, and two different mass
ratios u: u = 0.5 (a) and u =4 (b). Here, D,(1) and A(1) are the values of D, and A for

Fig. 2 Plot of the reduced LA B A B S B —
pressure diffusion coefficient 4.0
Dp(a)/Dp(1) as a function of 35 r
the (common) coefficient of .
restitution « for binary mixtures 3.0
with x; = 0.2, w =1 in the case O

e

of a three-dimensional system g\ 2.5

(d = 3) and two values of the 3 |

mass ratio p: u = 0.5 (a) and Q"“ 2.0

=4 (b). The solid lines refer to 3

the results derived here and the 1.5

dashed lines correspond to the

results assuming the equality of 1.0 . . . .

the partial temperatures 0.5 ' 0.6 ' 0.7 ' 0.8 ' 0.9 ' 1.0
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Fig. 3 Plot of the reduced — T T T T T T T
thermal conductivity coefficient I
A(a)/A(1) as a function of the
(common) coefficient of
restitution « for binary mixtures
with x; =0.2, w =1 in the case
of a three-dimensional system
(d = 3) and two values of the
mass ratio u: u = 0.5 (a) and |
=4 (b). The solid lines refer to ,

AMa)A(1)

the results derived here and the 025} K 7]
dashed lines correspond to the L / -
results assuming the equality of 0.00 ) Ll L

the partial temperatures : 0.5 0.6 0.7 0.8 0.9 1.0

elastic collisions. We see that the deviation from the functional form for elastic collisions is
quite important in both theories, even for moderate dissipation. It is apparent that the depen-
dence of the transport coefficients on dissipation is quantitatively different in both models,
especially at strong dissipation (say for instance, & = 0.5). This clearly shows the real quan-
titative effect of two different species temperatures on transport in granular mixtures.

5 Comparison with Monte Carlo Simulations

A said before, the expressions derived in Sect. 4 for the NS transport coefficients have been
obtained by considering two different approximations. First, since the deviation of fi(o) from
its Maxwellian form (3.11) is quite small in the region of thermal velocities, we have used
the Maxwellian distribution (3.11) as a trial function for fi(o) . Second, we have only consid-
ered the leading terms of an expansion of the distribution fi(l) in Sonine polynomials. Both
approximations allow one to offer a simplified kinetic theory for a d-dimensional granular
binary mixture. To check the accuracy of the above predictions, in this section we numeri-
cally solve the Boltzmann equation by means of the DSMC method [38] and compare theory
and simulation in the cases of the diffusion coefficient D (in the tracer limit) and the shear
viscosity coefficient 7. Previous comparisons carried out for hard spheres [29, 30] when
one takes into account the deviations of fi(o) from their Maxwellian forms have shown good
agreement between theory and simulation, even for strong dissipation (say « = 0.5). Here,
we expect that such good agreement is also maintained in the case of hard disks when one
replaces fl-(o) — fi.m- Let us study each coefficient separately.

5.1 Tracer Diffusion Coefficient
We consider the special case in which one of the components of the mixture (say, for in-
stance, species 1) is present in tracer concentration (x; — 0). In this situation, 3¢*/dx; — 0

and so, the expression (4.18) for the reduced diffusion coefficient D* becomes

5.1

where now

7@D2 /5 d-1 5
é‘* <_> \/211L12(1 _0522)7 (5.2)

T drd/2) \on
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27 (d=1)/2
NI
The diffusion coefficient of impurities in a granular gas undergoing homogeneous cool-

ing state can be measured in simulation from the mean square displacement of the tracer
particle after a time interval ¢ [29, 44]:

M1/ 2 + uo1y (1 +ai). (5.3)

2dD

np

@)~ rOP) = (5.4)
t
Equation (5.4) is the Einstein form. This relation (written in appropriate dimensionless vari-
ables to eliminate the time dependence of D(¢)) was used in Ref. [29] to measure the diffu-
sion coefficient for hard spheres. More details on this procedure can be found in Ref. [29].
If the hydrodynamic description (or normal solution in the context of the CE method)
applies, then the diffusion coefficient D(¢) depends on time only through its dependence on
the temperature 7 (¢). In this case, after a transient regime, the reduced diffusion coefficient
D* = (mymy/p)D(t)vo(t)/ T (t) achieves a time-independent value. Here, we compare the
steady state values of D* obtained from Monte Carlo simulations with the theoretical predic-
tions given by the first Sonine approximation (5.1). The dependence of D* on the common
coefficient of restitution ¢;; = o is shown in Fig. 4 in the case of hard disks for three different
systems. The symbols refer to computer simulations while the lines correspond to the kinetic
theory results given by (5.1). Molecular dynamics (MD) results reported in Ref. [45] when
impurities and particles of the gas are mechanically equivalent have also been included. We
observe that MD and DSMC results for 4 = w = 1 are consistent among themselves in the
range of values of « explored. This good agreement gives support to the applicability of the
inelastic Boltzmann equation beyond the quasielastic limit. It is apparent that the agreement
between the first Sonine approximation and simulation results is excellent when impurities
and particles of the gas are mechanically equivalent and when impurities are much heavier
and/or much larger than the particles of the gas (Brownian limit). However, some discrepan-
cies between simulation an theory are found with decreasing values of the mass ratio m, /m,
and the size ratio o} /0,. These discrepancies are not easily observed in Fig. 4 because of the
small magnitude of D* for u = 1/4. The above findings agree with those previously reported
for hard spheres [29], where it was shown that the second Sonine approximation improves
the qualitative predictions from the first Sonine approximation for the cases in which the gas

Fig. 4 Plot of the reduced T T T T T T T T T
diffusion coefficient D* as a

function of the (common)

coefficient of restitution o« for

binary mixtures with @ = p in

the case of a two-dimensional

system (d = 2). The symbols are *
computer simulation results
obtained from the mean square

displacement and the lines are the 10| u=1 7]
theoretical results obtained in the M
first Sonine approximation. The 0.5k u=1/4 3
DSMC results correspond to A S S S e s—r—

u=1/4(®). u=4(0)and 06 07 08 09 10

=1 (). Molecular dynamics
results reported in Ref. [45] for
n=1(A) have also been
included
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Fig. 5 Plot of the reduced shear LI L B | T
viscosity n* (o) = n(@)/n(1) as a 1.5F x|=1/2 o=y
function of the (common) -
coefficient of restitution « for
binary mixtures constituted by
particles of the same mass
density (o = ;1,1/2) in the case of
a two-dimensional system

(d =2). The symbols are
computer simulation results and
the lines are the theoretical
results obtained in the first
Sonine approximation. The
DSMC results correspond to * ! ! * *
n=1(0), u=4(®) and =8 0.5 06 07 08 09 1.0
(). We have also included o

DSMC results obtained in

Ref. [48] for =1 (A) from the

Green—Kubo relation

particles are heavier and/or larger than impurities. The comparison carried out here for disks
confirms the above expectations and shows that the Sonine polynomial expansion exhibits a
slow convergence for sufficiently small values of the mass ratio  and/or the size ratio w.

5.2 Shear Viscosity Coefficient

The shear viscosity 7 is perhaps the most widely studied transport coefficient in granular flu-
ids. In the case of granular mixtures, this coefficient has been measured [30] when the system
is heated by the action of an external driving force (thermostat) that exactly compensates for
cooling effects associated with dissipation of collisions. The corresponding shear viscosity
of the mixture (which slightly differs from the one obtained in the free cooling case) has
been determined by means of the CE method in the low-density regime [30] as well as for a
moderate dense mixture [46]. The theoretical predictions compare reasonably well with the
corresponding numerical solutions of the Boltzmann and Enskog kinetic equations.

More recently, a new alternative method has been proposed to measure the (true) NS
shear viscosity coefficient [47]. The method is based on the simple shear flow state modified
by the introduction of a deterministic non-conservative force (which compensates for the
collisional cooling) along with a stochastic process. While the external force is introduced to
allow the granular fluid to approach a Newtonian regime, the stochastic process is introduced
to mimic the conditions appearing in the CE method to NS order. Although the method
was originally devised to a single granular gas, its extension to multicomponent systems is
straightforward. Here, we use this procedure to measure the shear viscosity of the mixture
by means of the DSMC method. More technical details on this procedure and its application
to dense gases can be found in Ref. [47].

Comparison between the first Sonine approximation and computer simulations for
n*(a) = n(a)/n(1) is shown in Fig. 5 for three different mixtures constituted by particles
of the same mass density (i.e., 4 = »?) in the case of a two-dimensional system. Here, 7(1)
refers to the elastic value for the shear viscosity coefficient and we have assumed again a
common value of the coefficient of restitution «. The symbols represent the simulation data
and the lines correspond to the theoretical results. We have also included recent simulation
results [48] for n* obtained from the Green—Kubo relation in the one-component case. Good
agreement among the data presented here and those reported in Ref. [48] for u =1 is ob-
served. In addition, as happens for hard spheres [30], we see that in general the agreement
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between the first Sonine approximation and simulation is quite good. At a quantitative level,
the theory slightly overestimates the simulation data, especially for strong dissipation and
for mixtures of particles of different masses and/or sizes. However, such discrepancies are
quite small since for instance, they are smaller than 3% at « = 0.5 for u =8 and w = V3.
This shows again the reliability of the first Sonine approximation for the shear viscosity
coefficient. It must be noted that this conclusion cannot in principle be extended to the
transport coefficients associated with the heat flux since recent comparisons for a single gas
[48-50] have shown significant discrepancies between the first Sonine approximation and
computer simulations for high inelasticity (say « < 0.7). In this case, the agreement between
theory and simulation can be significantly improved by the use of a modified first Sonine
approximation [51].

6 Discussion

The main objective of this work has been to obtain the NS transport coefficients of a granu-
lar binary mixture at low density. In contrast to previous works [8, 31], the present study is
based on a modified CE solution of the inelastic Boltzmann equation that takes into account
non-equipartition of energy. There is no phenomenology involved as the equations and the
transport coefficients have been derived systematically from the inelastic Boltzmann equa-
tion by the CE expansion around the local HCS. Since the spatial gradients are assumed
to be independent of the coefficients of restitution, although the NS equations restrict their
applicability to first order in gradients the corresponding transport coefficients hold a priori
to arbitrary degree of inelasticity. All the calculations have been performed in an arbitrary
number d of dimensions, previous results [26] being recovered for d = 3.

The constitutive equations to NS order for the mass flux, the stress tensor, and the heat
flux are given by (4.1-4.3), respectively. The associated transport coefficients are the mu-
tual diffusion coefficient D, the pressure diffusion coefficient D, and the thermal diffusion
coefficient D’ in the case of the mass flux, the shear viscosity coefficient n for the pressure
tensor, and the Dufour coefficient D", the pressure energy coefficient L, and the thermal
conductivity X in the case of the heat flux. These coefficients are determined from the solu-
tions of the set of coupled linear integral equations (4.11—4.14). In addition, the NS trans-
port coefficients also depend on the reference distributions fi(o), which are not Maxwellians
because they obey the integral equations (3.9). To solve the above integral equations and
provide good estimates for the transport coefficients, we have considered two approxima-
tions: (i) the distributions fi(o) have been replaced by their Maxwellian forms (3.11) at the
temperature 7; for that species and, (i) we have only considered the leading terms in a series
of Sonine polynomials for the first-order distribution fi(l). By using both approximations,
explicit expressions of the seven NS transport coefficients have been obtained as functions of
the coefficients of restitution and the concentration and the ratios of mass and diameters. In
dimensionless forms, the coefficients D, D,, and D’ are given by (4.18-4.20), respectively,
the shear viscosity 7 is given by (4.22) and (4.23), while the expressions of the coefficients
D", L, and A are provided by (4.26-4.32).

Previous results [8—11] derived from the CE method have typically introduced additional
assumptions for convenience that are not internally consistent with constructing a solution to
the Boltzmann equation. Thus, in most of the cases the reference state ffm has been chosen
to be a Maxwellian at the same temperature [see (3.15)]. This assumption is presumed to give
accurate results at weak dissipation where energy equipartition can be still considered as a
good approximation. However, as shown in Fig. 1, the temperature ratio 7/ 75 clearly differs
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Fig. 6 Plot of the reduced shear 1.8
viscosity coefficient

n* =n(a)/n(1) as a function of

the (common) coefficient of

restitution « for binary mixtures

with x; =0.2, w =1 and two n
values of the mass ratio u:

n=0.5(a)and u =4 (b). The

solid lines refer to spheres

(d = 3) while the dashed lines

correspond to disks (d =2)

from 1 as dissipation increases. Here, we have replaced fi«)) — fi.m so that, the influence of
the fourth-cumulants c; of fl.(o) has been ignored [12]. Comparison between the expressions
derived in this paper by taking the approximation (3.11) with those obtained by assuming
energy equipartition shows important discrepancies as the coefficient of restitution decreases
[see Figs. 2 and 3]. Moreover, as an added value of our theory, the use of the Maxwellian
approximation (3.11) for fi(o) allows one to provide simple and explicit expressions for all
the transport coefficients in terms of the parameters of the mixture. This contrasts with the
relatively recent study for hard spheres [26] where the constitutive relations for the fluxes
were not explicitly displayed.

As a complementary route and to check the reliability of our theory, the analytical results
derived for the diffusion coefficient D and the shear viscosity 7 in the first Sonine approxi-
mation have been compared with those obtained from numerical solutions of the Boltzmann
equation by means of the DSMC method for a two-dimensional system. For the sake of sim-
plicity, all the simulations have considered a common coefficient of restitution o = c;;. As
expected, theory and simulation clearly show that the influence of dissipation on mass and
momentum transport is quite important since there is a relevant dependence of the diffusion
D and viscosity n coefficients on «. With respect to the accuracy of the theoretical predic-
tions, we see that in general the CE results in the first Sonine approximation exhibit a good
agreement with the simulation data. Exceptions to this agreement are extreme mass or size
ratios and strong dissipation. These discrepancies are basically due to the use of the first
Sonine approximation and can be partially mitigated by considering the second and third
Sonine approximations [29] or the use of a modified first Sonine approximation [51].

As said in the Introduction, the results obtained in this paper are of great practical interest
since most of the experiments and simulations are performed in two dimensions. On the
other hand, apart from this practical interest, the knowledge of the NS transport coefficients
of a d-dimensional mixture allows one to investigate the influence of dimensionality on the
transport properties of the system. To illustrate this effect, in Fig. 6 we plot the reduced
shear viscosity n* = n(a)/n(1) versus the coefficient of restitution o for v = 1, x; = 0.2,
and two different mass ratios p: u = 0.5 (a) and u = 4 (b). We have considered the physical
cases of hard spheres (solid lines) and hard disks (dashed lines). Although the qualitative
dependence of n* on « is quite similar in both systems, we observe that the influence of
dissipation on momentum transport is stronger for d = 3 than for d = 2. This trend is also
observed in general in the remaining transport coefficients.

One of the main limitations of our theory is its restriction to dilute gases. In this situation,
the collisional transfer contributions to the fluxes are neglected and only their kinetic contri-
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butions are considered. Possible extension of the present kinetic theory to higher densities
can be done in the context of the revised Enskog theory. Preliminary results [46] have been
focused on the uniform shear flow state to get directly the shear viscosity coefficient. The
extension of this study [46] to states with gradients of concentration, pressure, and temper-
ature is somewhat intricate due to subtleties associated with the spatial dependence of the
pair correlations functions considered in the revised Enskog theory. On the other hand, it
must be remarked that many of the collision integrals appearing in the Enskog description
are the same as those appearing in the Boltzmann limit so that one can take advantage of
the results reported in this paper. We plan to extend the results derived for moderately dense
mixtures of smooth elastic hard spheres [52] to inelastic collisions in the near future.
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Appendix 1: Chapman-Enskog Method

The velocity distribution function fl(l) obeys the equation

a
O+ Lo+ MY = —(af” +v-V+g- 5) s (7.1)

where the linear operators £; and M, are defined by (4.15) and (4.16), respectively. A sim-

ilar equation can be obtained for 2(” by interchanging 1 <> 2. The action of the time deriv-

atives 9, on the hydrodynamic fields is

DYx, =0, (7.2)
d+2
D p=—"2pv e (1.3)
) 2T
DT =-""V.u, (7.4)
d
DMu=—p"'Vp+g, (1.5)

where Dt(l) = Bt(l) 4 u -V and use has been made of the results j;o) =q@ =¢® =0. The
last equality follows from the fact that the cooling rate is a scalar, and corrections to first
order in the gradients can arise only from the divergence of a vector field. However, as is
demonstrated below, there is no contribution to the distribution function proportional to this
divergence. We note that this is special to the low density Boltzmann equation and such
terms do occur at higher densities [53]. Use of (7.2-7.5) yields

d
_(8,(]) +v- V+g _) 1(0)
av

d T /(0
= —(8—ff°>) V.V - [f,“”w ”—(—ff‘”)] :Vinp
X1 p.T 1Y
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1

(0) (0)

+ + —— (Vv V-VInT
|: 2 8V ( fl ):|

+<V 8_vef<0>__5 WV _f )ka. (7.6)

Note that the external field does not appear in the right-hand side of (7.6). This is due to the
particular form of the gravitational force. Using (7.6), (7.1) can be written as

O+ L)V + MV =A VX, +B,-Vp+C,-VT+D,:Vu,  (1.7)

where

A;(V) = —(i f,@> Vv, (7.8)

aX] p.T
B, (V) = ! [f,.“”V + nT (ifi(m)]’ (7.9)

p p \oV
CV) =~ [f-“” LL0 (Vf»(o))]V (7.10)

! T 29V i ’ ’
v o Ly 9 0

D,(V)_Vavfi S1V- = 0. (7.11)

In (7.8-7.11) it is understood that i = 1, 2 and 1 is the unit tensor in d dimensions. Note that
the trace of D; vanishes, confirming that the distribution function does not have contribution
from the divergence of the flow field. The solutions to (7.7) are of the form

fi(l):A,* -Vxl +Bl Vp—i—C, -VT +’D,~,szkug. (712)

The coefficients A;, B;, C;, and D; are functions of the peculiar velocity V and the hy-
drodynamic fields. The cooling rate depends on space through its dependence on x;, p,
and T. The time derivative 8,(0) acting on these quantities can be evaluated by the replace-
ment 3" — —¢©(Tdr + pd,). In addition, there are contributions from 3" acting on the
temperature and pressure gradients given by

AOVT = —v(T¢ )= —cOvT — TV ©

) 9c© ©
=—§—VT T ¢ Vxl—i-;—Vp (7.13)
2 0 o T P

X1

0"V ==V(pe®) =t OVp - pve?®

3;(0) {(0)
=-200vp— p|:< > > Vx| — ﬁVT}. (7.14)
X1 ».T

The corresponding integral equations for the unknowns A;, B;, C;, and D; are identified as
the coefficients of the independent gradients in (7.12). This leads to (4.11-4.14).
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Appendix 2: Leading Sonine Approximations

In this Appendix, we get the explicit expressions of the mass, momentum, and heat fluxes in
the first Sonine approximation and neglecting the non-Gaussian corrections to the reference
distributions fi(o) (i.e., the cumulants ¢; = 0). The procedure to get the leading order contri-
butions in the Sonine polynomial expansion to the transport coefficients is quite similar to
the one previously used in the three-dimensional case [26]. Only some partial results will be
presented here.

Leading Sonine Approximation to Mass Flux

In the case of the mass flux, the leading Sonine approximations (lowest degree polynomial)
of the quantities A;, B;, C; are

mymoyn mymsyn

A(V) = —fi, MV T D, A (V) = fo, MV T D, 8.1
ny 1y ny1;
P
Bi(V) = —fiuV 1T1 D,, By (V) — fZ,MVmDpa (8.2)
/ ’O /
Vv V D Cr(V V——D 8.3
Ci(V)— —fim 1T1 ) 2(V) = fom T T s (8.3)

where f; ) are the Maxwellian distributions (3.11). Multiplication of (4.11-4.13) by m,;V
and integrating over the velocity yields

[—¢O(Tar + pd,) + ] (—’"‘Z’z” D)

9 97
:_<a_”1T1> _'0(8—) (D, + D), (8.4)
X p.T Xt Jpr
T T ©
[—c<°>(raf+pa,,)—zc<°)+u](—ﬁDp>=—’“ ‘(1—’"'” )-“ D, 85
p P pT p
©
[~cO o+ oy - 50| (-20) = 5D, 56)

Here, v is the collision frequency defined by

= /dvlmlvl [L1(f1.m V1) — Sy Mi(foa.mV2)]
di’L|T]

= [V Ve Gt Vi A0 = Sy Janl £ fraVaD. 87
where § = x;/x,. The evaluation of the collision integral (8.7) is made in Appendix 3. The
self-collision terms of £; arising from J;; do not occur in (8.7) since they conserve momen-
tum for species 1. From dimensional analysis, D ~ T'/2, D, ~ pT~'2 and D' ~ pT~'/*
so the temperature and pressure derivatives can be performed in (8.4-8.6). After performing
them, one gets the expressions (4.18), (4.19), and (4.20) for the (reduced) coefficients D*,
D;, and D', respectively.
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Leading Sonine Approximation to Pressure Tensor

In the case of the pressure tensor, the leading Sonine approximation for the function D; y is
D e (V) — _fi,M(V)%Ri,k{Z(V)» i=12 (8.8)

where
&mw=m<ww—$wm) (8.9)

and
1 T
d—D)d+2) T}

m=— /w&mwuﬂwy (8.10)

The shear viscosity 7 in this approximation can be written as
p
n= -y +xyss), (8.11)
0

where n} = von;. The integral equations for the (reduced) coefficients 5} are decoupled from
the remaining transport coefficients. The two coefficients n; are obtained by multiplying
(4.14) with R; ;, and integrating over the velocity to get the coupled set of equations

T — %é“* T2 Ul '
)= ) (8.12)
12| ™ — 3¢ m, 12}

The (reduced) collision frequencies 7;; are given in terms of the linear collision operator by

1 1
(d = 1)(d +2) n, T} v,

/dVlRi,kzl:i(fi,MRi,kz), (8.13)

Tii =

1
d-1d+2) niTizvo

/dVlRi,kZMi(fj,MRj,kl)s i (8.14)

Tij =

The evaluation of these collision integrals is also given in Appendix 3. The solution of (8.12)
is elementary and yields (4.23).

Leading Sonine Approximation to Heat Flux

The heat flux requires going up to the second Sonine approximation. In this case, the quan-
tities A;, B;, C; are taken to be

A (V) > fiu ’Zﬁ?DV+dSmVﬂ
- T (8.15)
A (V) = fou [mon o d”Sz(V):|
| pno T
Bi(V) = fiu|———=D,V+LS 1(V):|
pny T
- (8.16)
&w»»ﬁM—ﬁ—aN+a&wﬂ
| pnoT
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Ci(V) - fl,M[—T L D’V+MSl(V)}
m T
(8.17)
Cy(V) — fz,M[ - P _pv+ AzsxV)],
I’lsz
where
1 d+2
Si (V) = <Em,-V2 - %n)v. (8.18)

In these equations, it is understood that D, D, and D’ are given by (4.18), (4.19), and (4.20),
respectively. The coefficients d!’, ¢; and A; are defined as

"

i 2 m; Ai
¢ | = 7—3/dVSi(V)- B |. (8.19)
o) T da+n; c.

These coefficients can be determined by multiplying (4.11-4.13) (and their counterparts
for the species 2) by S; (V) and integrating over the velocity. The final expressions can be
obtained by taking into account that d| ~ T2, ¢, ~ T~%2/p, and A; ~ T~>/* and the

results
dd+2)mT*( 9
/"vmlsl(V)-AF—g"‘ —r) . (8.20)
4 n; Bxl p.T
/delsl(V)~B1 :O, (821)
d(d+2)n T}
/dvmlsl(V) o = detmly (8.22)
2 ng T
By using matrix notation, the coupled set of six equations for the quantities
{dy,d;, ], 65,07, A3} (8.23)
can be written as
Ay Xor =Y. (8.24)

Here, d = Tvd, £} = pTvol;, Af = T?vgh;, X, is the column matrix defined by the set

i i

(8.23) and A, is the square matrix

Vi — %C* V12 _(%)p,T 0 _(%)pﬂ" 0
v v — 3Lt 0 _(%)p,T 0 _(%)p,T
A= 0 0 vir—30% v - 0 (8.25)
0 0 v vp—3Ct 0 —C*
0 0 $*/2 0 vy —¢* Vi2
0 0 0 ’*/2 V2 vy —¢*

@ Springer



J Stat Phys (2007) 129: 27-58 51

The column matrix Y is

Y
Y,
_| B
Y= v, | (8.26)
Y5
Ys
where!
D* 1 /0
Y= 2(w12—§*)——2(i> )
X1V Vi axy p.T
(8.27)
D* % 1 8)/2
NL=——=@1—-)—=|7—]
X2V y; \0x o T
D, . > )
Y3=—S(@n—1¢"), Yo=——S (w0 = &%), (8.28)
X1Yi X2V>
1 D/* . 1 D/* .
Vs=——+—F(@2—-¢", Yo=——— ——(wn — ). (3.29)
Y1 X1y V2 X2,
Here, we have introduced the (reduced) collision frequencies
2 m;
i = dv S,' . E,‘ i S,‘ s 8.30
y d(d”)niTtiO/ i Li(fiuS) (8.30)
2 i /dSM(f S, i#j (8.31)
V= viS; - M; (f; D, , .
ij d(d+2) l’l[T}BUO 19i J MO j J

2 m
[ — dviS; - L A\ ) dviS; - M Vo)1, 8.32
w1 d(d—|—2)n1T12vo|:/ viSi - Li(fi,mV1) 7// V1S, 1(fom 2)] (8.32)
__2 e [/dSL(f Vi) l/dSM(f V)] (8.33)
le_d(d+2) n2T22v0 Vi - La(J2,m V1 5y Vid2 20J1,mV2) |- .

The expressions of the collision integrals (8.30), (8.31), and (8.32) are given in Appendix 3.
The solution to (8.24) is

X, = (A_l)ao’ Yyr. (834)

From this relation one gets the expressions (4.29), (4.30), and (4.31) for the coefficients d,
£F and A}, respectively.

ISome misprints occur in the expressions given in Ref. [26] for the heat flux. The results displayed here
correct and extend such results to d dimensions
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Appendix 3: Collision Integrals

In this appendix we compute the different collision integrals appearing in the expressions of
the transport coefficients. To simplify all the integrals, we use the property

f ViV Tyl fir f1= 0! f v, / dv i (V1) f5(V5)

x fdﬁ@(ﬁ -g12)(6 - g)[A(V]) —h(VD],  (9.D

with
V’{ZVl —Mji(1+(¥ij)(&'g12)&~ (92)

This result applies for both i = j and i # j.
Let us start with the collision frequency v defined by (8.7). Use of the identity (9.2) in
(8.7) gives

=8y 2 (VD) o (V2) (Vs - gi)], (9.3)

where use has been made of the result

/ d6 O (G -212)(6 - 80)'G = Bipig), ' 2o, 94)
with [54]
réh

_ JPRN A oA Nk (d-1))2 2
By :/da@(a gn)(0-gn)' =7 NEDY 9.5

Substitution of the Maxwellian approximation (3.11) for fi(o) gives

2 g@d-n/2 . ,
— - /2
V= ET%UO(I +ap)r 4 (016) /dcl

x [ desye Dy ey s el 9.6)

where ¢; =V, /vy and y = ¢; — ¢;. The integral can be performed by the change of variables
{e1, e2} = |y, z}, where z = 0, ¢, + 6,¢, and the Jacobian is (8 + 6,)~¢. With this change,
(9.6) becomes

2 gd=0h/2

V= sy
d T(42)
X /dy/dzy3e_(“y2+bzz), 9.7

where a = 6,0,(6; + 6,) "' and b = (8, + 6,). The integral (9.7) can be easily computed
and one directly gets the result (4.21) given in the text for the reduced collision frequency
V¥ =v/vg.

vo(1 + )4 (0102) V20 4 6,) " (xaaa) + x1112)
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The collision frequencies 7;; defined by (8.30) and (8.31) involve collision integrals of
the form

/dVIVIVIJij[fisfj] =0-,'L;71deI/dVZﬁ(Vl)fj(Vz)
X /d&@(& -812)(6 - g [VIV] = ViVq], 9.8)

where the identity (9.1) has been used. The scattering rule (9.2) gives

ViV —=ViVi = —u;i(1 + ;)6 - 812)[Gij0 + 6 G;j + i (8120 + 6812)
—wji(l+04;)(0 - 812)0 6], 9.9

where G;; = u;; Vi + 1;; V. Substitution of (9.9) into (9.8) allows the angular integral to
be performed with the result

/ 160G 2)@ - g)V]V] V1 V)]
=—Bym;ui(1+ aij)[gIZ(Gijglz +812Gij)

+3

M ji 2d
(1 + = —ij)gngngnn —

Mji 3
1 ii)g L. 9.10
d+3 3 3( +Ol_,)g ] ( )

d+

Using (9.10) the integrals defining 7;; can be calculated by the same mathematical steps as
those made before for v. After a lengthy calculation, one gets

g @d=0/2

————mmynin 1+ ap)ob 0,0,
ZdF(g) 1man na o ( 12)07,  vy(6162)

/dVIRl,kZJIZ[fl(O)a fomRor] =
X {2(d +3)(d — 1) (111262 — 142161)0; (61 +6,) 7'/

2d
+3(d — Dy <1 +5 - a12>9;2(91 +6,)'/?

—[2d(d + 1) — 416, (6, +92)—1/2], 9.11)

T d=D/2

24T (%)

~1/2

/dVIRl,kZJIZ[fl,MRl,kea f2<0>] =— mymaninafia (1 + ap2)ofy vy (6165)

X {Z(d +3)(d — 1) (111262 — 142100, (61 +6,)7'72
2d 2 12

+3d—Duay| 1+ ? — U2 9] 01 +62)

+[2d(d +1) — 416, (0: + 02)—“2], 9.12)
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/dVlRl,ké{Jll[fl(O)a SfimRikel +Julfi,mRike, f]«))]}

g@-n2z -1 512
=————mini(I +ap)o{ (T /m)”
I'(%)
6@d-1 @ 2 9.13)
X - — . .
y 3 11

The corresponding expressions for 7;; can be easily inferred from (9.11-9.13).

The collision frequencies v;; and w;; that determine the heat flux are defined by (8.30),
(8.31), and (8.32), respectively. To evaluate these collision integrals, one needs the partial
results

17 m; N ~
Si(V) = 8i(V1) = - (1 + o) (8 '812){[(1 — )6 - g1)’ — G}, — 18t

N N T |.
= 2uji(gr2 - Gij) + 2(1 + ;)i (0 - g12)(0 - Gij) + (d + 2)E]0

1

— [ — )i (6 - g12) +2(0 - Gi)IG;;

—pji[(1 = O‘ij):uji(& -812) +2(6 - Gij)]glz}v (9.14)

/d&@(& - 812)(0 - g12)[S: (V) — S: (VD]

m: wd=0/2
=——— - (4w
d+3 J
2 I (48
4o, — (d +3)aij +2(d + 1)
d+3 812

X { |:gl2Gi2j + N?i

223 e Gy — (4 2)
Hji d+3 812(812 - Gy ml_glz g
(d+5)a;; —d—1
+ |:2812(g12 -Gij) — Mj[?g?z]c[j } (9.15)

The integrals w;; and v;; can be explicitly evaluated by using (9.15) and the same mathe-
matical steps as before. After a lengthy algebra, one gets

=Dz 2 (01 )d‘ 12
op=———(="2) x07"70-a?)
N ') dv2\on i 1

z@-n2 9

+ r¢) dd+2)

_ X
x1 o (14 a12) (01 4 6,)71%6, %6, 3/2<x—2A - yB), (9.16)
1

T d=0/2 8 ( o1

d—1
- x1 2021 +ayy)
r¢) dd+2) ) e "

Vi1 = o
012
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d—1 3

d=D/2 1 o, 32
+ ———xun(l +a 12)<7>

r'($) dd+2) 0(61 + 62)
[ (d+2)9’ 6 A], (9.17)
0
m@-br2 1 /sz| < 0 )3/2[ 0, + 6, ]
=T Blatam(=—=2—) |[F+@+2
e r'$) dd+2) 2#12( ) 0,(61 + 62) ( . 0>
(9.18)

In the above equations we have introduced the quantities?

A=(d+2)2B1n+6)
+ 12101 + 0){(d +2)(1 — a12) — [(11 + d)aya — 5d — T1B126; '}

d+3
+3(d +3)BL0, " + 213, <2a122 - +d+ 1)9;1(01 + 6,)?

—(d +2)6:0," (61 +6,), (9.19)

B=(d+2)2B12—01)
+ w2101 +0){(d +2)(1 — ) + [(11 +d)ays — 5d — T1P1265 '}

_ d+3 _
—3(d+3)BH0, " —2ud, <2af2 -5 +d+ 1)92 10, + 6,)?

+(d +2)(01 + 62), (9.20)

d+3
E =243,0,%(6, + 92)2<2a|22 — e td+ 1)[(d +2)0; + (d + 5)6,]

— 2161 + 0){B120[(d + 2)61 + (d + 5)0:1[(11 + d)oryy — 5d — 7]

— 0,07 '[20+d(15 — Tapy) + d*(1 — app) — 28a2] — (d +2)*(1 — o)}
+3(d +3)BL0,721(d +2)6; + (d + 5)63]

+ 28120, [(d +2)%0) + 24 + 11d + d*)6,]

+(d +2)0,0, " [(d + 8)8) + (d + 3)6,]

—(d +2)(01 +62)8,%6:,[(d +2)6; + (d + 3)61], 9.21)

+3
F =2u3,0,2(6) + 6,)° <2a122 - Zap+d+ 1) [(d +5)0, + (d +2)65]

2
— 12101 4 02){B126; *[(d + 5)6) + (d +2)0:][(11 + d)ay, — 5d — 7]

2See footnote 1.
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+ 6165 '[20 + d(15 — Tayp) +d*(1 — app) — 28ep2] + (d + 2)*(1 — 1)}
+3(d 4+ 3)B56,21(d + 5)6 + (d +2)63]

— 281265 [(24 + 11d + d*)6) + (d +2)%6,]

+(d +2)6,0,'[(d + 3)61 + (d + 8)6:]

— (d +2)(61 +62)6; ' [(d +3)6; + (d + 2)62]. (9.22)

Here, 812 = 1262 — 12160;. From (9.16-9.22), one easily gets the expressions for ws, vy
and vy; by interchanging 1 <> 2.

In the case of a three-dimensional system (d = 3), all the above results reduce to those
previously obtained for hard spheres when one takes Maxwellian distributions for the refer-
ence homogeneous cooling state [26, 28].
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