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Abstract In Bohmian mechanics the distribution |ψ |2 is regarded as the equilibrium distri-
bution. We consider its uniqueness, finding that it is the unique equivariant distribution that
is also a local functional of the wave function ψ .

1 Introduction

Bohmian mechanics (often called the de Broglie–Bohm theory) yields the same predictions
as standard quantum theory provided the configuration of a system with wave function ψ is
random, with distribution given by |ψ |2. This distribution, the quantum equilibrium distrib-
ution [1, 2], satisfies the following natural property: If the distribution of the configuration at
some time t0 is given by |ψt0 |2, then the distribution of the configuration at any other time t

will be given by |ψt |2—i.e., with respect to the wave function it will have the same func-
tional form at the other time—provided, of course, that the wave function evolves according
to Schrödinger’s equation between the two times and the configuration evolves according
to the law of motion for Bohmian mechanics. This property was already emphasized by
de Broglie in 1927 [3] and was later formalized and called equivariance by Dürr et al. [2],
who used it to establish the typicality of empirical statistics given by the quantum equilib-
rium distribution.

The notion of equivariance is a natural generalization of that of the stationarity of a dis-
tribution in statistical mechanics and dynamical systems theory [2]. Just as stationarity is
regarded as a basic requirement for a description of equilibrium in statistical mechanics,
one can regard equivariance as a basic requirement for what might be called equilibrium in
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Bohmian mechanics. Of course, this equilibrium need not be a complete equilibrium, since
the wave function in general changes with time and need not be in equilibrium—even if the
configuration is. Rather, equivariance concerns an equilibrium relative to the wave function:
a quantum equilibrium.

An interesting question which then arises is whether the quantum equilibrium distribution
|ψ |2 is the unique equivariant distribution. In this paper we show that |ψ |2 is the only local
functional of the wave function that is equivariant.

The uniqueness proof is of particular value for the approach of Dürr et al. [2, 4–6] to
explaining equilibrium in Bohmian mechanics, an approach first advocated by Bell [7].
Dürr et al. base their justification of the |ψ |2 distribution on a “typicality” argument. They
argue that a “typical” Bohmian universe yields |ψ |2 probabilities as empirical distributions.
What this means is that the set of initial configurations of the universe that yield the |ψ |2
distribution is very large: it has measure near one for the measure P Ψ

e having density |Ψ |2,
with Ψ the wave function of the universe. One reason P Ψ

e is invoked is that it is equivariant.
After recalling Bohmian mechanics in Sect. 2, we define in Sect. 3 the notion of equivari-

ance, providing some illustrative examples. Some of these touch upon the connection be-
tween the uniqueness of equivariant distributions for Bohmian mechanics and the notion of
the ergodicity of a dynamical system, a connection that is developed in Sects. 6 and 7. While
some familiarity with elementary ergodic theory would be helpful for some of the discus-
sion in Sect. 3, the uniqueness results for the quantum equilibrium distribution presented in
Sects. 4 and 5 require no such familiarity.

2 Bohmian Mechanics

In Bohmian mechanics the state of a quantum system is given by the positions of its par-
ticles as well as its wave function; the motion of the particles is determined by the wave
function. For a system of N spinless particles the wave function ψt(q) = ψt(q1, . . . , q3N) is
a complex-valued function on the configuration space R

3N , and satisfies the non-relativistic
Schrödinger equation

i�∂tψt (q) = Hψt(q) =
(

−
M∑

k=1

�
2

2mk

∂2
qk

+ V (q)

)
ψt(q), (1)

with M = 3N , ∂qk
= ∂/∂qk and where m1 = m2 = m3 is the mass of the first particle and

similarly for the other particles. The particles move in physical space R
3. We denote the

actual positions of the particles by Qi ∈ R
3. Thus the actual configuration Q of the sys-

tem of particles, collectively representing their N actual positions, is given by the vector
Q = (Q1, . . . ,QM) = (Q1, . . . ,QN) ∈ R

M = (R3)
N

. (The Cartesian coordinates of the first
particle are given by Q1 = (Q1,Q2,Q3) and similarly for the other particles.) The possible
trajectories Qt for the system of particles are given by solutions to the guidance equation

dQt

dt
= vψt (Qt), (2)

where the velocity field vψ = (v
ψ

1 , . . . , v
ψ

M) on R
M is given by

v
ψ

k (q) = �

mk

Im
∂qk

ψ(q)

ψ(q)
. (3)
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We denote the flow associated to the velocity field by qt : R
M → R

M .1 Thus Qt = qt (q)

is the solution to the guidance equation for which Q0 = q , so that q0(q) = q . In this no-
tation we have suppressed the dependence on the wave function. We keep the initial time
t = 0 fixed throughout the paper, and let ψ usually denote the initial wave function, so that
ψ0 = ψ .

3 Equivariance

Suppose we have a (measure-valued) functional P : ψ �→ P ψ from (nontrivial, i.e. not
everywhere 0) wave functions to probability distributions on configuration space R

M . There
exist then two natural time evolutions for P ψ . On the one hand, with ψt(q) = e−iH t/�ψ(q)

a solution to the Schrödinger equation with initial wave function ψ0(q) = ψ(q), we have
the probability distribution P ψt for all t ∈ R. On the other hand, under the Bohm flow (2, 3)
the distribution P ψ is carried to the distribution P

ψ
t = P ψ ◦ q−1

t at time t . This means that
if the initial configuration Q0 is random, with distribution P ψ , then the distribution of the
configuration Qt = qt (Q0) at time t is P

ψ
t .

The functional P is called equivariant [2] if

P
ψ
t = P ψt for all t ∈ R. (4)

In other words P is equivariant if P ψ retains its form as a functional of the wave func-
tion ψ when the time evolution of the distribution is governed by the flow qt associated
to the velocity field vψt . When the equivariant functional P is given by a density, i.e.,
when it is of the form P ψ(dq) = pψ(q)dq , we will also call the density-valued functional
p : ψ �→ pψ(q) equivariant. This will of course be so precisely when p

ψ
t (q) = pψt (q) for

all t , with p
ψ
t (q) = pψ(q−1

t (q))| ∂qt

∂q
(q−1

t (q))|−1 the density for P
ψ
t . (We will also say that

the distribution P ψ and the density pψ are equivariant when the functionals are.)
We can also characterize equivariance as follows. Suppose P ψ is given by the density pψ .

Then the density p(q, t) = p
ψ
t (q) satisfies the continuity equation

∂tp(q, t) +
M∑

k=1

∂qk
(v

ψt

k (q)p(q, t)) = 0. (5)

Thus the functional P is equivariant precisely if p̃(q, t) = pψt (q) also satisfies the continu-
ity equation (5) for all ψ . This follows from the uniqueness of solutions of partial differential
equations and the fact that the functions pψt (q) and p

ψ
t (q) are equal at t = 0.

Let us now give some examples. The first example is the distribution |ψ |2. In the fol-
lowing we don’t assume the wave functions to be normalized. If the distributions are given
by |ψ |2, then it is natural to normalize the wave functions so that they have L2-norm one.
But for other distributions, other normalizations might be more appropriate.

Example 1 The quantum equilibrium functional is Pe(dq) = pe(q)dq where pe : ψ �→
pψ

e = Nψ
e |ψ |2, with Nψ

e = 1/
∫

RM |ψ |2dq . Obviously pe , respectively Pe , maps wave
functions to probability densities, respectively probability distributions. This functional is
equivariant since pψt

e satisfies the continuity equation (5) for all wave functions ψ .

1The Bohmian dynamics, defined by (1–3), is well defined on the subset of L2(RM)×R
M consisting of pairs

(ψ,q) with ψ sufficiently smooth and q such that ψ(q) �= 0, see [8]. We shall usually ignore such details.
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In general, whether or not a distribution P ψ is equivariant would be expected to depend
on the potential V . Note, however, that the quantum equilibrium distribution Pe is equivari-
ant for all V .

Example 2 Suppose φ is a real-valued eigenstate of the Hamiltonian H , for example the
ground state. For this stationary state the associated velocity field vφt (3) vanishes, so that
the Bohm motion is trivial in this case. Thus any functional P will trivially obey (4) for
ψ = φ.

The previous example illustrates the fact that equivariance is a property of a mapping
ψ �→ P ψ ; it concerns a family {P ψ } and not merely the satisfaction of (4) for a single wave
function ψ . Equivariance means that P ψt = P

ψ
t for all wave functions ψ in the Hilbert

space.
We may also consider the equivariance of a functional P defined on an invariant subset

of Hilbert space: Let I be an invariant set of wave functions, i.e., such that ψ ∈ I if and only
if ψt = e−iH t/�ψ ∈ I. We say that the functional ψ �→ P ψ , defined for ψ ∈ I, is equivariant
on I if (4) is obeyed by all ψ ∈ I.

We have so far not explicitly imposed any conditions on the distribution-valued func-
tional P ψ beyond equivariance. A condition that would be natural is that the functional be
projective, i.e., that if ψ ′ is a (non-vanishing) scalar multiple of ψ then P ψ ′ = P ψ , but we
shall not do so. We shall, however, insist on the following: When we speak of an equivariant
functional P ψ , it is to be understood that the mapping ψ �→ P ψ is measurable. When P ψ is
given by the density pψ , the measurability of P ψ amounts to that of pψ(q) as a function of ψ

and q . Measurability is the weakest sort of regularity condition invoked in analysis, prob-
ability theory, and ergodic theory, much weaker than differentiability or continuity. We do
not wish to specify here precisely what is meant by the measurability of P ψ (or of pψ(q)),
since the main result of this paper involves a much stronger condition, that P ψ be suitably
local. As a rule of thumb, however, we can say the following: Any mapping ψ �→ P ψ given
by an explicit formula will be measurable.

In order to appreciate the importance of measurability, one should note that when a dy-
namical system is analyzed, it is often necessary to consider random initial conditions. For
the Bohmian system the initial condition is given by the quantum state ψ as well as the initial
configuration, and hence one should allow for the possibility that the initial wave function ψ

is random, with distribution μ(dψ). When this is combined with a functional P ψ(dq), one
is naturally led to consider the joint distribution μ(dψ)P ψ(dq) of ψ and q , see Sect. 6. But
this will be meaningful—i.e., define a genuine probability distribution—only when P ψ is
measurable.

Furthermore, there is a sense in which the equivariance condition (4) says that P ψ

is a constant of the motion for the Schrödinger evolution of wave functions: With each
ψ ∈ H = L2(RM) associate a “fiber” Γψ , namely the set of probability distributions on con-
figuration space R

M . The Bohm flow acting on distributions provides a natural identification
of Γψt with Γψ (and in fact defines a connection on the fiber bundle H × Γ = {(ψ,μ)|ψ ∈
H ,μ ∈ Γψ }). The equivariance condition (4) then says that the function P ψ is a constant of
the Schrödinger motion under this identification.

Now if a dynamical system is ergodic, there can be no nontrivial functions (i.e., functions
that are not almost everywhere equal to a constant) that are constants of the motion. How-
ever, it is understood that only measurable functions are to be considered; in fact, there are
more or less always many nontrivial constants of the motion that are not measurable. Any
function of the orbits of the motion will define a constant of the motion. Most such constants
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of the motion will be nontrivial, and these will also fail to be measurable when the dynamics
is ergodic.

Similarly, one might expect that there will more or less always be a great many function-
als satisfying (4) if measurability is not demanded, and this is indeed the case, as we indicate
in the next example. (See Sect. 7 for more on equivariance and ergodicity.)

Example 3 For any fixed ψ let Oψ = {e−iH t/�ψ} ≡ {ψt } denote the orbit of ψ under the
Schrödinger evolution—the smallest invariant set containing ψ . If Oψ is not a periodic orbit
(one such that ψt = ψ for some t �= 0), we may let P ψ , for this ψ , be any probability
distribution on configuration space, and extend it to Oψ via (4). The resulting function P

is then obviously equivariant on Oψ . If Oψ is periodic, let P = Pe on Oψ . In this way we
may obtain a great many different functionals P —one for each assignment of probability
distributions to representatives of each non-periodic orbit—defined on the union of all orbits,
and hence for all ψ in Hilbert space. All of them obey (4) for all ψ . Most of these, however,
will not be measurable, and hence should not count as equivariant functionals.

In the previous example, suppose we were to choose P ψ in an explicit way, for example
as in Example 2, on the representatives. It might seem then, on the one hand, that we have
provided in effect an explicit formula for the functional P constructed in this way, so that it
would then be measurable. On the other hand, if the Bohmian dynamics is suitably ergodic,
see Sect. 7, as is likely often to be the case, P (if it is given by a density) must then agree
with Pe on many non-periodic orbits, which it clearly does not. What gives? The answer is
that the specification just mentioned is much less explicit than it might at first appear to be,
since in general there is no canonical way to choose a representative for each orbit, and the
functional so constructed need not be measurable.

A flow on the line or an autonomous flow on the plane can’t have strong ergodic proper-
ties. One might thus expect the Bohm motion on the line to also fail to have strong ergodic
properties. That this is so was shown in [9]. Accordingly, since dynamical systems that are
not ergodic have many stationary distributions, one should expect there to be a great many
distributions that are equivariant for this case.

Example 4 Consider a Bohmian particle moving on the line. Since trajectories can’t cross,
it is easy to see that the function F(ψ,q) = P ψ

e ((−∞, q)) is a constant of the motion,
F(ψt , qt (q)) = F(ψ,q). For fixed ψ , F is a map R → [0,1], and for every probability
distribution μ on (0,1) there is an equivariant functional

P ψ
μ (B) = μ(F(ψ,B)), (6)

the image of μ under F−1
ψ , the inverse of the map q �→ F(ψ,q). (When μ is the Lebesgue

measure, μ(dq) = dq , we have that Pμ = Pe .) Perhaps the simplest way to understand
this is in terms of the change of variables (ψ,q) �→ (ψ, q̃) with q̃ = F(ψ,q). In these
new coordinates the Bohmian dynamics becomes trivial: ψ evolves as usual according to
Schrödinger’s equation and q̃ does not change under the dynamics. Thus any distribution μ

for q̃ defines an equivariant functional.2

2Moreover, every equivariant functional for a particle on the line corresponds a.e. to a (possibly different)
choice μ for each ergodic component of the Schrödinger dynamics.
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A difference between the functional in Example 1 and those in (Example 3 and) Ex-
ample 4 is that the former is a local functional, whereas the latter (except for the quantum
equilibrium functional) are not. We call a functional pψ local if pψ(q) can be written, up
to normalization, as a (sufficiently differentiable) function of q , ψ(q), and finitely many
derivatives of ψ , evaluated at q . That is, for a local functional pψ we can write

pψ(q) = Nψgψ(q) (7)

where Nψ does not depend on q and where

gψ(q) = g(q,ψ(q), . . . , ∂n1
q1

. . . ∂nM
qM

ψ(q), . . .) (8)

depends on at most finitely many partial derivatives of ψ (and is sufficiently differentiable).
We shall say that a functional of the form (8) is strictly local. (A local density pψ(q), be-
cause of the normalization factor Nψ , need not be strictly local.) We note that a local func-
tional that, as demanded above, is differentiable will of course be measurable. In fact, for
measurability, continuity—indeed mere measurability of g—would suffice.

In the following section we will see that equivariance, together with the requirement that
the functional be local, leads uniquely to quantum equilibrium pe .

4 Uniqueness of Equivariant Densities

Let p : ψ �→ pψ be a functional from wave functions to probability densities. We show
that p is uniquely given by pe , with pψ

e = Nψ
e |ψ |2 as in Example 1, under the assump-

tions that pψ is equivariant and local. The locality implies that pψ can be written in the
form pψ(q) = Nψ

g gψ(q), where Nψ
g = 1/

∫
RM gψ(q)dq and where gψ(q) is a strictly local

functional, see (8). We split the proof into two parts, successively showing that:

(P1) gψt (q) satisfies the equation

∂tg
ψt (q) +

M∑
k=1

∂qk
(v

ψt

k (q)gψt (q)) + hgψt (q) = 0, (9)

with h a constant, i.e., independent of q and the wave function.
(P2) pψ(q) = pψ

e (q) = Nψ
e |ψ(q)|2.

We now give the proofs.

Proof of (P1) Equivariance implies that pψt (q) satisfies the continuity equation (5). Since
pψt (q) = Nψt

g gψt (q) the continuity equation for pψt (q) can be written as

1

gψt (q)

(
∂tg

ψt (q) +
M∑

k=1

∂qk
(v

ψt

k (q)gψt (q))

)
= −∂t lnNψt

g (10)

(wherever gψt (q) > 0).
Let us introduce the functional h : ψ �→ hψ , from wave functions to the real numbers,

defined by

hψt = ∂t lnNψt
g . (11)
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Since ∂t lnNψt
g is independent of q , hψt is well-defined as a real number. We will show that

this functional is constant, i.e. independent of ψ .
First note that ∂tg

ψt (q) can be expressed as a function of q and of the variables
∂

m1
q1 . . . ∂mM

qM
ψt (q). This is because gψ is a strictly local functional and because the time

derivatives of any of the variables ∂
m1
q1 . . . ∂mM

qM
ψt(q) can be replaced by spatial derivatives

by making use of the Schrödinger equation. As a result we have from (10) that

hψ = h(q,ψ(q), . . . , ∂n1
q1

. . . ∂nM
qM

ψ(q), . . .), (12)

so that hψ is a strictly local functional.
It follows that hψ = hψ ′

for any two wave functions ψ and ψ ′ for which all derivatives
agree at a configuration q ∈ R

M . But this means that for any ψ and ψ ′, hψ = hψ ′
, since

there is always a third wave function ψ ′′ such that all the derivatives of ψ and ψ ′′ agree at
one configuration q ∈ R

M and such that all the derivatives of ψ ′ and ψ ′′ agree at another
configuration q ′ ∈ R

M .
Thus hψ is independent of ψ . We write hψ = h. The continuity equation (10) then re-

duces to (9). �

Proof of (P2) Let us introduce the functional f ψ(q) = gψ(q)/|ψ(q)|2.3 From the continuity
equation for |ψt(q)|2 and the equation (9) for gψt (q) it follows that

df ψt

dt
+ hf ψt = 0, (13)

with

d

dt
= ∂t +

M∑
k=1

v
ψt

k ∂qk
. (14)

Because f ψ is a strictly local functional we have that

f ψ(q) = f (q,ψ(q), . . . , ∂n1
q1

. . . ∂nM
qM

ψ(q), . . .). (15)

Relation (13) can therefore be written as

0 = df ψt

dt
+ hf ψt

=
M∑

k=1

v
ψt

k ∂qk
f +

∑
m1,...,mM

(
d

dt
(∂m1

q1
. . . ∂mM

qM
ψt,r )

∂f

∂(∂
m1
q1 . . . ∂

mM
qM

ψt,r )

+ d

dt
(∂m1

q1
. . . ∂mM

qM
ψt,i)

∂f

∂(∂
m1
q1 . . . ∂

mM
qM

ψt,i)

)
+ hf, (16)

where ψt,r and ψt,i are respectively the real part and the imaginary part of ψt .

3f ψ(q) is defined on {q ∈ R
M |ψ(q) �= 0}. Since the Bohm flow (2, 3) is defined only on this set, we consider

only densities on this set, i.e., for which gψ > 0 only on this set.



1204 J Stat Phys (2007) 128: 1197–1209

This expression can be rewritten by making use of the Schrödinger equation (1), since
for every variable ∂

m1
q1 . . . ∂mM

qM
ψt,r and ∂

m1
q1 . . . ∂mM

qM
ψt,i we have that

d

dt
(∂m1

q1
. . . ∂mM

qM
ψt,r ) = ∂t∂

m1
q1

. . . ∂mM
qM

ψt,r +
M∑

k=1

v
ψt

k ∂qk
∂m1

q1
. . . ∂mM

qM
ψt,r

= −
M∑

k=1

�

2mk

∂2
qk

∂m1
q1

. . . ∂mM
qM

ψt,i + 1

�
∂m1

q1
. . . ∂mM

qM
(V ψt,i)

+
M∑

k=1

v
ψt

k ∂qk
∂m1

q1
. . . ∂mM

qM
ψt,r (17)

and

d

dt
(∂m1

q1
. . . ∂mM

qM
ψt,i) = ∂t∂

m1
q1

. . . ∂mM
qM

ψt,i +
M∑

k=1

v
ψt

k ∂qk
∂m1

q1
. . . ∂mM

qM
ψt,i

=
M∑

k=1

�

2mk

∂2
qk

∂m1
q1

. . . ∂mM
qM

ψt,r − 1

�
∂m1

q1
. . . ∂mM

qM
(V ψt,r )

+
M∑

k=1

v
ψt

k ∂qk
∂m1

q1
. . . ∂mM

qM
ψt,i . (18)

In this way (16) expresses a functional relation between the variables q and all the real
variables ∂

n1
q1 . . . ∂nM

qM
ψt,r and ∂

n1
q1 . . . ∂nM

qM
ψt,i which has to hold identically, i.e. for all possible

values of these variables. Since all these variables can be treated as independent, we can
show that the function f must be a constant as follows.

First select a variable ∂
n1
q1 . . . ∂nM

qM
ψt,r or ∂

n1
q1 . . . ∂nM

qM
ψt,i such that f depends on this vari-

able and such that, if f depends on another variable ∂
n̄1
q1 . . . ∂n̄M

qM
ψt,r or ∂

n̄1
q1 . . . ∂n̄M

qM
ψt,i , then

n̄1 ≤ n1. Suppose the selected variable is, say, ∂n1
q1 . . . ∂nM

qM
ψt,r . Then, from (16), (17) and (18)

it follows that the only term in df ψt /dt + hf ψt that contains the variable ∂
n1+2
q1 . . . ∂nM

qM
ψt,i

is

− �

2m1
∂n1+2

q1
. . . ∂nM

qM
ψt,i

∂f

∂(∂
n1
q1 . . . ∂

nM
qM

ψt,r )
. (19)

Because ∂
n1+2
q1 . . . ∂nM

qM
ψt,i can be treated as an independent variable, the term above has to

be zero. Hence

∂f

∂(∂
n1
q1 . . . ∂

nM
qM

ψt,r )
= 0. (20)

But this contradicts the fact that f depends on the variable ∂
n1
q1 . . . ∂nM

qM
ψt,r . It follows that f

does not depend on any of the variables ∂
m1
q1 . . . ∂mM

qM
ψt,r or ∂

m1
q1 . . . ∂mM

qM
ψt,i . Hence we have

that f = f (q).
Equation (16) now reduces to

M∑
k=1

v
ψt

k ∂qk
f + hf = 0 (21)
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and we can use a reasoning similar to the above to conclude that ∂qk
f = 0, k = 1, . . . ,M .

Hence f is a constant independent of q and the wave function and any of its derivatives.
Since gψ(q) = f |ψ |2 with f now a constant and since pψ is assumed to be a probability
density we have that

pψ(q) = pψ
e (q) = Nψ

e |ψ(q)|2. � (22)

5 A Stronger Result?

There is a weaker version of the locality of the functional pψ(q) = Nψgψ(q), which we
shall call weak locality, that is worth considering. This requires that gψ(q) be determined
by ψ in a neighborhood of q , i.e., that if ψ and ψ ′ agree in some neighborhood of q , then
gψ(q) = gψ ′

(q). This is indeed a weaker notion of locality than used earlier, and allows in
particular for gψ(q) to depend on all derivatives of ψ at q .

It is reasonable to ask whether the uniqueness result would continue to be valid if the
equivariant functional pψ were assumed only to be weakly local. We believe that the answer
is yes. There is an argument for this that, while not entirely rigorous, is quite compelling. At
the same time, the argument provides some perspective on our uniqueness result. It is this:

The Bohmian dynamics defines a flow on (a subset of) the space X = H × R
M , where

H = L2(RM) is the Hilbert space of the Bohmian system. We shall denote the action of this
flow by Tt , so that for η = (ψ,q) ∈ X, we have that Ttη = (ψt , qt (q)). In terms of this flow,
the equivariance of the density pψ(q) can be conveniently expressed as follows: Let

G(η) = pψ(q)/pψ
e (q). (23)

Then the equivariance of pψ amounts to the requirement that G be a constant of the motion
for the flow Tt ,

G(Ttη) = G(η). (24)

(This is an easy consequence of the fact that pψ
e is equivariant.) And uniqueness amounts

to the statement that G is constant on (the relevant subset of) X. This would be so if the
flow Tt were sufficiently ergodic (see Sect. 7): ergodicity means that there are no nontrivial
constants of the motion—that the only constants of the motion are in fact functions that are
almost everywhere constant, and hence trivially constants of the motion—as would be the
case if the set of possible states η consisted of a single trajectory. This, of course, is im-
possible. Nonetheless, the ergodicity of a motion on a space means roughly that the motion
is sufficiently complicated to produce trajectories that almost connect any two points in the
space, so that functions that don’t change along a trajectory must be more or less everywhere
constant.

In fact, it is easy to see that for uniqueness it is sufficient that G be constant on the subsets
Xψ = {(ψ,q) ∈ X|q ∈ R

M} of X corresponding to fixed ψ , and for this it is of course
sufficient that G be locally constant on Xψ , i.e., that every q ∈ R

M has a neighborhood Oq

such that G is constant on {(ψ,q ′) ∈ X|q ′ ∈ Oq}. It is also easy to see that for uniqueness it
is sufficient that F(η) = gψ(q)/|ψ(q)|2 be constant on X—or (locally) constant on Xψ .

While F is not obviously invariant under the flow Tt , it is clearly quasi-invariant, which
is almost as good: In terms of F , (24) becomes

F(Ttη) = ehtF (η), (25)
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for all t ∈ R, where h is the constant defined by (11). (That hψ is constant follows from
weak locality much as it does from locality. Moreover, it seems likely on general grounds
that h = 0, in which case F would be strictly invariant.)

Now the (weak) locality of pψ implies that F is invariant under a much larger set of
transformations than the one-dimensional set {Tt }, defining an action of the group R on X.
It implies invariance under the action Tφ of the infinite-dimensional (additive) group N =
{φ ∈ H |φ(q ′) = 0 in a neighborhood of q = 0}, where Tφη = Tφ(ψ,q) = (ψ + φq, q), with
φq(q

′) = φ(q ′ − q). Thus with weak locality we have, in addition to (25), that for all φ ∈ N

F(Tφη) = F(η). (26)

Now while the action of R on X given by the Bohmian flow Tt may fail to be suitable
ergodic, it is hard to imagine this for the action Tξ , ξ ∈ G, of the group G generated by the
actions of R and N on X. Indeed, it seems very likely that X consists of a single orbit
{Tξ (ψ,q)|ξ ∈ G} of this action, and more likely still that G connects any two points in any
sufficiently small neighborhood of any point in Xψ .

If h were 0 this would imply uniqueness. For general h we have that

F(Tξη) = ehtξ F (η) (27)

for all ξ ∈ G. But what was suggested above for G should still be true of the subgroup G0 =
{ξ ∈ G|tξ = 0}, under the action of which F is invariant, and this would imply uniqueness in
the general case.

Indeed, consider only the transformations in G0 of the form Tφ2,−t,φ1,t = Tφ2T−t Tφ1Tt ,
with φi ∈ N and t ∈ R. Since the dimension of the set of such transformations should be
regarded as roughly twice the dimension of X, the set obtained by applying all such trans-
formations to a given point η ∈ X—the range of the mapping (φ1, φ2, t) �→ Tφ2,−t,φ1,t η—
should be all of X, at the very least, locally.

The previous argument also suggests that for the uniqueness of the equivariant distribu-
tion, the locality condition can be weakened further to that of having finite range r > 0: that
gψ(q) depend at most on the restriction of ψ to the ball Br of radius r centered at q . (The
weak locality condition is then that of having finite range r for all r > 0.)

6 Equivariance and Stationarity

We have already indicated that an equivariant functional can be regarded as generalizing the
notion of a stationary probability distribution for a dynamical system—one that is invariant
under the time-evolution. We wish here to tighten this connection a bit, and observe that
the equivariance of the functional P ψ is more or less equivalent to (it implies and is almost
implied by) the following: For every measure μ(dψ) on Hilbert space H that is stationary
under the Schrödinger evolution, the measure μ(dψ)P ψ(dq) is a stationary measure on
X = H × R

M for the Bohmian dynamics. (The “almost” and “more or less” refer to the
following: The stationarity of μ(dψ)P ψ(dq) implies that the condition (4) for equivariance
is satisfied by all ψ with the possible exception of a set of ψ ’s with μ-measure 0. If there
are exceptional ψ ’s, P ψ(dq) can be changed, on a set with μ-measure 0 so that it continues
to define the same measure μ(dψ)P ψ(dq) on X, so as to become strictly equivariant.)

A general probability measure on X can be regarded as of the form μ(dψ)P ψ(dq):
μ(dψ) is the first marginal, the distribution of the first component ψ of η = (ψ,q) ∈ X, and
P ψ(dq) is the conditional distribution of the configuration q given ψ , a probability measure
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on the fiber of the product space X that “lies above ψ”. Consider now any measure on X of
the form μ(dψ)P ψ(dq), with now μ any measure on H and P ψ(dq) a probability measure
on R

M . (Here μ need not be a probability measure, nor even normalizable.) For this measure
to be stationary μ(dψ) obviously must be. Suppose this is so. Then, for stationarity, we still
must have that the measure P ψ(dq) on the ψ -fiber evolves to the correct measure on the
ψt -fiber, namely P ψt (dq) (with the possible exception of a set of ψ ’s having μ-measure 0).
But equivariance says more or less precisely that this is so: it says that for all ψ , P ψt = P

ψ
t ,

the measure to which P ψ evolves.
Thus a probability measure on X is stationary if and only if it is of the form

μ(dψ)P ψ(dq) with μ stationary and P ψ equivariant. In particular, the measure μ(dψ) ×
P ψ

e (dq), where Pe is the quantum equilibrium distribution, is stationary whenever μ(dψ)

is. Suppose this is so. Consider a measure μ(dψ)P ψ(dq) having a density with respect
to μ(dψ)P ψ

e (dq). This density is given by the function G (23) on X. The measure
μ(dψ)P ψ(dq) will be stationary precisely if its density G is a constant of the motion,
consistent with our earlier assertion that this amounts to the equivariance of P ψ .

7 Uniqueness and Ergodicity

The ergodicity of a dynamical system, defined by a dynamics and a given stationary proba-
bility distribution, is equivalent to the statement that any stationary probability distribution
with a density with respect to the given one must in fact be the given one. Thus ergodicity
amounts to the uniqueness, in an appropriate sense, of a stationary measure. So a uniqueness
statement for an equivariant functional—a uniqueness statement for quantum equilibrium—
can be regarded as expressing a sort of generalized ergodicity. We wish now to sharpen this
connection by observing that certain uniqueness statements for quantum equilibrium are
more or less equivalent to the ergodicity of certain dynamical systems. (One should bear in
mind that the ergodicity of a dynamical system is usually extremely difficult to establish.)

The relevant dynamical systems for our purposes here are defined by the Bohmian dy-
namics on X, with this space equipped with a stationary probability measure of the form
μ(dψ)P ψ

e (dq), with μ(dψ) stationary under the Schrödinger dynamics, as described in
Sect. 6. In order for this dynamical system to be ergodic, it is of course necessary for μ(dψ)

to be an ergodic measure for the Schrödinger dynamics. Suppose that this is so. Then it
is easy to see that the ergodicity of μ(dψ)P ψ

e (dq) under the Bohmian dynamics amounts
to the uniqueness of quantum equilibrium “modulo μ(dψ)”: μ(dψ)P ψ

e (dq) is ergodic if
and only if every equivariant density pψ agrees with quantum equilibrium, pψ = pψ

e , for
μ-a.e. ψ .4

There is, however, perhaps less in this equivalence than first meets the eye. The set
of ψ ’s of μ measure 1 for which, as a consequence of the ergodicity of μ(dψ)P ψ

e (dq),
we must have that pψ = pψ

e when pψ is an equivariant density will be rather small. The
set is large only relative to the “support” of μ, an invariant subset Iμ of H , with μ-
measure 1, defined by specified values of the constants of the Schrödinger motion such
as 〈ψ |Hn|ψ〉, n = 0,1,2, . . ..

4A genuinely different equivariant distribution Pψ with density pψ —one that does not agree with P
ψ
e for

μ-a.e. ψ—would yield a stationary probability distribution on X that is given by a density with respect to the

one arising from P
ψ
e but that differs from it, contradicting ergodicity. Conversely, by the discussion of Sect. 6

and the ergodicity of μ, a stationary probability distribution on X that is given by a density with respect to

μ(dψ)P
ψ
e (dq) must be of the form μ(dψ)Pψ(dq) with Pψ(dq) equivariant.
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For every such “ergodic component” Iμ of the Schrödinger dynamics, with μ(dψ) ×
P ψ

e (dq) also ergodic, we have the uniqueness of quantum equilibrium for almost all ψ in
Iμ. Taking the totality of such ergodic components of the Schrödinger dynamics, we obtain
the uniqueness of quantum equilibrium for almost all of the union of these components. In
particular, if H were completely decomposable into such ergodic components, we would
have the uniqueness of quantum equilibrium for almost all ψ in H .5

Here is an example of a typical ergodic component of the Schrödinger dynamics, to
which the discussion of this section could be applied. Suppose φ1, . . . , φn are eigenstates of
the Hamiltonian H , with corresponding eigenvalues E1, . . . ,En that are rationally indepen-
dent. For cj > 0, j = 1, . . . , n, let Ic1,...,cn = {ψ ∈ H |ψ = ∑n

j=1 cj e
iθj φj ,0 ≤ θj < 2π, j =

1, . . . , n}. The Schrödinger dynamics on Ic1,...,cn is quasi-periodic, with stationary probabil-
ity distribution, corresponding to a uniform distribution of the phases θj , that is ergodic.

8 Properties of Quantum Equilibrium

The quantum equilibrium functional P ψ = P ψ
e satisfies many natural conditions, some of

which play an important role in the analysis of a Bohmian universe:

(i) It is universally equivariant: it is equivariant for all Schrödinger Hamiltonians H , of
the form expressed on the right hand side of (1), i.e., for all V and for all choices mk of
the masses of the particles.

(ii) It is projective: P cψ = P ψ for every constant c �= 0.
(iii) It is covariant: P

ψ

R = P Rψ for all the usual symmetries of non-relativistic quantum me-
chanics, for example for space-translations, rotations, time-reversal, Galilean boosts,
and particle permutations. Here P

ψ

R is the distribution to which P ψ is carried by the
action of R on configurations.

(iv) It is factorizable. Suppose a Bohmian system is a composite of two systems,
with Hilbert space H = H1 ⊗ H2 and configuration variable q = (q(1), q(2)). Then
P ψ1⊗ψ2(dq(1) × dq(2)) = P ψ1(dq(1))P ψ2(dq(2)). (If H = H1 ⊗ I2 + I1 ⊗ H2, with Ii

the identity on Hi , then it follows immediately from the equivariance of P for the
composite system that the P ψi are equivariant for the respective components.)

(v) More generally, it is hereditary. Consider a composite system as in (iv), and suppose
that the conditional wave function of, say, system 1 is ψ when the composite has wave
function Ψ and system 2 has configuration Q(2), i.e., that ψ(q(1)) = Ψ (q(1),Q(2)). Then
the conditional distribution of the configuration of system 1, given that the configura-
tion of system 2 is Q(2), depends only on ψ and not on the choice of wave function Ψ

and configuration Q(2) that yields ψ : for fixed ψ , P Ψ (dq(1) |Q(2)) is independent of Ψ

and Q(2).

5Such a decomposition, of all of H , probably never exists. For many stationary states ψ the Bohm motion is
trivial, so that, with μ the uniform distribution on the orbit Oψ of ψ , which is ergodic for the Schrödinger

dynamics, μ(dψ)P
ψ
e (dq) is not ergodic, see Example 2. And for wave functions belonging to the spectral

subspace of H corresponding to the continuous spectrum the situation is even worse. For example, for a
free Hamiltonian H , with V = 0, there are no ergodic components to begin with. There are in fact, in this
case, no probability measures on H that are stationary under the Schrödinger dynamics. (Consider the free
Schrödinger dynamics. As time goes on the wave function should spread, never to become narrow again.
But this conflicts with Poincaré recurrence, and thus implies that there is no finite invariant measure, and
in particular no stationary probability measure.) And in this case as well, there are, presumably, equivariant

densities pψ that disagree with p
ψ
e for all ψ .
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It remains to be seen to what extent these properties, individually or in various com-
binations, uniquely characterize quantum equilibrium among equivariant distributions. (It
presumably follows, along the lines of the discussion in Sect. 5, that the satisfaction of the
equivariance condition (4) for all V ’s implies uniqueness—with the exception of the case
of a single particle on a line.) Be that as it may, it is noteworthy that locality alone, with
no additional conditions beyond equivariance, is sufficient to guarantee the uniqueness of
quantum equilibrium.
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