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Energy Transport in Weakly Anharmonic Chains
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We investigate the energy transport in a one-dimensional lattice of oscillators with
a harmonic nearest neighbor coupling and a harmonic plus quartic on-site potential.
As numerically observed for particular coupling parameters before, and confirmed by
our study, such chains satisfy Fourier’s law: a chain of length N coupled to thermal
reservoirs at both ends has an average steady state energy current proportional to 1/N .
On the theoretical level we employ the Peierls transport equation for phonons and note
that beyond a mere exchange of labels it admits nondegenerate phonon collisions. These
collisions are responsible for a finite heat conductivity. The predictions of kinetic theory
are compared with molecular dynamics simulations. In the range of weak anharmonicity,
respectively low temperatures, reasonable agreement is observed.

KEY WORDS: Fourier’s law, phonon Boltzmann equation, molecular dynamics,
one-dimensional lattice dynamics

1. INTRODUCTION

In their seminal work of 1955, Fermi, Pasta, and Ulam(1) investigate the relaxation
to equilibrium for a chain of coupled anharmonic oscillators, by exploiting the
then newly available electronic computational devices. We refer to the informative
memorial volume. (2) Related to their study is the issue of energy transport along
the chain, which is modelled by coupling a chain of length N to thermal reservoirs
at both ends. With increased computational power at hand such studies have
been revived and carried through in considerable detail. Excellent reviews are
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in print (3,4) and here we only highlight, somewhat crudely, the main findings:

(i) There are chains for which Fourier’s law holds, in the sense that the steady
state energy flux je ∼= 1/N .

(ii) There are chains with anomalous heat conduction, for which the energy
flux exhibits a power law dependence on N which differs from 1/N .

(iii) If the interaction depends only on the relative displacements, anomalous
heat conduction seems to be the rule.

(iv) In some models the conductivity depends on the details of the coupling to
the thermal reservoirs.

While the amount of data available is impressive, it is generally agreed that
there is very little theory which would serve as a guideline. The harmonic chain can
be solved exactly with the result that je is independent of N . (5) For the harmonic
chain with random masses the transport for a given wave number k is propor-
tional to e−γ (k)N , γ (k) > 0, with γ (k) → 0 as k → 0. Thus the average energy
current depends on the precise spectral statistics of the thermal reservoir.(6−9) For
anharmonic chains there are attempts to predict the exponent for the anomalous
heat conduction through mode-coupling theory(10) and through a renormalization
group treatment of phenomenological noisy hydrodynamic type equations. (11)

In our note we follow the strategy of Peierls, who argues that in case of
weak nonlinearity one can use a Boltzmann type transport equation for the com-
putation of the thermal conductivity. For anharmonic crystals in three dimensions
phonon kinetic theory is well supported through theory(12−14) and also experimen-
tally. (12,15) Whether kinetic theory is applicable to a weakly anharmonic chain is
somewhat tentative. There is no difficulty in writing down the appropriate trans-
port equation. Its collision term ensures energy and momentum conservation in
a phonon collision. To progress further an analysis of the solution manifold to
both conservation laws becomes necessary. Firstly one has the trivial solutions
in which the two colliding phonons merely exchange their label. For the label
exchanging solutions the collision operator vanishes. However, as we first learned
from Lefevere and Schenkel, (16) there is in addition a non-perturbative solution,
which leads to nondegenerate collisions. As will be explained in more detail, with
this input kinetic theory predicts a finite, non-zero, thermal conductivity even for
a chain.

As we learned later on, Pereverzev(17) has already applied kinetic theory
to the FPU β-lattice, for which the potential energy depends only on the relative
displacements. For this model he obtains the non-perturbative solution and argues,
based on the linearized transport equation, that the energy current correlation
has a power law decay as t−3/5. Thus the heat transport is anomalous with a
size dependent conductivity proportional to N 2/5. In our contribution we will be
concerned with regular transport only.
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To keep the model as simple as possible we will study the harmonic chain
with a small quartic on-site potential. Equivalently, one may consider a fixed
anharmonicity but “low” temperatures. We regard the thermal conductivity to be
defined through the Green-Kubo formula and work out the predictions of kinetic
theory in fair detail. To explicitly compute the conductivity one has to invert the
linearized collision operator. This is not completely straightforward and we have
to be satisfied with some estimates, which however turn out to be sufficient for
our purposes. The predictions of kinetic theory will be compared with molecular
dynamics simulations. In fact, kinetic theory does rather well, with a range of
validity larger than expected on the basis of purely theoretical arguments.

2. THE GREEN-KUBO FORMULA, SCALING PROPERTIES

The anharmonic chain is governed by the Hamiltonian

H =
∑

j∈Z

{
1

2
p2

j + 1

2
ω2

0q2
j − δω2

0q j q j+1 + 1

4
λq4

j

}
. (2.1)

Here q j is the deviation from the rest position and p j the momentum of the j-th
particle. We choose units such that the mass of a particle equals 1. ω0 and δω0

characterize the harmonic on-site and nearest neighbor interaction, respectively.
ω0 > 0 and it has the dimensions of a frequency. To have a stable harmonic part
of H we require

0 ≤ δ ≤ 1

2
. (2.2)

In the border case δ = 1
2 , the harmonic part can be written as

∑
j

ω2
0

4 (q j+1 − q j )2

and thus depends only on the relative displacement. λ > 0 is the strength of the
quartic on-site potential.

The particular case λ = 1, δ = 1
2 is studied in great detail in Ref. 18, in

which case kinetic theory is applicable at low temperatures. For our purposes it is
of importance to add the extra parameter δ, since it is retained in the kinetic limit.
Thereby one can compare the theoretical predictions with molecular dynamics
simulations in their δ-dependence.

To (2.1) we associate the local energy

Hj = 1

2
p2

j + 1

2
ω2

0q2
j + 1

4
λq4

j − 1

2
δω2

0(q j−1q j + q j q j+1) . (2.3)

Then

d

dt
Hj = −Jj, j+1 + Jj−1, j (2.4)
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with the energy current across the bond j to j + 1 given by

Jj, j+1 = −1

2
δω2

0(p j q j+1 − p j+1q j ) . (2.5)

The equilibrium state for (2.1) is Z−1 exp[−H/T ] with T denoting temper-
ature. Equilibrium expectations are denoted by 〈·〉(1/T ). We define the total energy
current correlation through

C(t ; T, ω0, δ, λ) =
∑

j∈Z

〈Jj, j+1(0)J0,1(t)〉(1/T ) . (2.6)

By stationarity of 〈·〉(β), C(t) = C(−t). According to Green-Kubo the thermal
conductivity at temperature T is defined by

κ(T ) = T −2
∫ ∞

0
dt C(t ; T ) . (2.7)

Regular transport in the sense of Fourier’s law requires that 0 < κ(T ) < ∞.
C(t) does not depend on all of its parameters separately. To find the depen-

dence out we transform to new variables as

q̃ j (t) = γ q j (αt), p̃ j (t) = αγ p j (αt) . (2.8)

Then q̃(t), p̃(t) are solutions to Hamilton’s equations of motion for the Hamiltonian

H̃ (q̃, p̃) =
∑

j∈Z

{
1

2
p̃2

j + 1

2
α2ω2

0q̃2
j − α2δω2

0q̃ j q̃ j+1 + α2γ −2 1

4
λq̃4

j

}
. (2.9)

In addition,

H (q, p) = (αγ )−2 H̃ (q̃, p̃) . (2.10)

Therefore,

C(t ; T, ω0, δ, λ) = (αγ 2)−2α−4C(t/α; α2γ 2T, αω0, δ, α
2γ −2λ) , (2.11)

which by (2.7) implies for the conductivity

κ(T, ω0, δ, λ) = α−1κ(α2γ 2T, αω0, δ, α
2γ −2λ) . (2.12)

Setting αω0 = 1, α2γ −2λ = 1 yields the scaling form

κ(T, ω0, δ, λ) = ω0�
(
ω−4

0 λT, δ
)
. (2.13)

In our molecular dynamics simulations, see Sec. 5, we set ω0 = 1/
√

δ and
λ = 1. On the other hand, for the kinetic limit the natural choice is ω0 = 1 and fixed
inverse temperature β. Inserting α = √

δ, γ = (δβT )−1/2 in (2.12) one arrives at

T 2κ

(
T,

1√
δ
, δ, 1

)
= 1√

δ

1

δ4β2
(δ2βT )2κ(β−1, 1, δ, δ2βT ) . (2.14)
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Thus the limit T → 0 on the left corresponds to the limit λ → 0 of
λ2κ(β−1, 1, δ, λ) on the right hand side, which will be studied in the following
section.

3. ENERGY CURRENT-CURRENT CORRELATION
IN THE KINETIC LIMIT

In this section we set ω0 = 1. To study the kinetic limit it is convenient to
switch to Fourier space. Let T = [− 1

2 , 1
2 ] be the first Brillouin zone of the lattice

dual to Z. For f : Z → R we set

f̂ (k) =
∑

j∈Z

e−i2πk j f j , k ∈ T , (3.1)

with the inverse

f j =
∫

T

dkei2πk j f̂ (k) . (3.2)

We decompose

H = Hhar + 1

4
λ

∑

j∈Z

q4
j . (3.3)

The harmonic part Hhar has the dispersion relation

ω(k) = (
1 − 2δ cos(2πk)

)1/2
. (3.4)

p j , q j , j ∈ Z, are concatenated into a single complex-valued field through

a(k) = 1√
2

(√
ω(k )̂q(k) + i

1√
ω(k)

p̂(k)
)
. (3.5)

Notationally it will be convenient to also define

a(k)∗ = a(k, 1) , a(k) = a(k,−1) . (3.6)

Then the equations of motion read

d

dt
a(k, t) = −iω(k)a(k, t)

−i λ
∑

σ1,σ2,σ3=±1

∫

T
3

dk1dk2dk3(16ω(k)ω(k1)ω(k2)ω(k3))−1/2

×δ(k + σ1k1 + σ2k2 + σ3k3)
3∏

j=1

a(k j , σ j , t) . (3.7)
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In these new variables the harmonic part of the energy becomes

Hhar =
∫

T

dkω(k)a(k)∗a(k) (3.8)

and the total current, Jtot = ∑
j J j, j+1, becomes

Jtot = δ

∫

T

dk sin(2πk)a(k)∗a(k) = 1

2π

∫

T

dk

(
d

dk
ω(k)

)
ω(k)a(k)∗a(k) . (3.9)

We plan to study the energy current correlation (2.6) in the limit of small λ.
Since in equilibrium 〈J0,1(t)〉(β) = 0, it holds

∑

j∈Z

〈J0,1(t)Jj, j+1〉(β) = lim
τ→0

1

τ
〈J0,1(t)〉(β,τ ) , (3.10)

where 〈·〉(β,τ ) refers to expectation with respect to the perturbed equilibrium mea-
sure Z−1 exp[−βH + τ Jtot], Jtot the total current, in the infinite volume limit.
For small λ we can ignore the quartic on-site potential in the average 〈·〉(β,τ ). Thus
〈·〉(β,τ ) is replaced by the Gaussian measure 〈·〉β,τ

harm, which is uniquely characterized
through its covariance

〈a(k)∗a(k ′)〉β,τ

harm = δ(k − k ′)
(
βω(k) − τδ sin(2πk)

)−1
,

〈a(k)〉β,τ

harm = 0, 〈a(k)a(k ′)〉β,τ

harm = 0 . (3.11)

The state 〈·〉β,τ

harm is not invariant under the mechanical time evolution and we have
to understand how for small λ such a non equilibrium measure evolves in time.
Instead of 〈·〉β,τ

harm let us consider as initial state an arbitrary translation invariant
Gaussian measure with covariance

〈a(k)〉0 = 0 , 〈a(k)a(k ′)〉0 = 0 ,

〈a(k)∗a(k ′)〉0 = δ(k − k ′)W (k) , (3.12)

compare with (3.11). With this initial state the two-point function at time t , under
the full Hamiltonian dynamics, is of the form

〈a(k)∗a(k ′)〉t = δ(k − k ′)W λ(k, t) , (3.13)

which defines W λ(k, t). In particular, by (3.9),

〈J0,1(t)〉0 = δ

∫

T

dk sin(2πk)W λ(k, t) . (3.14)

For λ = 0, one has W λ=0(k, t) = W (k). For small λ the time variation of W λ(k, t)
is on the time-scale λ−2. Thus one expects that the following limit exists,

lim
λ→0

W λ(k, λ−2t) = W (k, t) , (3.15)
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and that the limit Wigner function W (k, t) evolves according to the spatially
homogeneous Boltzmann equation

∂

∂t
W (k, t) = 12π

∑

σ1,σ2,σ3=±1

∫

T
3

dk1dk2dk3(16ωω1ω2ω3)−1

× δ(ω + σ1ω1 + σ2ω2 + σ3ω3)δ(k + σ1k1 + σ2k2 + σ3k3)

× [
W1W2W3 + W (σ1W2W3 + σ2W1W3 + σ3W1W2)

]
(3.16)

with initial conditions W (k, 0) = W (k). Here, and later on, we use the shorthand
ω = ω(k), ω j = ω(k j ), W = W (k), W j = W (k j ), j = 1, 2, 3. In Appendix we
explain the second order diagrammatic expansion in λ, mostly to make sure that
the collision strength is correct.

By the argument in Appendix 18.1 of Ref. 14 energy and momentum conser-
vation in (3.16) can be satisfied only if

1 +
3∑

j=1

σ j = 0 , (3.17)

i.e., only for phonon number conserving collisions. Hence (3.16) simplifies to

∂

∂t
W (k, t) = 9π

4

∫

T
3

dk1dk2dk3(ωω1ω2ω3)−1δ(ω + ω1 − ω2 − ω3)

×δ(k + k1 − k2 − k3)
[
W1W2W3 + W (−W1W2 − W1W3 + W2W3)

]

= C
(
W (t)

)
(k) . (3.18)

Clearly, the equilibrium Wigner function

Wβ(k) = 1

βω(k)
(3.19)

is a stationary solution for (3.18). Since according to (3.10) and (3.11) only small
deviations from equilibrium are needed, we linearize the collision operator as

C(Wβ + (Wβ)2 f ) = −β−4 L f + O( f 2) . (3.20)

Then

L f (k) = 9π

4

∫

T
3

dk1dk2dk3(ωω1ω2ω3)−2δ(ω + ω1 − ω2 − ω3)

×δ(k + k1 − k2 − k3)
(

f (k) + f (k1) − f (k2) − f (k3)
)
. (3.21)

For this particular choice of linearization L = L∗ in L2(T, dk).
Let V f (k) = Wβ(k) f (k). Then

C(Wβ + f ) = −A f + O( f 2) = −β−4 LV −2 f + O( f 2) . (3.22)
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Let g(k) = sin(2πk) and let 〈·, ·〉 be the scalar product in L2(T, dk). Then, with
Wτ (k, t) denoting the solution to (3.18) for the initial condition W (k) = (

βω(k) −
τδ sin(2πk)

)−1
, one has

lim
λ→0

C(λ−2t ; β−1, 1, δ, λ) = lim
τ→0

1

τ
δ〈g, Wτ (t)〉

= δ2〈g, e−At V 2g〉
= δ2〈g, V e−β−4V −1 LV −1t V g〉 . (3.23)

Integrating over time one concludes that

lim
λ→0

λ2β−2κ(β−1, 1, δ, λ) = δ2β4〈g, V (V −1LV −1)−1V g〉

= δ2β4〈g, V 2L−1V 2g〉
= δ2〈ω−2g, L−1ω−2g〉 . (3.24)

Combining with (2.14) yields as the final result

lim
T →0

T 2κ

(
T,

1√
δ
, δ, 1

)
= δ−5/2〈ω−2g, L−1ω−2g〉 . (3.25)

The inner product on the right depends only on δ. The prefactor is slightly mis-
leading, since L is proportional to δ−1. Hence

δ−5/2〈ω−2g, L−1ω−2g〉 = δ−3/2c(δ) (3.26)

with 0 < c(δ) < ∞. (3.24) can rephrased as the asymptotics of the scaling function
from (2.13),

lim
x→0

x2�(x, δ) = δ2〈ω−2g, L−1ω−2g〉 . (3.27)

In other words

κ(T, ω0, δ, λ) ∼= (ω0)9(λT )−2δ2〈ω−2g, L−1ω−2g〉 (3.28)

for small ω−4
0 λT . Our argument provides no indication over which range (3.28)

is a valid approximation. In fact, even the claim (3.25), (3.26) is tentative. The
diagrammatic expansion from Appendix relies on the separation into leading
and subleading diagrams. For a three-dimensional lattice such a separation is
convincing and can be checked for special diagrams. The oscillatory time integrals
for the chain have a slower decay and the rough estimates used so far are not
sufficient to justify the separation into leading and subleading diagrams, which
we have assumed here. On the other hand, there could very well be cancellations
which are difficult to access through the expansion in Feynman diagrams. Also
we need the validity of the kinetic equation only close to thermal equilibrium. In
view of this situation a molecular dynamics simulation is in demand.
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4. THERMAL CONDUCTIVITY FROM THE ONE-DIMENSIONAL
BOLTZMANN EQUATION

The linearized collision operator L of (3.21) corresponds to the quadratic
form

〈 f, L f 〉 = 1

4

9π

4

∫

T
4

dk1dk2dk3dk4(ω1ω2ω3ω4)−2δ(ω1 + ω2 − ω3 − ω4)

× δ(k1 + k2 − k3 − k4)( f1 + f2 − f3 − f4)2 . (4.1)

We use momentum conservation to integrate over k4. For energy conservation we
thus need the solutions to

ω(k1) + ω(k2) − ω(k3) − ω(k1 + k2 − k3) = 0 . (4.2)

The obvious solutions are

k1 = k3 and k2 = k3 . (4.3)

Expanding (4.2) to first order in δ, as noticed in Ref. 16, there is yet a further,
non-perturbative solution given by

k1 + k2 = 1

2
modulo 1 for all k3 . (4.4)

This suggests to write, in general,

k2 = h(k1; k3) . (4.5)

Indeed, for every k3 ∈ T there exists a unique function h(·; k3) : T → T, which is
continuous, one-to-one, and satisfies

ω(k1) + ω(h(k1; k3)) − ω(k3) − ω(k1 + h(k1; k3) − k3) = 0 . (4.6)

h is called the non-perturbative solution. In Fig. 1 we display a few non-
perturbative solutions at δ = 0.4 and δ = 0.5 for three values of k3. For small δ one
finds

h(k1; k3) = 1

2
− k1 − δ

1

2π

(
sin(2πk1) + sin(2πk3)

) + O(δ2) , (4.7)

which reasonably well approximates the left hand of Fig. 1.
Inserting the solutions (4.3) and (4.5) to energy conservation into (4.1) splits

the linearized collision operator as the sum

L = Lex + Lnpert . (4.8)

By symmetry, for the label exchanging solution 〈 f, Lex f 〉 = 0 for all f .
Hence Lex = 0 and energy conservation in (4.1) will be evaluated always at
k2 = h(k1; k3).
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Fig. 1. The non-perturbative solution h(k1; k3, δ) as a function of k1 for fixed k3 and δ. On the
left, δ = 0.4, and on the right, δ = 0.5. For each value three solutions are plotted, corresponding to
k3 = 0.02 (black), 0.25 (dark grey), and 0.5 (light grey). We plot T × T in the extended zone scheme,
the dashed lines are the boundaries of a unit cell. For δ < 0.5 the non-perturbative solution is smooth,
while for δ = 0.5 there are cusp singularities.

In phonon kinetic theory it is customary to distinguish between normal and
umklapp processes. We choose the convention that k j ∈ [− 1

2 , 1
2 ], j = 1, . . . , 4.

Then a process is called normal if k1 + k2 − k3 − k4 = 0, while it is umklapp if
k1 + k2 − k3 − k4 = ±1. By this definition, the curves in Fig. 1 are divided into
a normal piece and an umklapp piece. For example, at δ = 0, one has k1 + k2 =
±1/2 and k3 + k4 = ±1/2. If the two terms have opposite sign, the collision
process is normal and otherwise it is umklapp. In our context such a division looks
artificial. In fact we will find that both, normal and umklapp, processes contribute
to the thermal conductivity.

We turn to the zero subspace of L , i.e., to solutions of L f = 0 in L2(T). By
(4.1), clearly they must be collisional invariants in the sense that

f (k1) + f (h(k1; k3)) − f (k3) − f (k1 + h(k1; k3) − k3) = 0 (4.9)

for all (k1, k3) ∈ T
2. The obvious solutions are

f (k) = 1 , f (k) = ω(k) . (4.10)

We expect that there are no further solutions, but no proof is available, at
present. This is an important issue, since speaking in general, the number of
collisional invariants is the crucial information on the long-time behavior of a
kinetic equation. At δ = 0, h does not depend on k3 and as a consequence the
zero subspace of L becomes infinite-dimensional consisting of all f ’s satisfying
f (k1) + f ( 1

2 − k1) = 0.
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We integrate in (4.1) over k4 and k2. For the volume element with respect to
k2 we need

∂

∂k2

(
ω(k1) + ω(k2) − ω(k3) − ω(k1 + k2 − k3)

)∣∣
k2=h(k1;k3)

= (2πδ)
(
ω(k2)−1 sin(2πk2) − ω(k1 + k2 − k3)−1

× sin(2π (k1 + k2 − k3))
)∣∣

k2=h(k1;k3)
. (4.11)

Hence

〈 f, L f 〉 = 9π

16
(2πδ)−1

∫

T
2

dk1dk3
(
ω(k1)ω(k2)ω(k3)ω(k1 + k2 − k3)

)−2

×|ω(k2)−1 sin(2πk2) − ω(k1 + k2 − k3)−1 sin(2π (k1 + k2 − k3))|−1

×(
f (k1) + f (k2) − f (k3) − f (k1 + k2 − k3)

)2∣∣
k2=h(k1;k3)

(4.12)

and L carries an explicit prefactor δ−1, as claimed in (3.26).
To obtain the thermal conductivity (in the kinetic regime) one has to invert

L , which can be achieved only numerically and which is not completely straight-
forward because of the constraint due to energy conservation. However for small
δ, say up to δ = 0.35, more modest means already suffice. By Jensen’s inequality
one has

〈 f, L−1 f 〉 ≥ 〈 f, f 〉2/〈 f, L f 〉 (4.13)

with f (k) = ω(k)−2 sin(2πk). For δ = 0 one obtains

〈 f, f 〉2 =
( ∫ 1/2

−1/2
(sin 2πk)2dk

)2

= 1

4
(4.14)

and

〈 f, L f 〉 = δ−1 9

32

∫ 1/2

−1/2
dk1

∫ 1/2

−1/2
dk3| sin(2πk1) − sin(2πk3)|−1

×(
2 sin(2πk1) − 2 sin(2πk3)

)2

= δ−1 9

π2
. (4.15)

Combing (3.25) and (4.13), (4.14), (4.15) yields

lim
T →0

T 2κ

(
T,

1√
δ
, δ, 1

)
≥ δ−3/2 π2

36
∼= δ−3/2 0.27 (4.16)

for small δ.
For numerical inversion of L at δ = 0 we expand in a basis of the form

sin((2n + 1)2πk), n = 0, 1, . . ., and, instead of c(0) = 0.27, obtain the prefactor
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in (3.26) as c(0) = 0.275637 with a stable value over the range n = 5, . . . , 32. As
can be seen from Fig. 1, even at δ = 0.4 the approximate solution (4.7) is rather
accurate. Therefore c(δ) is expected to depend only weakly on δ. Our claim is
supported by the lower bound

c(δ) = δ−1〈ω−2g, L−1ω−2g〉 ≥ 〈ω−3/2g, ω−3/2g〉2
/
δ〈ω−1g, Lω−1g〉 , (4.17)

g(k) = sin(2πk). For this particular choice of the variational function the singular
denominator in (4.12) is cancelled exactly and the numerical integration, using the
true non-perturbative solution, becomes routine. The lower bound to c(δ) drops
from 0.27 at δ = 0 to 0.2 at δ = 0.35. More details on the linearized collision
operator can be found in Ref. 19.

5. THERMAL CONDUCTIVITY FROM MOLECULAR DYNAMICS

Kinetic theory is expected to be valid for small dimensionless coupling
ω−4

0 λT and large system size. How small a coupling and how large a system size
can be explored only through molecular dynamics simulations. To this end, we
compute thermal conductivities for various parameters of the anharmonic chain
(2.1). We set λ = 1, ω0 = 1/

√
δ. Then the infinite volume conductivity depends

only on δ, T and kinetic theory becomes valid in the limit T → 0, compare with
Secs. 2 and 3. In particular,

T 2κ(T ) 
 δ−3/2c(δ) (5.1)

for small T with c(0) = 0.28 and c(δ) slowly dropping to smaller values as δ is
increased.

To numerically determine the thermal conductivity we take a chain of finite
length, N , and attach thermostats at both ends. We use free boundary conditions,
which means q j+1 = q j at the boundaries, but the physical results are insensitive to
this particular choice of boundary conditions. We adopt deterministic thermostats
which generalize those of Nosé–Hoover, (20,21) and follow the methods used for
the chain when δ = 1/2. (18,22) The non–equilibrium steady state is achieved by
integrating the equations of motion and physical observables are measured by
averaging over time after waiting for a sufficiently long equilibration time span. The
integration is performed numerically using standard algorithms, such as Runge–
Kutta, with time steps of 0.001 ∼ 0.04. 107 ∼ 1010 samples are taken to obtain
the average values of physical observables. The results do not depend on the
time step size. A non–equilibrium steady state has as its parameters the boundary
temperatures, N , and δ. The local temperature is defined through the relation
Tj = 〈p2

j 〉.
In principle, a single non–equilibrium state suffices to obtain κ . To deter-

mine κ with enough accuracy we employ a more elaborate procedure. We choose
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Fig. 2. The relation between the average current J/N and the temperature gradient, ∇T , for T =
0.4, δ = 0.2, N = 200. The straight line is Fourier’s law as obtained by a fit with gradient κ .

boundary conditions with varying temperature gradients, ∇T , but with the same
temperature close to the midpoint. We can then check that the average current
is linear in ∇T and obtain κ for given T, δ, and N , as illustrated in Fig. 2. The
temperature gradient needs to be computed away from the boundaries because of
jumps in the temperature at both ends, see Sec. 6 for a discussion. Since local
energy is conserved and there are no internal heat sinks or sources, the average
current is constant throughout the system. We increase N and examine if the bulk
limit is reached to finally extract κ for given T, δ. Bulk behavior had already been
observed when δ = 1/2, (22,23) and we do so also in the present study.

Naively, it would seem that weak coupling physics should be easy to simulate.
The computational difficulties arise because the mean free path inevitably becomes
large and the relaxation towards the steady state becomes slow, which demands to
carry out the simulation for large system sizes and sufficiently long times. These
factors limit the range of accessible parameters values. To elucidate these points
and also to understand the kinetic theory aspects of this system better, we analyze
the statistical properties of the system in more detail. To judge the required system
size we have to estimate the mean free path 
. It is not a sharply defined quantity.
Following Ziman(12) we set


 = κ/(Cvv) , (5.2)

where Cv is the specific heat and v the average speed of phonons. In the harmonic
approximation one obtains Cv = 1. Kinetically the equilibrium phonon number
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density equals T/ω(k), which suggests to set

vkin =
( ∫

T

(
ω′

2π

)2

T ω−1dk

/∫

T

T ω−1dk

)1/2

(5.3)

with the following expansion for small δ,

vkin =
√

δ

2

(
1 + 9

16
δ2 + O(δ4)

)
. (5.4)

The speed of phonon propagation can also be measured directly from the
time and space dependences of the autocorrelation function 〈J0,1(0)Jj, j+1(t)〉 in
thermal equilibrium. (10,18) The velocity of the peaks in the correlation function
is equated with the average phonon velocity relevant for thermal transport. An
example is shown in Fig. 3. The measured velocities can be compared to the
kinetic result in (5.4), which is done in Fig. 4. Perfect agreement is not expected
for a number of reasons. First, there is no unique definition of the average speed
of phonons so that there is no guarantee that the average (5.3) is precisely what
we measure in the molecular dynamics simulations as in Fig. 3. Furthermore,
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Fig. 3. The autocorrelation function 〈J0,1(0)J j, j+1(t)〉 at t = 0, 20, 40, 60 for T = 0.4, δ = 1/3. The
peaks move away at a constant rate, from which the speed of phonons is extracted.
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Fig. 4. Average phonon velocity for T = 0.1 (�), 0.4 (©), 4 (�), 10 (×) as inferred from the measured
energy current correlation functions. For comparison, we have plotted (solid line) also the rough kinetic
estimate (5.4) for the phonon velocity.

the kinetic approximation for vkin does not include the effects of anharmonicities
and should strictly hold only in the limit T → 0. Given these constraints, the
agreement between the simple formula (5.3) for vkin and the simulation results in
Fig. 4 is fairly satisfactory.

From the above discussion and using (5.1) we obtain


 ∼= 0.38 δ−2T −2 (5.5)

for small δ, T . From the measured values of κ, v (see Figs. 4 and 5), 
 can be
determined according to (5.2). 
 ranges then from 
 ∼ 1 at T = 4, δ = 0.3 to

 ∼ 4000 at T = 0.1, δ = 0.08. In the simulations the system size is varied up
to a few thousand depending on the parameters. Therefore, in our simulations, we
have been able to achieve N >∼ 
 in the parameter range probed here. When 
 and
N are of the same order, it is not clear a priori if the bulk limit has been reached.
In the subsequent section, we provide an argument that we might still be able to
estimate the conductivity in such cases, even when N < 
.

One distinctive qualitative feature of kinetic theory is the leading δ−3/2 de-
pendence of T 2κ(T ), see (5.1). To compare the molecular dynamics simulation
results with kinetic theory, we need to keep in mind that the agreement should hold
only when T is small and the power law becomes exact when δ → 0. In Fig. 5 the
comparison is made and we note a surprisingly good agreement, which improves
as the temperature is lowered, as to be expected.
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Fig. 5. T 2κ(T, 1/
√

δ, δ, 1) compared against the kinetic theory computation, 0.28δ−3/2

(straight line). The data points are for T = 0.1 (�), 0.4 (©), 4 (�).

6. STEADY STATE TEMPERATURE PROFILE

A second quantity of physical interest is the average temperature profile. If
difference in the boundary temperatures, �T = T− − T+, is small, then the profile
is approximately linear. For larger �T the temperature dependence of κ will be
seen. As �T is further increased, local equilibrium will break down eventually. (24)

We begin with working out the temperature profile as predicted by the transport
equation.

The space-time dependent version of the Boltzmann equation (3.18) reads

∂

∂t
W (x, k, t) + 1

2π
ω′(k)

∂

∂x
W (x, k, t) = C(W (x, ·, t))(k) , (6.1)

ω′(k) = d
dk ω(k), where the collision operator is local in (x, t), i.e., it acts only on

the wave number k. Under (6.1) the phonon number density

n(x, t) =
∫

T

W (x, k, t)dk (6.2)

and the energy density

e(x, t) =
∫

T

ω(k)W (x, k, t)dk (6.3)

are locally conserved. The former one we regard as spurious, since it has no
analogue on the microscopic level.

Following the standard hydrodynamic scheme, since there are no convective
terms, the long time behavior of (6.1) is thus dictated by the solution of the coupled
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nonlinear diffusion equations

∂

∂t

(
n
e

)
= ∂

∂x
D(α, β)

∂

∂x

(
α

β

)
(6.4)

Here α, β are “chemical potentials” labelling the stationary solutions,
Wα,β (k), of (6.1) as

Wα,β (k) = (βω(k) + α)−1 (6.5)

for (α, β) ∈ D, where D = {α, β|ω(0)β > −α for β ≥ 0 and ω( 1
2 )β > −α for

β ≤ 0}. Then D � (α, β) �→ (n, e) with

n(α, β) =
∫

T

Wα,β (k)dk , e(α, β) =
∫

T

ω(k)Wα,β(k)dk . (6.6)

In (6.4) we insert the inverse function as defined on (R+)2, which is uniquely
specified because of convexity. Secondly, D(α, β) is the 2 × 2 matrix of Onsager
coefficients as given through a Green-Kubo formula analogous to (3.24). Following
in spirit the arguments from Ref. 14 one obtains

D(α, β) = (2π )−2〈ω′(Wα,β)2

(
1
ω

)
,

1

L̃
(1 ω)ω′(Wα,β)2〉 (6.7)

with the linearized collision operator

L̃ f (k) = 9π

4

∫

T
3

dk1dk2dk3(ωω1ω2ω3)−1δ(ω + ω1 − ω2 − ω3)

× δ(k + k1 − k2 − k3)Wα,β(k)Wα,β(k1)Wα,β(k2)Wα,β(k3)

× ( f (k) + f (k1) − f (k2) − f (k3). (6.8)

At α = 0, D(0, β) = Dee is independent of β, which results in an important
simplification. Let us consider the steady state problem for (6.4) in the slab [0, 1]
with boundary conditions α(0) = 0, α(1) = 0, β(0) = β−, β(1) = β+. Then the
solution is given by

α(x) = 0 , β(x) = β−(1 − x) + β+x , 0 ≤ x ≤ 1 . (6.9)

In particular the steady state energy flux is

je = Dee(β+ − β−) . (6.10)

For a small temperature difference, β− = T −1, β+ = (T + �T )−1, one has in
approximation

je = −DeeT −2�T , (6.11)

where Dee = 〈ω−2g , L−1ω−2g〉 in agreement with (3.25).
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In molecular dynamics simulations the two ends of the chain, j = 1 and
j = N , are coupled to thermal reservoirs with �T/T of order 0.4 or less. The
local value of α is extracted from the simulation. A simple test is provided by the
momentum covariance. If locally the Wigner function has the form Wα,β (k), then

〈pi p j 〉 =
∫

T

(βω(k) + α)−1ω(k) cos(2π (i − j)k)dk , (6.12)

which reduces to 〈pi p j 〉 = β−1δi j for α = 0. Expanding (6.12) in α, δ results
in 〈p j p j+1〉/〈p2

j 〉 
 −αδ/2. Numerically, the steady state momentum correlation
〈pi p j 〉 is indeed strongly peaked at i = j and decays rapidly. The simulations
therefore indicate that α is small compared to ω and hence one can safely set α =
0. An example for off-diagonal correlations obtained from molecular dynamics
simulations is shown in Fig. 6 and, in this case,

∣∣〈p j p j+1〉
∣∣ /〈p2

j 〉 ∼ 0.02. This
quantity is close to but not quite zero. This may be due to α being small, but not
quite zero, or due to finite size corrections to local equilibrium.

In Fig. 7 we display a numerically generated steady state profile. One notes
that the profile lies slightly below the linear interpolation. Indeed, (6.9) claims that
1/Tj is linear. The dashed line is the corresponding fit. The excellent agreement
is a further confirmation for α being small.

A generic temperature profile consists of three pieces: there are two boundary
jumps of equal size and concentrated over a few lattice spacings and there is an, in
essence, linear bulk piece. Only if the effective temperature difference is large, one
observes deviations from linearity, as for example in Fig. 7. According to Ref. 5
and as easily extended to the case under study, in the harmonic limit boundary
jumps would be exponentially localized and the bulk piece would be flat. The
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δ = 1/3, and N = 40.
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Fig. 7. The temperature profile for δ = 0.2, boundary thermostat temperatures T− = 0.8, T+ = 1.2,
and N = 400. The dashed line is a fit with a linear 1/Tj -profile.

observed temperature profile deviates significantly from this harmonic limit for
all data points from Fig. 5 in always having a nonzero slope.

The equal size boundary jumps are easily understood in the context of
Langevin reservoirs. The leftmost particle, j = 1, is then governed by the Langevin
equation

q̇1 = p1 ,

ṗ1 = −ω2
0q1 + δω2

0q2 − λq3
1 − γ p1 + (2γ T−)1/2ḃ(t) , (6.13)

where γ > 0 is the friction coefficient and ḃ(t) white noise such that 〈ḃ(t)ḃ(t ′)〉 =
δ(t − t ′). A corresponding equation holds for the rightmost particle, j = N , with
T− replaced by T+. In the steady state 〈Ḣ1〉 = 0, which implies

γ (T− − T1) = J (N ) , (6.14)

where J (N ) is the steady state current for chain length N . Similarly

γ (TN − T+) = J (N ) . (6.15)

In particular, the boundary jumps are equal.
To understand the full structure of the steady state one may resort to (6.1)

restricted to the slab [0, �]. Then the steady state Wigner function, W (x, k), satisfies
∂W/∂t = 0 with the following boundary conditions at the two ends, x = 0, �,

W (0, k) = 1
2π

ω′(k)T−/ω(k) for k > 0 ,

W (�, k) = − 1
2π

ω′(k)T+/ω(k) for k < 0 , (6.16)
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where we assumed thermal sources together with complete absorption. To obtain
the steady state profile on this basis would need considerable numerical effort.
Therefore we turn to a very much simplified model, which however retains the
gross features of the steady state.

Energy is transported to the right with velocity +1 and to the left with velocity
−1. Locally the velocity may switch its orientation randomly with rate η. Then the
mean free path is 1/η and, as we will see, Fourier’s law holds with conductivity
κ = 1/(2η). In the steady state the average energy density satisfies

∂

∂x
f+(x) = η

(
f−(x) − f+(x)

)
,

− ∂

∂x
f−(x) = η

(
f+(x) − f−(x)

)
. (6.17)

The local energy is f+(x) + f−(x) = T (x), which we identify with the local
temperature. The energy current is then f+(x) − f−(x). Energy is injected at x = �

and absorbed at x = 0, i.e.

f−(�) = 1 , f+(0) = 0 , (6.18)

where partial absorption could readily be included. Comparing to the case f+(0) =
1 and f−(�) = 1, one concludes that the imposed right boundary temperature is
T+ = 2 and correspondingly the imposed left boundary temperature T− = 0. The
solution to (6.17), (6.18) reads

f+(x) = (1 + η�)−1ηx , f−(x) = (1 + η�)−1(ηx + 1) , (6.19)

which yields the temperature profile

T (x) = f+(x) + f−(x) = (1 + η�)−1(2ηx + 1) (6.20)

and the steady state current J (�) for slab length � as

J (�) = f+(x) − f−(x) = (1 + η�)−1 . (6.21)

Thus at both ends the boundary jump equals (1 + η�)−1 and the effective temper-
ature difference is �T = (1 + η�)−12η�. Hence

J (�) = −κ�T/� . (6.22)

Thus, even if � � η−1, the correct bulk current is extracted through (6.22). Of
course, as for fixed � the mean free path increases, so does the relaxation time and
longer simulation times would be needed.

To come back to the molecular dynamics computation, the simulation time is
sufficiently long so that the steady state is reached. For most of the data presented,
we obtain the conductivity from lattices with N � 
 and are confident that they
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should be reliable. At T = 0.1 data with small δ are computed for lattices with
N ∼ 
. Given the reasoning within the simplified model and the tendency of the
data for larger T , we believe that a reasonable estimate for the conductivities has
been obtained even for these cases.

7. CONCLUSIONS

The Boltzmann-Peierls equation retains the exact dispersion relation and the
type of nonlinearity of the Hamiltonian model. For example, had we considered
a cubic nonlinearity, then Eq. (3.18) would be quadratic in W . For a nonlinearity
which depends on the nearest neighbor relative displacements there would appear
the additional factor |∏4

j=1(1 − exp(i2πk j ))|2 in the collision rate. It is remarkable
that with this input the qualitative features of the “low” temperature thermal
conductivity are so well recovered.

It seems to us that the Boltzmann-Peierls equation has never been tested
in comparable precision before. The peak time for the experimental investiga-
tion of phonon thermal conductivity was in the late 50’ies and early 60’ies. A
quantitative comparison with the theory was hampered from two sides: (1) The
dispersion relation and the anharmonicities of a given dielectric crystal are not so
readily available. (2) One needs considerable numerical effort to reliably obtain
the thermal conductivity from the transport equation. Thus mostly one had to be
satisfied with qualitative predictions, as for example the 1/T -dependence of the
thermal conductivity in the presence of only three-phonon collisions. (12) More
recently, molecular dynamics simulations have become available, for example see
Ref. 25 and references therein. Compared to these more material science oriented
studies, we achieve a much larger system size, due to one instead of three spatial
dimensions, and we test the simulation data directly against the transport equation
without further approximations.

APPENDIX

We follow Sec. 11 of Ref. 14. The initial measure is translation invariant and
uniquely characterized by the covariance of (3.12). We want to establish that

W λ(k, λ−2t) = W (k) + tC(W )(k) + O(t2) (A.1)

for small λ.
By (3.7) the vertex weight is given by

φ(k, k1, k2, k3) = (16ωω1ω2ω3)1/2 . (A.2)

We use the expansion through Feynman diagrams as obtained from the iteration of
(11.7) in Ref. 14. Since the Hamiltonian has a quartic nonlinearity, each interaction
leads to a branching into 3 lines, compare with Fig. 5 of Ref. 14.
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To order λ0 we simply have δ(q − p)W (q). The order λ term is purely
imaginary, thus vanishes, because to every diagram there is its complex conjugate,
denoted by c.c.. Thus we are left with the order λ2. It has 8 ways of branching. For
a given branching there are 15 Gaussian pairings and 8 possible orientations of
the internal lines, which in total amounts to 960 diagrams. They will be divided
into subleading and leading.

(i) There are 144 diagrams of the type

0

t1

t2

t
q p��

�

�

We set τ = t2 − t1. Their sum is then

36
∑

σ2=±1

δ(q − p)
∫

T
2

dk1dk3φ(q, k1, q, k3)2

×W1W (−σ2q)W3(eiτω(q)(1+σ2) + c.c.) . (A.3)

(ii) There are 144 diagrams of the type

0

t1

t2

t
q p��

�

�

Their sum is

36
∑

σ2=±1

δ(q − p)
∫

T
2

dk1dk3φ(q, k1, q, k3)2

×W1W (q)W3σ2(eiτω(q)(1+σ2) + c.c.) . (A.4)
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(iii) There are 288 diagrams of the type

0

t1

t2

t
q p��

�

�

Their sum is

36
∑

σ1,σ2=±1

δ(q − p)
∫

T
2

dk1dk3φ(q, k1, q, k3)2

×W1W (q)W3σ2(eiτω1(σ1+σ2) + c.c.) = 0 . (A.5)

In (i) and (ii) the terms independent of τ cancel each other. The remaining
terms are proportional to cos(2ω(q)τ ) and thus of order λ2 after time-integration.
We are left with 384 leading diagrams.

(iv) The gain term results from 96 diagrams of the type

0

t1

t2

t
q p��

�

�

Their sum is

6
∑

σ1,σ2,σ3=±1

δ(q − p)
∫

T
3

dk1dk2dk3φ(q, k1, k2, k3)2

×δ(q + σ1k1 + σ2k2 + σ3k3)W1W2W3(eiτ (ω(q)+σ1ω1+σ2ω2+σ3ω3) + c.c.).

(A.6)
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(v) The loss term results from 288 diagrams of the type

0

t1

t2

t
q p��

�

�

Their sum is

6
∑

σ1,σ2,σ3=±1

δ(q − p)
∫

T
3

dk1dk2dk3φ(q, k1, k2, k3)2

× δ(q + σ1k1 + σ2k2 + σ3k3)W (q)(σ1W2W3 + σ2W1W3 + σ3W1W2)

× (
eiτ (ω(q)+σ1ω1+σ2ω2+σ3ω3) + c.c.

)
. (A.7)

In (iv) and (v) we use that

lim
λ→0

λ2
∫ λ−2t

0
dt2

∫ t2

0
dt1

(
eiω(t2−t1) + c.c.

) = 2π tδ(ω) , (A.8)

when integrated against a smooth, rapidly decreasing test function. By adding (iv)
and (v) one obtains the collision operator from Eq. (3.16) with the prefactor 12π .
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