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We provide a simple proof of the Lieb-Robinson bound and use it to prove the existence
of the dynamics for interactions with polynomial decay. We then use our results to
demonstrate that there is an upper bound on the rate at which correlations between
observables with separated support can accumulate as a consequence of the dynamics.
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1. INTRODUCTION

Recently, there has been increasing interest in understanding correlations in quan-
tum lattice systems prompted by applications in quantum information theory and
computation(2,3,4,10) and the study of complex networks(5). The questions that arise
in the context of quantum information and computation are sufficiently close to
typical problems in statistical mechanics that the methods developed in one frame-
work are often relevant in the other. The bound on the group velocity in quantum
spin dynamics generated by a short-range Hamiltonian, which was proved by Lieb
and Robinson more than three decades ago(8), is a case in point. For example, as
explained in Ref. 2, the Lieb-Robinson bound provides an upper bound on the
speed of information transmission through channels modeled by a quantum lattice
systems with short-range interactions.

The Lieb-Robinson bound plays a crucial role in the derivation of several re-
cent results. For some of these results it was useful, indeed necessary, to generalize
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and sharpen these bounds. Several such improvements have recently appeared(9,6).
In this paper we provide a new proof of the Lieb-Robinson bound (Theorem 2.1)
and other estimates based on a norm-preserving property of the dynamics (see
Lemma A.1). We apply this result to give upper bounds on the rate at which
correlations can be established between two separated regions in the lattice for a
general class of models (Theorem 2.2). Moreover, our bounds allow us to prove
the existence of the dynamics (Theorem 2.2), in the sense of a strongly contin-
uous group of automorphisms on the algebra of quasi-local observables for a
larger class of interactions than was previously known(1,11,7). In particular, the
new condition (see (1.7) with a = 0) does not include an exponential penalty
on multi-body interactions. It is also of interest to note that existence of the dy-
namics immediately implies the equivalence of different conditions for thermal
equilibrium for this larger class of interactions, such as the KMS condition and the
variational principle (see (Ref. 1 Theorem 6.2.36)) and the KMS condition and the
auto-correlation lower bounds, also called entropy-energy inequalities (see (Ref. 1
Theorem 5.3.15)).

1.1. The Set Up

We will be considering quantum spins systems defined over a set of vertices
� equipped with a metric d. A finite dimensional Hilbert space Hx is assigned
to each vertex x ∈ �. In the most common cases � is a graph, and the metric is
given by the graph distance, d(x, y), which may be the length of the shortest path
of edges connecting x and y in the graph.

For any finite subset X ⊂ �, the Hilbert space associated with X is the tensor
product HX = ⊗

x∈X Hx , and the set of corresponding observables supported in
X is denoted by AX = B(HX ), the bounded linear operators over HX . These local
observables form an algebra, and with the natural embedding of AX1 in AX2 for
any X1 ⊂ X2, one can define the C∗-algebra of all observables, A, as the norm
completion of the union of all local observable algebras AX for finite X ⊂ �.

An interaction is a map � from the set of subsets of � to A with the property
that �(X ) ∈ AX and �(X ) = �(X )∗ for all finite X ⊂ �. A quantum spin model
is then defined to be the Hamiltonian, expressed in terms of its interaction, given
by

H� :=
∑

X⊂�

�(X ). (1.1)

For notational convenience, we will often drop the dependence of H� on �.
The dynamics, or time evolution, of a quantum spin model is the one-

parameter group of automorphisms, {τt }t∈R, defined by

τt (A) = eit H Ae−i t H , A ∈ A, (1.2)
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which is always well defined for finite sets �. In the context of infinite systems,
a boundedness condition on the interaction is required in order for the finite-
volume dynamics to converge to a strongly continuous one-parameter group of
automorphisms on A.

To describe the interactions we wish to consider in this article, we first put a
condition on the set �; which is only relevant in the event that � is infinite. We
assume that there exists a non-increasing function F : [0,∞) → (0,∞) for which:

i) F is uniformly integrable over �, i.e.,

‖ F ‖ := sup
x∈�

∑

y∈�

F(d(x, y)) < ∞, (1.3)

and
ii) F satisfies

C := sup
x,y∈�

∑

z∈�

F (d(x, z)) F (d(z, y))

F (d(x, y))
< ∞. (1.4)

Given a set � equipped with a metric d, it is easy to see that if F satisfies i)
and ii) above, then for any a ≥ 0 the function

Fa(x) := e−ax F(x), (1.5)

also satisfies i) and ii) with ‖Fa‖ ≤ ‖F‖ and Ca ≤ C .
As a concrete example, take � = Z

d and d(x, y) = |x − y|. In this case, one
may take the function F(x) = (1 + x)−d−ε for any ε > 0. Clearly, (1.3) is satisfied,
and a short calculation demonstrates that (1.4) holds with

C ≤ 2d+ε+1
∑

n∈Z
d

1

(1 + |n|)d+ε
. (1.6)

We also observe that, although the purely exponential function G(x) = e−ax , is
integrable for a > 0, i.e., it satisfies i), it does not satisfy ii). This is evident from
the fact that the cardinality of the set {z ∈ Z

d : |x − z| + |z − y| − |x − y| = 0}
is proportional to |x − y|, and therefore, there exists no constant C uniform in
|x − y|.

To any set � for which there exists a function F satisfying i) and ii) above,
we define the set Ba(�) to be those interactions � on � which satisfy

‖�‖a := sup
x,y∈�

∑

X
x,y

‖�(X )‖
Fa (d(x, y))

< ∞. (1.7)
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2. LIEB-ROBINSON ESTIMATES AND EXISTENCE THE DYNAMICS

2.1. Lieb-Robinson Bounds

We present a variant of the Lieb-Robinson result which was first proven
in Refs. 6 and 9. An important difference of the new bound with respect to
the original bound in Refs. 1 and 8 and the one in Ref. 9 is that the norm on
the interaction previously used required a uniform bound on the dimension of
the single-site Hilbert space. Another derivation of this result can be found in (6).
For the convenience of the reader we provide a proof here.

Theorem 2.1. (Lieb-Robinson Bound) Let a ≥ 0 and take �1 ⊂ � a finite sub-
set. Denote by τ

�1
t the time evolution corresponding to a Hamiltonian

H :=
∑

X⊂�1

�(X ) (2.1)

defined in terms of an interaction � ∈ Ba(�). There exists a function ga : R →
[0,∞) with the property that, given any pair of local observable A ∈ AX and
B ∈ AY with X, Y ⊂ �1, one may estimate

∥
∥
[
τ�1

t (A), B
]∥
∥ ≤ 2 ‖A‖ ‖B‖

Ca
ga(t)

∑

x∈X

∑

y∈Y

Fa (d(x, y)) , (2.2)

for any t ∈ R. Here the function

ga(t) =
{

(e2 ‖�‖a Ca |t | − 1) if d(X, Y ) > 0,

e2 ‖�‖a Ca |t | otherwise.
(2.3)

Proof: Consider the function f : R → A defined by

f (t) := [
τ�1

t (A), B
]
. (1.4)

Clearly, f satisfies the following differential equation

f ′(t) = i
[

f (t), τ�1
t (HX )

] + i
[
τ�1

t (A),
[
τ�1

t (HX ), B
]]

, (1.5)

where we have used the notation

HY =
∑

Z⊂�1:

Z∩Y 
=∅

�(Z ), (1.6)

for any subset Y ⊂ �1. The first term in (1.5) above is norm-preserving, and
therefore the inequality

‖ [
τ�1

t (A), B
] ‖ ≤ ‖[A, B]‖ + 2‖A‖

∫ |t |

0
‖ [

τ�1
s (HX ), B

] ‖ ds (2.7)
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follows immediately from Lemma A.1 and the automorphism property of τ
�1
t . If

we further define the quantity

CB(X, t) := sup
A∈AX

‖[τ�1
t (A), B

]‖
‖A‖ , (2.8)

then (2.7) implies that

CB(X, t) ≤ CB(X, 0) + 2
∑

Z⊂�1:

Z∩X 
=∅

‖�(Z )‖
∫ |t |

0
CB(Z , s)ds. (2.9)

Clearly, one has that

CB(Z , 0) ≤ 2 ‖B‖ δY (Z ), (2.10)

where δY (Z ) = 0 if Z ∩ Y = ∅ and δY (Z ) = 1 otherwise. Using this fact, one may
iterate (2.9) and find that

CB(X, t) ≤ 2‖B‖
∞∑

n=0

(2|t |)n

n!
an, (2.11)

where

an =
∑

Z1⊂�1:

Z1∩X 
=∅

∑

Z2⊂�1:

Z2∩Z1 
=∅

· · ·
∑

Zn⊂�1:

Zn∩Zn−1 
=∅

n∏

i=1

‖�(Zi )‖ δY (Zn). (2.12)

For an interaction � ∈ Ba(�), one may estimate that

a1 ≤
∑

x∈X

∑

y∈Y

∑

Z
x,y

‖�(Z )‖ ≤ ‖�‖a

∑

x∈X

∑

y∈Y

Fa (d(x, y)) . (2.13)

In addition,

a2 ≤
∑

x∈X

∑

y∈Y

∑

z∈�1

∑

Z1⊂�1:

Z1
x,z

‖�(Z1)‖
∑

Z2⊂�1:

Z2
z,y

‖�(Z2)‖

≤ ‖�‖2
a

∑

x∈X

∑

y∈Y

∑

z∈�

Fa (d(x, z)) Fa (d(z, y))

≤ ‖�‖2
a Ca

∑

x∈X

∑

y∈Y

Fa (d(x, y)) , (2.14)

using (1.4). With analogous arguments, one finds that

an ≤ ‖�‖n
a Cn−1

a

∑

x∈X

∑

y∈Y

Fa (d(x, y)) . (2.15)
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Inserting (2.15) into (2.11) we see that

CB(X, t) ≤ 2 ‖B‖
Ca

exp [2 ‖�‖a Ca |t |]
∑

x∈X

∑

y∈Y

Fa (d(x, y)) , (2.16)

from which (2.2) immediately follows.
In the event that d(X, Y ) > 0, one has that CB(X, 0) = 0. For this reason the

term corresponding to a0 = 0, and therefore, the bound derived in (2.16) above
holds with e2‖�‖aCa |t | replaced by e2‖�‖aCa |t | − 1. �

We note that, for fixed local observables A and B, the bounds above are
independent of the volume �1 ⊂ �.

In the event that � ∈ Ba(�) for some a > 0, then the bound in (2.2) implies
that

∥
∥
[
τ�1

t (A), B
]∥
∥ ≤ 2 ‖A‖ ‖B‖

Ca
‖F‖ min(|X |, |Y |) e−a [d(X,Y )− 2‖�‖a Ca

a |t |], (2.17)

which corresponds to a velocity of propagation given by

V� := inf
a>0

2‖�‖aCa

a
. (2.18)

We further note that the bounds in (2.2) and (2.17) above only require that one
of the observables have finite support; in particular, if |X | < ∞ and d(X, Y ) > 0,
then the bounds are valid irrespective of the support of B.

One can also view the Lieb-Robinson bound as a means of localizing the
dynamics. Let � be finite and take X ⊂ �. Denote by Xc = � \ X . For any
observable A ∈ A� set

〈A〉Xc :=
∫

U (Xc)
U ∗ AU µ(dU ), (2.19)

where U(Xc) denotes the group of unitary operators over the Hilbert space HXc

and µ is the associated normalized Haar measure. It is easy to see that for any
A ∈ A�, the quantity 〈A〉Xc ∈ AX and the difference

〈A〉Xc − A =
∫

U (Xc)
U ∗ [A, U ] µ(dU ). (2.20)

We can now combine these observations with the Lieb-Robinson bounds we
have proven. Let A ∈ AX be a local observable, and choose ε ≥ 0, a > 0, and an
interaction � ∈ Ba(�). We will denote by

Bt (ε) = B(A, t, ε) :=
{

x ∈ � : d(x, X ) ≤ 2‖�‖aCa

a
|t | + ε

}

, (2.21)
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the ball centered at X with radius as specified above. For any U ∈ U(Bc
t (ε)), we

clearly have that

d (X, supp(U )) ≥ 2‖�‖aCa

a
|t | + ε, (2.22)

and therefore, using (2.20) above, we immediately conclude that

∥
∥ τt (A) − 〈τt (A)〉Bc

t (ε)

∥
∥ ≤

∫

U (Bc
t (ε))

‖ [τt (A), U ] ‖ µ(dU )

≤ 2 ‖A‖ |X |
Ca

‖F‖ e−aε, (2.23)

where for the final estimate we used (2.17).

2.2. Existence of the Dynamics

As is demonstrated in Ref. 1, one can use a Lieb-Robinson bound to establish
the existence of the dynamics for interactions � ∈ Ba(�). In the following we
consider the thermodynamic limit over a increasing exhausting sequence of finite
subsets �n ⊂ �.

Theorem 2.2. Let a ≥ 0, and � ∈ Ba(�). The dynamics {τt }t∈R corresponding
to � exists as a strongly continuous, one-parameter group of automorphisms on
A. In particular,

lim
n→∞

∥
∥τ

�n
t (A) − τt (A)

∥
∥ = 0 (2.24)

for all A ∈ A. The convergence is uniform for t in compact sets and independent
of the choice of exhausting sequence {�n}.

Proof: Let n > m. Then, �m ⊂ �n . It is easy to verify that for any local observ-
able A ∈ AY ,

τ
�n
t (A) − τ

�m
t (A) =

∫ t

0

d

ds

(
τ�n

s τ
�m
t−s(A)

)
ds, (2.25)

and therefore
∥
∥
∥τ

�n
t (A) − τ

�m
t (A)

∥
∥
∥ ≤

∑

x∈�n\�m

∑

X
x

∫ |t |

0

∥
∥

[
�(X ), τ�m

s (A)
] ∥
∥ ds. (2.26)

Applying Theorem 2.1, we see that the right hand side of (2.26) is bounded from
above by

2 ‖A‖
∫ |t |

0
ga(s)ds

∑

x∈�n\�m

∑

X
x

‖�(X )‖
∑

z∈X

∑

y∈Y

Fa (d(z, y)) . (2.27)
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Rewriting the sum on X 
 x and y ∈ X as the sum on y ∈ � and X 
 x, y,
one finds that
∥
∥
∥τ

�n
t (A) − τ

�m
t (A)

∥
∥
∥ ≤ 2 ‖A‖ ‖�‖a Ca

∫ |t |

0
ga(s)ds

∑

x∈�n\�m

∑

z∈Y

Fa (d(x, z))

≤ 2 ‖A‖ ‖�‖a Ca

∫ |t |

0
ga(s)ds |Y | sup

z∈Y

∑

x∈�n\�m

Fa (d(x, z)) .

(2.28)

As m, n → ∞, the above sum goes to zero. This proves that the sequence is
Cauchy and hence convergent. The remaining claims follow as in Theorem 6.2.11
of Ref. 1. �

3. GROWTH OF SPATIAL CORRELATIONS

The goal of this section is to prove Theorem 3.1 below which bounds the
rate at which correlations can accumulate, under the influence of the dynamics,
starting from a product state.

3.1. The Main Result

Let � be a normalized product state, i.e. � = ⊗
x∈� �x , where for each x ,

�x is a state (not necessarily pure) for the systems at site x . We will denote by 〈·〉
the expectation with respect to �, and prove

Theorem 3.1. Let a ≥ 0, � ∈ Ba(�), and take � to be a normalized product
state as described above. Given X, Y ⊂ � with d(X, Y ) > 0 and local observables
A ∈ AX and B ∈ AY , one has that

| 〈τt (AB)〉 − 〈τt (A)〉 〈τt (B)〉 | ≤ 4 ‖A‖ ‖B‖ ‖F‖ ( |X | + |Y | ) Ga(t) e−ad(X,Y ),

(3.1)
Here

Ga(t) = Ca + ‖Fa‖
Ca

‖�‖a

∫ |t |

0
ga(s) ds, (3.2)

and ga is the function which arises in the Lieb-Robinson estimate Theorem 2.1.

In the event that a = 0, the bound above does not decay. However, the estimate
(3.24) below, which does decay, is valid. Moreover, a straight forward application of
the techniques used below also provides estimates on the increase of correlations,
due to the dynamics, for non-product states.
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We begin by writing the interaction � as the sum of two terms, one of which
decouples the interactions between observables supported near X and Y .

3.1.1. Decoupling the Interaction

Consider two separated local observables, i.e., A ∈ AX and B ∈ AY with
d(X, Y ) > 0. Let

SA,B :=
{

y ∈ � : d(y, X ) ≤ d(X, Y )

2

}

, (3.3)

denote the ball centered at X with distance d(X, Y )/2 from Y . For any � ∈ Ba(�),
write

� = � (1 − χA,B) + �χA,B =: �1 + �2, (3.4)

where for any Z ⊂ �

χA,B(Z ) :=
{

1 if Z ∩ SA,B 
= ∅ and Z ∩ Sc
A,B 
= ∅,

0 otherwise.
(3.5)

In this case, one has

Lemma 3.2 Let a ≥ 0, � ∈ Ba(�), and consider any two separated local
observables A ∈ AX and B ∈ AY with d(X, Y ) > 0. Writing � = �1 + �2, as
in (3.4), one may show that

∫ |t |

0

∥
∥

[
H2, τ (1)

s (O)
] ∥
∥ ds ≤ 2 ‖O‖ Ga(t)

∑

o∈supp(O)

∑

x∈�:
2d(x,o)≥d(X,Y )

Fa (d(x, o)) ,

(3.6)
is valid for observables O ∈ {A, B}. One may take

Ga(t) = Ca + ‖Fa‖
Ca

‖�‖a

∫ |t |

0
ga(s) ds, (3.7)

where ga is the function from Theorem 2.1.

Proof: For O ∈ {A, B} and s > 0,

∥
∥

[
H2, τ (1)

s (O)
] ∥
∥ ≤

∑

Z⊂�:
Z∩SA,B 
=∅,Z∩Sc

A,B 
=∅

∥
∥

[
�(Z ), τ (1)

s (O)
] ∥
∥ , (3.8)
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as is clear from the definition of χA,B ; see (3.5). Applying Theorem 2.1 to each
term above, we find that

∥
∥

[
�(Z ), τ (1)

s (O)
] ∥
∥ ≤ 2 ga(s) ‖O‖ ‖�(Z )‖

Ca

∑

z∈Z

∑

o∈supp(O)

Fa (d(z, o)) . (3.9)

One may estimate the sums which appear above as follows:

∑

Z⊂�:
Z∩SA,B 
=∅,Z∩Sc

A,B 
=∅

∑

z∈Z

=
∑

Z⊂�:
Z∩SA,B 
=∅,Z∩Sc

A,B 
=∅

⎛

⎜
⎜
⎝

∑

z∈Z :
z∈SA,B

+
∑

z∈Z :
z∈Sc

A,B

⎞

⎟
⎟
⎠

≤
∑

z∈SA,B

∑

x∈Sc
A,B

∑

Z
z,x

+
∑

z∈Sc
A,B

∑

x∈SA,B

∑

Z
z,x

, (3.10)

and therefore, we have the bound
∫ |t |

0

∥
∥

[
H2, τ (1)

s (O)
] ∥
∥ ds ≤ 2‖O‖

Ca
(S1 + S2)

∫ |t |

0
ga(s)ds, (3.11)

where

S1 =
∑

z∈SA,B

∑

x∈Sc
A,B

∑

Z
z,x

‖�(Z )‖
∑

o∈supp(O)

Fa (d(z, o)) (3.12)

and

S2 =
∑

z∈Sc
A,B

∑

x∈SA,B

∑

Z
z,x

‖�(Z )‖
∑

o∈supp(O)

Fa (d(z, o)) . (3.13)

In the event that the observable O = A, then one may bound S1 by

S1 ≤ ‖�‖a

∑

z∈SA,B

∑

x∈Sc
A,B

Fa (d(z, x))
∑

y∈X

Fa (d(z, y)) (3.14)

≤ Ca ‖�‖a

∑

x∈Sc
A,B

∑

y∈X

Fa (d(x, y))

and similarly,

S2 ≤ ‖�‖a

∑

z∈Sc
A,B

∑

x∈SA,B

Fa (d(z, x))
∑

y∈X

Fa (d(z, y)) (3.15)

≤ ‖Fa‖ ‖�‖a

∑

z∈Sc
A,B

∑

y∈X

Fa (d(z, y))

An analogous bound holds in the case that O = B. We have proven (3.6). �
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3.1.2. Proof of Theorem 3.1

To prove Theorem 3.1, we will first provide an estimate which measures the
effect on the dynamics resulting from dropping certain interaction terms.

Lemma 3.3 Let �0 = �1 + �2 be an interaction on � for which each of the
dynamics {τ (i)

t }t∈R, for i ∈ {0, 1, 2}, exists as a strongly continuous group of ∗-
automorphisms on A. Let {At }t∈R be a differentiable family of quasi-local observ-
ables on A. The estimate

‖ τ
(0)
t (At ) − τ

(1)
t (At ) ‖ ≤

∫ |t |

0

∥
∥
[
H2, τ

(1)
s (As)

]∥
∥ + ∥

∥τ (0)
s (∂s As) − τ (1)

s (∂s As)
∥
∥ ds,

(3.16)

holds for all t ∈ R. Here, for each i ∈ {0, 1, 2}, we denote by Hi the Hamiltonian
corresponding to �i .

Proof: Define the function f : R → A by

f (t) := τ
(0)
t (At ) − τ

(1)
t (At ). (3.17)

A simple calculation shows that f satisfies the following differential equation:

f ′(t) = i [H0, f (t)] + i
[
H2, τ

(1)
t (At )

] + τ
(0)
t (∂t At ) − τ

(1)
t (∂t At ), (3.18)

subject to the boundary condition f (0) = 0. The first term appearing on the right
hand side of (3.18) above is norm preserving, and therefore, Lemma A.1 implies
that

‖ f (t) ‖ ≤
∫ |t |

0

∥
∥
[
H2, τ

(1)
s (As)

]∥
∥ + ∥

∥τ (0)
s (∂s As) − τ (1)

s (∂s As)
∥
∥ ds, (3.19)

as claimed. �

We will now prove Theorem 3.1. Denote by Bt := B − 〈τt (B)〉, and observe
that proving (3.1) is equivalent to bounding |〈τt (ABt )〉|. Write � = �1 + �2, as
is done in (3.4). One easily sees that �1 decouples A from B, i.e.,

〈
τ

(1)
t (AB)

〉 = 〈
τ

(1)
t (A)

〉 〈
τ

(1)
t (B)

〉
. (3.20)

Here, again, we have denoted by τ
(1)
t the time evolution corresponding to �1. It is

clear that

|〈τt (ABt )〉| ≤
∣
∣
∣
〈
τ

(1)
t (ABt )

〉∣∣
∣ +

∣
∣
∣
〈
τt (ABt ) − τ

(1)
t (ABt )

〉∣∣
∣ (3.21)

≤ ‖A‖
∥
∥
∥τt (B) − τ

(1)
t (B)

∥
∥
∥ +

∥
∥
∥τt (ABt ) − τ

(1)
t (ABt )

∥
∥
∥ .
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Moreover, the second term on the right hand side above can be further estimated
by
∥
∥
∥τt (ABt ) − τ

(1)
t (ABt )

∥
∥
∥ ≤ 2‖B‖

∥
∥
∥τt (A) − τ

(1)
t (A)

∥
∥
∥ + ‖A‖

∥
∥
∥τt (Bt ) − τ

(1)
t (Bt )

∥
∥
∥ .

(3.22)
Applying Lemma 3.3 to the bounds we have found in (3.21) and (3.22) yields

|〈τt (ABt )〉| ≤ 2‖A‖
∫ |t |

0

∥
∥
[
H2, τ

(1)
s (B)

]∥
∥ ds + 2‖B‖

∫ |t |

0

∥
∥
[
H2, τ

(1)
s (A)

]∥
∥ ds.

(3.23)
In fact, we are only using (3.16) in trivial situations where the second term,

i.e., τs(∂s As) − τ
(1)
s (∂s As) is identically zero. Finally, using Lemma 3.2, we find

an upper bound on |〈τt (ABt )〉| of the form

4 ‖A‖ ‖B‖ Ga(t)

⎛

⎜
⎝

∑

x∈X

∑

y∈�:
2d(x,y)≥d(X,Y )

Fa (d(x, y)) +
∑

y∈Y

∑

x∈�:
2d(x,y)≥d(X,Y )

Fa (d(x, y))

⎞

⎟
⎠ .

(3.24)

Theorem 3.1 readily follows from (3.24) above.

APPENDIX A

In this appendix, we recall a basic lemma about the growth of the solutions
of first order, inhomogeneous differential equations.

Let B be a Banach space. For each t ∈ R, let A(t) : B → B be a linear
operator, and denote by X (t) the solution of the differential equation

∂t X (t) = A(t) X (t) (A.1)

with boundary condition X (0) = x0 ∈ B.We say that the family of operators A(t)
is norm-preserving if for every x0 ∈ B, the mapping γt : B → B which associates
x0 → X (t), i.e., γt (x0) = X (t), satisfies

‖ γt (x0) ‖ = ‖ x0 ‖ for all t ∈ R. (A.2)

Some obvious examples are the case where B is a Hilbert space and A(t)
is anti-hermitian for each t , or when B is an ∗-algebra of operators on a Hilbert
space with a spectral norm and, for each t , A(t) is a derivation commuting with
the ∗-operation.

Lemma A.1 Let A(t), for t ∈ R, be a family of norm preserving opeartors in
some Banach space B. For any function B : R → B, the solution of

∂t Y (t) = A(t)Y (t) + B(t), (A.3)
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with boundary condition Y (0) = y0, satisfies the bound

‖ Y (t) − γt (y0) ‖ ≤
∫ t

0
‖ B(t ′) ‖ dt ′. (A.4)

Proof: For any t ∈ R, let X (t) be the solution of

∂t X (t) = A(t) X (t) (A.5)

with boundary condition X (0) = x0, and let γt be the linear mapping which takes
x0 to X (t). By variation of constants, the solution of the inhomogeneous equation
(A.3) may be expressed as

Y (t) = γt

(

y0 +
∫ t

0
(γs)−1 (B(s)) ds

)

. (A.6)

The estimate (A.4) follows from (A.6) as A(t) is norm preserving. �
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