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We introduce the notion of topological pressure for suspension flows over countable
Markov shifts, and we develop the associated thermodynamic formalism. In particular,
we establish a variational principle for the topological pressure, and an approximation
property in terms of the pressure on compact invariant sets. As an application we present
a multifractal analysis for the entropy spectrum of Birkhoff averages for suspension
flows over countable Markov shifts. The domain of the spectrum may be unbounded and
the spectrum may not be analytic. We provide explicit examples where this happens.
We also discuss the existence of full measures on the level sets of the multifractal
decomposition.
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1. INTRODUCTION

Our work is devoted to the study of suspension flows over countable Markov
shifts. In order to provide motivation, we first recall the notion of suspension
semiflow and its relation to the study of axiom A flows on compact manifolds. It
was shown by Bowen(5) and Ratner(14) that axiom A flows on compact manifolds
can be modeled by suspension flows over Markov shifts with a finite alphabet,
as a consequence of the existence of the so-called Markov systems. Therefore, a
detailed study of suspension flows may provide important information about the
dynamics of Axiom A flows.

An important assumption in these works is that the flow is defined on a com-
pact manifold. It was conjectured by Sinai that geodesic flows on noncompact
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manifolds of negative curvature and finite volume have associated a symbolic dy-
namics with countably many symbols. A similar situation may occur in the context
of nonuniformly hyperbolic dynamics. Thus, understanding the dynamics of sus-
pension flows over countable Markov shifts should provide important information,
for example for geodesic flows on noncompact manifolds of negative curvature.
Progress in this direction was achieved by Gurevich and Katok,(9) who proved that
the geodesic flow on the modular surface can be modeled by a suspension flow
over a countable alphabet.

In this paper, motivated by these considerations, we study the ergodic prop-
erties of suspension flows over countable Markov shifts. In particular, we develop
a thermodynamic formalism for these flows. We also use it to obtain a multifractal
analysis of Birkhoff averages.

In the case of Markov shifts with a finite alphabet there is a canonical iden-
tification between the invariant probability measures for the suspension flow and
the shift map (in the base of the flow); see Sec. 2.1 for details. This relation was
exploited by Bowen and Ruelle (see Ref .6) to prove that the properties of the
topological pressure for the suspension flow are similar to those of the topological
pressure for the Markov shift. In the case of countable Markov shifts, a bijection
between invariant probability measures for the suspension flow and the shift on
the base may not exist, because the height function may not be integrable with
respect to some measures invariant under the shift. Therefore, the thermodynamic
formalism for the suspension flow need not to be related to the one on the base.
Thus, one needs to introduce a new topological pressure.

We propose a notion of topological pressure based on the Gurevich pressure
for countable Markov shifts (see the work by Sarig(15) and Sec. 2.2 for definitions),
and on the relation used by Bowen and Ruelle to translate problems for the flow
into problems for the Markov shift. Our notion extends the notion of entropy
for suspension flows over countable Markov shifts introduced by Savchenko (see
Ref .17), although he considered height functions depending only on the first
coordinate. We establish several properties of the pressure, namely a variational
principle (see Theorem 2) and an approximation property in terms of the pressure
on compact invariant sets (see Theorem 1). Examples are provided in Sec. 4.

As an application of the above construction, we present a multifractal analysis
for the entropy spectrum of Birkhoff averages for suspension flows over countable
Markov chains (see Theorem 10). For this we also need to introduce a notion of
topological entropy on noncompact sets that in general are not subsets of compact
invariant sets (contrarily to what happens in Bowen’s classical notion of topological
entropy on noncompact sets). We note that our notion of topological entropy is
an extension both of Bowen’s notion and of the topological entropy obtained from
our notion of topological pressure simply by considering the zero potential.

Our work on the multifractal analysis extends results obtained by Barreira and
Saussol(2,3) and Pesin and Sadovskaya(13) for suspension flows over finite Markov
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shifts as well as results by Iommi(10) for countable Markov shifts. We recall that
for suspension flows over finite Markov shifts the entropy spectrum is analytic and
has bounded domain. In strong contrast, in the case of countable Markov shifts the
spectrum may have unbounded domain and need not be analytic. We give explicit
examples where this happens (see Sec. 5.4). We also provide a classification of
the spectra for which there exist full measures on the level sets of the multifractal
decomposition (see Theorem 12).

2. PRELIMINARIES

2.1. Suspension Flows and Invariant Measures

Let σ : � → � be a one-sided Markov shift with a countable alphabet S.
This means that there exists a matrix (ti j )S×S of zeros and ones (with no row and
no column made entirely of zeros) such that

� = {x ∈ SN0 : txi xi+1 = 1 for every i ∈ N0},
and the shift map is defined by σ (x0x1 · · ·) = (x1x2 · · ·). Sometimes we simply say
that σ is a countable Markov shift. Let now τ : � → R

+ be a continuous function
and consider the space

Y = {(x, t) ∈ � × R : 0 ≤ t ≤ τ (x)}, (1)

with the points (x, τ (x)) and (σ (x), 0) identified for each x ∈ �. The suspension
semiflow over σ with height function τ is the semiflow � = (ϕt )t≥0 on Y defined
by

ϕt (x, s) = (x, s + t) whenever s + t ∈ [0, τ (x)].

In the case of two-sided Markov shifts we can define a suspension flow (ϕt )t∈R in
a similar manner.

We denote by M� the space of �-invariant probability measures on Y. Recall
that a measure µ on Y is �-invariant if µ(ϕ−1

t A) = µ(A) for every t ≥ 0 and every
measurable set A ⊂ Y . We also consider the space Mσ of σ -invariant probability
measures on �. Given a continuous function φ : � → R we consider the set

Mσ (φ) :=
{
ν ∈ Mσ : −

∫
�

φdν < ∞
}

.

One can easily verify that if ν is a σ -invariant measure on �, possibly infinite, such
that

∫
�

τdν < ∞ and m is the Lebesgue measure on R, then the finite measure
induced on Y by the product measure ν × m is �-invariant. Moreover, when τ

is bounded away from zero there is a canonical identification between M� and
Mσ (−τ ). Namely, the map R : Mσ (−τ ) → M� defined by

R(ν) = (ν × m)|Y /(ν × m)(Y ) (2)
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is a bijection. We note that if σ : � → � is a Markov shift with a finite alphabet
then τ is bounded and bounded away from zero (since � is compact). In particular∫
�

τdν < ∞ for every ν ∈ Mσ . Therefore, in this case Mσ (−τ ) = Mσ and the
map R is a bijection between M� and Mσ . We emphasize that in the general
case of countable Markov shifts the map R need not be a bijection and this causes
additional difficulties.

Given a continuous function g : Y → R we define a function �g : � → R

by

�g(x) =
∫ τ (x)

0
g(x, t)dt.

Clearly, �g is also continuous. We have∫
Y

g dR(ν) =
∫
�

�gdν∫
�

τdν
. (3)

When σ is a Markov shift with a finite alphabet and g : Y → R is Hölder con-
tinuous, it was shown by Bowen and Ruelle in Ref .6 (see also Ref .12) that the
topological pressure of g with respect to the semiflow �, denoted by P�(g), is
related to the topological pressure P with respect to the shift by the formula

P(�g − P�(g)τ ) = 0.

This relation relies on the fact that in this case R is a bijection and on the variational
principle for the topological pressure (together with (3)).

2.2. Thermodynamic Formalism for Countable Markov Shifts

We recall here some notions from the thermodynamic formalism for count-
able shifts. We refer to Refs. 15 and 16 for more details.

Let σ : � → � be a topologically mixing countable Markov shift. This means
that σ |� is a topologically mixing dynamical system when � is equipped with the
topology generated by the cylinder sets

Ca0···an = {x ∈ � : xi = ai for i = 0, . . . , n}. (4)

Given a function φ : � → R we define

Vn(φ) := sup{|φ(x) − φ(y)| : x, y ∈ �, xi = yi for i = 0, . . . , n − 1},
where x = (x0x1 · · ·) and y = (y0 y1 · · ·). We say that φ is locally Hölder if there
exist constants B > 0 and θ ∈ (0, 1) such that Vn(φ) ≤ Bθn for all n ∈ N. Note
that since nothing is required for n = 0 a locally Hölder function is not necessarily
bounded.

We now introduce the notion of (topological) pressure for a countable Markov
shift. Fix a symbol i0 in the alphabet S and let φ : � → R be a locally Hölder



Suspension Flows Over Countable Markov Shifts 211

function. The so-called Gurevich pressure of φ was introduced by Sarig in Ref .15
as

Pσ (φ) = lim
n→∞

1

n
log

∑
x :σ n x=x

exp

(
n−1∑
i=0

φ(σ i x)

)
χCi0

(x),

where χCi0
(x) is the characteristic function of the cylinder Ci0 ⊂ � (see (4)).

Since σ is topologically mixing one can show that Pσ (φ) does not depend on i0.
Furthermore, the following properties hold:

1. (approximation property) if

K := {K ⊂ � : K �= ∅ compact and σ -invariant},
then

Pσ (φ) = sup{Pσ |K (φ) : K ∈ K}, (5)

where Pσ |K is the classical topological pressure on K;
2. (variational principle) if sup� φ < ∞ then

Pσ (φ) = sup

{
hµ(σ ) +

∫
�

φ dµ : µ ∈ Mσ (φ)

}
. (6)

There is a certain class of countable Markov shifts for which the thermody-
namic formalism is particularly similar to the one for Markov shifts with a finite
alphabet. We say that � satisfies the big images and preimages property (BIP
property) if there exist b1, b2, . . . , bn ∈ S such that for every

a ∈ S there exist i, j ∈ S with tbi atab j = 1.

Here ti j are the entries of the transition matrix of �. We say that µ ∈ Mσ is
a Gibbs measure for the function φ : � → R if for some constants P ∈ R and
C > 0, and every n ∈ N and x ∈ Ca0···an we have

1

C
≤ µ(Ca0···an )

exp(−n P + ∑n
i=0 φ(σ k x))

≤ C.

It was proved by Sarig in Ref .16 that a locally Hölder function φ with finite
Gurevich pressure has an invariant Gibbs measure if and only if � satisfies the
BIP property. The “if” part also follows from work of Mauldin and Urbański in
Ref .11 (see Ref .16 for details). Moreover, if � satisfies the BIP property then the
function t 
→ Pσ (tφ) is real analytic for t > 1.

2.3. The Bowen-Walters Distance

Bowen’s notion of topological entropy on an arbitrary subset of a compact
invariant set requires a distance on the ambient space. In the case of suspension
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flows one uses the distance introduced by Bowen and Walters in Ref .7, that we
briefly recall in this section. Bowen’s notion of topological entropy will be used in
Sec. 5.1 (see (16)).

Let again σ : � → � be a countable Markov shift. Given θ ∈ (0, 1), we
define a distance on � by

d�(x, y) = θ sup{n∈N0:xn �=yn}.

When τ = 1 on �, we introduce the so-called Bowen-Walters distance d1 on
Y in the following manner. Given x, y ∈ � and t ∈ [0, 1] we define the length of
the horizontal segment [(x, t), (y, t)] by

ρh((x, t), (y, t)) = (1 − t)d�(x, y) + td�(σ x, σ y).

Note that

ρh((x, 0), (y, 0)) = d�(x, y) and ρh((x, 1), (y, 1)) = d�(σ x, σ y).

Furthermore, given (x, t), (y, s) ∈ Y on the same orbit we define the length of the
vertical segment [(x, t), (y, s)] by

ρv((x, t), (y, s)) = inf{|r | : ϕr (x, t) = (y, s) and r ∈ R}.
Finally, given arbitrary points (x, t), (y, s) ∈ Y the distance d1((x, t), (y, s)) is
defined as the infimum of the lengths of paths between (x, t) and (y, s) composed
of a finite number of horizontal and vertical segments.

For an arbitrary height function τ , the Bowen-Walters distance dY on Y
between the points (x, t), (y, s) ∈ Y is defined by

dY ((x, t), (y, s)) = d1((x, t/τ (x)), (y, s/τ (s))).

3. TOPOLOGICAL PRESSURE FOR SUSPENSION SEMIFLOWS

3.1. Notion of Topological Pressure

We now start developing a thermodynamic formalism for suspension semi-
flows over countable Markov shifts. Consider the suspension semiflow � over the
countable Markov shift σ with height function τ locally Hölder and bounded away
from zero. For a continuous function g : Y → R such that �g is locally Hölder,
we define the topological pressure of g with respect to � by

P�(g) := inf{t ∈ R : Pσ (�g − tτ ) ≤ 0}
(with the convention that P�(g) = ∞ when the infimum is taken over the empty
set). Here Pσ is the Gurevich pressure.

We also define the topological entropy of the suspension semiflow � by

h(�) := P�(0) = inf{t ∈ R : Pσ (−tτ ) ≤ 0}. (7)
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Savchenko(17) was the first to introduce the notion of entropy of a suspension flow
over a countable Markov shift. More precisely, he considered the particular case
of height functions depending only on the first coordinate, i.e., τ (x) = τ (x0), and
he defined the topological entropy of � by

h̄(�) := sup{hµ(ϕ1) : µ ∈ M�}.
On the other hand, he did not assume τ to be bounded away from zero. The difficulty
that arises from this is that the map R defined by (2) may not be a bijection (it may
not be surjective, in which case certain measures in M� are of the form ν × m,
where ν is an infinite σ -invariant measure on � and m is the Lebesgue measure).
Savchenko proved in Theorem 2 of Ref. 17 that h̄(�) = inf{t : Pσ (−tτ ) ≤ 0}.
Therefore, when τ depends only on the first coordinate and is bounded away from
zero, we have h(�) = h̄(�), i.e., the two notions coincide.

Example 1. Even when the Gurevich entropy of the Markov shift in the base
is infinite the entropy of the suspension semiflow may be finite. For example, let
σ : � → � be the full shift on the countable alphabet S = N, and let τ : � → R

+

be the height function defined by

τ (x) = log(x0(x0 + 1)), where x = (x0x1 · · ·). (8)

In this case h(σ ) = ∞. Since we are considering the full shift, a point x ∈ Ci0 satis-
fies σ n = x if and only if it is obtained by repeating a finite sequence i0 j1 · · · jn−1,
with j1, . . . , jn−1 ∈ N. Therefore, for a function φ(x) = φ(x0) we have

P(−t log φ) = lim
n→∞

1

n
log

∑
σ n x=x

n−1∏
i=0

(φ(σ i x))−tχCi0
(x)

= lim
n→∞

1

n
log

∑
j1 j2,..., jn−1∈N

λ−t
i0

(λ j1 . . . λ jn−1 )−t

= lim
n→∞

1

n
log λ−t

i0
+ lim

n→∞
1

n
log

( ∞∑
i=1

(λ−t
i )

)n−1

(9)

= log
∞∑

i=1

λ−t
i .

In particular, for the function τ in (8) we obtain

P(−tτ ) = log
∞∑

n=1

(
1

n(n + 1)

)t

.

Hence, h(�) = 1 = inf{t : Pσ (−tτ ) ≤ 0}.
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Example 2. The equation P(�g − tτ ) = 0 may have no root. Let again σ : � →
� be the full shift on a countable alphabet. Let α(n) = 2n(log 2n)2 and take N > 0
such that �n>N α(n)−1 < 1. We consider the height function τ : � → R

+ defined
by

τ (x) = log α(x0 + N ), where x = (x0x1 · · ·).
Then

Pσ (−tτ ) =
{∞ if t < 1,

negative if t ≥ 1.

For t ≥ 1 this follows from (9) and the choice of N . Hence, the topological entropy
of the associated suspension semiflow � is

h(�) = 1 = inf{t : Pσ (−tτ ) ≤ 0},
and Pσ (−h(�)τ ) < 0.

3.2. Basic Properties of the Pressure

In the next statement the pressure is described as the supremum over the
compact invariant sets.

Theorem 1. (Approximation property). Let � be a suspension semiflow on Y
over a countable Markov shift. If g : Y → R is a continuous function such that
�g is locally Hölder and bounded above, then

P�(g) = sup{P�|K (g) : K ⊂ Y compact and �-invariant}.

Proof: By the classical theory, for any compact sets K1 ⊂ K2 ⊂ Y we have

P�|K1 (g) ≤ P�|K2 (g).

It follows from (5) that

P�(g) = inf{t ∈ R : sup
K∈K

Pσ |K (�g − tτ ) ≤ 0}

≥ inf{t ∈ R : Pσ |K (�g − tτ ) ≤ 0} = P�|K (g) (10)

for each compact set K ⊂ �. On the other hand, by (5), the topological pressure
of the Markov shift satisfies

Pσ (�g − tτ ) = sup{Pσ |K (�g − tτ ) : K ⊂ � compact and σ -invariant}. (11)
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Let YK ⊂ Y be the compact and �-invariant set having for base the compact and
σ -invariant set K ⊂ �. Let also P�|YK (g) be the unique real number satisfying

Pσ |K (�g − P�|YK (g)τ ) = 0 (12)

(compactness ensures that such a number exists). Note that P�|YK (g) is indeed the
topological pressure of g on YK .

Setting

A := sup{P�|YK (g) : K ⊂ Y compact and �-invariant},
it follows from (10) that A ≤ P�(g). We claim that equality holds. Assume on
the contrary that A < P�(g) and let s ∈ (A, P�(g)) (we can assume that A is
finite, since otherwise the result is immediate). Since τ is positive, the function
t 
→ Pσ |K (�g − tτ ) is decreasing. Since s > A, it follows from (11) and (12)
that Pσ |K (�g − sτ ) ≤ 0 for every compact σ -invariant set K ⊂ �, and hence
Pσ (�g − sτ ) ≤ 0. On the other hand, since s < P�(g) we have Pσ (�g − sτ ) > 0.
This contradiction proves the result. �

By Theorem 1 the topological pressure P� is a convex function of g, since it
is the supremum of convex functions.

We now establish a variational principle for suspension semiflows over count-
able Markov shifts.

Theorem 2. (Variational principle). Let � be a suspension semiflow on Y over
a countable Markov shift. If g : Y → R is a continuous function such that �g is
locally Hölder and bounded above, then

P�(g) = sup

{
hµ(�) +

∫
Y

g dµ : µ ∈ M� and −
∫

Y
g dµ < ∞

}
. (13)

Proof: SetN = Mσ (−τ ) ∩ Mσ (�g). By the variational principle for countable
Markov shifts (see (6)), for each t > P�(g) we have

0 ≥ Pσ (�g − tτ )

≥ sup

{
hν(σ ) +

∫
�

�gdν − t

∫
�

τdν : ν ∈ N
}

,

since N ⊂ Mσ (�g − tτ ). Therefore,

0 ≥ sup

{∫
�

τdν

(
hν(σ )∫
�

τdν
+

∫
�

�gdν∫
�

τdν
− t

)
: ν ∈ N

}
. (14)
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For every ν ∈ N we have∫
Y

gd(ν × m) < ∞ if and only if
∫

�

�gdν < ∞.

Since τ > 0, by (3) and Abramov’s formula, it follows from (14) that

0 ≥ sup

{
hµ(�) +

∫
Y

gdµ − t : µ ∈ M� and −
∫

Y
gdµ < ∞

}
.

That is, P ≤ t where P is the supremum in (13). Hence, P ≤ P�(g).
For the reverse inequality, let K ⊂ Y be a compact �-invariant set. Then

sup

{
hµ(�|K ) +

∫
K

gdµ : µ ∈ Mφ|K

}
≤ P.

By Theorem 1 we obtain P�(g) ≤ P and the proof is complete. �

Setting g = 0 in Theorems 1 and 2 we obtain the following.

Theorem 3. Let � be a suspension semiflow on Y over a countable Markov
shift. Then

h(�) = sup{h(�|K ) : K ⊂ Y compact and �-invariant}
= sup{hµ(�) : µ ∈ M�}.

Let now g : Y → R be a continuous function such that �g is locally Hölder.
A measure µ ∈ M� is called an equilibrium measure for g if

P�(g) = hµ(�) +
∫

Y
gdµ.

We will use the notation ug = �g − P�(g)τ .

Theorem 4. Let � be a suspension semiflow on Y over a countable Markov shift,
and let g : Y → R be a continuous function such that �g is locally Hölder and
bounded above. Then the following properties are equivalent:

1. there is an equilibrium measure µg ∈ M� for g;
2. Pσ (ug) = 0 and there is an equilibrium measure νg ∈ Mσ (−τ ) for ug.

Proof: By the definition of topological pressure Pσ (ug) ≤ 0. We assume first
that Pσ (ug) < 0. By (6), given ν ∈ Mσ (−τ ) we have

hν(σ ) +
∫

�

�gdν − P�(g)
∫

�

τdν < 0
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Since Mσ (−τ ) can be identified with M�, using Abramov’s formula we obtain
that for every µ ∈ M�,

hµ(�) +
∫

Y
gdµ < P�(g),

and there are no equilibrium measures in this case.
Assume now that Pσ (µg) = 0, and let νg ∈ Mσ (−τ ) be an equilibrium mea-

sure for ug . Then

Pσ (µg) = hνg (σ ) +
∫

�

ugdνg = 0.

Set µg = R(νg). Since νg ∈ Mσ (−τ ) we have
∫
�

τdνg < ∞, and thus

P�(g) = hνg (σ )∫
�

τdνg
+

∫
�

�gdνg∫
�

τdνg
= hµg (�) +

∫
Y

gdµg.

This shows that µg is an equilibrium measure for g. On the other hand, if we start
with an equilibrium measure µg for g, then

P�(g) = hµg (�) +
∫

Y
gdµg.

The measure µg is obtained from a product measure νg × m for some νg ∈
Mσ (−τ ). Therefore, using Abramov’s formula,

0 = Pσ (ug) ≥ hνg (σ ) +
∫

�

ugdνg = 0.

In particular, νg is an equilibrium measure for ug . This completes the proof. �

An equilibrium measure for the zero function g ≡ 0 is called a measure of
maximal entropy. Theorem 4 implies that the following are equivalent:

1. there is a measure of maximal entropy in M�;
2. Pσ (−h(�)τ ) = 0 and −h(�)τ has an equilibrium measure in Mσ (−τ ).

4. EXAMPLES

4.1. Bounded Height Function

When the height function is bounded, the properties of the pressure on the
base (for the Markov shift) can be translated to the pressure for the flow. We note
that when the height function τ is bounded, the map R : Mσ → M� in (2) is a
bijection (since Mσ (−τ ) = Mσ ).
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Proposition 5. If the height function is bounded, then either the equation
Pσ (�g − tτ ) = 0 has a root or Pσ (�g − tτ ) = ∞ for every t ∈ R.

Proof: If Pσ (�g) = ∞ then P�(g) = ∞. Assume now that Pσ (�g) < ∞. Tak-
ing numbers s, S > 0 such that s ≤ τ ≤ S, we obtain

−t S + Pσ (�g) ≤ Pσ (�g − tτ ) ≤ −ts + Pσ (�g).

Also, there exist numbers ts, tS ∈ R such that

0 ≤ −tss + Pσ (�g) < ∞ and − ∞ < −tS S + Pσ (�g) ≤ 0.

The result follows from the continuity of the pressure. �

Proposition 6. (BIP shift). Assume that σ satisfies the BIP property, and let
g : Y → R be a continuous function such that �g is locally Hölder. If the height
function is bounded, then the function t 
→ P�(tg), when finite, is real analytic.

Proof: Recall that when σ satisfies the BIP property and �g is locally Hölder,
the function t 
→ Pσ (�g − tτ ), when finite, is real analytic. The result now follows
from the implicit function theorem: Pσ (�g − P�(g)τ ) = 0, and in order to verify
the nondegeneracy condition note that

∂

∂t
Pσ (�g − tτ )

∣∣
t=s

= −
∫

�

τdµ < 0 ,

where µ denotes the equilibrium measure of �g − sτ . �

4.2. Bounded Potentials and BIP Shifts

We now assume that:

1. σ satisfies the BIP property;
2. g : Y → R is bounded and �g is locally Hölder;
3. there exists tc > 0 such Pσ (−tτ ) < ∞ for every t > tc,

lim
t→t+

c

Pσ (−tτ ) = ∞ and lim
t→∞ Pσ (−tτ ) = −∞. (15)

Proposition 7. The equation Pσ (�g − tτ ) = 0 has a root.

Proof: If s ≤ g ≤ S for some numbers s, S ∈ R, then sτ ≤ �g ≤ Sτ , and

Pσ ((s − t)τ ) ≤ Pσ (�g − tτ ) ≤ Pσ ((S − t)τ ).
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Under the above assumptions there exist ts, tS ∈ R such that

0 ≤ Pσ ((s − ts)τ ) ≤ Pσ (�g − tsτ )

and

Pσ (�g − tSτ ) ≤ Pσ ((S − tS)τ ) ≤ 0.

Again, the continuity of the pressure ensures the existence of a root. �

The next lemma shows that under the above assumptions the thermodynamic
formalism is identical to the one for suspension flows over compact subshifts of
finite type.

Proposition 8. If g : Y → R is bounded and �g is locally Hölder, then the
function t 
→ P�(tg) is real analytic.

Proof: It follows from the proof of Proposition 7 that P�(tg) is finite for every
t ∈ R. As in the proof of Proposition 6, the implicit function theorem yields the
desired result. �

4.3. Extension of Potentials Defined on the Base

Let φ : � → R be locally Hölder. It is shown in Ref . 1 that there exists a
continuous function g : Y → R such that �g = φ. This provides a tool to construct
examples.

Namely, let f : � → R be a locally Hölder function, bounded above, and
with Pσ ( f ) = 0. Let ε > 0 and consider

�+ = {x ∈ � : f (x) > −ε} and �− = {x ∈ � : f (x) ≤ −ε}.
We define τ, φ : � → R by

τ (x) =
{− f (x), x ∈ �−

ε, x ∈ �+ and φ(x) =
{

0, x ∈ �−

f (x) + ε, x ∈ �+.

Note that τ ≥ ε and φ − τ = f . Then

Pσ (�g − τ ) = Pσ (φ − τ ) = Pσ ( f ) = 0

Therefore, P�(g) = 1 and the recurrence properties of f can be transferred into
recurrence properties of g. More precisely, using the language Refs. 15 and 16:

1. if f is positive recurrent and the corresponding conformal measure belongs
to Mσ (−τ ), then g has a conservative conformal measure and there exists
an equivalent invariant probability measure;
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2. if f is positive recurrent and the corresponding conformal measure does
not belong to Mσ (−τ ), then g has a conservative conformal measure and
there exists an equivalent invariant infinite measure (the same holds if f is
null recurrent);

3. if f is transient, then g has no conservative conformal measure.

5. MULTIFRACTAL ANALYSIS

In this section we study the multifractal analysis of suspension semiflows over
countable Markov shifts. More precisely, we study the entropy spectra of Birkhoff
averages. The case of suspension flows over finite Markov shifts was studied by
Barreira and Saussol in Refs. 2 and 3 (see also Ref. 13).

5.1. Entropy of Arbitrary Sets

In the theory of multifractal analysis there are several ways to measure the
“size” of a set. Here we consider the topological entropy. We note that the level sets
Jα ⊂ Y of a multifractal decomposition (see (18) in Sec. 5.2) are not obtained from
a Markov shift �′ ⊂ � as in (1), i.e., we cannot replace the pair (Y, �) by (Jα,�′)
in (1) (unless Jα is the whole space). This means that we need an appropriate
notion of topological entropy in arbitrary subsets for suspension semiflows over
countable Markov shifts. To the best of our knowledge, no such notion exists in
the literature.

Let Z ⊂ Y be an arbitrary set (not necessarily compact nor invariant). We
define the topological entropy of � on Z by

h∗(�|Z ) := sup{hB(�|Z ∩ K ) : K ⊂ Y compact and �-invariant}, (16)

where hB(�|Z ∩ K ) is Bowen’s notion of topological entropy on an arbitrary
subset of a compact invariant set (with respect to the Bowen-Walters distance on
Y ; see Sec. 2.3).

We show that h∗(�|Z ) is an extension both of Bowen’s notion of topological
entropy (on noncompact sets) and of our notion in (7) (and thus we have the right
to continue calling it topological entropy).

Proposition 9. The following properties hold:

1. for any set Z ⊂ K ′ ⊂ Y , where K ′ is compact and �-invariant, we have
h∗(�|Z ) = hB(�|Z );

2. if Z ⊂ Y is obtained from a Markov shift �′ ⊂ � as in (1), i.e.,

Z = {(x, t) ∈ �′ × R : 0 ≤ t ≤ τ (x)}, (17)

then h∗(�|Z ) = h(�|Z ).
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Proof: For the first property, note that since Z = Z ∩ K ′, it follows from the
definitions that

h∗(�|Z ) = h∗(�|Z ∩ K ′) = hB(�|Z ∩ K ′) = hB(φ|Z ).

For the second property, note that by (7) and Theorem 3,

h(�|Z ) : = inf{t ∈ R : Pσ |�′(−tτ ) ≤ 0}
= sup{h(�|K ) : K ⊂ Z compact and �-invariant}.

Since

h(�|K ) = h(�|Z ∩ K ) = hB(�|Z ∩ K ),

we obtain h(�|Z ) ≤ h∗(�|Z ). On the other hand, by Theorem 3 and (17),

hB(�|Z ∩ K ) = h(�|Z ∩ K )

= sup{hµ(�) : µ ∈ M� with µ(Z ∩ K ) = 1}
≤ sup{hµ(�) : µ ∈ M� with µ(Z ) = 1} = h(�|Z ),

and hence h∗(�|Z ) ≤ h(�|Z ). Therefore, h∗(�|Z ) = h(�|Z ). �

In view of Proposition 9 we will denote from now on both topological en-
tropies h∗(�|Z ) and hB(�|Z ) by h(�|Z ).

5.2. Entropy Spectra and Multifractal Analysis

We always assume in this section that the countable Markov shift in the base
is topologically mixing and satisfies the BIP property. Recall that in this setting
the pressure, when finite, is real analytic (see Sec. 2.2). We also assume that there
exists tc > 0 such that Pσ (−tτ ) < ∞ for every t > tc, and that (15) holds.

We consider the multifractal decompositions induced by Birkhoff averages.
Let g : Y → R be a continuous function such that �g is locally Hölder. Given
α ∈ R, we consider the level set

Jα :=
{

x ∈ Y : lim
t→∞

1

t

∫ t

0
g(ϕr x) dr = α

}
,

where (ϕt )t≥0 is the suspension semiflow. We also consider the irregular set

J ′ :=
{

x ∈ Y : lim
t→∞

1

t

∫ t

0
g(ϕr x) dr does not exist

}
.

The multifractal decomposition is given by the disjoint union

Y =
(⋃

α∈R

Jα

)
∪ J ′. (18)
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Note that by Birkhoff’s ergodic theorem, µ(J ′) = 0 for every µ ∈ M�.
The entropy spectrum of the Birkhoff averages of g is defined by

E(α) = h(�|Jα).

We say that two functions g, h : Y → R are cohomologous if there exists a locally
bounded measurable function ρ : Y → R such that

g(x) − h(x) = lim
t→0+

ρ(ϕt x) − ρ(x)

t
for every x ∈ Y.

The following is our main result on the entropy spectrum.

Theorem 10. Let g : Y → R be a continuous function noncohomologous to a
constant and with P�(g) = 0, such that �g is locally Holder and nonpositive.
Then either:

1. E is real analytic, strictly concave, and its domain is a closed bounded
interval;

2. E is real analytic, strictly concave, and its domain is unbounded;
3. E has unbounded domain, and there exists β ∈ R such that for t ≥ β the

spectrum is strictly concave and for t < β the spectrum is constant equal
to h(�).

In all cases the irregular set J ′ has full entropy, i.e., h(�|J ′) = h(�).

Proof: It was proved by Barreira and Saussol in Ref . 2 (building on work of
Barreira and Schmeling(4)) that if � is a suspension flow over a compact subshift
of finite type and �g is Hölder continuous, then the irregular set of a function g not
cohomologous to a constant has full topological entropy. On the other hand, the
cohomology assumption implies that there is an increasing sequence of compact
�-invariant sets Kn with

⋃
n∈N

Kn = � such that g|Kn is not cohomologous to a
constant (up to a bounded measurable function). Theorem 1 implies that

h(�) = sup{h(�|K ) : K compact and �-invariant}
≥ sup{h(�|J ′ ∩ K ) : K compact and �-invariant} = h(�|J ′)

≥ sup{h(�|J ′ ∩ K ) : K compact and σ |K is Markov} = h(�),

where the second equality is due to our definition of entropy, and where the last
one follows from the cited work in Ref .2. This shows that the irregular set has full
topological entropy.

We now set T (q) = P�(qg) for each q ∈ R. Under our assumptions the
function T (q) can either be:

1. finite and analytic for q ∈ R;
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2. finite for q ≥ 0 and infinite for q < 0, and either

lim
q→0+

d

dq
P(qg) = ∞ or lim

q→0+

d

dq
P(qg) < ∞.

We first assume that T is finite and analytic. In this case the approach of Barreira
and Saussol in Ref .2 can be used without change to show that E is real analytic
and strictly concave. Furthermore, arguments of Schmeling in Ref .18 show that
the domain of E is a closed bounded interval.

Assume from now on that T (q) = ∞ for negative values of q. It is shown
in Ref .2 that if � is a suspension flow on a compact set K and �g is Hölder
continuous, then the domain of E is the range of the derivative function T ′, which
is a closed bounded interval (we note that in the identity (19) in Ref .2 we must
add a minus sign before the integral, and thus E(−T ′(q)) must also be replaced by
E(T ′(q)) in Theorem 9 in Ref. 2).

To show that the domain of E is unbounded we use an approximation argu-
ment. Set TK (q) = P�|k(qg). Due to the approximation property in Theorem 1,
we have

T (q) = sup{TK (q) : K ⊂ Y compact and �-invariant}.
We recall that for each compact and �-invariant set K ⊂ Y , the function TK is
real analytic, and the range of T ′

K is a bounded interval.
Note that TK (0) ≤ T (0) = h(�) < ∞ (our assumptions on the height func-

tion ensure that h(�) < ∞). Take a < 0. Since T (−1) = ∞ there exists a compact
and �-invariant set K ⊂ Y such that |TK (−1) − h(�)| > −a. Since TK is real an-
alytic we can apply the mean value theorem, and there exists p ∈ [−1, 0] such
that

TK (0) − TK (−1) = T ′
K (p).

Therefore the range of T ′
K is a bounded interval [s, S] (depending on K) with

s < a. The fact that the domain of E is unbounded follows from the inclusion of
each interval [s, S] in the domain.

Set now

β = lim
q→0+

d

dq
P(qg). (19)

When β = ∞, the range of T ′ is unbounded. It follows from work by Barreira and
Saussol in Ref . 2 that

E(T ′(q)) = T (q) − qT ′(q), (20)

and the result follows immediately from this relation. When β < ∞ we have
E(β) = T (0), which is an upper bound for E . Since the domain is unbounded and
the function E is concave, the spectrum satisfies E(t) = h(�) for t < β. �
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Recall that for suspension flows over finite Markov shifts the entropy spectrum
is analytic and has bounded domain. This strongly contrasts with what happens
here. In particular, the domain of the spectrum may be unbounded (see statements
2 and 3 of Theorem 10), and the spectrum may have points where it is not analytic
(see statement 3). Recall that our assumptions on the height function ensure that
h(�) < ∞. Similar results can be obtained if we allow the flow to have infinite
entropy (in which case the spectrum has unbounded image).

5.3. Bounded Versus Unbounded Domain

To give an example corresponding to statement 1 in Theorem 10 it suffices to
consider a bounded potential g : Y → R. As noted in Proposition 8, the function
T is then analytic in R. Therefore the classical theory applies, and the entropy
spectrum is real analytic, strictly concave, and has bounded domain.

We now turn to the case of unbounded domain. We first describe the basic
idea to construct examples of this type. We write g = log f , and we assume that
0 < f < 1. The heuristic argument is as follows:

1. in order that ∣∣∣∣ lim
t→∞

1

t

∫ t

0
log f (ϕr x)dr

∣∣∣∣
is arbitrarily large for certain points x, we want f to be sufficiently close to
zero; this means that for q < 0 the potential q log f should be sufficiently
“large”;

2. the notion of “large” is related to τ : we need that q log f is “larger” than
τ , in the sense that P(q log f ) = ∞ for q < 0; this means that

inf{t ∈ R : Pσ (�q log f − tτ ) ≤ 0} = ∞;

3. in conclusion, if �− log f is much “larger” than τ , then the spectrum has
unbounded domain.

Example 3. Let σ be the full shift defined on N, and consider the height function
τ (x) := log(x0(x0 + 1)). We know from Example 1 that h(�) = 1. Consider now
the locally constant potential defined by φ(x) = −x0 log x0, and let g : Y → R be
a continuous function such that �g = φ. It follows from (9) that for q < 0,

P�(qg) = inf{t ∈ R : Pσ (q�g − tτ ) ≤ 0}
≤ inf{t ∈ R : Pσ (qφ − tτ ) ≤ 0}

= inf

{
t ∈ R : log

∞∑
n=1

nqn

(n(n + 1))t
≤ 0

}
= ∞.
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Hence, the entropy spectrum has unbounded domain.

5.4. Examples for Statements 2 and 3 in Theorem 10

We assume here that the entropy spectrum has unbounded domain. Given a
function g : Y → R, we are assuming that P�(qg) = ∞ for every q < 0. Note
that, since the entropy is finite, we have P�(0) < ∞. In statements 2 and 3 of
Theorem 10 the shape of the spectrum depends on β in (19).

Lemma 1. The function T is analytic in (0,1).

Proof: Let q ∈ (0, 1). Since �g ≤ 0 we have that �g ≤ q�g . Therefore

Pσ (�g − tτ ) ≤ Pσ (q�g − tτ ) ≤ Pσ (−tτ ).

Thus, there exist ts, tS ∈ R such that

Pσ (q�g − tsτ ) ≤ 0 and 0 ≤ Pσ (q�g − tSτ ) < ∞.

The continuity of the pressure ensures the existence of a root of the equation
Pσ (q�g − tτ ) = 0 for every q ∈ (0, 1). Since the shift σ has the BIP property,
the analyticity of T follows from the implicit function theorem. �

The derivative of the pressure is given by

d

dq
Pσ (qg)|q=p =

∫
Y

gdµp =
∫
�

�gdνp∫
�

τdνp
, (21)

where µp is the equilibrium measure for pg, and νp is the equilibrium measure
for p�g − P�(pg)τ . Denote by µ0 the measure of maximal entropy for the flow
(note that it exists since � is the full shift and P(−h(�)τ ) = 0), and by v0 the
equilibrium (Gibbs) measure for −h(�)τ (see Ref .16). We have

T ′(0) =
∫
�

�gdν0∫
�

τdν0

Since τ is bounded away from zero, it follows from the variational principle that

0 <

∫
�

τdν0 = hν0 (σ )

h(�)
< ∞

The problem, depending on whether β < ∞ or β = ∞, is thus reduced to the
integrability of �g with respect to ν0, and we can obtain general assumptions for
each situation in statements 2 and 3 of Theorem 10.
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Proposition 11. Let ν0 the equilibrium measure for −h(�)τ .

1. If �g �∈ L1
ν0

then the spectrum is analytic and strictly concave.
2. If �g ∈ L1

ν0
then the spectrum is analytic and strictly concave up to some

critical point after which the spectrum is constant.

This criterion can be used to construct examples.

Example 4. (−T ′(0) = ∞). With the same setting as in Example 3, we consider
the locally constant function defined by φ(x) = −(x0)2 log x0. Let g : Y → R be
a continuous function such that �g = φ. Since ν0 is a Gibbs measure we have

−
∫

�

�g dν0 = −
∞∑

n=1

∫
Cn

�gdν0 =
∞∑

n=1

−�g|Cn ν0(Cn)

≥ K
∞∑

n=1

n2 log n

n(n + 1)
= ∞

for some constant K > 0. In this case the spectrum has unbounded domain, is
analytic, and is strictly concave.

Example 5. (−T ′(0) < ∞). Let σ be the full shift on N, and τ (x) := x0 log 2.
Using (9) we obtain

Pσ (−τ ) = log
∞∑

n=1

2−n = 0.

Hence, h(�) = 1. Define φ(x) = log(x0(x0 + 1)) and let g : Y → R be a contin-
uous function such that �g = φ. Since ν0 is a Gibbs measure we have

−
∫

�

�gdν0 =
∞∑

n=1

−�g|Cn ν0(Cn) ≤ K
∞∑

n=1

log(n(n + 1))

2n
< ∞

for some constant K > 0. In this case the spectrum has unbounded domain, and
there exists β ∈ R such that

E(α) =
{

strictly concave if α > β

1 if α ≤ β
.

5.5. Existence of Full Measures

A �-invariant probability measure µα is called a full measure for the level
set Jα if hµα

(�) = h(�|Jα). The existence of full measures is closely related to
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the existence of equilibrium measures for −T (q) + qg, for an appropriate range
of values of the parameter q.

The problem can be reduced to a corresponding problem for the Markov shift.
By Theorem 4, since P�(−T (q) + qg) = 0, there is an equilibrium measure for
−T (q) + qg if and only if

Pσ

(
�−T (q)+qg

) = 0

and there is an equilibrium measure for �−T (q)+qg . The advantage of the reduction
is that since the Markov shift σ satisfies the BIP property, the potential q�g −
T (q)τ = �−T (q)+qg has a unique Gibbs measure νq . In the case of finite Markov
shifts, a full measure is obtained from the product of νq and Lebesgue measure.
The difficulty in the present setting is that the Gibbs measure might not be an
equilibrium measure. In fact, it can happen that

hνq (σ ) = ∞ and
∫

�

(q�g − T (q)τ )dνq = −∞,

and thus the sum of the two terms is meaningless. Note that we are assuming
that h(�) < ∞, and thus hνq (σ ) = ∞ implies that

∫
�

τdνq = ∞, that is, νq /∈
Mσ (−τ ) (see Example 6 below). Therefore, νq ∈ Mσ (−τ ) if and only if the
measure µq obtained from the product νq × m is an equilibrium measure for
−T (q) + qg.

Theorem 12. Under the hypotheses of Theorem 10, the following holds:

1. if T (q) = ∞ for negative values of q and β < ∞, then for α < β there is
no full measure for Jα;

2. if q ∈ R is such that T ′(q) = α and νq ∈ Mσ (−τ ), then there is a full
measure for Jα when:

(a) T is real analytic in R and α ∈ (αmin, αmax);
(b) T (q) = ∞ for negative values of q, β = ∞, and α ∈ (−∞, αmax);
(c) T (q) = ∞ for negative values of q, β < ∞, and α ∈ (−β, αmax).

Proof: To prove statement 1 assume on the contrary that there is a full measure
µα for Jα , where α < β. Recall that for α < β the level set has full topological
entropy, h(Jα) = h(�). Therefore, if

hµα
(σ ) = h(�|Jα) = h(�),

then µα is a measure of maximal entropy. But µβ is also a measure of maximal
entropy and there is at most one (there is at most one equilibrium measure for
−h(�)τ ; see [Theorem 1.1] in Ref. 8).
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For statement 2, let α(q) = T ′(q). Denote by µq the unique equilibrium
measure for −T (q) + qg. By (21), we have∫

Y
g dµq = α(q) and µq (Jα(q)) = 1.

Moreover, µq = R(νq ) where νq is the unique equilibrium (Gibbs) measure for
q�g − T (q)τ . In fact

sup

{
hν(σ ) +

∫
�

(q�g − T (q)τ )dν : ν ∈ Mσ

}

= hνq (σ ) +
∫

�

(q�g − T (q)τ )dνq = Pσ (q�g − T (q)τ ) = 0.

We obtain

hνq (σ )∫
�

τdνq
= T (q) + q

∫
�

�gdνq∫
�

τdνq
.

Therefore, by Abramov’s formula and (20),

hµq (�) = T (q) + q

∫
Y

gdµq = T (q) + qα(q) = E(α(q)).

The measure µq is the unique full measure for Jα(q). Otherwise, if µ ∈ M� is
such that µ �= µq , µ(Jα(q)) = 1, and

hµ(�) = T (q) − qα(q),

then by the variational principle and the uniqueness of the equilibrium measure
we obtain

hµ(�) + qα(q) = T (q) = P�(qg)

= hµq (�) + q

∫
Y

gdµq > hµ(�) + q

∫
Y

gdµ.

Therefore α(q) >
∫

Y gdµ. On the other hand, since µ(Jα(q)) = 1 we have that
α(q) = ∫

Y gdµ. This contradiction completes the proof. �

We now give an example of a suspension flow and of a function g such
that Pσ (�g − P�(g)τ ) = 0 and there exists an equilibrium measure ν ∈ Mσ for
�g − P�(g)τ but

∫
�

τdν = ∞. Therefore, g has no equilibrium measure.

Example 6. Consider a full shift defined on N, and the height function τ given
on cylinders by τ |Ck = k log k. Let also f : � → R be defined by

f |Ck := − log(k(k + 1)),
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and consider a function g : Y → R such that �g = f − τ . We obtain

Pσ (�g + τ ) = Pσ ( f − τ + τ ) = 0.

Therefore, P�(g) = −1. Moreover, since the system satisfies the BIP property,
there exists a Gibbs measure ν corresponding to �g + τ . Nevertheless,

∫
�

τdν =
∞∑

k=1

τ |Ck ν(Ck) =
∞∑

k=1

k log k

k(k + 1)
= ∞.
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