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Fourier’s Law for a Microscopic Model of Heat
Conduction
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We consider a chain of N harmonic oscillators perturbed by a conservative sto-
chastic dynamics and coupled at the boundaries to two gaussian thermostats
at different temperatures. The stochastic perturbation is given by a diffusion
process that exchange momentum between nearest neighbor oscillators conserv-
ing the total kinetic energy. The resulting total dynamics is a degenerate hy-
poelliptic diffusion with a smooth stationary state. We prove that the stationary
state, in the limit as N→∞, satisfies Fourier’s law and the linear profile for the
energy average.

KEY WORDS: Fourier’s law; heat conduction; entropy production; non-equi-
librium stationary state.

1. INTRODUCTION

In insulating crystals heat is transported by lattice vibrations, and since the
pioneering work of Debye, systems of anharmonic oscillators have been
used as microscopic models for heat conduction (for a review cf. refs. 12
and 4). These systems are then connected at the extremities to two ther-
mostats at different temperatures. Non-linear effects are extremely impor-
tant in order to obtain finite conductivity. Enough strong non-linearity
causes scattering between phonons and should imply a sufficiently fast
decay of correlations for heat currents. In fact it is well known that har-
monic chains, because of their infinitely many conserved quantities, have
energy transport independent of the lenght of the chain and do not obey
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Fourier’s law.(15) On the other hand a rigorous treatment of a non-linear
system, even the proof of the existence of the conductivity coefficient, is
out of reach of current mathematical techniques.

In the present paper, we study a model of a chain of harmonic oscil-
lators where the hamiltonian dynamic is perturbed by a random con-
tinuous exchange of kinetic energy between nearest neighbors oscillators.
This random exchange conserves the total kinetic energy and destroy all
other conservation laws. In this sense it simulates the long time effect of
the non-linearities in the deterministic model. This random exchange of
kinetic energy is realized by a diffusion on the circle of constant kinetic
energy of nearest neighbor oscillators. We expect the same macroscopic
behavior and results if this diffusions are replaced by jump processes.

The interaction with the reservoirs are modeled by Ornstein–Uhlenbeck
processes at the corresponding temperatures. It results that the total dynam-
ics of the system is a degenerate hypoelliptic diffusion on the phase space.
The stationary state is given by the law of independent gaussian variables if
and only if the temperatures of the thermostats are equal (equilibrium).

We prove that in the stationary state Fourier’s law is valid for the
energy flow, that the total energy of the system is proportional to its size,
and that the average energy per volume, in the infinite volume limit, is
given by the average of the temperatures ad the boundaries. Then we
prove a linear profile for the energy. A corresponding law of large number
(hydrodynamic limit) should be valid for this system, but at the moment
we have not been able to prove this.

The macroscopic evolution of the dynamical fluctuation in equilibrium for
the corresponding infinite model, have been proven in a companion paper.(7)

With similar motivations other stochastic models have been proposed
before. In 1970, Bosterly, Rich and Visscher(2) considered a chain of har-
monic oscillators where each oscillator is also connected to an interior bath,
modeled, like the boundary terms, by Ornstein–Uhlenbeck processes. The
temperature of each bath is then chosen in a self-consistent way. Fourier’s
law and the linear profile of temperature for this model in the steady state
have been proven recently by Bonetto, Lebowitz and Lukkarinen.(3) There
are two main difference between this model and ours. In the Bosterly, Rich
and Visscher model, energy is not conserved by the bulk dynamics, even
though the temperatures of the internal baths are regulated so that the aver-
age flow of energy between the oscillators and the internal baths is null. In
our system the bulk dynamic conserves energy, and only the boundary reser-
voirs can change the total energy. The second difference is that the dynamic
of the Bosterly, Rich and Visscher model is linear, and consequently the sta-
tionary state is fully gaussian. Fourier’s law, linear profile of temperatures
and other result can then be obtained by computing the limit of the 2-point
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correlations of the stationary state. The stochastic perturbation we consider
is intrinsically non-linear and the stationary state is non-gaussian (except in
the equilibrium case).

Another model has been introduced in 1982 by Kipnis, Marchioro
and Presutti(10) where the energy is microscopically conserved but the
hamiltonian part of the dynamics is removed. The dynamics consist only
on random exchange of energy between nearest-neighbor oscillators, given
by properly defined jump processes. The striking duality properties of this
process make it explicitly solvable, and in ref. 10 Fourier’s law and lin-
ear profile of temperature are proven. Recently a deterministic hamiltonian
model has been proposed in ref. 8 where it is argued that, in a proper high
temperature limit and under a chaoticity assumption, the model of Kipnis,
Marchioro and Presutti can be recovered.

The main tool we use in our proof is a bound of the entropy produc-
tion of the bulk dynamics. This tool has been successful in the analogous
problem of Fick’s law in some lattice dynamics.(6,11)

One of the main difficulties in proving Fourier’s law and hydrodynamic
limit is to establish a fluctuation–dissipation relation, i.e. a decomposition
of the current of the conserved quantity (here the energy) in a dissipative
part (a spatial gradient) and a fluctuating part (a time derivative). Thanks
to the stochastic perturbation one can write here an exact fluctuation–dis-
sipation relation (cf. Eq. (28)). Then, in order to obtain Fourier’s law, we
have to bound (uniformly in the size of the system) the second moment of
the positions and velocity at the boundary. In fact we can bound the second
moments of all the coordinates, that gives a bound of the expectation of the
total energy proportional to the size of the system.

2. THE MODEL

Atoms are labeled by x ∈ {1, . . . ,N − 1}. Atom 1 and N − 1 are
in contact with two separate heat reservoirs at two different tempera-
tures Tl and Tr . The interaction between the reservoirs is modeled by
two Ornstein–Uhlenbeck processes at the corresponding temperatures. The
moments of the atoms are denoted by p1, . . . , pN−1 and the positions
by q1, . . . , qN−1. The distances between the positions are denoted by
r1, . . . , rN−2, where rx=qx+1 −qx . The hamiltonian of the system that rep-
resents the total energy inside the system is given by

HN =
N−1∑

x=1

ex, ex =
(
p2
x + (rx −ρ)2)

2
x=1, . . . ,N −2; eN−1 = p2

N−1

2
.

(1)
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The dynamics is described by the following system of stochastic differen-
tial equations:

drx = (px+1 −px)dt, x=1, . . . ,N −2

dpx = (rx − rx−1)dt−γpxdt+√
γ
(
px−1dwx−1,x −px+1dwx,x+1

)
,

x=2, . . . ,N −2

dp1 = (r1 −ρ)dt− 1+γ
2

p1dt−√
γp2dw1,2 +

√
Tldw0,1,

dpN−1 = −(rN−2 −ρ)dt− 1+γ
2

pN−1dt+√
γpN−2dwN−2,N−1

+
√
TrdwN−1,N , (2)

Here wx,x+1(t), x = 0, . . . ,N − 1, are independent standard brownian
motions (with 0 average and diffusion equal to 1). The parameter γ > 0
regulates the strength of the random exchange of momenta between the
nearest neighbor particles.

Observe that by translating rx in rx − ρ one has the same equations
for the new coordinate but with ρ= 0. So we set ρ= 0 without any loss
of generality.

The generator of the evolution has the form

LN =
N−2∑

x=1

(px+1 −px)∂rx +
N−2∑

x=2

(rx − rx−1)∂px + r1∂p1 − rN−2∂pN−1

+γ
2

N−2∑

x=1

X2
x,x+1 + 1

2

(
Tl∂

2
p1

−p1∂p1

)
+ 1

2

(
Tr∂

2
pN−1

−pN−1∂pN−1

)
, (3)

where

Xx,x+1 =px+1∂px −px∂px+1 . (4)

One can check easily that the Lie algebra generated by these vec-
tor fields and the hamiltonian part of LN has full rank at every point
of the state space R

N−1 × R
N−2. By Hörmander theorem it follows that

this operator is hypoelliptic (cf. theorem 22.2.1 in ref. 9), so the station-
ary measure has a smooth density. We denote with 〈·〉 the expectation with
respect to the stationary measure. In the appendix at the end of the paper
we give a proof of the existence and uniqueness of the stationary measure.



Heat Conduction Model 275

Energy is conserved by the bulk part of the dynamics and we have

LNex = jx−1,x − jx,x+1 (5)

with

jx,x+1 =−rxpx+1 − γ

2
(p2
x+1 −p2

x), x=1, . . . ,N −2

j0,1 = 1
2
(Tl −p2

1), jN−1,N =−1
2
(Tr −p2

N−1). (6)

Consequently jx,x+1 is called instantaneous current of energy. Because of
stationarity, for any x=1,N −1 we have

〈jx,x+1〉=〈j0,1〉=〈jN−1,N 〉 (7)

The following theorems are the main results of this paper.

Theorem 1. For any γ >0

lim
N→∞

N〈jx,x+1〉= 1
2

(
γ +γ−1

)
(Tl −Tr) . (8)

Theorem 2. For any γ >0

lim
N→∞

1
N

〈HN 〉= 1
2
(Tl +Tr) . (9)

It is easy to see that the averages of the total kinetic and potential
energy are equal. It follows then, as corollary of theorem 2, that the same
result is valid for the kinetic and the potential energies, i.e.

lim
N→∞

1
N

N−1∑

x=1

〈
p2
x

〉
= lim
N→∞

1
N

N−2∑

x=1

〈
r2
x

〉
= 1

2
(Tl +Tr) . (10)

Theorem 3. For γ =1 and any bounded function G : [0,1]→R, we
have

lim
N→∞

〈
1

N

N−1∑

x=1

G(x/N)ex

〉
=
∫ 1

0
G(q)T (q)dq (11)

where T (q)=Tl + (Tr −Tl)q is the linear profile interpolating Tl and Tr .
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3. ENTROPY PRODUCTION

Denote by gTr (p1, r1, . . . , pN−2, rN−2, pN−1) the density of the prod-
uct on gaussians with mean 0 and variance Tr . We denote by fN the den-
sity of the stationary measure with respect to gTr . By hypoellipticity this
density is smooth.

By stationarity we have

0 = −2〈LN logfN 〉=γ
N−2∑

x=1

∫
(Xx,x+1fN)

2

fN
gTr dp̄ dr̄

+Tr
∫
(∂pN−1fN)

2

fN
gTr dp̄ dr̄−2〈Ll logfN 〉 (12)

where Ll= (Tl∂2
p1

−p1∂p1). Define h=gTl /gTr , then we can rewrite the last
term as

−2〈Ll logfN 〉 = −2
∫
fN

h
Ll log

(
fN

h

)
gTl dp̄ dr̄−2

∫
fNLl(logh)gTr dp̄ dr̄

= Tl

∫
[∂p1(fN/h)]

2

fN/h
gTl dp̄ dr̄+ (T −1

l −T −1
r )

(
Tl −〈p2

1〉
)
.

(13)

So by (30) we have the following bound

γ

N−2∑

x=1

∫
(Xx,x+1fN)

2

fN
gTr dp̄ dr̄+Tr

∫
(∂pN−1fN)

2

fN
gTr dp̄ dr̄

+Tl
∫

[∂p1(fN/h)]
2

fN/h
gTl dp̄ dr̄= (T −1

r −T −1
l )

(
Tl −〈p2

1〉
)

(14)

In Section 4, we prove that this last expression is bounded by CN−1 for
some constant C (cf. Eqs. (30) and (6)). This relation also gives us the
right sign for the energy current, i.e. if Tl <Tr we have 〈jx,x+1〉<0.

4. SOME BOUNDS

From (6) and (7) we have

〈p2
1〉+〈p2

N−1〉=Tl +Tr (15)
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Observe that, since LNr2
1 =2(r1p2 − r1p1), we have

〈r1p2〉=〈r1p1〉 (16)

Equation (7) for x=1 gives

〈j1,2〉=−〈r1p2〉− γ

2

(
〈p2

2〉−〈p2
1〉
)

(17)

Since this last is equal to 〈j0,1〉, using (16), we obtain

γ

2
〈p2

2〉=−〈r1p1〉+ 1
2
(γ +1)〈p2

1〉− 1
2
Tl (18)

Then by Schwarz inequality there exists a constant C, depending only on
γ , such that

〈p2
2〉�C

(
〈r2

1 〉+〈p2
1〉
)

(19)

Analogous computation for the index x=N −2 gives

〈p2
N−2〉�C

(〈p2
N−1〉+〈r2

N−2〉
)
. (20)

Observe now that

LN(r1p1)=p1(p2 −p1)+ r2
1 − γ +1

2
p1r1 (21)

so we have the relation

〈r2
1 〉=〈p2

1〉−〈p1p2〉+ γ +1
2

〈p1r1〉 (22)

and by use of (18)

〈r2
1 〉=〈p2

1〉−〈p1p2〉+
(
γ +1

2

)2

〈p2
1〉− γ (γ +1)

4
〈p2

2〉− γ +1
4

Tl

(23)

and by Schwarz inequality, for any α>0

〈r2
1 〉�

(
1+

(
γ +1

2

)2

+ 1
2α

)
〈p2

1〉+
(
α

2
− γ (γ +1)

4

)
〈p2

2〉 (24)
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choosing properly α one obtains a constant C depending only on γ , such
that

〈r2
1 〉�C〈p2

1〉 (25)

and an analogous bound is obtained for 〈r2
N−2〉.

Putting all together we have obtained the following lemma:

Lemma 1. There exists a constant C depending only on γ and lin-
early on Tl and Tr such that

〈r2
1 〉+〈p2

1〉+〈p2
2〉+〈r2

N−2〉+〈p2
N−1〉+〈p2

N−2〉�C(Tl +Tr) (26)

The bulk dynamics is only apparently non-gradient since defining

hx = 1
2γ
px+1(rx + rx+1)+ 1

4
p2
x+1, x=1, . . . ,N −3 (27)

permits to rewrite

jx,x+1 = −∇
(

1
2γ
r2
x + γ

2
p2
x + 1

2γ
pxpx+1 + γ

4
∇(p2

x)

)
+Lhx,

x=1, . . . ,N −3. (28)

where the discrete gradient ∇ of a discrete function w is defined by
(∇w)(x)=w(x+1)−w(x). Using again (7) we have

〈j0,1〉 = 1
N −3

N−3∑

x=1

〈jx,x+1〉

= − 1
N −3

(
1

2γ
〈r2
N−2〉+ γ

2
〈p2
N−2〉+ 1

2γ
〈pN−2pN−1〉

+γ
4

(
〈p2
N−1〉−〈p2

N−2〉
)

− 1
2γ

〈r2
1 〉− γ

2
〈p2

1〉

− 1
2γ

〈p2p1〉− γ

4

(
〈p2

2〉−〈p2
1〉
))

(29)

and by (26) we obtain that there exists a constant C depending only on
Tl, Tr and γ such that

|〈jx,x+1〉|� C

N
, x=0, . . . ,N −1. (30)
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5. FOURIER’S LAW

Proposition 1. For x=1 and N −2 we have

lim
N→∞

〈pxpx+1〉=0 (31a)

lim
N→∞

〈rxpx+1〉=0 (31b)

lim
N→∞

〈(p2
x −p2

x+1)〉=0 (31c)

Proof. Let us prove the case x=1, for x=N−2 the proof is similar.
By (14), (30) and (26)

〈r1p2〉=〈r1p1〉 =
∫
r1p1(fN/h)gTl dp̄ dr̄=Tl

∫
r1∂p1(fN/h)gTl dp̄ dr̄

�Tl〈r2
1 〉1/2

(∫
[∂p1(fN/h)]

2

fN/h
gTl

)1/2

dp̄ dr̄� C√
N

(32)

The proof for 〈p1p2〉 is similar.
Now by (30) for x=1 we have

lim
N→∞

〈(p2
1 −p2

2)〉=0 (33)

Then by (22) we have

lim
N→∞

〈r2
1 〉= lim

N→∞
〈p2

1〉=Tl (34)

and similarly

lim
N→∞

〈r2
N−2〉= lim

N→∞
〈p2
N−1〉=Tr (35)

By (29) it follows that

lim
N→∞

N〈jx,x+1〉= 1
2

(
γ +γ−1

)
(Tl −Tr) (36)

i.e. the law of Fourier.
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6. AVERAGE ENERGY

We first state the following equipartition result:

Proposition 2.

〈
N−1∑

x=1

p2
x

〉
=
〈
N−2∑

x=1

r2
x

〉
(37)

Proof. Recall that rx =qx+1 −qx . Then

LN

(
N−1∑

x=1

qxpx

)
=
N−1∑

x=1

p2
x −

N−2∑

x=1

r2
x −γ

N−2∑

x=2

qxpx − 1+γ
2

(q1p1 +qN−1pN−1)

(38)

Since LNq2
x =2qxpx , (37) follows.

We prove now theorem 2.

Proof. We claim there exists a constant C>0 independent of N such
that

〈HN

N

〉
�C (39)

Define

φ(x)= 1
2γ

〈r2
x 〉+ γ

4

(
〈p2
x〉+〈p2

x+1〉
)

+ 1
2γ

〈pxpx+1〉. (40)

By (5) and (28), we have

�φ(x)=0, x=2, . . . ,N −3 (41)

Here, (�w)(x) = w(x + 1) + w(x − 1) − 2w(x) is the usual discrete
Laplacian of the function w(x). By (26) and the maximum principle, it
follows that there exists a constant C independent of N such that

|φ(x)|�C, x=1, . . . ,N −2 (42)
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In fact we have furthermore, by the explicit expression of φ(x) and
the result of the previous sections that

lim
N→∞

1
N

N−2∑

x=1

φ(x)= 1
2
(γ +γ−1)(Tr +Tr) (43)

By a straightforward calculation we can write, for x=2, . . . ,N −2,

pxpx+1 =− 1
3γ

∇ ((rx + rx−1)px−1
)− 1

3γ
LN

(
1
2
(rx + rx−1)

2 +pxpx+1 − r2
x

)

(44)

Consequently, taking expectation with respect to the stationary state and
summing from x=2 to N −2 we obtain

N−3∑

x=2

〈pxpx+1〉= 1
3γ

(〈(rN−2 + rN−3)pN−3〉−〈(r2 + r1)p1〉
)

(45)

Now we also have that

LN(p1p2)=−5γ +1
2

p1p2 + r2p1 +LN
(
r2

1

2

)
(46)

which implies, by (26),

〈r2p1〉= 5γ +1
2

〈p1p2〉 �C (47)

For the other side we have

LN

(
−1

2
(rN−2 + rN−3)

2 +pN−1pN−2

)

= rN−2pN−2 −pN−3(rN−2 + rN−3)− 5γ +1
2

pN−1pN−2 (48)

so that

〈pN−3(rN−2 + rN−3)〉=−5γ +1
2

〈pN−1pN−2〉+〈rN−2pN−2〉 (49)
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and again by (26) this quantity is bounded in absolute value by a constant
independent of N . So we can conclude that

∣∣∣∣∣

N−3∑

x=1

〈pxpx+1〉
∣∣∣∣∣�C (50)

with C a constant independent of N . It follows by (50) and (43) that

lim
N→∞

1
N

N−2∑

x=1

[
1

2γ
〈r2
x 〉+ γ

4

(
〈p2
x〉+〈p2

x+1〉
)]

= 1
2
(γ +γ−1)(Tr +Tr)

(51)

The by using (37) we finally get (9) and (10).

7. ENERGY PROFILE FOR γ=1

From the results of the previous section we have that

lim
N→∞

φ([Nq])= 1
2
(γ +γ−1)T (q) (52)

If γ =1 we have

φ(x) = 1

2
〈r2
x 〉+ 1

4

(
〈p2
x+1〉+〈p2

x〉
)

+ 1

2
〈pxpx+1〉

= 〈ex〉+ψ(x) (53)

with

ψ(x)= 1

2
〈pxpx+1〉+ 1

4

(
〈p2
x+1〉−〈p2

x〉
)

for x=1, . . . ,N −2.
Then, in order to prove (11), we are left to prove

lim
N→∞

1

N

N−2∑

x=1

G(x/N)ψ(x)=0 (54)

Because of (44), ψ(x)=∇ξ(x) with ξ a bounded function, so (54) follows
by summation by part.
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8. OPEN PROBLEMS AND OTHER MODELS

We have proven for our stochastic model the Fourier law for any
value of the coupling γ and the linear profile of the energy for the case
γ = 1. The essential tool used has been a bound on the entropy pro-
duction. This bound on the entropy production together with a uniform
bound on 〈p2+δ

x 〉 will provide a proof of the linear temperature profile and
of local equilibrium for any value of γ . Unfortunately we have not been
able to prove yet such uniform bound of the higher moments of the veloc-
ities, but we conjecture that it is certainly satisfied.

The proof we have exposed in the present paper can be adapted
for some modification of the model. For example one can add a pin-
ning given by on site harmonic potential, adding to the hamiltonian a
term

∑N−1
x=1 ν

2q2
x/2. Or adding stochastic reservoirs like in the model of

Bolsterli–Rich–Visscher(2,3) with self consistent temperatures, i.e. we can
add to the generator a term

λ

N−2∑

x=2

(
Tx∂

2
px

−px∂px
)

where the temperatures Tx are imposed to be equal to 〈p2
x〉. In this case

we find that the self-consistent profile Tx is asymptotically linear and the
Fourier law is given by

lim
N→∞

N <jx,x+1>=
(

1
2(γ +λ) + γ

2

)
(Tl −Tr). (55)

which, in the limit as γ → 0 is in agreement with the results of
Bonetto–Lebowitz–Lukkarinen.(3) The proof of (55) is very close to the
one exposed in Sections 3, 4, 5. In fact one has the decomposition of the
current in the form

∇φ̃x +LNhx − λ

2
(p2
x+1 −Tx+1)

with the function hx given by

hx = 1
2(γ +λ)px+1(rx + rx+1)+ 1

4
p2
x+1, x=1, . . . ,N −3 (56)

Observe that this works also in the case γ =0 if λ>0.
In this last model one can also prove local equilibrium by proper use

of the entropy production bound, similarly as done in ref. 13. In the case
γ =0 and in presence of pinning, local equilibrium is proved in ref. 3.
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A. APPENDIX

In this section, we prove existence and uniqueness of the stationary
measure 〈·〉 for any left temperature Tl and right temperature Tr . Recently,
refs. 5 and 14 proved existence and uniqueness of the stationary measure
for a non-harmonic chain with reservoirs at the boundaries.

A.1. Existence

Let us denote by �= {ω= (p1, . . . , pN−1, r1, . . . , rN−2) ∈ R
2N−3} the

configuration space and by (ωs)s�0 the Markov process with generator (3).

Lemma 2. If ω0 is a configuration with finite energy: HN(ω0)<+∞
then there exists a constant C>0 such that

∀t�0, Eω0

[
1

t+1

∫ t

0
HN(ωs)ds

]
�C (A.1)

Proof. By (5) and(6), we have

LNHN = j0,1 − jN−1,N (A.2)

It follows that

Eω0(HN(ωt ))−HN(ω0)

= 1
2

∫ t

0
Eω0(Tl −p2

1(s))ds+
1
2

∫ t

0
Eω0(Tr −p2

N−1(s))ds (A.3)

Hence there exists a constant C>0 such that

∀t�0, Eω0

(HN(ωt )

t+1

)
�C (A.4)

Using the preceding bound, we can repeat the estimates of Section 4
with 〈.〉 replaced by the average t−1

∫ t
0 Eω0 . The only difference is that we

have to take in account the boundary terms depending on t . In the sequel,
C is a constant independent of t which can change from line to line. By
(A.3) and (A.4), we know that

1

t+1

∫ t

0
Eω0(p

2
1(s)+p2

N−1(s))ds�C (A.5)
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Since LNr2
1 =2(r1p2 − r1p1), we have

1

t+1

[
Eω0(r

2
1 (t)− r2

1 (0))
]
= 2

t+1

∫ t

0
Eω0(r1(s)p2(s)− r1(s)p1(s))ds

(A.6)

By (A.4), the modulus of the left hand-side is bounded by a constant inde-
pendent of t . Similarly as what is done in (17) and (18), and using (A.4)
to bound the boundary terms, we have

∣∣∣∣
1

t+1

∫ t

0
dsEω0

[
γ

2
p2

2(s)+ r1(s)p1(s)−
1

2
(γ +1)p2

1(s)

]∣∣∣∣�C (A.7)

By Schwarz’s inequality, we conclude

1

t+1

∫ t

0
dsEω0(p

2
2(s))�

C

t+1

∫ t

0
dsEω0(r

2
1 (s)+p2

1(s))+C (A.8)

This estimate is the equivalent to the estimate (20). In the same way, we
can obtain the equivalent of lemma 1, meaning

1

t+1

∫ t

0
dsEω0(r

2
1 (s)+p2

1(s)+p2
2(s)+ r2

N−2(s)+p2
N−1(s)+p2

N−2(s))�C

(A.9)

Let us now define the function

φ(t, x)= 1

t+1

∫ t

0
Eω0

[
1

2γ
r2
x (s)+

γ

4

(
p2
x(s)+p2

x+1(s)
)

+ 1
2γ
px(s)px+1(s)

]

(A.10)

Similarly as Section 6, one can prove there exists functions
(θx)x=2,...,N−3 such that θx(ω)�CHN and satisfying

�φ(t, x)= 1

t+1
Eω0(θx(ωt ))−

1

t+1
θx(ω0) (A.11)

and we obtain

|�φ(t, x)|�C (A.12)
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Moreover, by (A.10), |φ(t,2)|�C, |φ(t,N−1)|�C. By the maximum
principle, it follows that

|φ(t, x)|�C (A.13)

Using Eq. (44) and the bound (A.4), it is easy to show

1

t+1

∫ t

0
Eω0

[
N−3∑

x=1

px(s)px+1(s)

]
�C (A.14)

It follows by (A.13) and the preceding inequality that

Eω0

[
1

t+1

∫ t

0
HN(ωs)ds

]
�C (A.15)

The proof of the existence of the invariant measure is now standard.
Let us denote by (Tt )t�0 the semi-group corresponding to the diffusion
(2) and let ω0 be an arbitrary configuration with finite energy. We consider
the following family µt of probabilities on �:

µt =
1

t

∫ t

0
δω0Ts ds (A.16)

where δω0 is the Dirac mass on the configuration ω0. By lemma 2, the
sequence of probability measures (µt )t>0 is tight. Let µ∗ a limit point of
the family (µt )t>0. A simple checking shows that µ∗ is an invariant prob-
ability measure of the diffusion (2).

A.2. Uniqueness

Lemma 3. Assume Tl=Tr =0. Then for any initial configurationω0 we
have

lim
t→∞

1
t

∫ t

0
Eω0 [HN(ωs)]ds=0 (A.17)

Proof. By (A.3) we have

1
2t

∫ t

0
Eω0

[
(p2

1(s)+p2
N−1(s))

]
ds� HN(ω0)

t
−→0 (A.18)
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as t→∞. This implies

lim
t→∞

1
t
Eω0 [HN(ωt )]=0 (A.19)

By (5) for x=N −1 we have

Eω0 [eN−1(t)] = eN−1(0)

−
∫ t

0

(
Eω0 [rN−2(s)pN−1(s)]+ γ +1

2
Eω0

[
p2
N−1(s)

])
ds

+
∫ t

0

γ

2
Eω0

[
p2
N−2(s)

]
ds (A.20)

Notice that

Eω0

[
rN−2(s)

2
]
�Eω0 [HN(ωs)]�Eω0 [HN(ω0)] . (A.21)

Then by Schwarz inequality we obtain

lim
t→∞

1
t

∫ t

0
Eω0

[
p2
N−2(s)

]
ds=0 (A.22)

Iterating this procedure one obtains for any x=1, . . . ,N −1

lim
t→∞

1
t

∫ t

0
Eω0

[
p2
x(s)

]
ds=0 (A.23)

By integrating in time formula (38) and observing that
∑
x q

2
x �CN

∑
x r

2
x

one obtains

lim
t→∞

1
t

∫ t

0
Eω0

[
N−2∑

x=1

r2
x (s)

]
ds=0 (A.24)

Let µ1 and µ2 two invariant probability measures for (2) with tem-
perature on the left Tl and temperature on the right Tr . We consider the
following coupling. We note the diffusion satisfying (2) with initial condi-
tion distributed according to µ1 (resp. µ2) by (ω1

t )t�0 (resp (ω2
t )t�0) and

driven by the same Wiener processes wx,x+1(t), x= 0, . . . ,N − 1. By line-
arity, the process (ω1

t −ω2
t )t�0 is solution of (2) with Tl =Tr =0.
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Let now F :�→R be a Lipshitz function:

|F(ω)−F(ω̃)|�C
√

HN(ω− ω̃) (A.25)

We have

|µ1(F )−µ2(F )| =
∣∣∣∣E
[

1

t

∫ t

0
F(ω1

s )ds

]
−E

[
1

t

∫ t

0
F(ω2

s )ds

]∣∣∣∣

�CE

[
1

t

∫ t

0

{
HN(ω

1
s −ω2

s )
}1/2

]
ds

�C

√

E

[
1

t

∫ t

0
HN(ω1

s −ω2
s )

]
ds

By (A.17), this last term goes to 0 as t goes to infinity. It follows eas-
ily that µ1 =µ2.
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