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Contractive Metrics for a Boltzmann Equation
for Granular Gases: Diffusive Equilibria
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We quantify the long-time behavior of a system of (partially) inelastic particles
in a stochastic thermostat by means of the contractivity of a suitable met-
ric in the set of probability measures. Existence, uniqueness, boundedness of
moments and regularity of a steady state are derived from this basic prop-
erty. The solutions of the kinetic model are proved to converge exponentially
as t →∞ to this diffusive equilibrium in this distance metrizing the weak con-
vergence of measures. Then, we prove a uniform bound in time on Sobolev
norms of the solution, provided the initial datum has a finite norm in the cor-
responding Sobolev space. These results are then combined, using interpolation
inequalities, to obtain exponential convergence to the diffusive equilibrium in
the strong L1-norm, as well as various Sobolev norms.

KEY WORDS: Inelastic interactions; Boltzmann equation; contractivity; sto-
chastic heating.

1. INTRODUCTION

This paper concerns the long-time asymptotics of the homogeneous Boltz-
mann equation for inelastic interactions in the pseudo-Maxwellian approx-
imation introduced in ref. 4. Without an energy source into the system, the
inelasticity of the collisions will homogenize the velocity of particles and
thus, the only possible steady state is the Delta Dirac distribution at the
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mean velocity of the particles.(4) Therefore, we assume that our particles
are under the influence of an external source of energy, a thermostat, that
keeps the motion of particles. A stochastic thermostat was indeed pro-
posed in different granular gases models as a candidate for keeping the
temperature of particles bounded away from zero.(1,2,22) From a proba-
bilistic point of view, a stochastic thermostat means that particles follow
Brownian paths between collisions.

At the kinetic level the thermostat is represented by a linear diffu-
sion term in velocity,(10) that may be temperature dependent.(20) Hence, if
f (v, t) � 0 denotes the density for the velocity space distribution of the
molecules of the granular gas at time t , the time evolution of f obeys the
equation

∂f

∂t
=B

√
θ(t)Q(f, f )+F θp(t)�vf with 0�p <

3
2
, (1.1)

where Q(f,f ), the Boltzmann collision operator in the pseudo-Maxwellian
approximation, models the effects of inelastic binary collisions between
particles. We keep the positive constants B and F , measuring the impor-
tance ratio of inelastic collisions and stochastic thermostat to keep track
of their influences in the convergence rates. Instead of writing explicitly the
collision operator,(4) it is much easier (and less painful) to work in the cor-
responding weak form of the Q(f,f ). Thus, we will define Q(f,f ) by its
weak form given by

〈ϕ,Q(f,f )〉= 1
4π

∫

R3

∫

R3

∫

S2
f (v)f (w)

[
ϕ(v′)−ϕ(v)

]
dndv dw (1.2)

acting on functions ϕ ∈C(R3) where

v′ = 1
2
(v +w)+ 1− e

4
(v −w)+ 1+ e

4
|v −w|n (1.3)

is the post-collisional velocity and 0 < e < 1 is the constant restitution
coefficient. The unit vector n in (1.3) parameterizes the set of all kine-
matically possible (i.e. those conserving mass and momentum) post-colli-
sional velocities. Without loss of generality, in what follows we will assume
that the initial datum f0 is a probability density. By mass conservation,
f (v, t) will remain a probability density at any subsequent time.

The existence of steady states for Eq. (1.1) has been addressed by
fixed point arguments in ref. 14 and by moment methods in ref. 5. Unique-
ness of stationary solutions was pointed out as an open problem in ref. 14
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and later addressed indirectly in ref. 5 as a consequence of the unique-
ness of the moment expansion for solutions of the initial value problem
to (1.1). Recently, the existence of homogeneous cooling states (HCS) (self-
similar solutions) without the diffusion term was established in ref. 6 and
subsequently, proved in ref. 7 that they give the intermediate asymptotic
of the solutions, that is, the difference between any solution and the HCS
measured in a suitable way vanishes as t → ∞. Let us finally mention
that the mathematical properties of the IVP for the more realistic hard-
spheres model with diffusion have been studied recently in ref. 16 and its
tail behavior well described both in the stationary and the time-dependent
case.(8,16,17) However, the long-time asymptotic in this case are not well
understood since even the uniqueness of steady solutions for a given mean
velocity remains an open problem.

In the rest of the paper, instead of working on the weak form (1.2),
we will equivalently use the Fourier transformed equation corresponding
to (1.1),(3,4) that reads

∂f̂

∂t
=B

√
θ(t)

1
4π

∫

S2

{
f̂ (t, k−)f̂ (t, k+)− f̂ (t,0)f̂ (t, k)

}
dn−F θp(t) |k|2f̂

(1.4)

with

k− = 1+ e

4
(k −|k|n),

k+ = 3− e

4
k + 1+ e

4
|k|n. (1.5)

Our convention with the Fourier transform is that

f̂ (k, t)=
∫

R3
f (v, t)e−iv·k dv.

This weak form of Eq. (1.1) is suitable to show both the existence
and uniqueness of a steady state and its regularity. A crucial role in our
analysis is played by the weak norm convergence, which is obtained by
adapting a method first used in ref. 15 to control the exponential conver-
gence for Maxwellian molecules in certain weak norms. The global asymp-
totical stability of the unique steady state can be recovered in terms of
the contractivity properties of these distances in Fourier space. From their
introduction on, these distances were subsequently used for the classical
Boltzmann equation for Maxwellian molecules in refs. 9 and 21, for the
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Fokker–Planck equation in ref. 12 and for the Kac model for inelastic
interactions recently in ref. 19. Contractivity of equivalent metrics for solu-
tions of a general family of PDE models, including simplified models of
granular media, has recently been shown in refs. 11, 13 and 18 to produce
results which are reminiscent of the main theorem in this work.

Let Ps(R
3) be the set of probability measures with bounded s-moment.

The Fourier-based metrics ds , for any s >0, are defined as

ds(f̂ , ĝ)= sup
k∈R3

|f̂ (k)− ĝ(k)|
|k|s (1.6)

for any pair of probability measures in Ps(R
3). This distance is well-

defined and finite by simple Taylor expansion for any pair of probability
measures with equal moments up to order [s], where [s] denotes the inte-
ger part of s. Moreover, in case s �1 be an integer, it suffices equality of
moments up to order s −1 for being ds finite.

In fact, d2 topology is equivalent to the weak-star topology for mea-
sures plus boundedness of second moments,(21) and can be related to the
well-known Wasserstein distance between probability measures. The main
results of this work can be summarized as follows:

Theorem 1.1. Equation (1.1) has a unique steady state f∞ in the
set of probability measures with a given mean velocity u. Moreover, f∞ is
smooth and fast decaying at ∞. Furthermore, given any probability mea-
sure solution f (t, v) of (1.1) with mean velocity u and finite temperature,
d2(f̂ (t), f̂∞) tends exponentially to 0. The rate λ of exponential conver-
gence is explicitly computable.

The key idea to prove this theorem is based on the observation that
the d2 distance is a contraction for the flow map of (1.1) restricted to ini-
tial data with equal temperature. This property will enable us to show the
existence and uniqueness of the steady states by simple arguments invok-
ing Banach fixed point theorem. The first step in our analysis will be
the study of the time evolution of moments. We recover briefly the exact
general moment equation of second order, and prove that the isotropic
moments of any order satisfy a differential inequality which implies a uni-
form bound in time. These arguments will be described in Section 2. Sec-
tion 3 deals with the existence of moments and regularity of the steady
state. These properties are addressed directly on the integral equation
in Fourier representation verified by the steady state itself. Section 4 is
devoted to prove the exponential convergence towards steady state for any
solution of (1.1). This is achieved by a careful estimate of the convergence
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of the temperature to the asymptotic steady value and using a variation
of the argument proving the contractivity of the d2 distance. Section 5
deals with the problem of obtaining strong convergence towards the steady
state. This goal will be reached by establishing a propagation of smooth-
ness result for (1.1). To state the result concisely, we introduce the Sobolev
space norms ‖ · ‖Hr(R3), r �0 by

‖f ‖2
Hr(R3)

=
∫

R3
|k|2r |f̂ (k)|2 dk,

then we prove

Theorem 1.2. Let f0 be any initial datum for Eq. (1.1) with
‖f0‖Hr(R3) finite. Then, any probability density solution f (t, v) of (1.1) is
bounded in Hr , and there is a universal constant Cr so that, for all t >0,

‖f (t)‖Hr(R3) �max{‖f0‖Hr(R3),Cr}.

The results of Theorems 1.1 and 1.2 will then be combined, using
interpolation inequalities,(9) to obtain exponential convergence to f∞ in
the strong L1-norm, as well as in various Sobolev norms.

Theorem 1.3. Let f0 be any initial datum for Eq. (1.1). Let ε >0 be
given. Then, there is a number r depending only on ε so that whenever

∫

R3
|v|2rf0(v) dv +

∫

R3
|k|2r |f̂0(k)|2 dk <∞

then it holds that

‖f (·, t)−f∞‖L1(R3) �Cε exp{−(1− ε)λt}.

Here, λ is the rate of exponential convergence in d2 distance, and Cε is
explicitly computable in terms of the integrals specified above. Moreover,
increasing r, we obtain the same result if the L1-norm is replaced by any
Hm-norm.

2. EVOLUTION OF MOMENTS

Let us denote by ρ(t), u(t), θ(t) and pij (t) the density, mean veloc-
ity, temperature and pressure tensor components of the distribution func-
tion f . Since mass and mean velocity are preserved clearly by the collision
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operator (1.2) and we deal with the homogeneous problem, without loss
of generality we assume in the rest of the paper that ρ(t)=1 and u(t)=0
for all t � 0. Following,(5) we compute the general moment equations of
second order.

Lemma 2.1. [Evolution of moments, ref. 5 and 10] Let f̂ be a solu-
tion to (1.4) with unit mass, zero mean velocity and initial second order
moments bounded, then f̂ has finite second order moments for any t >0,

dθ

dt
=− 1− e2

4
Bθ

3
2 +2F θp, (2.1)

and

∂

∂t

∫

R3
f (v)vivj dv = − (1+ e)(3− e)

8
B

√
θf (t)

∫

R3
f (v)vivj dv

+δij 2
(

1+ e

4

)2

B
(
θf (t)

) 3
2 + δij 2 F θ

p
f (t) (2.2)

for any t �0. As a consequence, we have the following asymptotically sta-
ble steady value of the temperature

θ∞ =
(

8F

B(1− e2)

) 2
3−2p

. (2.3)

Proof. By multiplying (1.1) by vivj and integrating we get

∂

∂t

∫

R3
f (v)vivj dv = B

4π

√
θf (t)

∫

R3

∫

R3

∫

S2
f (v)f (w)

[
v′
iv

′
j −vivj

]
dndv dw

+F θ
p
f (t)

∫

R3
vivj�vf dv.

Since

v′ = 3− e

4
v + 1+ e

4
w + 1+ e

4
|v −w|n



Contractive Metrics for a Boltzmann Equation for Granular Gases 307

we have

∂

∂t

∫

R3
f (v)vivj dv = B

4π

√
θf (t)

∫

R3

∫

R3

∫

S2
f (v)f (w)

{[(
3− e

4

)2

−1
]
vivj

+
(

1+ e

4

)2 (
wiwj +|v −w|2ninj

+|v −w|(winj +wjni)
)

+
(

(3− e)(1+ e)

16

)

×
(
viwj +wivj +|v −w|(vinj +vjni)

)}

dndv dw

+ δij 2 F θ
p
f (t).

Evolution Eqs. (2.1) and (2.2) are then obtained imposing zero mean
velocity and unit mass, while boundedness of second moments is an easy
consequence of (2.1).

Remark 2.2. [Temperature for the case p=1] If p=1, the evolution
Eq. (2.1) for the temperature can be solved in analytic way. In fact, if we
put z= θ e−2F t , we have

dz

dt
=− 1− e2

4
B eF t z

3
2 ,

from which with trivial calculations it follows:

z(t)=
[

z
− 1

2
0 + 1− e2

8
B

F

(
eF t −1

)]−2

namely the analytic expression of the temperature is

θ(t)=


 eF t

θ
− 1

2
0 + 1−e2

8
B
F

(
eF t −1

)





2

. (2.4)

For future reference we include here the computation:

∫ t

0

√
θ(τ ) dτ = 8

(1− e2)B
log



1+ 1− e2

8 θ
− 1

2
0

B

F

(
eF t −1

)


 . (2.5)
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The exact evolution equations for moments of order higher than two
has been done in ref. 5 only for the third order. Evolution of higher order
moments has been studied in ref. 5 only in the relatively simple case of
isotropic solutions. We obtain here an explicit inequality for the time evo-
lution of isotropic moments of any order for general solutions, which leads
to prove a uniform bound in time of these moments, in terms of the
moments of the initial value. To simplify notations, in what follows we
denote

M2r (t)=
∫

R3
f (v, t)|v|2r dv,

for any r ∈ N. Moreover, we will take advantage of the weak form of the
collision integral

〈ϕ,Q(f,f )〉= 1
8π

∫

R3

∫

R3

∫

S2
f (v)f (w)

[
ϕ(v′)+ϕ(w′)−ϕ(v)−ϕ(w)

]
dndvdw

(2.6)

acting on functions ϕ ∈C(R3). Here (v′,w′) represent the post-collisional
velocities, v′ is given by (1.3), and

w′ = 1
2
(v +w)− 1− e

4
(v −w)− 1+ e

4
|v −w|n. (2.7)

The weak form (2.6) has been considered in ref. 4 and is equivalent to
(1.2). We prove

Lemma 2.3. [Uniform in time moment estimates] Let f (t, v) be the
solution to Eq. (1.1), where the initial distribution f0(v) is such that

∫

R3
f0(v)|v|2r dv = cr <+∞ (2.8)

for some r �2. Then, M2r (t) satisfies the following differential inequality

d

dt
M2r (t)�−B

√
M2(t)

3

[
1− e2r

4

(
M2r (t)+M2(r−1)(t)M2(t)

)

−1
2

r−1∑

m=1

(
r

m

)
M2(r−m)(t)M2m(t)

]

+F M2(t)
p(2r +4r2)M2(r−1)(t). (2.9)

Consequently, M2r (t) is uniformly bounded in time.
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Proof. Elementary computations show that

0≥ (v′)2 + (w′)2 − (v2 +w2)

=−1− e2

4

[
(v −w)2 −|v −w|(v −w) ·n

]
, (2.10)

and

(v′)2 + (w′)2 � e2
(
v2 +w2

)
. (2.11)

Inequality (2.11) follows from (2.10). In fact, since

0�
[
(v −w)2 −|v −w|(v −w) ·n

]
�2(v −w)2,

we obtain

(v′)2 + (w′)2 � (v2 +w2)− 1− e2

2
(v −w)2

= 1
2
(v +w)2 + e2

2
(v −w)2 � e2

(
v2 +w2

)
.

Choosing ϕ(v)=|v|2r , r �2, we obtain

〈|v|2r ,Q(f, f )〉 = 1
8π

∫

R3

∫

R3

∫

S2
f (v)f (w)

×
[
|v′|2r +|w′|2r −|v|2r +|w|2r

]
dndv dw

= 1
8π

∫

R3

∫

R3

∫

S2
f (v)f (w)

×
[
(|v′|2 +|w′|2)r − (|v|2 +|w|2)r

]
dndv dw

+
r−1∑

m=1

(
r

m

)
1

8π

∫

R3

∫

R3

∫

S2
f (v)f (w)

[
|v|2(r−m)|w|2m

−|v′|2(r−m)|w′|2m
]
dndv dw

� 1
8π

∫

R3

∫

R3

∫

S2
f (v)f (w)

×
[
(|v′|2 +|w′|2)r − (|v|2 +|w|2)r

]
dndv dw

+1
2

r−1∑

m=1

(
r

m

)
M2(r−m)M2m. (2.12)
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Taking into account (2.11), we obtain

1
8π

∫

S2

[
(|v′|2 +|w′|2)r −(|v|2 +|w|2)r

]
dn

= 1
8π

∫

S2

[
|v′|2 +|w′|2 −(|v|2 +|w|2)

]

×
r−1∑

m=0

[
|v′|2 +|w′|2

]r−m−1[|v|2 +|w|2
]m

dn

� 1
8π

∫

S2

[
|v′|2 +|w′|2 −(|v|2 +|w|2)

] r−1∑

m=0

e2(r−m−1)
[
|v|2 +|w|2

]r−1
dn

=−1−e2r

4

[
|v|2 +|w|2

]r−1 1
8π

∫

S2

[
(v−w)2 −|v−w|(v−w)·n

]
dn

=−1−e2r

8

[
|v|2 +|w|2

]r−1
(v−w)2. (2.13)

Thus, inserting (2.13) into (2.12) we obtain the inequality

〈|v|2r ,Q(f, f )〉 �−1− e2r

8

∫

R3

∫

R3
f (v)f (w)

[
|v|2 +|w|2

]r−1
(v −w)2dv dw

+1
2

r−1∑

m=1

(
r

m

)
M2(r−m)M2m.

Finally, since

∫

R3

∫

R3
f (v)f (w)

[
|v|2 +|w|2

]r−1
(v −w)2dv dw

�
∫

R3

∫

R3
f (v)f (w)

[
|v|2(r−1) +|w|2(r−1)

]
(v −w)2dv dw

=2M2r +2M2(r−1)M2.

〈|v|2r ,Q(f, f )〉 � −1− e2r

4

(
M2r +M2(r−1)M2

)

+1
2

r−1∑

m=1

(
r

m

)
M2(r−m)M2m. (2.14)
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To conclude the proof, consider that
∫

R3
|v|2r	vf dv = (2r +4r2)M2(r−1). (2.15)

Then, in order to show that M2r (t) is uniformly bounded in time, one
rewrites inequality (2.9) as

d

dt
M2r (t)�Ar(t) [−M2r (t)+Br(t)] ,

where both Ar(t) and Br(t) depend on moments up to the order 2(r −1).
Thanks to Lemma 2.1, M2(t) is uniformly bounded in time. This implies
that B2(t) is uniformly bounded in time, B2(t) � B2, and, consequently,
M4(t) is uniformly bounded,

M4(t)�max {M4(0),B2} .

Recursively, the proof can be extended to any r >2.

3. NON EXPANSIVITY OF THE d2 DISTANCE:

DIFFUSIVE EQUILIBRIA

The results of the previous section guarantee that the isotropic
moments which are initially bounded, remain bounded in time. Here we
concentrate on the time evolution of the d2 distance.

Proposition 3.1. [Uniform contraction of the d2 distance] Let f̂1
and f̂2 be two solutions to (1.4) corresponding to initial values f̂1(0),
f̂2(0) with unit mass, zero mean velocity and equal temperature. Then
d2(f̂1(0), f̂2(0))<∞ and there exists a constant C1 >0 such that

d2(f̂1(t), f̂2(t))�d2(f̂1(0), f̂2(0)) e−(1−γ0)C1t, (3.1)

for any t �0. In (3.1), γ0 = (e2 +3)/4<1, C1 =B min{θ0, θ∞}1/2. In the par-
ticular case p =1 the more precise estimate holds

d2(f̂1(t), f̂2(t))�d2(f̂1(0), f̂2(0))



1− 1− e2

8 θ
− 1

2
0

B

F
+ 1− e2

8 θ
− 1

2
0

B

F
eF t





−2

,

(3.2)

for any t �0.
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Proof. Since the evolution of the temperature is governed by the law
given in Lemma 2.1 and the initial temperature of both solutions is equal,
it follows that θf1(t) = θf2(t) = θ(t) for all t � 0. By the definition of the
metric d2, d2(f̂1(0), f̂2(0))<∞ and we can subtract the equations satisfied
by f̂1(t) and f̂2(t) respectively to get

∂

∂t

f̂1(k)− f̂2(k)

|k|2 = B

4π

√
θ(t)

∫

S2

[
f̂1(k−)f̂1(k+)− f̂2(k−)f̂2(k+)

|k|2

− f̂1(0)f̂1(k)− f̂2(0)f̂2(k)

|k|2
]

dn

−F θp(t) |k|2 f̂1(k)− f̂2(k)

|k|2 . (3.3)

In the first term of the right-hand side, we do the usual splitting

∣∣∣∣∣
f̂1(k−)f̂1(k+)− f̂2(k−)f̂2(k+)

|k|2

∣∣∣∣∣

� |f̂1(k+)| |f̂1(k−)− f̂2(k−)|
|k−|2

|k−|2
|k|2 +|f̂2(k−)| |f̂1(k+)− f̂2(k+)|

|k+|2
|k+|2
|k|2

� sup
k∈R3

{
|f̂1(k)− f̂2(k)|

|k|2
(

|k−|2 +|k+|2
|k|2

)}

.

It is easy to check that

|k−|2 =|k|2
(

1+ e

4

)2

2
(

1− cosϑ
)

|k+|2 =|k|2
[(

3− e

4

)2

+
(

1+ e

4

)2

+2
(

3− e

4

)(
1+ e

4

)
cosϑ

]

,

(3.4)

where ϑ is the angle between the unit vectors k/|k| and n. Therefore

1
4π

∣∣∣∣∣

∫

S2

f̂1(k−)f̂1(k+)− f̂2(k−)f̂2(k+)

|k|2 dn

∣∣∣∣∣
�γ0 sup

k∈R3

|f̂1(k)− f̂2(k)|
|k|2 ,
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where γ0, for each restitution coefficient e 
=1, denotes the constant

γ0 = 1
2

∫ π

0

{(
1+ e

4

)2

2
(

1− cosϑ
)

+
(

3− e

4

)2

+
(

1+ e

4

)2

+2
(

3− e

4

)(
1+ e

4

)
cosϑ

}

sin ϑ dϑ

= 1
2

∫ π

0

{
e2 +3

4
+ (1+ e)(1− e)

4
cosϑ

}

sin ϑ dϑ = e2 +3
4

<1. (3.5)

Let us set

h(t, k)= f̂1(k)− f̂2(k)

|k|2 .

Since f̂1(0)= f̂2(0)=1, equation (3.3) becomes

∣∣∣∣∂th(t, k)+
(

B
√

θ(t)+F θp(t) |k|2
)

h(t, k)

∣∣∣∣�γ0B
√

θ(t)‖h(t, ·)‖∞. (3.6)

This is equivalent to

∣∣∣∣∂t

[
h(t, k) exp

(
B

∫ t

0

√
θ(s) ds +F |k|2

∫ t

0
θp(s) ds

)]∣∣∣∣

�γ0B
√

θ(t)‖h(t, ·)‖∞ exp
(

B

∫ t

0

√
θ(s) ds +F |k|2

∫ t

0
θp(s) ds

)
.

Integrating from 0 to t we get

∣∣∣∣h(t, k) exp
(

B

∫ t

0

√
θ(s) ds +F |k|2

∫ t

0
θp(s) ds

)∣∣∣∣� |h(0, k)|

+γ0B

∫ t

0

√
θ(τ )‖h(τ, ·)‖∞ exp

(
B

∫ τ

0

√
θ(s) ds +F |k|2

∫ τ

0
θp(s) ds

)
dτ,

namely

exp
(

B

∫ t

0

√
θ(s) ds

)
|h(t, k)|

� |h(0, k)|+γ0B

∫ t

0

√
θ(τ )‖h(τ, ·)‖∞ exp

(
B

∫ τ

0

√
θ(s) ds

)
dτ.
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Since the above inequality holds for all values of the variable k,

exp
(

B

∫ t

0

√
θ(s) ds

)
‖h(t, ·)‖∞ �‖h(0, ·)‖∞

+γ0B

∫ t

0

√
θ(τ )‖h(τ, ·)‖∞ exp

(
B

∫ τ

0

√
θ(s) ds

)
dτ.

Hence, if we put w(t)= exp
(

B

∫ t

0

√
θ(s) ds

)
‖h(t, ·)‖∞

w(t)�w(0)+γ0B

∫ t

0

√
θ(τ )w(τ) dτ.

By the generalized Gronwall inequality, this implies

w(t)�w(0) exp
(

γ0B

∫ t

0

√
θ(τ ) dτ

)
,

namely

‖h(t, ·)‖∞ �‖h(0, ·)‖∞ exp
(

−(1−γ0)B

∫ t

0

√
θ(τ ) dτ

)
. (3.7)

Now, let us remark that the evolution Eq.(2.1) implies θ(t)� θ̃ , where

θ̃ =min
{
θ0, θ∞

}

and thus (3.1) is proved. In the particular case p = 1 one can use the
explicit expression of the integral in (2.5) to obtain (3.2).

An important consequence of the uniform contraction of the d2 dis-
tance through the flow of the Fourier version of the inelastic BE with ther-
mal bath, is that we conclude both with the existence and uniqueness of
the steady state (cf. refs. 5 and 14).

Let us denote by Xθ the subset of P2(R
3) given by all probability

densities with zero mean velocity and temperature θ ∈R
+. Let us consider

H∞(R3)=
∞⋂

m=0

Hm(R3).
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Theorem 3.2. [Existence, uniqueness and regularity of the steady
state] Equation (1.1) has a unique steady state f∞ in the set of probabil-
ity measures with zero mean velocity. Moreover, all the moments of f∞
are finite and f∞ is regular, i.e. f∞ ∈H∞(R3).

Proof. We split the proof into several steps.

Step 1: Existence and uniqueness of steady state. Thanks to (ref. 21,
Theorem 1) the set Xθ∞ of P2(R

3) is closed with the distance d2. There-
fore, (Xθ∞ , d2) is a Banach metric space. Let us consider the flow map of
(1.4),

Tt : (Xθ∞ , d2)−→ (Xθ∞ , d2),

for any time t >0, given by Tt (f0)=f (t) with f (t) the unique solution at
time t of (1.4) with initial datum f0 ∈Xθ∞ .

Proposition (3.1) proves that Tt is a uniform contraction from the
Banach space (Xθ∞ , d2) into itself with contraction constant e−(1−γ0)Ct <1.
Therefore, Banach fixed point theorem ensures the existence and unique-
ness of a unique steady state in (Xθ∞ , d2) and thus the first assertion of
the theorem.

Step 2: Boundedness of all moments. Thanks to Lemma 2.3, we know
that the m-th isotropic moment remains uniformly bounded if the same
moment is bounded initially. We can repeat the same argument of Proposi-
tion 3.1, by computing now the evolution of the distance with index 2+ m

between any two solutions. One proves the following assertion: given any
natural m � 1, let f̂1(0) and f̂2(0) be two initial data to (1.4) with equal
moments up to order m + 1 and finite moments of order m + 2, then
d2+m(f̂1(0), f̂2(0))<∞ and there exists a constant C >0 such that

d2+m(f̂1(t), f̂2(t))�d2+m(f̂1(0), f̂2(0)) e−(1−γm)Ct , (3.8)

for any t �0, with

γm = 1
2

∫ π

0






[(
1+ e

4

)2

2
(

1− cosϑ
)]

2+m
2

+
[(

3− e

4

)2

+
(

1+ e

4

)2

+2
(

3− e

4

)(
1+ e

4

)
cosϑ

] 2+m
2





sin ϑ dϑ.

(3.9)
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Let us remark that the constant C is the same for all m and that γm <

γ0 <1 by definition. Let us also point out that (3.8) implies that moments
of the solutions remain equal up to order m + 1, m � 1, since initially
they are equal, and thus, the distance d2+m(f̂1(t), f̂2(t)) < ∞, for all
t �0.

Now, we proceed by induction. We already know that the steady state
has temperature θ∞. Let us assume that f∞ has moments bounded up to
order m + 1. Take the set Xm

θ∞ defined as the subset of P2+m(R3) with
equal moments to those of f∞ up to order m + 1. This set is a com-
plete metric space endowed with the distance d2+m being a closed subset
of P2+m(R3). Proceeding as in the first step, the flow map Tt is a uni-
form contraction from (Xm

θ∞ , d2+m) into itself with contraction constant
less than 1. Therefore, Tt has a unique steady state g ∈Xm

θ∞ and thus, by
uniqueness of steady state in Xθ∞ we conclude f∞ = g ∈ (Xm

θ∞ , d2+m) and
thus, f∞ has finite moments of order m+2.

Step 3: Regularity. In Fourier variables, the steady state f∞ satisfies
the equation

B
√

θ∞
1

4π

∫

S2

{
f̂∞(k−)f̂∞(k+)−f̂∞(0)f̂∞(k)

}
dn−F θ

p
∞ |k|2f̂∞(k)=0,

(3.10)

that, by virtue of (2.3), simplifies to

∫

S2
f̂∞(k−)f̂∞(k+)dn=4π

(

1+ 1− e2

8
θ∞|k|2

)

f̂∞(k). (3.11)

Multiplying (3.11) by the conjugate of f̂∞ (denoted by f̂ c∞) and integrat-
ing over a ball BR of radius R >0 centered at zero, we get

∫

BR

∫

S2
f̂∞(k−)f̂∞(k+)f̂ c

∞(k) dndk

=4π

∫

BR

(

1+ 1− e2

8
θ∞|k|2

)

|f̂∞(k)|2 dk.
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Hence, the left-hand side is real, positive and finite for any R >0. On the
other hand, we may directly estimate this left-hand side.

∫

BR

∫

S2
f̂∞(k−)f̂∞(k+)f̂ c

∞(k) dndk

�
∫

BR

∫

S2
|f̂∞(k−)||f̂∞(k+)||f̂ c

∞(k)|dndk

�
∫

BR

∫

S2
|f̂∞(k+)||f̂ c

∞(k)|dndk

�
[∫

BR

∫

S2
|f̂∞(k+)|2 dndk

] 1
2
[

4π

∫

BR

|f̂∞(k)|2 dk

] 1
2

.

Now, we can change variables from k to k+. The equality

∫

BR

∫

S2
|f̂∞(k+)|2 dndk �

∫

BR

∫

S2
|f̂∞(k+)|2 dk

dk+
dndk+,

thanks to the formula

dk+
dk

=
(

3− e

4

)2(3− e

4
+ 1+ e

4
k ·n
|k|
)

�
(

3− e

4

)2(1− e

2

)
,

implies

∫

BR

∫

S2
|f̂∞(k+)|2 dndk � 32

(3− e)2(1− e)
4π

∫

BR

|f̂∞(k)|2 dk.

Collecting previous estimates, we finally obtain

∫

BR

(

1+1− e2

8
θ∞|k|2

)

|f̂∞(k)|2 dk�
(

32
(3− e)2(1− e)

)1
2
∫

BR

|f̂∞(k)|2 dk,

(3.12)

for any R >0, that we may write as

∫

BR

|f̂∞(k)|2 dk �
∫

BR

(A1 −A2|k|2) |f̂∞(k)|2 dk,
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with

A1 =
(

32
(3− e)2(1− e)

) 1
2

and A2 = 1− e2

8
θ∞.

Since the function (A1 − A2|k|2) |f̂∞(k)|2 is non-negative only in the ball
of radius Ro = (A1/A2)

1/2, we have
∫

BR

|f̂∞(k)|2 dk �
∫

BRo

(A1 −A2|k|2) |f̂∞(k)|2 dk �A1

∫

BRo

|f̂∞(k)|2 dk .

Letting R →∞ proves that f∞ ∈L2(R3).
Let us consider (3.12) again. It implies

1− e2

8
θ∞
∫

BR

|k|2|f̂∞(k)|2 dk �
(

32
(3− e)2(1− e)

) 1
2
∫

BR

|f̂∞(k)|2 dk,

for any R >0, and thus f∞ ∈H 1(R3).
Higher order regularity follows by a recursive argument. Assuming

f∞ ∈Hm−1(R3), m� 2, let us prove that f∞ ∈Hm(R3). To this aim, mul-
tiply (3.11) by |k|2(m−1)f̂ c∞ and integrate on BR. One gets

4π
1− e2

8
θ∞
∫

BR

|k|2m |f̂∞(k)|2 dk

�
∫

BR

∫

S2
|k|2(m−1)

∣∣∣f̂∞(k−)f̂∞(k+)f̂ c
∞(k)

∣∣∣ dndk.

Proceeding as before and taking into account that |k+|� 1−e
2 |k|, one shows

that there exists a constant C(m, e) such that
∫

BR

∫

S2
|k|2(m−1)

∣∣∣f̂∞(k−)f̂∞(k+)f̂ c
∞(k)

∣∣∣ dndk

�C(m, e)

∫

BR

|k|2(m−1)|f̂∞(k)|2 dk, (3.13)

for any R > 0. By induction, the right-hand side is uniformly bounded
in R > 0. Collecting previous estimates, one proves as before that there
exists a constant C(m, e, θ∞) such that

∫

BR

|k|2m |f̂∞(k)|2 dk �C(m, e, θ∞)

∫

BR

|k|2(m−1)|f̂∞(k)|2 dk,

for any R >0, proving the assertion.
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4. EXPONENTIAL DECAY OF THE d2 DISTANCE. GENERAL CASE

In the previous section, we proved exponential decay of the d2 dis-
tance of any two solutions corresponding to initial data with the same
temperature. Since the temperature θ∞ of the steady state is a con-
stant which does not depend on the temperature of the initial datum,
this result only shows that there is exponential decay towards the steady
state for initial values that have the same temperature of the steady
state. Thus, Proposition 3.1 does not answer to the natural question of
the decay towards the steady state of any solution, whatever the ini-
tial temperature could be. Here, we show that this question can be
answered positively. Indeed, the result of Proposition 3.1 can be extended
to estimate explicitly the rate of convergence towards the unique equi-
librium f∞ in terms of d2 for general initial data without the restric-
tion on the second moment. First, we reckon the time decay of the
ratio θ(t)/θ∞.

Lemma 4.1. [Equilibration of temperature] Let z(t) denote the ratio
θ(t)/θ∞.Then, for any constant γ >0 it holds

zγ (t)−1�c(γ ) exp
{
−
(

3
2

−p

)
2F θ

p−1
∞ t

}
, (4.1)

if z0 >1, while

1− zγ (t)�c(γ ) exp
{
−
(

3
2

−p

)
2F θ

p−1
∞ z

1
2
0 t

}
, (4.2)

if z0 <1. The constant c=c(γ ) is given by

c(γ )= 2 γ

3−2p
max

{
1 , z

γ+p− 3
2

0

} ∣∣∣∣z
3
2 −p

0 −1

∣∣∣∣ . (4.3)

Proof. From equation (2.1) it follows

d

dt

(
θ

θ∞

)
=− 1− e2

4
B θ

1
2∞
(

θ

θ∞

) 3
2 +2F θ

p−1
∞

(
θ

θ∞

)p

=2F θ
p−1
∞

[

−
(

θ

θ∞

) 3
2 +
(

θ

θ∞

)p
]

.
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Hence z(t) satisfies the equation

dz

dt
=−2F θ

p−1
∞ zp

[
z

3
2 −p −1

]
, (4.4)

from which we obtain easily

d

dt

[
z

3
2 −p −1

]
=−

(
3
2

−p

)
2F θ

p−1
∞ z

1
2

[
z

3
2 −p −1

]
. (4.5)

Case z0 >1.

Since 3
2 −p > 0, Eq. (4.4) shows that if z0 > 1, z(t) is non-increasing and

moreover z(t) � 1 for all times. Consequently (4.5) implies the inequal-
ity

d

dt

[
z

3
2 −p −1

]
�−

(
3
2

−p

)
2F θ

p−1
∞

[
z

3
2 −p −1

]
,

which after integration gives

z
3
2 −p −1�

(
z

3
2 −p

0 −1
)

exp
{
−
(

3
2

−p

)
2F θ

p−1
∞ t

}
.

Hence

z(t)�
{

1+
(

z
3
2 −p

0 −1
)

exp
{
−
(

3
2

−p

)
2F θ

p−1
∞ t

}} 2γ
3−2p −1, (4.6)

and, for any power γ >0

zγ (t)−1�
{

1+
(

z
3
2 −p

0 −1
)

exp
{
−
(

3
2

−p

)
2F θ

p−1
∞ t

}} 2 γ
3−2p

.

The right hand side of this last inequality is a function of the form

y(x)= (1+ax)q −1,

where

q = 2 γ

3−2p
, a = z

3
2 −p

0 −1, x = exp
{
−
(

3
2

−p

)
2F θ

p−1
∞ t

}
. (4.7)
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By Taylor formula y(x) = q(1 + ax̄)q−1ax; since in our case 0 � x̄ � 1 it
holds

(1+ax̄)q−1 �1 if q −1<0

(1+ax̄)q−1 � (1+a)q−1 if q −1>0 .

Thus

y(x)�q max
{

1 , (1+a)q−1
}
a x. (4.8)

By inserting expressions (4.7) into (4.8), we find inequality (4.1) which
shows the exponential decay of zγ (t)−1 for all values of γ >0.

Case z0 <1.
The proof is very similar to the previous one. If z0 < 1, Eq. (4.4) implies
that z(t) is non-decreasing, so that z(t)� z0 for all times. Thus, Eq. (4.5)
implies

d

dt

[
1− z

3
2 −p
]
�−

(
3
2

−p

)
2F θ

p−1
∞ z

1
2
0

[
1− z

3
2 −p
]
,

from which it follows

1− z
3
2 −p �

(
1− z

3
2 −p

0

)
exp

{
−
(

3
2

−p

)
2F θ

p−1
∞ z

1
2
0 t

}
.

Hence

z(t)�
{

1−
(

1− z
3
2 −p

0

)
exp

{
−
(

3
2

−p

)
2F θ

p−1
∞ z

1
2
0 t

}} 2
3−2p

, (4.9)

from which it follows

1− zγ (t)�1−
{

1−
(

1− z
3
2 −p

0

)
exp

{
−
(

3
2

−p

)
2F θ

p−1
∞ z

1
2
0 t

}} 2 γ
3−2p

.

The function on the right hand side is of the form

y(x)=1− (1−ax)q,
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with

q = 2 γ

3−2p
, a =1− z

3
2 −p

0 , x = exp
{
−
(

3
2

−p

)
2F θ

p−1
∞ z

1
2
0 t

}
.

(4.10)

Taylor formula gives y(x)=q(1−ax̄)q−1ax. Since 0� x̄ �1,

(1−ax̄)q−1 � (1−a)q−1 if q −1<0 ,

(1−ax̄)q−1 �1 if q −1>0 .

Finally

y(x)�q max
{

1 , (1−a)q−1
}
a x , (4.11)

and by inserting expressions (4.10) into (4.11) we find inequality (4.2). We
remark that in this second case the decay is slower, and it depends on
z0 <1.

Theorem 4.2. [Exponential decay of the d2 distance] Any solu-
tion f (t, v) of (1.1) corresponding to an initial density with unit mass,
zero mean velocity and finite initial temperature, converges exponentially
towards the steady state f∞(v) in d2 distance. More precisely, there exist
constants C1,C2,C3 >0 such that

d2(f̂ (t), f̂∞)�d2(f̂0, f̂∞) e−(1−γ0)C1t +C2e−C3t, (4.12)

for all t �0, with γ0 = (e2 +3)/4<1.

Proof. We proceed exactly as in the proof of Proposition 3.1.
Therefore we will only sketch the proof, and put the emphasis on
the differences. In agreement with the notations introduced in Lemma 4.1,
the variable θ(t) will be replaced by θ∞ z(t). Since the temperatures of
the two solutions are different, with respect to the computations of Prop-
osition 3.1, we have an additional term that we may write using the
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Eq. (3.10) satisfied by f∞. We have

∂

∂t

f̂ (k)− f̂∞(k)

|k|2 = B

4π
θ

1
2∞ z

1
2 (t)

∫

S2

[
f̂ (k−)f̂ (k+)− f̂∞(k−)f̂∞(k+)

|k|2

− f̂ (0)f̂ (k)− f̂∞(0)f̂∞(k)

|k|2
]

dn

−F θ
p
∞ zp(t) |k|2 f̂ (k)− f̂∞(k)

|k|2
+F θ

p
∞
(
z

1
2 (t)− zp(t)

)
f̂∞(k). (4.13)

Equation (3.6) becomes in our case

∣∣∣∣∂th(t, k)+
(

B θ
1
2∞ z

1
2 (t)+F θ

p
∞ zp(t) |k|2

)
h(t, k)

∣∣∣∣

�γ0B θ
1
2∞ z

1
2 (t)‖h(t, ·)‖∞ +ϕ(t), (4.14)

where

h(t, k)= f̂ (k)− f̂∞(k)

|k|2 ,

and

ϕ(t)=F θ
p
∞
∣∣∣z

1
2 (t)− zp(t)

∣∣∣ . (4.15)

Proceeding as in Proposition 3.1, we obtain

exp
(

B θ
1
2∞
∫ t

0
z

1
2 (s) ds

)
‖h(t, ·)‖∞ �‖h(0, ·)‖∞ +
(t)

+γ0 B θ
1
2∞
∫ t

0
z

1
2 (τ )‖h(τ, ·)‖∞ exp

(
B θ

1
2∞
∫ τ

0
z

1
2 (s) ds

)
dτ,

where


(t)=
∫ t

0
ϕ(τ) exp

(
B θ

1
2∞
∫ τ

0
z

1
2 (s) ds

)
dτ.
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By the generalized Gronwall lemma (21), denoting by w(t) the same quan-
tity as in Proposition 3.1, we finally conclude that

w(t) �w(0) exp
(

γ0 B θ
1
2∞
∫ t

0
z

1
2 (τ ) dτ

)

+
∫ t

0
exp

(
γ0 B θ

1
2∞
∫ t

τ

z
1
2 (s) ds

)
ϕ(τ) exp

(
B θ

1
2∞
∫ τ

0
z

1
2 (s) ds

)
dτ.

(4.16)

Hence

‖h(t, ·)‖∞ �‖h(0, ·)‖∞ exp
(

−(1−γ0)B θ
1
2∞
∫ t

0
z

1
2 (s) ds

)
+�(t), (4.17)

where

�(t) = exp
(

−(1−γ0)B θ
1
2∞
∫ t

0
z

1
2 (s) ds

)∫ t

0
ϕ(τ)

× exp
(

(1−γ0)B θ
1
2∞
∫ τ

0
z

1
2 (s) ds

)
dτ. (4.18)

To finish the proof, it suffices to show that �(t) vanishes for
t →∞. First of all, notice that definition (4.15) implies that if p = 1

2
the function ϕ(τ) vanishes (thus no further proof is needed), while for
p 
= 1

2

ϕ(τ)�F θ
p
∞
(∣∣∣z

1
2 (τ )−1

∣∣∣+
∣∣∣zp(τ )−1

∣∣∣
)

.

Therefore ϕ(τ) can be estimated using inequalities (4.1)–(4.2).

Case z0 >1.
The function �(t) can be bounded in the following way:

�(t) = exp
(

−(1−γ0)B θ
1
2∞
∫ t

0

[
z

1
2 (s)−1

]
ds − (1−γ0)B θ

1
2∞ t

)

×
∫ t

0
ϕ(τ) exp

(
(1−γ0)B θ

1
2∞
∫ τ

0

[
z

1
2 (s)−1

]
ds + (1−γ0)B θ

1
2∞ τ

)
dτ

� exp
(

−(1−γ0)B θ
1
2∞ t

)∫ t

0
ϕ(τ) exp

(
(1−γ0)B θ

1
2∞ τ

)
dτ.
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We used the bounds z
1
2 (s)−1>0 and τ <t . Now, taking into account for-

mula (4.1),

�(t) � C exp
(

−(1−γ0)B θ
1
2∞ t

)

×
∫ t

0
exp

{[
−
(

3
2

−p

)
2Fθ

p−1
∞ + (1−γ0)B θ

1
2∞
]

τ

}
dτ

= C
exp

(
−
(

3
2 −p

)
2Fθ

p−1
∞ t

)
− exp

(
−(1−γ0)B θ

1
2∞ t

)

−
(

3
2 −p

)
2Fθ

p−1
∞ + (1−γ0)B θ

1
2∞

,

where

C =F θ
p
∞
[
c
(

1
2

)
+c(p)

]

= F θ
p
∞

3−2p

{
max

{
1 , z

p−1
0

}
+2 p max

{
1 , z

2p− 3
2

0

}} ∣∣∣∣z
3
2 −p

0 −1

∣∣∣∣ .

Hence �(t) decays exponentially and the exponential decay of d2 is
proved. Depending on the sign of

−
(

3
2

−p

)
2Fθ

p−1
∞ + (1−γ0)B θ

1
2∞

(which vanishes for p = 1
2 ), we conclude that

C3 =





(
3
2 −p

)
2Fθ

p−1
∞ , if p > 1

2

(1−γ0)B θ
1
2∞, if p < 1

2

Case z0 < 1. The proof is a bit more complicated than the previous
one, because now z

1
2 (s) − 1 < 0. To estimate �(t), using (4.2) we recover

the bound

exp
(

(1−γ0)B θ
1
2∞
∫ t

0

[
1− z

1
2 (s)

]
ds

)

� exp
{
(1−γ0)

1
(3−2 p)2

B

F
z
− 1

2
0 θ

3
2 −p
∞ max

{
1 , z

p−1
0

}(
1− z

3
2 −p

0

)}
=:K .
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Precisely we have

�(t) = exp
(

(1−γ0)Bθ
1
2∞
∫ t

0

[
1−z

1
2 (s)

]
ds−(1−γ0)Bθ

1
2∞ t

)

×
∫ t

0
ϕ(τ)exp

(
−(1−γ0)Bθ

1
2∞
∫ τ

0

[
1−z

1
2 (s)

]
ds+(1−γ0)Bθ

1
2∞τ

)
dτ

� K exp
(

−(1−γ0)Bθ
1
2∞ t

)∫ t

0
ϕ(τ)exp

(
(1−γ0)Bθ

1
2∞τ

)
dτ.

Applying again formula (4.2) to the function ϕ(τ), it follows

�(t) �CK exp
(

−(1−γ0)B θ
1
2∞ t

)

×
∫ t

0
exp

{[
−
(

3
2

−p

)
2Fθ

p−1
∞ z

1
2
0 + (1−γ0)B θ

1
2∞
]

τ

}
dτ

=C K
exp

(
−
(

3
2 −p

)
2Fθ

p−1
∞ z

1
2
0 t

)
− exp

(
−(1−γ0)B θ

1
2∞ t

)

−
(

3
2 −p

)
2Fθ

p−1
∞ z

1
2
0 + (1−γ0)B θ

1
2∞

,

where C is the same constant obtained in the previous case. Also in this
case �(t) decreases at an exponential rate. Let us remark again that the
previous decay holds if

−
(

3
2

−p

)
2Fθ

p−1
∞ z

1
2
0 + (1−γ0)B θ

1
2∞

does not vanish. Depending on the sign of this factor then one obtains the
value of C3 similarly to the case z0 >1.

Remark 4.3. Theorems 3.2–4.2 can be stated also for the inelastic
one-dimensional Kac model introduced in ref. 19:

∂f̂

∂t
=

√
θ(t)

2π

∫ 2π

0

[
f̂ (k−

p )f̂ (k+
p )− f̂ (k)f̂ (0)

]
dϑ −F θp(t) |k|2f̂ ,

where

k−
p =k sin ϑ | sin ϑ |p k+

p =k cosϑ | cosϑ |p.
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Remark 4.4. The theorems proved in this section imply the con-
vergence of other probability metrics that turn out to be equivalent
to ds , that is metrics which define the same weak�-uniformity on the
class of probability distributions having bounded the moment of
order s(15,21).

5. PROPAGATION OF SMOOTHNESS FOR THE

BOLTZMANN EQUATION

The goal of this section is to show that the smoothness of the initial
data of the Boltzmann equation is propagated so that we have bounds on
the smoothness uniform in time. Using the same computations of step 3
of Theorem 3.2, we obtain the inequality

d

dt

∫

R3
|k|2m|f̂ (k)|2dk � 2B

√
θ(t)

[
1

4π

∫

S2

∫

R3
|k|2m

∣∣∣f̂ (k−)f̂ (k+)f̂ c(k)

∣∣∣dndk

−
∫

R3
|k|2m|f̂ (k)|2dk

]

−2Fθ(t)p
∫

R3
|k|2m+2|f̂ (k)|2dk. (5.1)

Let us remark that, thanks to the bound (3.13)

∫

R3

1
4π

∫

S2
|k|2m

∣∣∣f̂ (k−)f̂ (k+)f̂ c(k)

∣∣∣ dndk �C(m, e)

∫

R3
|k|2m|f̂ (k)|2 dk,

where C(m, e) > 1 is a constant which depends only on m and on the
coefficient of restitution e, and can be explicitly computable. Hence, if
Zm(t)=‖f (t)‖2

Hm , Zm(t) satisfies the inequality

dZm(t)

dt
�2B

√
θ(t) [C(m, e)−1]Zm(t)−2Fθ(t)pZm+1(t). (5.2)

The desired result follows from (5.2) by virtue of the following
Nash-type inequality.

Lemma 5.1. Let f ∈ Hm+1(R3) be a probability density function.
Then, f ∈Hm(R3) and the following bound holds

‖f ‖Hm+1(R3) ≥ cm

(‖f ‖Hm(R3)

)(2m+5)/(2m+3)
, (5.3)
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where

cm =
(

1
2π

)1/(2m+3)(2m+3
2m+5

)(2m+5)/(2m+3)−2

.

Proof. For any constant R >0, we obtain the bound

∫

R3
|k|2m|f̂ (k)|2 dk �

∫

|k|�R

|k|2m|f̂ (k)|2 dk + 1
R2

∫

|k|>R

|k|2m+2|f̂ (k)|2 dk.

Since f is a probability density, |f̂ (k)|�1. Hence

∫

|k|�R

|k|2m|f̂ (k)|2 dk �
∫

|k|�R

|k|2m dk =4π
R2m+3

2m+3
.

By hypothesis, f belongs to Hm+1(R3). This implies the inequality

‖f ‖Hm(R3) �4π
R2m+3

2m+3
+ 1

R2
‖f ‖Hm+1(R3). (5.4)

Optimizing in R now yields the result.

We use inequality (5.3) into (5.2) to obtain

dZm(t)

dt
�2B

√
θ(t) [C(m, e)−1]Zm(t)−2Fθ(t)pc2

m (Zm(t))(2m+5)/(2m+3) .

(5.5)

Inequality (5.5) can be written as

dZm(t)

dt
�2B

√
θ(t) [C(m, e)−1]Zm(t)

{

1− Fθ(t)p−1/2c2
m

B[C(m, e)−1]
(Zm(t))2/(2m+3)

}

,

that gives the bound

Zm(t)�max

{

Zm(0);
[
B[C(m, e)−1]
Fθ(t)p−1/2c2

m

](2m+3)/2
}

. (5.6)

Considering that the temperature θ(t) is bounded uniformly in time both
from below and above, we conclude that Zm(t) is uniformly bounded in
time.
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Theorem 5.2. [Propagation of smoothness] Let f0 be any initial
datum for Eq. (1.1) with ‖f0‖Hm(R3) finite. Then, any probability density
solution f (t, v) of (1.1) is bounded in Hm(R3), and there is a universal
constant Cm so that, for all t >0,

‖f (t)‖Hm(R3) �max
{‖f0‖Hm(R3),Cm

}
.

6. STRONG CONVERGENCE TO EQUILIBRIUM

This section is very short. To prove Theorem 1.3, we only need to
collect results and to explain how to compute the constants involved in
it. The key point are some interpolation inequalities, recently considered
in ref. 9 to obtain a result similar to Theorem 1.3 but for the elastic
Boltzmann equation for Maxwell molecules. The first of these inequalities
reads

Lemma 6.1. [Control of the Hm-distance (ref. 9, Theorem 4.1)] Let
m≥0, and β1, β2 >0, 0<β2 <1 be given. Then

‖f −g‖2
HN(Rn)

�C(β1, β2)d2(f, g)2(1−β2)
(
‖f ‖2β2

Hr(RN)
+‖g‖2β2

Hr(RN)

)
,

with

r = 2m+ (8+β1 +N)(1−β2)

2β2
,

C(β1, β2)=
(
|BN |(1+N/β1)

)1−β2
,

and where |BN | denotes the volume of the unit ball in R
N .

This result shows that the weak d2 distance coupled with ‖ · ‖Hr

smoothness, controls the Hm distance for r sufficiently larger than m. The
next inequality shows that control of sufficiently many moments and con-
trol of the L2 norm together, control the L1 norm.

Lemma 6.2. [Control of the L1-distance (ref. 9, Theorem 4.2)] Let
f be an integrable function on R

N . Then, for all r >0

∫

RN

|f (v)|dv �C(N, r)

(∫

RN

|f (v)|2 dv

)2r/(N+4r)

×
(∫

RN

|v|2r |f (v)|dv

)N/(N+4r)
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with

C(N, r)=
[(

N

4r

)4r/(N+4r)

+
(

4r

N

)N/(N+4r)
]

|BN |2r/(N+4r).

Proof of Theorem 1.3. Since we have established Lemma 2.3 in Section 2,
Theorem 5.2 in Section 5, Theorem 1.3 follows from the interpolation
inequalities, Lemmas 6.1 and 6.2 above.
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