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We elucidate the close connection between the repulsive lattice gas in equilibrium
statistical mechanics and the Lovász local lemma in probabilistic combinatorics.
We show that the conclusion of the Lovász local lemma holds for dependency
graph G and probabilities {px} if and only if the independent-set polynomial
for G is nonvanishing in the polydisc of radii {px}. Furthermore, we show that
the usual proof of the Lovász local lemma – which provides a sufficient con-
dition for this to occur – corresponds to a simple inductive argument for the
nonvanishing of the independent-set polynomial in a polydisc, which was discov-
ered implicitly by Shearer(98) and explicitly by Dobrushin.(37,38) We also present
some refinements and extensions of both arguments, including a generalization
of the Lovász local lemma that allows for “soft” dependencies. In addition, we
prove some general properties of the partition function of a repulsive lattice gas,
most of which are consequences of the alternating-sign property for the Mayer
coefficients. We conclude with a brief discussion of the repulsive lattice gas on
countably infinite graphs.
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1. INTRODUCTION

The lattice gas with repulsive pair interactions is an important model in
equilibrium statistical mechanics.(6,7,12,26,36,43,46,50,55,57,59–61,70,71,95,102,110)

In the special case of a hard-core self-repulsion and hard-core nearest-
neighbor exclusion (i.e. no site can be multiply occupied and no pair of
adjacent sites can be simultaneously occupied), the partition function of
the lattice gas coincides with the independent-set polynomial in combina-
torics (also known as the independence polynomial or the stable-set poly-
nomial).(4,27,28,35,41,42,51–53,56,63,64,77) Moreover, the hard-core lattice gas
is the universal statistical–mechanical model in the sense that any statis-
tical–mechanical model living on a vertex set V0 can be mapped onto
a gas of nonoverlapping “polymers” on V0, i.e. a hard-core lattice gas
on the intersection graph of V0 (ref. 100, Section 5.7). This construc-
tion, which is termed the “polymer expansion” or “cluster expansion”, is
an important tool in mathematical statistical mechanics,(24,29,31,47,97) and
much effort has been devoted to finding complex polydiscs in which the
polymer expansion is convergent, i.e. in which the (polymer-)lattice-gas
partition function is nonvanishing.(25,29–33,37,38,72,82,88–90,97,100–102,104) One
goal of this paper is to make a modest contribution to this line of devel-
opment.

The Lovász local lemma(39,40,105,106) is an important tool in probabi-
listic existence proofs in combinatorics. It provides a lower bound on the
probability that none of a collection of “bad” events occurs, when those
events are subject to a set of “local” dependencies, controlled by a “depen-
dency graph”. The Lovász local lemma (and its algorithmic versions(3,8))
has found a significant variety of applications, especially in graph coloring,
Ramsey theory, and related algorithmic problems.(2,23,83)

In this paper we would like to elucidate the close relation between
these two apparently disparate subjects. Following a seminal (but appar-
ently little-known) paper of Shearer(98), we shall show that the conclusion
of the Lovász local lemma holds for dependency graph G and proba-
bilities {px} if and only if the independent-set polynomial for G is non-
vanishing in the polydisc of radii {px}. Moreover, we shall show that the
usual proof of the Lovász local lemma – which provides a sufficient con-
dition for this to occur – corresponds to a simple inductive argument for
the nonvanishing of the independent-set polynomial in a polydisc, which
was discovered implicitly by Shearer(98) and explicitly by Dobrushin(37,38).
Finally, we shall present some refinements and extensions of both argu-
ments.

We have tried hard to make this paper comprehensible to the union
(not the intersection!) of combinatorialists, probabilists, classical analysts
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and mathematical physicists. We apologize in advance to experts in each
of these fields for boring them every now and then with overly detailed
explanations of elementary facts.

1.1. The Repulsive Lattice Gas

In statistical mechanics, a “grand-canonical gas” is defined by a sin-
gle-particle state space X (here a nonempty finite set), a fugacity vec-
tor w= {wx}x∈X ∈C

X, and a two-particle Boltzmann factor W : X×X→
C with W(x, y)=W(y, x). The (grand) partition function ZW(w) is then
defined to be the sum over ways of placing n � 0 “particles” on “sites”
x1, . . . , xn ∈ X, with each configuration assigned a “Boltzmann weight”
given by the product of the corresponding factors wxi

and W(xi, xj ):

ZW(w) =
∞∑

n=0

1
n!

∑

x1,... ,xn∈X

(
n∏

i=1

wxi

)


∏

1� i<j �n

W(xi, xj )



 (1.1a)

=
∑

n

(
∏

x∈X

w
nx
x W(x, x)nx(nx−1)/2

nx !

)


∏

{x,y}⊆X

W(x, y)nxny



 ,

(1.1b)

where in (1.1b) the sum runs over all multi-indices n={nx}x∈X of nonneg-
ative integers, and the product runs over all two-element subsets {x, y}⊆
X (x �= y). In this paper we shall limit attention to the repulsive case in
which 0 � W(x, y) � 1 for all x, y. From this assumption it follows imme-
diately that ZW(w) is an entire analytic function of w satisfying |ZW(w)| �
exp(

∑
x∈X |wx |).

If W(x, x)= 0 for all x ∈X – in statistical mechanics this is called a
hard-core self-repulsion – then the only nonvanishing terms in (1.1b) have
nx =0 or 1 for all x (i.e. each site can be occupied by at most one parti-
cle), so that ZW(w) can be written as a sum over subsets:

ZW(w) =
∑

X′⊆X

(
∏

x∈X′
wx

)


∏

{x,y}⊆X′
W(x, y)



 . (1.2)

In this case ZW(w) is a multiaffine polynomial, i.e. of degree 1 in each
wx separately. Combinatorially, ZW(w) is the generating polynomial for
induced subgraphs of the complete graph, in which each vertex x gets
weight wx and each edge xy gets weight W(x, y).
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If, in addition to hard-core self-repulsion, we have W(x, y)= 0 or 1
for each pair x �=y – in statistical mechanics this is called a hard-core pair
interaction – then we can define a (simple loopless) graph G= (X,E) by
setting xy ∈E whenever W(x, y)=0 and x �=y, so that ZW(w) is precisely
the independent-set polynomial for G:

ZG(w) =
∑

X′ ⊆X
X′ independent

∏

x∈X′
wx . (1.3)

Traditionally the independent-set polynomial is defined as a univariate
polynomial ZG(w) in which wx is set equal to the same value w for all
vertices x.(4,27,28,41,42,51–53,56,63,64,77) But one of our main contentions in
this paper is that ZG is more naturally understood as a multivariate poly-
nomial; this allows us, in particular, to exploit the fact that ZG is mul-
tiaffine.3

More generally, given any W satisfying 0 � W(x, y) � 1 for all x, y,
let us define a simple loopless graph G=GW (the support graph of W )
by setting xy ∈ E(G) if and only if W(x, y) �= 1 and x �= y.4 The parti-
tion function ZW(w) can be thought of as a “soft” version of the inde-
pendent-set polynomial for G, in which an edge xy ∈E(G) has “strength”
1−W(x, y)∈ (0,1].

In summary, we shall consider in this paper three levels of generality:

(a) The general repulsive lattice gas (1.1), in which multiple occupa-
tion of a site may be permitted.

(b) The lattice gas with hard-core self-repulsion (1.2), in which multi-
ple occupation of a site is forbidden, but in which the interactions between
adjacent sites may be “soft”.

3More generally, let G= (X,E) be a graph, and suppose that for x �= y we have W(x, y)= 0
or 1 according as xy ∈E or xy /∈E; but let 0 � W(x, x) � 1 be arbitrary. Then we have the
amusing identity ZW (w)=ZG(w̃) where

w̃x =
∞∑

n=1

W(x, x)n(n−1)/2

n!
wn

x .

4Strictly speaking, GW ought to be called the (simple) support graph of 1−W , since xy ∈
E(G) if and only if 1−W(x, y) �=0 and x �=y. In particular, in the case of a hard-core self-
repulsion and hard-core pair interaction, W is the adjacency matrix of the complementary
graph Ḡ. Please note also that GW does not contain any information about the diagonal
weights W(x, x).
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(c) The lattice gas with hard-core self-repulsion and hard-core pair
interaction (1.3), which is simply the independent-set polynomial for the
graph G.

Let us now return to the general case of a repulsive lattice gas (1.1).
Since ZW(w) is an entire function of w satisfying ZW(0)=1, its logarithm
is analytic in some neighborhood of w= 0, and so can be expanded in a
convergent Taylor series:

log ZW(w) =
∑

n

cn(W)wn , (1.4)

where we have used the notation wn=∏x∈X w
nx
x , and of course c0=0. In

statistical mechanics, (1.4) is called the Mayer expansion(112), and there is
a beautiful formula for the coefficients cn(W), whose derivation we will
review briefly (Proposition 2.1). As a corollary of this formula, we will
show (Proposition 2.8) that the Taylor series (1.4) has alternating signs
whenever the lattice gas is repulsive:

(−1)|n|−1cn(W) � 0 (1.5)

for 0 � W � 1. (Here |n|=∑x∈X nx .) Moreover, in this interval, |cn(W)|=
(−1)|n|−1cn(W) is a decreasing function of each W(x, y), i.e. an increasing
function of the “interaction strength” 1−W(x, y).

As a simple consequence of the alternating-sign property for log ZW ,
we will then prove (Theorem 2.10) the equivalence of a number of con-
ditions for the nonvanishing of ZW in a closed polydisc D̄R={w : |wx | �
Rx for all x}. These equivalent conditions will play a central role in our
study of the Lovász local lemma (Section 4).

Finally, we will provide (Section 5) some sufficient conditions for the
nonvanishing of ZW in a closed polydisc D̄R, based on “local” properties
of the interaction W (or of the graph G). Results of this type have tra-
ditionally been proven(29–33,88,97,100,104) by explicitly bounding the terms
in the Mayer expansion (1.4); this requires some rather nontrivial com-
binatorics (for example, Proposition 2.4 below together with the count-
ing of trees). Once this is done, an immediate consequence is that ZW is
nonvanishing in any polydisc where the series for log ZW is convergent.
Dobrushin’s brilliant idea(37,38) was to prove these two results in the oppo-
site order. First one proves, by an elementary induction on the cardinality
of the state space, that ZW is nonvanishing in a suitable polydisc (Theo-
rem 5.1); it then follows immediately that log ZW is analytic in that poly-
disc, and hence that its Taylor series (1.4) is convergent there. In Section 5
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we will prove some refinements of this result and investigate their sharp-
ness; and in Sections 6 and 7 we will provide some complementary results
that give additional insight into the nature of these bounds. Let us remark
that the Dobrushin–Shearer inductive method employed in Section 5 is
limited, at present, to models with hard-core self-repulsion (1.2), for which
ZW is a multiaffine polynomial. It is an interesting open question to know
whether this approach can be made to work without the assumption of
hard-core self-repulsion.

1.2. The Lovász Local Lemma

In combinatorics we are frequently faced with a finite family (Ax)x∈X
of “bad” events in some probability space, having probabilities px=P(Ax),
and we want to show that there is a positive probability that none of
the events Ax occurs. Under what conditions can we do this? In gen-
eral all we can say is that P(

⋂
x∈X Ax) � 1−∑x px , since in the worst

case the events Ax could be disjoint; so we would need
∑

x px < 1 to
ensure that P(

⋂
x∈X Ax) > 0. On the other hand, if the events (Ax)x∈X

are independent, then P(
⋂

x∈X Ax) =
∏

x(1 − px), which is positive as
soon as px < 1 for all x. This suggests that if the (Ax)x∈X are in some
sense “not too strongly dependent”, then it might be possible to prove
P(
⋂

x∈X Ax) > 0 under relatively mild conditions on the {px}. This is the
situation addressed by the Lovász local lemma: we allow strong depen-
dence among some subsets of the (Ax)x∈X, but insist that most of these
events are independent. Specifically, the local lemma applies to collections
of events in which the dependencies are controlled by a dependency graph,
so that each event is independent from the events that are not adjacent to
it.

More precisely, let G be a graph with vertex set X. We say that G

is a dependency graph for the family (Ax)x∈X if, for each x ∈X, the event
Ax is independent from the σ -algebra generated by the events {Ay : y∈X \
�∗(x)}. (Here we have used the notation �∗(x)=�(x)∪{x}, where �(x) is
the set of vertices of G adjacent to x.) Erdős and Lovász(39) proved the
following fundamental result:

Theorem 1.1 (Lovász local lemma). Let G be a dependency graph
for the family of events (Ax)x∈X, and suppose that (rx)x∈X are real num-
bers in [0,1) such that, for each x,

P(Ax) � rx
∏

y∈�(x)

(1− ry) . (1.6)

Then P(
⋂

x∈X Ax) �
∏

x∈X(1− rx)>0.
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Erdős and Spencer(40) (see also refs. 2 and 83) later noted that the
same conclusion holds even if Ax and σ(Ay : y ∈X \�∗(x)) are not inde-
pendent, provided that the “harmful” conditional probabilities are suitably
bounded. More precisely:

Theorem 1.2 (Lopsided Lovász local lemma). Let (Ax)x∈X be a fam-
ily of events on some probability space, and let G be a graph with vertex
set X. Suppose that (rx)x∈X are real numbers in [0,1) such that, for each
x and each Y ⊆X \�∗(x), we have

P



Ax

∣∣∣
⋂

y∈Y
Ay



 � rx
∏

y∈�(x)

(1− ry) . (1.7)

Then P(
⋂

x∈X Ax) �
∏

x∈X(1− rx)>0.

In fact, the arguments of refs. 39 and 40 (see also refs. 105 and 106)
show that in Theorems 1.1 and 1.2 a slightly stronger conclusion holds:
for all pairs Y , Z of subsets of X we have

P

(
⋂

x∈Y
Ax

∣∣∣
⋂

x∈Z
Ax

)
�

∏

x∈Y\Z
(1− rx) . (1.8)

In this paper we shall (following Shearer(98)) approach the problem by
dividing our discussion into two parts:

(1) A best-possible condition to have P(
⋂

x∈X Ax)>0, in terms of the
independent-set polynomial ZG(−p); and

(2) A sufficient condition to have ZG(−p) > 0, along the lines of
Lovász, Dobrushin and Shearer.

We shall treat the first problem in Section 4 and the second problem in
Sections 5–7. We shall also prove a generalization of the Lovász local
lemma that allows for “soft” dependencies (Theorems 4.2 and 5.4).

Let us remark that we have been able to relate the Lovász local
lemma to a combinatorial polynomial (namely, the independent-set poly-
nomial) only in the case of an undirected dependency graph G. Although
the local lemma can be formulated quite naturally for a dependency
digraph,(2,23,83) we do not know whether the digraph Lovász problem can
be related to any combinatorial polynomial. (Clearly the independent-set
polynomial cannot be the right object in the digraph context, since exclu-
sion of simultaneous occupation is manifestly a symmetric condition.)
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1.3. Plan of this Paper

The plan of this paper is as follows: In Section 2 we prove some
general properties of the partition function of a repulsive lattice gas. In
Section 3 we study the additional properties that arise in the case of a
hard-core self-repulsion (1.2), for which ZW is a multiaffine polynomial.
We also calculate some simple examples; in particular, we show that when
the support graph G=GW is a tree, the partition function ZW can eas-
ily be calculated by working upwards from the leaves. In Section 4 we
prove our lower bound on P(

⋂
x∈X Ax) > 0 in terms of the independent-

set polynomial ZG(−p). We also prove a “soft-core” generalization of this
result. In Section 5 we give some sufficient conditions for the nonvanish-
ing of ZW in a polydisc, and investigate their sharpness. In Section 6 we
show how the bounds of Section 5 can be interpreted in terms of a lat-
tice gas on either the “self-avoiding-walk tree” or the “pruned self-avoid-
ing-walk tree” of G. In Section 7 we show how this tree bound can be
understood as arising from the repeated application of a single “unfold-
ing” step. Finally, in Section 8 we study the repulsive lattice gas on an infi-
nite graph.

The reader primarily interested in the Lovász local lemma can read
the statement of Theorem 2.10 (skipping the proof) and Definition 2.14,
quickly read Section 3.1, and then jump directly to Section 4. The reader
primarily interested in the lattice gas can skip Section 4.

2. THE LATTICE-GAS PARTITION FUNCTION

In this section we prove some general properties of the partition
function of a repulsive lattice gas. We begin with some elementary iden-
tities (Section 2.1). In Section 2.2 we derive the Mayer expansion and
prove some of its properties, notably the alternating-sign property (Prop-
osition 2.8). In Section 2.3 we state and prove the “fundamental theo-
rem” (Theorem 2.10), which sets forth a number of equivalent conditions
defining the set that we shall call R(W) (Definition 2.14) and that plays
a central role in the remainder of this paper. In Section 2.4 we derive the
principal properties of the set R(W). In Section 2.5 we derive some fur-
ther consequences of the alternating-sign property. In Section 2.6 (which
is a digression from the main thread of the paper and can be omitted on
a first reading) we discuss the algebraic irreducibility of the multivariate
partition function ZW(w). Finally, in Section 2.7 we make a brief remark
concerning the convexity of log ZW(w) at nonnegative fugacity w.

Nearly all of the results in this section are valid for an arbitrary
repulsive lattice gas (1.1), in which multiple occupation of a site is
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permitted. A few of the results are restricted to the case of a hard-
core self-repulsion (1.2), in which multiple occupation of a site is
forbidden.

2.1. Elementary Identities

Consider a general lattice gas (1.1) defined on a finite set X. For any
subset �⊆X, let us define the restricted partition function

ZW,�(w) = ZW(w 1�), (2.1)

where

(w 1�)x =
{

wx if x ∈�,

0 otherwise.
(2.2)

This simply forces the sites in X \� to be unoccupied. Since W will be
fixed throughout this subsection, we shall often omit it from the notation
and write simply Z�.

For any x ∈�, we can expand the partition function (1.1b) in terms
of the occupation number nx : we obtain the fundamental identity

Z�(w) =
∞∑

n=0

wn
x

n!
W(x, x)n(n−1)/2 Z�\x(W(x, ·)n w), (2.3)

where

[W(x, ·)n w]y = W(x, y)n wy . (2.4)

In the special case of a hard-core self-repulsion at site x (i.e. W(x, x)=0),
only the terms n= 0,1 appear in this sum; this case will play a key role
in this paper starting in Section 3.1. (Analogous identities can be derived
where we expand in the occupation numbers at an arbitrary set of sites
S⊆�; for example, a two-site identity for the hard-core case will play a
major role in Section 7.)
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From (2.3) we can deduce the differentiation identity

∂Z�(w)

∂wx

=
∞∑

n=1

wn−1
x

(n−1)!
W(x, x)n(n−1)/2 Z�\x(W(x, ·)n w) (2.5a)

=
∞∑

n=0

wn
x

n!
W(x, x)n(n+1)/2 Z�\x(W(x, ·)n+1 w) (2.5b)

=
∞∑

n=0

[W(x, x)wx ]n

n!
W(x, x)n(n−1)/2 Z�\x(W(x, ·)nW(x, ·)w)

(2.5c)

= Z�(W(x, ·)w) . (2.5d)

Repeated application of (2.5) yields the multiple differentiation identity

∂nZ�(w)

∂wx1 · · · ∂wxn

=



∏

1� i<j �n

W(xi, xj )



Z�

( n∏

i=1

W(xi, ·)w
)

, (2.6)

where (
∏n

i=1 W(xi, ·)w)x =wx

∏n
i=1 W(xi, x).

2.2. The Mayer Expansion

We begin by reviewing the derivation of the Mayer expansion (1.4).
The first step is to trivially rewrite the partition function (1.1a) as

ZW(w) =
∞∑

n=0

1
n!

∑

x1,... ,xn∈X

(
n∏

i=1

wxi

)
∑

G∈Gn

∏

ij∈E(G)

F (xi, xj ) , (2.7)

where Gn is the set of all (simple loopless undirected) graphs on the vertex
set {1, . . . , n}, and

F(x, y) = W(x, y)−1 (2.8)

is called the two-particle Mayer factor. This is of the form

ZW(w) =
∞∑

n=0

1
n!

∑

G∈Gn

W(G), (2.9)
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where the weights

W(G) =
∑

x1,... ,xn∈X

(
n∏

i=1

wxi

)
∏

ij∈E(G)

F (xi, xj ) (2.10)

satisfy

(a) W(∅)=1;

(b) W(G)=W(G′) whenever G∼=G′ (i.e. whenever G and G′ differ
only by a relabelling of vertices); and

(c) W(G)=W(G1)W(G2) whenever G is isomorphic to the disjoint
union of G1 and G2.

It then follows from the exponential formula (13,108,112,115) that

log ZW(w) =
∞∑

n=0

1
n!

∑

G∈Cn

W(G) (2.11a)

=
∞∑

n=0

1
n!

∑

x1,... ,xn∈X

(
n∏

i=1

wxi

)
∑

G∈Cn

∏

ij∈E(G)

F (xi, xj ),

(2.11b)

at least in the sense of formal power series in w, where Cn⊆Gn is the set
of connected graphs on {1, . . . , n}. Therefore:

Proposition 2.1. The coefficients cn(W) of the Mayer expansion
(1.4) are given by

cn(W)= 1
n!

∑

x1, . . . , xn ∈X
#{i : xi =x}=nx ∀x

∑

G∈Cn

∏

ij∈E(G)

F (xi, xj ) (2.12a)

=
∑

(Sx)x∈X⊎
x∈X

Sx ={1, . . . , n}
|Sx |=nx ∀x

∑

G∈Cn

∏

{x,y}⊆X

F(x, y)eG(Sx,Sy)
∏

x∈X
F(x, x)eG(Sx), (2.12b)

where n=|n|, the first sum in (2.12b) runs over all partitions of {1, . . . , n}
into disjoint subsets (Sx)x∈X with the specified cardinalities, and eG(Sx, Sy)

(resp. eG(Sx)) denotes the number of edges of G connecting Sx to Sy (resp.
within Sx).
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Remark. Even in the simple case X={x} and W(x, x)=0, for which
log ZW(w) = log(1 + w) =∑∞n=1

(−1)n−1

n
wn, the Mayer expansion (2.11)

implies the nontrivial identity

∑

G∈Cn

(−1)|E(G)| = (−1)n−1(n−1)! (2.13)

for the generating function of connected spanning subgraphs of the com-
plete graph Kn. We leave it as an exercise for the reader to find a direct
combinatorial proof of (2.13).

In order to analyze the Mayer coefficients cn(W), it is convenient to
proceed in a bit more generality. So let H = (V ,E) be a graph – we allow
loops and multiple edges – and let z={ze}e∈E be a family of complex edge
weights for H . (Later we will specialize to H =Kn.) Define the generating
function of connected spanning subgraphs of H (or “connected sum” for
short),

CH (z) =
∑

E′ ⊆E
(V,E′) connected

∏

e∈E′
ze . (2.14)

It is easy to see that CH satisfies the deletion-contraction relation

CH (z) = CH\e(z �=e) + zeCH/e(z �=e) (2.15)

for any edge e ∈E: here H \ e is the graph H with edge e deleted, H/e

is the graph H with edge e contracted (note that we do not delete any
loops or multiple edges that may be formed), and z�=e denotes the family
{zf }f∈E\e. Please note that if e is a loop, then H/e=H \ e and hence

CH (z) = CH\e(z �=e) + zeCH/e(z �=e) = (1+ ze)CH\e(z �=e) . (2.16)

Let C (resp. T ) be the set of subsets E′ ⊆E such that (V ,E′) is con-
nected (resp. is a tree). Clearly C is an increasing family of subsets of E

with respect to set-theoretic inclusion, and the minimal elements of C are
precisely those of T (i.e. the spanning trees). It is a nontrivial but well-
known fact (refs. 17, Sections 7.2 and 7.3 and 117, Section 8.3) that the
(anti-)complex C is partitionable: that is, there exists a map R : T →C such
that R(T )⊇T for all T ∈T and C=⊎T ∈T [T , R(T )] (disjoint union), where
[E1,E2] denotes the Boolean interval {E′ : E1 ⊆E′ ⊆E2}. In fact, many
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alternative choices of R are available (refs. 15, Proposition 13.7 et seq; 17,
Sections 7.2 and 7.3; 45, Sections 2 and 6; and 101, Proposition 4.1), and
most of our arguments will not depend on any specific choice of R. How-
ever, at one point (Proposition 2.6) we shall need the existence of an R
with the following additional property:

Lemma 2.2. Let H = (V ,E) be a connected graph, and fix any T0∈
T . Then there exists a map R : T →C such that

(a) R(T )⊇T for all T ∈T ;

(b) C is the disjoint union of the Boolean intervals [T , R(T )] over T ∈
T ; and

(c) R(T0)=T0.

Proof. If H has one vertex and no edges, then T =C={∅} and the
result holds trivially; so assume henceforth that E �=∅. Assign arbitrary
weights we >0 chosen so that no two spanning trees have equal weight (for
example, one can choose the we to be linearly independent over the ratio-
nals). For each E′ ∈ C, let S(E′) be the (unique) minimum-weight span-
ning tree contained in E′. (This can be constructed by a greedy algorithm,
i.e. start from ∅ and keep adding the lowest-weight edge in E′ that does
not create a cycle. See, for instance, ref. 22, Section I.2.) We then define
R(T ) to be the union of all E′ that have S(E′)= T . To verify that this
works, we need to show that if S(E1)=S(E2)= T , then S(E1 ∪E2)= T ;
but this follows easily from the validity of the greedy algorithm. (Note that
this construction includes, as a special case, the lexicographically minimum
spanning tree for any ordering of E: it suffices to take wn=2n.)

By choosing the weights so that we >wf whenever e∈T0 and f ∈E \
T0, we can ensure that for E′ �=T0 the first edge chosen by the greedy algo-
rithm will not belong to T0. Therefore, R(T0)=T0.

Remark. The greedy algorithm works, more generally, for an arbi-
trary matroid (ref. 86, Section 1.8). It follows that the independent-set
complex of a matroid (or, dually, the spanning-set anti-complex) is parti-
tionable (ref. 17, Sections 7.2 and 7.3).

Given the existence of R, we have the following simple but fundamen-
tal identity:

Proposition 2.3 (Partitionability identity). Let R : T → C be any
map such that R(T )⊇ T for all T ∈ T and C is the disjoint union of the
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Boolean intervals [T , R(T )] over T ∈T . Then

CH (z) =
∑

T ⊆E
(V,T ) tree

∏

e∈T
ze

∑

T⊆E′⊆R(T )

∏

e∈E′\T
ze

=
∑

T ⊆E
(V,T ) tree

∏

e∈T
ze

∏

e∈R(T )\T
(1+ ze) . (2.17)

This identity (for one specific choice of R) is due originally to Penrose.(88)

One immediate consequence of the identity (2.17) is the following
inequality valid in the “complex repulsive” regime |1+ ze| � 1:

Proposition 2.4 (Penrose(88)). Let H = (V ,E) be a finite undirected
graph equipped with complex edge weights {ze}e∈E satisfying |1+ ze| � 1
for all e. Then

|CH (z)| �
∑

T ⊆E
(V,T ) tree

∏

e∈T
|ze| . (2.18)

This bound plays a major role in several traditional (pre-Dobrushin)
proofs of convergence of the Mayer expansion,(29,31,33,88,97,100,104) as well
as in a recent bound on the zeros of chromatic polynomials.(101)

Let us now define the “generalized connected sum”

CH (λ; z) =
∑

E′ ⊆E
(V,E′) connected

λc(E′)
∏

e∈E′
ze (2.19a)

= λ−(|V |−1)CH (λz), (2.19b)

where c(E′)= |E′| − |V | + 1 is the cyclomatic number of the connected
subgraph (V ,E′) (more generally, for a subgraph (V ,E′) with k(E′) com-
ponents, the cyclomatic number is c(E′)= |E′| − |V | + k(E′)). Of course,
(2.19b) shows that CH (λ; z) contains no more information than CH (z); it
is just a convenient way of scaling all the variables ze simultaneously. The
function CH (λ; z) interpolates between the tree sum (λ= 0) and the con-
nected sum (λ= 1); and Proposition 2.4 can be rephrased as saying that
|CH (1; z)| � CH (0; |z|). One of us has conjectured that the absolute-value
signs can in fact be put outside the sum, i.e. |CH (1; z)| � |CH (0; z)| (ref.
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101, Remark 2 in Section 4.1). In general this is still an open problem; but
if the ze are real and lie in the interval [−1,0] – which corresponds to the
physical repulsive regime 0 � W � 1 – then a vastly stronger result is true:

Proposition 2.5 (Sokal(101)). Let H = (V ,E) be a finite undirected
graph equipped with real edge weights {ze}e∈E satisfying −1 � ze � 0 for
all e. Then

(−1)k+|V |−1 dk

dλk
CH (λ; z) � 0 (2.20)

on 0 � λ � 1, for all integers k � 0. In particular, setting k= 0 and λ= 1
we have

(−1)|V |−1CH (z) � 0 . (2.21)

Proof. By (2.17) and (2.19b), we have

CH (λ; z) =
∑

T ⊆E
(V,T ) tree

∏

e∈T
ze

∏

e∈R(T )\T
(1+λze) (2.22)

and hence

dk

dλk
CH (λ; z) = k!

∑

T ⊆E
(V,T ) tree

∑

T̃ ⊆R(T )\T
|T̃ |=k

∏

e∈T∪T̃
ze

∏

e∈R(T )\(T∪T̃ )

(1+λze) ,

(2.23)

which has the claimed sign whenever 0 � λ � 1 and −1 � ze � 0 for all
e.5

We shall also need a variant of Proposition 2.5 with strict inequality
for the case k=0:

Proposition 2.6. Let H = (V ,E) be a finite undirected graph
equipped with real edge weights {ze}e∈E satisfying −1 � ze � 0 for all
e. Assume furthermore that the subgraph (V , supp z) is connected (here
supp z={e∈E : ze �=0}). Then

(−1)|V |−1 CH (z) > 0 . (2.24)

5Equation (4.7) of ref. 101 inadvertently omitted the prefactor k! in (2.23).
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Proof. Choose T0⊆ supp z such that (V , T0) is a spanning tree, and
use Lemma 2.2 to choose R so that R(T0)=T0. Then, in the sum (2.22),
the term T = T0 is nonzero with sign (−1)|V |−1, and all the other terms
either have the sign (−1)|V |−1 or else are zero.

We can also prove some inequalities on the partial derivatives of
CH (z) with respect to individual weights ze. Note first that the deletion–
contraction identity (2.15) implies that

∂CH (z)
∂ze

= CH/e(z �=e) . (2.25)

The graph H/e has |V | vertices if e is a loop, and |V |− 1 vertices if e is
not a loop. Repeated application of these facts together with (2.21) yields
the following result:

Proposition 2.7. Let H = (V ,E) be a finite undirected graph
equipped with real edge weights {ze}e∈E satisfying −1 � ze � 0 for all e.
Let k � 1 and e1, . . . , ek ∈E.

(a) If e1, . . . , ek are not all distinct, we have

∂CH (z)
∂ze1 · · · ∂zek

= 0 . (2.26)

(b) If e1, . . . , ek are all distinct and form a subgraph with cyclomatic
number c, we have

(−1)|V |−k+c−1 ∂CH (z)
∂ze1 · · · ∂zek

� 0 . (2.27)

Let us now specialize these results to the Mayer expansion (2.12a) by
taking H =Kn (where n=|n| and Kn denotes the complete graph on n ver-
tices), zij =F(xi, xj )=W(xi, xj )−1 and then summing over x1, . . . , xn∈X

with the specified cardinalities: we get

cn(W) = 1
n!

∑

x1, . . . , xn ∈X
#{i : xi =x}=nx ∀x

CKn(z(x)), (2.28)

where x = (x1, . . . , xn) and z(x)ij = F(xi, xj ). Since any subgraph of Kn

with 0, 1 or 2 edges has cyclomatic number 0, we can use Propositions 2.5
and 2.7 to deduce the following:
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Proposition 2.8 (Signs of Mayer coefficients). Suppose that the lat-
tice gas is repulsive, i.e. 0 � W(x, y) � 1 for all x, y ∈X. Then, for all
x, y, x′, y′ ∈X, the Mayer coefficients cn(W) satisfy

(−1)|n|−1 cn(W) � 0, (2.29)

(−1)|n|−1 ∂cn(W)

∂W(x, y)
� 0, (2.30)

(−1)|n|−1 ∂2cn(W)

∂W(x, y) ∂W(x′, y′)
� 0. (2.31)

Proof. (2.29) is an immediate consequence of (2.28) and (2.21). For
(2.30), note first that for any fixed x1, . . . , xn ∈X, we have

∂CKn(z(x))

∂W(x, y)
=

∑

{i,j}∈E(x,y;x1,... ,xn)

∂CKn(z)
∂zij

∣∣∣∣
z=z(x)

, (2.32)

where E(x, y;x1, . . . , xn) is the set of unordered pairs {i, j} (i �= j ) such
that {xi, xj }= {x, y}. Since any subgraph of Kn with one edge has cyclo-
matic number 0, the inequality (2.30) now follows from (2.27). Similarly,
the left-hand side of (2.31) gives rise to a double sum over pairs {i, j} ∈
E(x, y;x1, . . . , xn) and {i′, j ′}∈E(x′, y′;x1, . . . , xn). The diagonal terms (if
any) in this sum vanish by (2.26), and the other terms have the claimed
sign by (2.27).

Please note that (2.31) can be nonzero even when x= x′ and y= y′,
because distinct edges of Kn could correspond to the same pair x, y. Note
also that the sign of the third and higher derivatives cannot be controlled
by this method, because a subgraph of Kn (n � 4) containing three or
more edges could have cyclomatic number of either parity. Indeed, for the
simple case X={x} and W(x, x)=W we have

ZW(w) =
∞∑

n=0

wnWn(n−1)/2

n!
(2.33)
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and hence

log ZW(w) = w + F

2
w2 + 3F 2+F 3

6
w3

+ 16F 3+15F 4+6F 5+F 6

24
w4 + O(w5) (2.34a)

= w + W −1
2

w2 + (W +2)(W −1)2

6
w3

+ (W 3+3W 2+6W +6)(W −1)3

24
w4 + O(w5) ,

(2.34b)

so that

∂3c4(W)

∂W 3
= 5W 3−1 (2.35)

has no fixed sign on 0 � W � 1.
We can also determine the precise conditions under which the inequal-

ity (2.29) is strict:

Proposition 2.9 (Condition for Mayer coefficients to be nonzero). Sup-
pose that the lattice gas is repulsive, i.e. 0 � W(x, y) � 1 for all x, y ∈X.
Let n= (nx)x∈X be a multi-index with support supp n= {x ∈X : nx �= 0}.
Then (−1)|n|−1 cn(W)>0 if and only if one of the following is true:

(a) |n|=1;

(b) |n| � 2, supp n={x} and W(x, x) �=1; or

(c) | supp n| � 2 and the induced subgraph GW [supp n] is connected.

Proof. In case (a), cn(W)=1>0; in case (b) or (c), for each term in
(2.28) (actually they are all the same!) the subgraph of Kn with edge set
supp z(x) is connected, so that (−1)|n|−1 CKn(z(x))>0 by Proposition 2.6.

There are only two other possibilities:

(d) n=0;

(e) | supp n| � 2 and GW [supp n] is disconnected.

In case (d), clearly cn(W)= 0; and in case (e), for each term in (2.28)
the subgraph of Kn with edge set supp z(x) is disconnected, so that
(−1)|n|−1 CKn(z(x))=0.
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Historical remark. The alternating-sign property (2.29) for the Mayer
coefficients of a repulsive gas has been known in the physics literature for
over 40 years: see Groeneveld(48) for a brief sketch of the proof, which
uses methods quite different from ours.6 Nevertheless, this result does not
seem to be as well known as it should be. To the best of our knowledge,
the inequalities (2.30) and (2.31) are new. We think that the Mayer coeffi-
cients cn(W), and more generally the “connected sums” CH (z), merit fur-
ther study from a combinatorial point of view; we would not be surprised
if new identities or inequalities were waiting to be discovered.

2.3. The Fundamental Theorem

Let us now state the principal result of this section:

Theorem 2.10 (The fundamental theorem). Consider any repulsive
lattice gas, and let R={Rx}x∈X � 0. Then the following are equivalent:

(a) There exists a connected set C ⊆ (−∞,0]X that contains both 0
and −R, such that ZW(w)>0 for all w∈C. (Equivalently, −R belongs to
the connected component of Z−1

W (0,∞)∩ (−∞,0]X containing 0.)

(b) ZW(w)>0 for all w satisfying −R � w � 0.

(c) ZW(w) �=0 for all w satisfying |w| � R.7

(d) The Taylor series for log ZW(w) around 0 is convergent at w=
−R.

(e) The Taylor series for log ZW(w) around 0 is absolutely convergent
for |w| � R.

Moreover, when these conditions hold, we have |ZW(w)| � ZW(−R)>0 for
all w satisfying |w| � R.

In the case of hard-core self-repulsion, (a)–(e) are also equivalent to

(b′) ZW(−R 1S)>0 for all S⊆X, where

(R 1S)x =
{

Rx if x ∈S,

0 otherwise.
(2.36)

6Groeneveld(48) writes that “a more detailed account of this work, containing also the corre-
sponding results for the pressure and the distribution functions will be published in Physi-
ca”, but to our knowledge that more detailed paper never appeared. See also Penrose (ref.
87, Eq. (8.1)) for a related result.

7Here we use the notation |w| = {|wx |}x∈X . This conflicts slightly with our notation |n| =∑
x∈X nx for multi-indices, but we trust that it will not lead to any confusion.
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(f) ZW(−R)>0, and (−1)|S|ZW(−R;S) � 0 for all S⊆X, where

ZW(w;S) =
∑

S⊆X′⊆X

(
∏

x∈X′
wx

)


∏

{x,y}⊆X′
W(x, y)



 . (2.37)

(g) There exists a probability measure P on 2X satisfying P(∅) > 0
and

∑

T⊇S

P (T ) =
(
∏

x∈S
Rx

)


∏

{x,y}⊆S

W(x, y)



 (2.38)

for all S⊆X. (This probability measure is unique and is given by P(S)=
(−1)|S|ZW(−R;S). In particular, P(∅)=ZW(−R)>0.)

Remarks. 1. The conditions (b′), (f) and (g) are inspired in part by
Shearer (ref. 98, Theorem 1).

2. Suppose that the univariate entire function ZW(w), defined by set-
ting wx =w for all x, is strictly positive whenever −R � w � 0. Then in
fact ZW(w)>0 whenever −R � wx � 0 for all x: this follows from (a)
⇒
(b) by taking C to be the segment [−R,0] of the diagonal.

The proof of Theorem 2.10 will hinge on the alternating-sign prop-
erty (2.29) for the Taylor coefficients of log ZW . In preparation for this
proof, let us recall the Vivanti–Pringsheim theorem in the theory of ana-
lytic functions of a single complex variable (ref. 62, Theorem 5.7.1): if a
power series f (z) =∑∞n=0 anz

n with nonnegative coefficients has a finite
nonzero radius of convergence, then the point of the circle of convergence
lying on the positive real axis is a singular point of the function f . Oth-
erwise put, if f is a function whose Taylor series at 0 has all nonnegative
coefficients and f is analytic on some complex neighborhood of the real
interval [0,R), then f is in fact analytic on the open disc of radius R cen-
tered at the origin and its Taylor series is absolutely convergent there. Here
we will need the following multidimensional generalization of the Vivanti–
Pringsheim theorem:

Proposition 2.11 (Multidimensional Vivanti–Pringsheim theorem). Let
C be a connected subset of [0,∞)n containing 0, let U be an open neigh-
borhood of C in C

n, and let f be a function analytic on U whose Taylor
series around 0 has all nonnegative coefficients. Then the Taylor series of
f around 0 converges absolutely on the set hull(C)≡⋃R∈C D̄R, where D̄R
denotes the closed polydisc {w∈C

n : |wi | � Ri for all i}, and it defines a
function that is continuous on hull(C) and analytic on its interior.
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Remark. We could equally well start from an open neighborhood U

of 0 in C
n, and define C to be the connected component of U ∩ [0,∞)n

containing 0. This is the maximal set C compatible with the given U ; note
that it is open in [0,∞)n, and that hull(C) is then open in C

n.

Proof. Let f (z)=∑n anzn be the Taylor series of f around 0. And
let us define

S =
{

R∈ [0,∞)n :
∑
n

anzn converges absolutely at z=R
}

(2.39a)

=
{

R∈ [0,∞)n :
∑
n

anzn converges absolutely for z∈ D̄R

}
.

(2.39b)

Note that S is a down-set (that is, R∈S and 0 � R′ � R imply R′ ∈S) and
that 0∈S; we shall show that C⊂S.

Consider any point z0 ∈ S̄ ∩ C (here S̄ denotes the closure of S).
Choose ε > 0 such that the closed polydisc of radius ε in each direction
around z0 – call it D̄(z0, ε) – is contained in U . Then choose z1 ∈ S ∩
D̄(z0, ε/5), and choose z2 ∈ D̄(z1, ε/5) such that 0 � z2 � z1 and (z2)i <

(z1)i for all coordinates i with (z1)i > 0. It follows that D̄(z2,3ε/5)⊂U .
Now, since z1 ∈ S and z2 is strictly below z1 in all nonzero coordinates,
the Taylor series around 0 for f and all its derivatives converge abso-
lutely at z2. And the Taylor series for f around z2 converges absolutely
in D̄(z2,3ε/5). If z3 ∈ D̄(z2,3ε/5) with z3− z2 � 0, we can write

f (z3) =
∑

k

f (k)(z2)

k!
(z3− z2)

k (2.40a)

=
∑

k

(z3− z2)
k
∑

n �k

(
n
k

)
anzn−k

2 (2.40b)

=
∑

n

an
∑

0 �k �n

(
n
k

)
(z3− z2)

k zn−k
2 (2.40c)

=
∑

n

anzn
3 , (2.40d)
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where the rearrangements are justified because all the terms are nonnega-
tive, so that the convergence of the iterated sum (2.40b) implies the abso-
lute convergence of the corresponding double sum. It follows that z3 ∈S.
In particular we can choose z3= z2+ (3ε/5, . . . ,3ε/5). Since S is a down-
set, and since the the real points of the polydisc D̄(z0, ε/5) all lie below
z3, we conclude that D̄(z0, ε/5)∩ [0,∞)n⊂S. Hence D̄(z0, ε/5)∩C⊂S∩C.
Since z0 is an arbitrary point of S̄∩C, it follows that S∩C is both closed
and open in C (and nonempty since 0∈S ∩C). Since C is connected, we
conclude that S∩C=C.

For the proof of Theorem 2.10, we need an elementary topological
lemma:

Lemma 2.12. Let K be a convex set in R
n, let C be an open con-

nected subset of K (in the relative topology), let U be an open neighbor-
hood of C in R

n, and let x1, x2 ∈C. Then there exists a finite polygonal
path P ⊂C running from x1 to x2 and a simply connected open set U ′ in
R

n satisfying P ⊂U ′ ⊂U .

Proof. It is a well-known fact that any two points in C can be con-
nected by a finite polygonal path P lying in C. (Sketch of proof: Define an
equivalence relation ∼ on C by setting x∼y iff there exists a finite polygo-
nal path in C connecting x to y. Because K is convex and C is open in K,
the equivalence classes of ∼ are (relatively) open subsets of C. Since C is
connected, there is just one equivalence class.) By removing loops, we can
assume that P is non-self-intersecting.

Then we can take U ′ to be a sufficiently small tube centered on P .
(Let δ be the minimal distance between nonadjacent segments of P , and
let δ′ be the distance from P to the complement of U ; we have δ′> 0 by
compactness of P . Then let U ′ be the set of all points whose distance
from P is less than min(δ/3, δ′/2). It is not hard to see that U ′ is simply
connected.8)

We shall also make use of the following elementary result:

8It suffices to use repeatedly the following fact: If U1 and U2 are simply connected open sub-
sets of R

n, and U1 ∩U2 is nonempty and connected, then U1 ∪U2 is simply connected. For
a proof of this lemma, see e.g. ref. 11, pp. 46-47. This is a special case of the Seifert–van
Kampen theorem, which gives a recipe for computing the fundamental group (first homo-
topy group) of U1 ∪U2 in terms of the fundamental groups of U1, U2 and U1 ∩U2 (ref. 79,
Chapter 4).
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Lemma 2.13. Let F be a function on 2X, and define

F−(S) =
∑

X′⊆S

F (X′), (2.41)

F+(S) =
∑

X′⊇S

F (X′). (2.42)

Then

F−(S) =
∑

Y⊆Sc

(−1)|Y |F+(Y ), (2.43)

where Sc≡X \S.

Proof. This is a straightforward application of inclusion–exclusion
(see e.g. ref. 107, Section 2.1 or ref. 1, Chapter IV). We have

F(X′) =
∑

Y⊇X′
(−1)|Y\X

′|F+(Y ) . (2.44)

Hence

F−(S) =
∑

X′⊆S

F (X′) =
∑

X′⊆S

∑

Y⊇X′
(−1)|Y\X

′|F+(Y ) (2.45a)

=
∑

Y

F+(Y )
∑

X′⊆Y∩S
(−1)|Y\X

′| (2.45b)

=
∑

Y

F+(Y )(−1)|Y∩S
c| ∑

X′⊆Y∩S
(−1)|(Y∩S)\X′|

(2.45c)

=
∑

Y

F+(Y )(−1)|Y∩S
c|δY∩S,∅ (2.45d)

=
∑

Y⊆Sc

(−1)|Y |F+(Y ). (2.45e)

Proof of Theorem 2.10. (c)
⇒ (b)
⇒ (a) is trivial.
(e)
⇒ (d) is trivial, while (d)
⇒ (e) follows from the alternating-sign

property (2.29).
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(e) implies that the sum of the Taylor series for log ZW(w) defines an
analytic function on the open polydisc DR and a continuous function on
the closed polydisc D̄R. Its exponential equals ZW(w) on DR and hence
by continuity also on D̄R. Therefore (e)
⇒ (c).

Finally, assume (a). Since ZW is continuous on C
X (and has real

coefficients), we can find an open connected neighborhood C′ of C in
(−∞,0]X on which ZW >0, and an open neighborhood U of C′ in C

X�
R

2|X| on which ZW �= 0. Applying Lemma 2.12 (with n= 2|X|), we can
find a finite polygonal path P ⊂C′ from 0 to −R and a simply connected
open set U ′ in C

X satisfying P ⊂U ′ ⊂U . Then log ZW is a well-defined sin-
gle-valued analytic function on U ′, once we specify log ZW(0)=0. Apply-
ing Proposition 2.11 to log ZW on P and U ′ (using the alternating-sign
property (2.29)), we conclude that the Taylor series for log ZW around 0
is absolutely convergent on D̄R. Therefore (a)
⇒ (e).

The bound |ZW(w)| � ZW(−R) for |w| � R, which is equivalent to
Re log ZW(w) � log ZW(−R), is an immediate consequence of the alternat-
ing-sign property (2.29).

Now consider the special case of a hard-core self-repulsion. (b)
⇒
(b′) is trivial, and (b′)
⇒ (b) follows from the fact that ZW is multiaffine
(i.e. of degree � 1 in each wx separately) because the value of ZW at any
point w in the rectangle −R � w � 0 is a convex combination of the val-
ues at the vertices.

To show that (b)
⇒ (f), note that

ZW(w;S) =
(
∏

x∈S
wx

)


∏

{x,y}⊆S

W(x, y)



ZW(W(S, ·)w), (2.46)

where we have defined

[W(S, ·)w]y =
(
∏

x∈S
W(x, y)

)
wy (2.47)

(note in particular that this vanishes whenever y ∈S). Hence

(−1)|S|ZW(−R;S) =
(
∏

x∈S
Rx

)


∏

{x,y}⊆S

W(x, y)



ZW(−W(S, ·)R) � 0

(2.48)

since −R � −W(S, ·)R � 0, with strict inequality when |S|=0 or 1 (since
the product over W(x, y) is in that case empty).
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To show that (f)
⇒ (b′), use Lemma 2.13 applied to the set function

F(S) =
(
∏

x∈S
−Rx

)


∏

{x,y}⊆S

W(x, y)



 . (2.49)

We have

F−(S) = ZW(−R 1S), (2.50)

F+(S) = ZW(−R;S), (2.51)

so that Lemma 2.13 asserts the identity

ZW(−R 1S) =
∑

Y⊆Sc

(−1)|Y |ZW(−R;Y ) . (2.52)

By (f), the Y =∅ term is >0 and the other terms are � 0, so ZW(−R 1S)>

0 for all S.
Finally, let us show that (f)⇐⇒ (g). By inclusion–exclusion, there are

unique numbers P(T ) satisfying (2.38), namely P(T )= (−1)|T |ZW(−R;T ).
Moreover, taking S=∅ in (2.38) we see that

∑
T P (T )=1. Therefore, P is

a probability measure if and only if (−1)|T |ZW(−R;T ) � 0 for all T ; and
P(∅)>0 if and only if ZW(−R;∅)=ZW(−R)>0.

2.4. Properties of the Set R(W)

The following definition plays a central role in the remainder of this
paper:

Definition 2.14 (Definition of R(W)). We define R(W) to be the set
of all vectors R � 0 satisfying the equivalent conditions (a)–(e) of Theo-
rem 2.10. When W is the hard-core pair interaction for a graph G,

W(x, y) =
{

0 if x=y or xy ∈E(G),

1 if x �=y and xy /∈E(G),
(2.53)

we also write R(G).

Proposition 2.15 (Elementary properties of R(W)). For any repul-
sive lattice gas, the set R(W) is
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(a) open in [0,∞)X;

(b) a down-set (i.e. R∈R(W) and 0 � R′ � R imply R′ ∈R(W));

(c) logarithmically convex (i.e. R,R′ ∈R(W) and 0 � λ � 1 imply
Rλ(R′)1−λ ∈R(W)).

Moreover, the set R(W) is an increasing function of each W(x, y) on 0 �
W � 1.

Proof. It is obvious from Theorem 2.10(b) or (c) that R(W) is open
in [0,∞)X and is a down-set.

Given any formal power series f (z)=∑n anzn with complex coeffi-
cients, let us define its set of radii of absolute convergence by

cvg(f ) =
{

R � 0:
∑

n

|an|Rn <∞
}

. (2.54)

It then follows immediately from Hölder’s inequality for infinite series that
cvg(f ) is logarithmically convex.9 By Theorem 2.10(e) we have R(W)=
cvg(log ZW), so R(W) is logarithmically convex.

Finally, from (2.29)/(2.30) we see that |cn(W)| is a decreasing function
of each W(x, y) on 0 � W � 1, so R(W)= cvg(log ZW) is an increasing
function of each W(x, y) on 0 � W � 1.

See Corollary 2.19 below for a strict monotonicity that strengthens
Proposition 2.15(b); and see Corollary 2.29 for an additional convexity
property in the special case of a hard-core self-repulsion.

Remark. If � is any nonempty subset of X, we can obviously define
a lattice gas on � with interaction W � �, and there will be a corre-
sponding set R(W ��)⊆ [0,∞)�. Now, for any w∈C

�, we trivially have
ZW��(w)=ZW(w,0) where 0 ∈C

X\�; hence R ∈R(W � �) if and only if
(R,0)∈R(W). So the sets R(W ��) are the sections through 0 of R(W).

Next let us show that the sets R(W) are bounded in a suitable sense.
In the case of hard-core self-repulsion this is immediate, because R(W)⊆
[0,1)X. (This containment is trivial if |X|=1, and otherwise follows from
Proposition 2.15(b). Alternatively, it is trivial if W(x, y)= 1 for all x �= y,
and otherwise follows from the monotonicity statement in the last sentence
of Proposition 2.15.) However, in the general case the set R(W) can be
unbounded, as is shown by the following two examples:

9See refs. 49, Chapters B and G; 73, Sections 2.3 and 3.4.3; 92, Section 11.3.8; and 114,
pp. 116-122 for further discussion of related questions in the theory of analytic functions of
several complex variables.
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(a) Let X={x} and W(x, x)=1; then ZW(w)=ew and R(W)= [0,∞).

(b) Let X = {x, y}, W(x, x) = W(y, y) = 1 and W(x, y) = 0; then
ZW(wx,wy)=ewx +ewy −1 and R(W)={(Rx,Ry) : Rx,Ry � 0 and e−Rx +
e−Ry > 1}. This set is unbounded, since Rx can go to ∞ as Ry→ 0 (and
vice versa). (When Ry =0 this reduces to example (a).)

We now claim that these are essentially the only ways in which R(W) can
be unbounded:

Proposition 2.16 (Boundedness of R(W)). Consider any repulsive
lattice gas, and let x ∈X.

(a) If W(x, x) < 1, then there exists Cx < ∞ such that R(W) ⊆
[0,Cx)× [0,∞)X\x . (In particular, if W(x, x)< 1 for all x ∈X, then R(W)

is bounded.)

(b) Suppose that W(x, x) = 1, and let a ∈ [0,∞)X\x . If there exists
at least one y ∈ X such that W(x, y) < 1 and ay > 0, then the section
{Rx : (Rx,a)∈R(W)} is bounded. Moreover, the converse is true provided
that a∈R(W � (X \x)).

Remark. Since R(W) is a down-set, this proposition can alterna-
tively be formulated as follows: Let a,b∈ [0,∞)X; then the set {λ � 0: a+
λb ∈R(W)} is bounded if there exists x ∈ supp b and y ∈ supp a ∪ supp b
such that W(x, y)<1; and the converse is true provided that a∈R(W).

Proof. (a) Using the fact that R(W) is a down-set, it suffices to
prove the claim for the single-site partition function

ZW(w) =
∞∑

n=0

Wn(n−1)/2

n!
wn, (2.55)

where 0 � W <1. If W =0, we have ZW(w)=1+w, so that R(W)= [0,1).
If 0 <W < 1, then ZW is a nonpolynomial entire function of order 0 (ref.
76, Theorem I.2); and by the Hadamard factorization theorem (ref. 76,
Theorem I.13), any such function must have infinitely many zeros. In par-
ticular, R(W)= [0, α) where α is the smallest absolute value of a zero of
ZW .10

(b) If there does not exist y∈X such that W(x, y)<1 and ay >0, then
ZW(w)= ewx ZW,X\x(w �=x) whenever supp w⊆ supp a ∪ {x}. It follows that

10It turns out (though we do not need this fact here) that all the zeros of ZW are negative
real numbers.(66,85)
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the section {Rx : (Rx,a)∈R(W)} is either empty (in case a /∈R(W �(X\x)))
or all of [0,∞) (in case a∈R(W � (X \x))).

Now suppose that there does exist such a y. Using the fact that R(W)

is a down-set, it suffices to prove the claim for the two-site partition func-
tion with �={x, y}. Moreover, by the monotonicity statement in the last
sentence of Proposition 2.15, we may assume that W(y, y)= 1. Writing
W ≡W(x, y)∈ [0,1), we need to treat

ZW(wx,wy) =
∞∑

nx,ny=0

Wnxny

nx !ny !
wnx

x w
ny
y (2.56a)

=
∞∑

nx=0

w
nx
x exp(wyW

nx )

nx !
. (2.56b)

If wy �=0, this is an entire function of order 1 in wx that is not of the form
eαwx P (wx) for any α ∈C and polynomial P .11 It again follows from the
Hadamard factorization theorem that ZW( · ,wy) has infinitely many zeros.
Choosing any wy ∈C with |wy |=ay (which by hypothesis is nonzero), we
conclude from Theorem 2.10(c) that the section {Rx : (Rx, ay)∈R(W)} is
bounded.

11Proof. If P(z)=∑K
k=0 akz

k , then

eαzP (z) =
∞∑

n=0

(αz)n

n!

[
a0+n

a1

α
+n(n−1)

a2

α2
+ · · · +n(n−1) · · · (n−K+1)

aK

αK

]

≡
∞∑

n=0

αnQ(n)

n!
zn,

where Q is a polynomial. But F(n)= exp(wyWn) is not of the form αnQ(n) for any α ∈C

and polynomial Q.
Alternate proof. We have

ZW (wx,wy) − ewx =
∞∑

nx=0

w
nx
x

nx !
[exp(wyWnx )−1].

Since wy is fixed and 0 � W � 1, we have | exp(wyWnx )−1| � CWnx for some constant C <

∞, from which it follows that

|ZW (wx,wy) − ewx | � CeW |wx | .

If ZW (wx,wy) were equal to eαwx P (wx), then by taking wx →+∞ we conclude that we
would have to have α= 1 and P ≡ 1 (since W < 1); but ZW is not in fact of this form when
wy �=0.
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Let R(W) be the closure of R(W), and let ∂R(W)=R(W) \R(W).
(Note that this is the boundary of R(W) in [0,∞)X, not in R

X.) Since
R(W) is a down-set, it is obvious that R(W) is a down-set as well.

Proposition 2.17 (Properties of closure and boundary of R(W)). For
any repulsive lattice gas:

(a) If −w∈R(W), then

∂nZW(w)

∂wx1 · · · ∂wxn

� 0 (2.57)

for all n � 0 and all x1, . . . , xn ∈X.

(b) If −w∈ ∂R(W), then ZW(w)=0.

Proof. (a) We have ZW(w) > 0 for −w ∈ R(W), so by continuity
ZW(w) � 0 for −w∈R(W). The general claim (2.57) then follows from the
multiple differentiation identity (2.6), using the facts that 0 � W � 1 and
that R(W) is a down-set.

(b) If ZW(w) were strictly positive, then −R(W)∪{w} would be a con-
nected subset of (−∞,0]X on which ZW is strictly positive, so by Theo-
rem 2.10(a) we would have −w∈R(W).

Under an appropriate connectivity condition, we can prove that the
inequality (2.57) is strict for n=1:

Proposition 2.18. Consider any repulsive lattice gas. Let R∈R(W),
and suppose that the induced subgraph GW [supp R] is connected. Then

∂ZW(w)

∂wx

∣∣∣∣
w=−R

> 0 for all x ∈ supp R . (2.58)

Here the connectedness hypothesis is essential, as is shown by taking G

to be the edgeless graph K̄n, for which ZG(w)=∏n
i=1(1+wi), and tak-

ing R= (1, . . . ,1). It is also essential to consider the induced subgraph
GW [supp R], since a site can be effectively eliminated by setting its fugac-
ity to zero: for example, when G is the path 123, we have ZG(w)= (1+
w1)(1+w3)+w2, and a counterexample to (2.58) is obtained by taking
R2=0 and R1=R3=1.

Before proving Proposition 2.18, let us state and prove some corollar-
ies.

Corollary 2.19 (Strict monotonicity). Consider any repulsive lattice
gas. Let R∈R(W), and suppose that the induced subgraph GW [supp R] is
connected. If 0 � R′ � R with R′x <Rx for at least one x, then R′ ∈R(W).
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Proof. Since ZW(−R) � 0 and ∂ZW(w)/∂wx |w=−R > 0 by Proposi-
tions 2.17(a) and 2.18, we have ZW(−(R − εδx)) > 0 for all sufficiently
small ε > 0 (here δx is the vector with xth coordinate 1 and all other
coordinates 0). Since R(W) is a down-set, we have R− εδx ∈R(W); but
by Proposition 2.17(b), R− εδx cannot lie in ∂R(W), so we must have
R− εδx ∈R(W). Now pick ε small enough so that R′ � R− εδx and use
the fact that R(W) is a down-set.

Corollary 2.20. Consider any repulsive lattice gas.

(a) If R∈ ∂R(W), then every neighborhood of −R in (−∞,0]X con-
tains points w �=−R with supp w=supp R where ZW >0, where ZW =0 and
where ZW <0.

(b) R∈R(W) if and only if ZW(w) � 0 for all w satisfying −R � w
� 0.

Proof. (a) Let X1, . . . ,Xk be the vertex sets of the components
of GW [supp R]. For any w with supp w ⊆ supp R, we have ZW(w) =∏k

i=1 ZW(w 1Xi
). Pick a vertex xi in each Xi , and let w± =−R± εδx1 +

ε
∑k

i=2 δxi
. By Proposition 2.18, for all sufficiently small ε > 0 we have

±ZW(w 1X1) > 0 and ZW(w 1Xi
) > 0 for 2 � i � k. This proves the exis-

tence of points near −R with ZW >0 and ZW <0. The existence of points
w �=−R with ZW =0 then follows by the intermediate value theorem.

(b) “Only if” is obvious from Proposition 2.17(a) together with the
fact that R(W) is a down-set. To prove “if”, suppose that ZW(w) � 0 for
all w satisfying −R � w � 0. Consider the line segment {λR}0�λ�1, and
let λmax= sup{λ∈ [0,1] : λR∈R(W)}. If λmax=1, then R∈R(W). If λmax <

1, then λmaxR∈ ∂R(W), so by part (a) we can choose w arbitrarily close
to −λmaxR with supp w= supp R (and in particular satisfying −R � w � 0)
such that ZW(w)<0 – a contradiction.

Remark. Corollary 2.20(b) is an analogue of Theorem 2.10(b) for
the closure of R(W). It is worth noting that the analogue of Theo-
rem 2.10(a) is false: for example, for G=K2 we have ZG(w)= (1+w1)(1+
w2), so that the set {R � 0 : ZG(−R) � 0} is connected and equals [0,1]2∪
[1,∞)2, while R(W)= [0,1]2 only.

Proof of Proposition 2.18. If R∈R(W), then W(x, ·)R∈R(W) as
well (since 0 � W � 1 and R(W) is a down-set), so (2.58) follows from
the differentiation identity (2.5). So we can assume henceforth that R ∈
∂R(W). By deleting sites where Rx = 0, we can also assume without loss
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of generality that supp R=X. Let us define

S =
{
x ∈X :

∂ZW(w)

∂wx

∣∣∣∣
w=−R

= 0
}

, (2.59)

S′ = {x ∈X : ZW(wx,−R �=x)=0 for all wx ∈C}. (2.60)

Clearly S′ ⊆S⊆X. The Proposition will then be an immediate consequence
of Lemmas 2.21 and 2.22 below.

Lemma 2.21. Let R ∈ ∂R(W), and let S, S′ be defined as in
(2.59)/(2.60). If supp R=X and GW is connected, then either S′ = S =∅

or else S′ =S=X.

Lemma 2.22. Suppose R∈R(W) and for all x ∈X and all wx ∈C,
we have ZW(wx,−R �=x)=0. Then GW [supp R] is disconnected.

Proof of Lemma 2.21. Suppose S �= ∅, and consider any x ∈ S.
Then ZW(−R)=0 and ZW(−W(x, ·)R)= ∂ZW(w)/∂wx |w=−R=0 (using the
differentiation identity (2.5)). By monotonicity of ZW in R(W), we have
ZW(−R′)=0 whenever −R � −R′ � −W(x, ·)R. In particular, if y is adja-
cent to x in GW (i.e. W(x, y) < 1), then ZW(wy,−R �=y)= 0 for all wy ∈
[−Ry,−W(x, y)Ry ]. By analyticity it follows that ZW(wy,−R �=y)= 0 for
all wy ∈ C, i.e. y ∈ S′ ⊆ S. Since GW is connected, it easily follows that
S′ =S=X.

Proof of Lemma 2.22. As before, we may assume without loss of
generality that supp R = X. The proof is by induction on |X|. If |X| =
1, the hypothesis is impossible, since ZW(0)= 1 �= 0. So let |X|> 1 and
suppose that GW is connected. Choose a vertex x ∈X such that GW \x is
connected (e.g. let x be any endvertex of a spanning tree in GW ). By the
fundamental identity (2.3), we have

ZW(wx,−R�=x) = ZW(0,−R �=x) + wxZW(0,−W(x, ·)R �=x)

+ terms of order w2
x and higher. (2.61)

Since ZW(·,−R �=x) is identically zero, all coefficients in the Taylor expan-
sion (2.61) must vanish; in particular we must have

ZW(0,−R �=x) = 0, (2.62a)

ZW(0,−W(x, ·)R �=x) = 0. (2.62b)
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Pick y �= x with W(x, y) < 1 (which is possible since x is not an
isolated vertex of GW ). Since Ry > 0 and ZW(0,wy,−R �=x,y) is mono-
tonic in wy for wy ∈ [−Ry,0], it must be vanishing on the nontriv-
ial interval [−Ry,−W(x, y)Ry ]. By analyticity of ZW , it follows that
ZW(0,wy,−R �=x,y)=0 for all wy ∈C, so in particular

ZW(0,−Ry,−R �=x,y) = 0, (2.63a)

∂ZW(0,wy,−R �=x,y)

∂wy

∣∣∣∣
wy=−Ry

= 0. (2.63b)

Notice that R≡ (Rx,R �=x)∈R(W) implies (0,R�=x)∈R(W) (since R(W) is
a down-set), or in other words R�=x ∈R(W � (X \x)). Moreover, by (2.63a)
R�=x must lie in ∂R(W � (X \x)). So we can apply Lemma 2.21 to X \x to
conclude that S′ =X \ x; therefore, by the inductive hypothesis, GW \ x is
disconnected, which contradicts the choice of x.

Remark. One might think that Lemma 2.22 would hold not only
for R∈R(W) but for arbitrary w(0) ∈C

X. However, this is false: Consider
the star K1,4 with center x and endvertices y1, . . . , y4 with interactions
W ∈ (0,1) along the edges (and W(x, x)=W(yi, yi)=0). Then

ZW(wx,wy1 , . . . ,wy4) =
4∏

i=1

(1+wyi
) + wx

4∏

i=1

(1+Wwyi
) . (2.64)

Setting w
(0)
y1 =w

(0)
y2 =−1 and w

(0)
y3 =w

(0)
y4 =−1/W (here w

(0)
x is arbitrary),

we see that ZW(wz,w(0)
�=z)=0 for every vertex z and every wz ∈C.

2.5. Further Consequences of the Alternating-Sign Property

Let us now exploit systematically the alternating-sign property (2.29)
for the Taylor coefficients of log ZW . The general context is the following:

Definition 2.23 (Absolute monotonicity). Let U ⊂C
n be a union of

open polydiscs centered at 0 (a “complete Reinhardt domain”). We say
that f is absolutely monotone in U if it is analytic in U and all the Taylor
coefficients of f at 0 are nonnegative.

We will use the following essentially trivial result:

Lemma 2.24 (Elementary consequences of absolute monotonicity). Let
f be absolutely monotone in a union U of open polydiscs centered at
0∈C

n. Then:
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(a) All the derivatives Dαf (where α is a multi-index) are absolutely
monotone in U .

(b) For every λ∈ [0,1]n, the function

fλ(z) = f (z)−f (λz) (2.65)

is absolutely monotone in U . (Here λz is the pointwise product, so that
(λz)x =λxzx .)

(c) For all multi-indices α, we have

|(Dαf )(z)| � (Dαf )(R), (2.66)

whenever |z| � R∈U . In particular, (Dαf )(R) � 0 whenever 0 � R∈U .

Now, the alternating-sign property (2.29) is precisely the statement
that

f (z) = − log ZW(−z) (2.67)

is absolutely monotone in the domain DR(W)=
⋃

R∈R(W)DR=
⋃

R∈R(W)D̄R.
Applying Lemma 2.24(c) to f , we obtain:

Proposition 2.25. For any repulsive lattice gas:

(a) When −w∈R(W), we have

(−1)n−1 ∂n log ZW(w)

∂wx1 · · · ∂wxn

� 0 (2.68)

for all n � 0 and all x1, . . . , xn ∈X.

(b) When |w| � R∈R(W), we have

∣∣∣∣
∂n log ZW(w)

∂wx1 · · · ∂wxn

∣∣∣∣ � (−1)n−1 ∂n log ZW(w′)
∂w′x1
· · · ∂w′xn

∣∣∣∣∣
w′=−R

(2.69)

for all n � 0 and all x1, . . . , xn ∈X.

Proof. This is an immediate consequence of the alternating-sign
property (2.29) together with Lemma 2.24(c) and Theorem 2.10(d).
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Let us now define

YW(w;λ) = ZW(λw)

ZW(w)
. (2.70)

By Lemma 2.24(b), the function

fλ(z) = log YW(−z;λ) = log
ZW(−λz)
ZW(−z)

(2.71)

is absolutely monotone on DR(W) whenever λ∈ [0,1]X. Applying Lemma
2.24(c) to fλ, we obtain:

Proposition 2.26. For any repulsive lattice gas and any λ∈ [0,1]X:

(a) When −w∈R(W), we have

(−1)n
∂n log YW(w;λ)

∂wx1 · · · ∂wxn

� 0 (2.72)

for all n � 0 and all x1, . . . , xn ∈X.

(b) When |w| � R∈R(W), we have

∣∣∣∣
∂n log YW(w;λ)

∂wx1 · · · ∂wxn

∣∣∣∣ � (−1)n
∂n log YW(w′;λ)

∂w′x1
· · · ∂w′xn

∣∣∣∣∣
w′=−R

(2.73)

for all n � 0 and all x1, . . . , xn ∈X. In particular, setting n=0 we have
∣∣∣∣
ZW(λw)

ZW(w)

∣∣∣∣ � ZW(−λR)

ZW(−R)
<∞ (2.74)

for all w ∈ D̄R. That is, the quantity |ZW(λw)/ZW(w)| takes its maxi-
mum on the polydisc D̄R at the point w=−R, and this maximum value
ZW(−λR)/ZW(−R) is therefore an increasing function of R∈R(W).

Let us define the function ZW : [0,∞)X→ [0,∞) by

ZW(R) = inf
−R �w �0

max[ZW(w),0] (2.75a)

= inf
w∈D̄R

|ZW(w)| (2.75b)

=
{

ZW(−R) for R∈R(W),

0 for R /∈R(W),
(2.75c)
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where the equivalence of these three expressions is an immediate conse-
quence of Theorem 2.10. We then have:

Corollary 2.27. For any repulsive lattice gas, the function ZW is

(a) continuous,

(b) decreasing,

(c) satisfies ZW(λ1λ2R)ZW(R) � ZW(λ1R)ZW(λ2R) for all λ1,λ2 ∈
[0,1]X and R∈ [0,∞)X,

(d) log submodular [i.e. ZW(R1∧R2)ZW(R1∨R2) � ZW(R1)ZW(R2),
where ∧ (resp. ∨) denotes the elementwise min (resp. max) of vectors].

Proof. (a) The continuity of ZW follows easily from (2.75a) or
(2.75b) and the continuity of ZW . (For any r <∞, the function ZW is uni-
formly continuous on the compact ball B={w∈C : |w| � r}. If R,R′ ∈B∩
[0,∞)X with |R−R′| � δ, then |ZW(R)−ZW(R′)| � sup

w,w′ ∈B

|w−w′|� δ

|ZW(w)−

ZW(w′)|. Uniform continuity of ZW on B therefore implies uniform con-
tinuity of ZW on B ∩ [0,∞)X.)

(b) The decreasing property is an immediate consequence of (2.75a)
or (2.75b).

(c) This is trivial if R /∈R(W), so assume R∈R(W). Then YW(−R;λ2)

=ZW(λ2R)/ZW(R), while YW(−λ1R;λ2)=ZW(λ1λ2R)/ZW(λ1R), so that
the claim follows from Proposition 2.26 with n=1.

(d) The log submodularity follows immediately from (c) by setting
R = R1 ∨ R2 and λi = Ri/R for i = 1,2 (setting 0/0= 1 where needed).
(Alternatively, for R1∨R2∈R(W) it follows by integrating (2.68) with n=
2 and x1 �=x2.)

We can also prove a strict version of the cases n = 0 of Proposi-
tions 2.25(a) and 2.26(a) as well as Corollary 2.27(c). Note first that

− log ZW(−R) =
∑

n

(−1)|n|−1 cn(W)Rn, (2.76)

− log ZW(−R) + log ZW(−λR) =
∑

n

(−1)|n|−1 cn(W) (1−λn)Rn, (2.77)

− log ZW(−R) + log ZW(−λ1R)+log ZW(−λ2R) − log ZW(−λ1λ2R)

=
∑

n

(−1)|n|−1 cn(W) (1−λn
1)(1−λn

2)Rn. (2.78)
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By Proposition 2.8, all three quantities are nonnegative whenever R ∈
R(W) and λ,λ1,λ2∈ [0,1]X. We can determine when they are strictly pos-
itive:

Proposition 2.28. Consider any repulsive lattice gas, and let R ∈
R(W) and λ,λ1,λ2 ∈ [0,1]X. Then:

(a) − log ZW(−R)>0 if and only if R �=0.

(b) − log ZW(−R)+ log ZW(−λR)>0 if and only if supp R∩ supp(1−
λ) �=∅.

(c) − log ZW(−R)+ log ZW(−λ1R)+ log ZW(−λ2R)−log ZW(−λ1λ2R)>

0 if and only there exists a component of GW [supp R] that meets both
supp(1−λ1) and supp(1−λ2).

Proof. We examine the terms in (2.76) and (2.78) and determine (for
some of them) when they are nonzero.

(a) “Only if” is trivial; for “if”, just consider the term n = δx for
some x ∈ supp R, and use Proposition 2.9(a).

(b) “Only if” is again trivial; for “if”, just consider n= δx for some
x ∈ supp R∩ supp(1−λ), and again use Proposition 2.9(a).

(c) For “if”, let S be the vertex set of a component of GW [supp R]
that meets both supp(1−λ1) and supp(1−λ2), take n=1S , and use Prop-
osition 2.9(a) or 2.9(c). For “only if”, suppose that cn(W) �= 0. Then, by
Proposition 2.9, either n= δx for some x ∈X, or n= kδx for some k � 2
and some x∈X having W(x, x) �=1, or | supp n| � 2 and GW [supp n] is con-
nected. In all three cases, GW [supp n] is connected. Furthermore, to make
a nonzero contribution to (2.78), supp n has to meet both supp(1− λ1)

and supp(1− λ2) and be contained in supp R. Therefore, there is a com-
ponent of GW [supp R] (namely, the one containing supp n) that meets both
supp(1−λ1) and supp(1−λ2).

For a repulsive lattice gas with hard-core self-repulsion (i.e. W(x, x)=
0 for all x ∈X), the set R(W) has an additional convexity property:

Corollary 2.29 (Convexity of two-dimensional sections). For any re-
pulsive lattice gas with hard-core self-repulsion, the two-dimensional
sections of R(W) parallel to the coordinate axes are convex and (when
nonempty) are bounded either by a hyperbola or by a straight line.
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Proof. For x, y∈X (x �=y) and a nonnegative vector α=(αz)z∈X\{x,y},
consider the section

Px,y,αR(W) = {(Rx,Ry) : (Rx,Ry,α)∈R(W)} . (2.79)

If (0,0,α) /∈R(W), then clearly the section is empty; so let us assume
henceforth that (0,0,α) ∈R(W). Let ZW(wx,wy;−α) be the polynomial
obtained from ZW(w) by setting wz=−αz for z �=x, y. Then, as ZW is mul-
tiaffine, we have

ZW(wx,wy;−α) = A+Bwx +Cwy +Dwxwy, (2.80)

where

A = ZW(0,0;−α), (2.81a)

B = ZW(0,0;−W(x, ·)α), (2.81b)

C = ZW(0,0;−W(y, ·)α), (2.81c)

D = W(x, y)ZW(0,0;−W(x, ·)W(y, ·)α) (2.81d)

as a consequence of the multiple differentiation identity (2.6). Since
(0,0,α) ∈R(W), 0 � W(x, y) � 1 for all x, y, and R(W) is a down-set,
we have A,B,C > 0 and D � 0 (with D = 0 if and only if W(x, y) =
0). Moreover, by Corollary 2.27(c) we have AD � BC.12 It follows
from Theorem 2.10(a) that Px,y,αR(W) is the component of [0,∞)2 ∩
{(Rx,Ry) : ZW(−Rx,−Ry;−α) > 0} containing (0,0) (here we have used
the fact that (0,0,α)∈R(W)). Thus,

Px,y,αR(W) = {(Rx,Ry) : Rx,Ry � 0 and BRx +CRy <A} (2.82)

in case D=0, and

Px,y,αR(W) = {(Rx,Ry) : 0 � Rx � C/D and 0 � Ry � B/D and

(C/D−Rx)(B/D−Ry)>(BC−AD)/D2} (2.83)

in case D >0.

12In the case of a hard-core pair interaction, this follows alternatively from Corollary 2.27(d).
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Remarks. 1. The proof shows that the boundary of Px,y,αR(W) is
a straight line when W(x, y)=0 and is a hyperbola when 0<W(x, y) � 1.

2. Consider w= (wx,wy) and w′ = (w′x,w′y), and let 0 � λ � 1; then

ZW(λw+ (1−λ)w′;−α) − [λZW(w;−α)+ (1−λ)ZW(w′;−α)]

= −Dλ(1−λ)(wx −w′x)(wy −w′y) , (2.84)

so that ZW( · ;−α) is concave along line segments of negative slope in the
(wx,wy)-plane. This provides an alternate proof that the projected section
Px,y,αR(W) is convex (because R(W) is a down-set, only line segments of
negative slope need be considered).

3. The convexity of two-dimensional sections is false without the
hypothesis of hard-core self-repulsion: consider X = {1,2}, W(1,1) =
W(2,2)=1 and W(1,2)=0. Then ZW(w)= ew1 + ew2 −1, so that R(W)=
{(R1,R2) : R1,R2 � 0 and e−R1 + e−R2 >1}, which is not convex.

4. Even in the case of hard-core self-repulsion, R(W) itself is not in
general convex. To see this, let X={1,2,3} and let G be the path 123; its
independent-set polynomial is ZG(w)=w2+ (1+w1)(1+w3). The diagonal
section of R(G) given by R1=R3= x and R2= y is the region of [0,1]2

where y <(1−x)2, which is not convex.

2.6. Algebraic Irreducibility of ZW(w)

In this subsection – which is a digression from the main thread of the
paper and can be omitted on a first reading – we discuss the algebraic irre-
ducibility of the multivariate partition function ZW(w). We restrict atten-
tion to the case of hard-core self-repulsion, in which ZW is a multiaffine
polynomial.

Let R be a commutative ring with identity, and let W : X×X→R be
symmetric and satisfy W(x, x)=0 for all x ∈X. Define the support graph
GW by setting xy ∈E(G) if and only if W(x, y) �=1 and x �=y. Define the
polynomial ZW ∈R[w] by

ZW =
∑

X′⊆X




∏

{x,y}⊆X′
W(x, y)




(
∏

x∈X′
wx

)
. (2.85)

Proposition 2.30. Suppose that R is an integral domain. Then ZW

is irreducible over R if and only if GW is connected.

The proof is based on an easy but crucial lemma (ref. 34, Lemma
4.7):
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Lemma 2.31. Let P1 and P2 be nonzero polynomials in the inde-
terminates {wx}x∈X with coefficients in an integral domain R. Suppose
that P1P2 is multiaffine (i.e. of degree 0 or 1 in each variable separately).
Then:

(a) There exist disjoint subsets X1,X2⊆X such that Pi uses only the
variables {wx}x∈Xi

(i=1,2).

(b) P1 and P2 are both multiaffine.

Proof. Suppose there exists x ∈X such that both P1 and P2 use the
variable wx . For i=1,2, let di � 1 be the degree of Pi in the variable wx ,
and let Qi �=0 be the coefficient of w

di
x in Pi , considered as an element of

the polynomial ring R[w�=x ]. Then Q1Q2 �=0 because R[w �=x ] is an integral
domain (ref. 65, Theorem III.5.1 and Corollary III.5.7). But this shows
that the coefficient of w

d1+d2
x in P1P2 is nonzero, contradicting the hypoth-

esis that P1P2 is multiaffine (since d1+d2 � 2). This proves (a); and (b) is
an easy consequence.

Proof of Proposition 2.30. If GW is disconnected, it is obvious
that ZW is reducible. To prove the converse, suppose that ZW is reducible,
i.e. ZW =P1P2 where P1 and P2 are nonconstant polynomials over R. It
follows from Lemma 2.31 that there exist disjoint subsets X1,X2⊆X such
that Pi uses only the variables {wx}x∈Xi

(we can assume without loss of
generality that X1 ∪X2=X); moreover, neither X1 nor X2 can be empty
(since P1 and P2 are nonconstant). Let ai ∈R be the constant term of Pi

(i= 1,2). Since ZW has constant term 1, we have a1a2= 1. Replacing P1
by a2P1 and P2 by a1P2, we can assume without loss of generality that
a1=a2=1. For x ∈X1 (resp. x ∈X2), let bx be the coefficient of the linear
term wx in P1 (resp. in P2). Since the linear term wx has coefficient 1 in
ZW and a1=a2=1, we have bx=1 for all x∈X. It follows that, for x∈X1
and y ∈X2, the term wxwy in P1P2 has coefficient 1; since this term has
coefficient W(x, y) in ZW =P1P2, we have W(x, y)=1 whenever x∈X1 and
y ∈X2. Hence GW is disconnected.

Remarks. 1. The univariate polynomial ZW(w) is obviously reduc-
ible over C whenever |X| � 2; and it is in many cases reducible over R

as well. Indeed, it can be reducible over the integers: e.g. for G=P4 (the
4-vertex path) we have ZG(w)=1+4w+3w2= (3w+1)(w+1).

2. Results analogous to Proposition 2.30 hold for some other combi-
natorial polynomials. For example, the irreducibility over C for the (bivar-
iate) Tutte polynomial ZM(x, y) of a connected matroid M was proven
recently by Merino et al.(80) Likewise, the irreducibility over any integral
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domain R for the multivariate basis generating polynomial of a connected
matroid M – or more generally, for any multiaffine polynomial whose sup-
port is exactly the collection of bases of M – was proven recently by Choe
et al.(34)

3. It would be interesting to know whether analogous results can be
obtained without the hypothesis of hard-core self-repulsion. The difficulty
is to find the right ring in which to work. Irreducibility in the ring R[[w]]
of formal power series is too trivial, because every formal power series
with constant term 1 is invertible. On the other hand, it might conceiv-
ably be possible to prove irreducibility in the ring of entire functions (or
entire functions of order 1) on C

X – but only for |X| � 2, since it is man-
ifestly false if |X|=1 and 0<W(x, x)<1 (a nonpolynomial entire function
of order 0 has infinitely many zeros [ref. 76, Theorem I.13]).

2.7. Convexity of log Z at Nonnegative Fugacity

In this paper we are primarily concerned with the behavior of ZW(w)

for complex fugacities w. However, the regime of nonnegative fugacities
w is of particular interest to probabilists and statistical mechanicians,
since the Boltzmann weights (cf. (1.1)) are there nonnegative and so can
be interpreted, after normalization, as a probability measure on lattice-
gas configurations. In this “probabilistic regime”, the logarithm of the
partition function is, in very great generality, a convex function of all the
interaction energies (ref. 67, p. 12). Let us prove the specialization of this
statement to our model:

Let 0 � W,W ′ � 1 and w,w′ � 0. Then, for 0 � λ � 1, define
Wλ(x, y) = W(x, y)λW ′(x, y)1−λ and (wλ)x = wλ

x(w′x)1−λ. By Hölder’s
inequality applied to (1.1a) or (1.1b), we obtain:

Lemma 2.32. Suppose that 0 � W,W ′ � 1 and w,w′ � 0. Then, for
0 � λ � 1,

ZWλ(wλ) � ZW(w)λZW ′(w′)1−λ . (2.86)

That is, log ZWλ(wλ) is a convex function of λ; or in other words, log ZW(w)

is a convex function of the vector
〈{log W(x, y)}x,y∈X, {log wx}x∈X

〉
.

3. THE LATTICE GAS WITH HARD-CORE SELF-REPULSION

We now restrict attention to the case of a repulsive lattice gas with
hard-core self-repulsion, i.e. 0 � W(x, y) � 1 for all x, y and W(x, x)= 0
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for all x. This means, as noted in Section 1, that ZW(w) can be written as
a sum over subsets:

ZW(w) =
∑

X′⊆X

∏

x∈X′
wx

∏

{x,y}⊆X′
W(x, y) . (3.1)

Here we shall exploit this special structure, which implies that ZW is a
multiaffine polynomial, i.e. a polynomial of degree 1 in each wx separately.
Since W will be fixed throughout, we shall henceforth often omit it from
the notation.

3.1. The Fundamental Identity

Let us define, for each subset �⊆X, the restricted partition function

Z�(w) =
∑

X′⊆�

∏

x∈X′
wx

∏

{x,y}⊆X′
W(x, y) . (3.2)

Of course this notation is redundant, since the same effect can be obtained
by setting wx=0 for x∈X \�, but it is useful for the purpose of inductive
computations and proofs. We have, for any x∈�, the fundamental identity

Z�(w) = Z�\x(w) + wxZ�\x(W(x, ·)w), (3.3)

where

[W(x, ·)w]y = W(x, y)wy ; (3.4)

here the first term on the right-hand side of (3.3) covers the summands in
(3.2) with X′ ��x, while the second covers X′ �x. (Note that (3.3) is a spe-
cial case of (2.3).) In the special case of a hard-core interaction (= inde-
pendent-set polynomial) for a graph G, (3.3) reduces to

Z�(w) = Z�\x(w) + wxZ�\�∗(x)(w) , (3.5)

where we have used the notation �∗(x)=�(x)∪{x} (here �(x) denotes the
set of vertices of G adjacent to x). The fundamental identity (3.3)/(3.5)
will play an important role both in the inductive proof of the Lovász
local lemma (cf. (4.10) and (4.22)) and in the Dobrushin–Shearer induc-
tive argument for the nonvanishing of ZW in a polydisc (Section 5).
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Let us also remark that because Z�\x is multiaffine, the last term in
(3.3) can be expanded to rewrite Z�\x(W(x, ·)w) as a linear combination
of values at the vertices of a rectangle:13

Z�(w) = Z�\x(w) + wx

∑

Y⊆�\x




∏

y∈Y
W(x, y)








∏

y∈(�\x)\Y
[1−W(x, y)]



ZY (w) .

(3.6)

In the hard-core case, the only term with a nonzero coefficient is Y =�\
�∗(x), so that (3.6) reduces to (3.5).

Remark. Repeated use of (3.3) obviously gives an algorithm to com-
pute ZW(w). But this algorithm takes in general exponential time. In fact,
calculating ZG(w) for general graphs G (or even for cubic planar graphs)
is NP-hard (as noted by Shearer(98)), since even calculating the degree of
ZG(w) – that is, the maximum size of an independent set – is NP-hard
(ref. 44, pp. 194–195). Therefore, if P �=NP it is impossible to calculate
ZG(w) for general graphs in polynomial time.

A key role in (3.3) is manifestly played by the rational function

Kx,�(w) ≡ Z�\x(W(x, ·)w)

Z�\x(w)
. (3.7)

Note that Kx,�(w) depends only on {wy}y∈�\x ; in particular, it does not
depend on wx . We shall sometimes write it as Kx,�(w �=x) to emphasize
this fact. Please note also that Z�(w) is nonvanishing in the region |wx |<
1/|Kx,�(w �=x)| and vanishes at wx =−1/Kx,�(w �=x). We have

∂ log Z�(w)

∂wx

= Kx,�(w �=x)

1 + Kx,�(w �=x)wx

. (3.8)

13If F : C
X→C is multiaffine, then F can be reconstructed from its values at the corners of

any rectangle with positive volume. For example, if the rectangle is [0,1]X , we have

F(z) =
∑

Y⊆X

(
∏

i∈Y
zi

)


∏

i∈X\Y
(1− zi )



F(1Y ) .

This is clear when z ∈ {0,1}X , and equality for all z then follows because both sides are
multiaffine.
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Since Kx,�(w) is a special case of the function YW(w;λ) defined in (2.70),
we obtain as an immediate corollary of Proposition 2.26(b):

Proposition 3.1. Consider any repulsive lattice gas with hard-core
self-repulsion. If R∈R(W), then

|Kx,�(w)| � Kx,�(−R) <∞ (3.9)

for all w∈ D̄R. That is, the maximum of |Kx,�(w)| over D̄R is attained at
w=−R, and this maximum value Kx,�(−R) is an increasing function of
R∈R(W).

The function Kx,�(−R) will play an important role in Section 5.
We can translate the fundamental identity (3.3) into a recursion for

the rational functions Kx,�(w). Let us order arbitrarily the sites � \ x =
{y1, . . . , yk}. Then we write (3.7) as a telescoping product:

Kx,�(w) =
k∏

i=1

Z�\x(w̃(i))

Z�\x(w̃(i−1))
, (3.10)

where the vectors w̃(i) are defined by

(w̃(i))y =
{

W(x, y)wy if y=yj for somej � i,

wy otherwise.
(3.11)

(Note that it is irrelevant how we define (w̃(i))y for y=x, since we set this
weight to zero anyway by considering Z�\x .) Applying the fundamental
identity (3.3) to yi , we obtain

Z�\x(w̃(i))

Z�\x(w̃(i−1))
= 1 + W(x, yi)wyi

Kyi ,�\x(w̃(i−1))

1 + wyi
Kyi ,�\x(w̃(i−1))

(3.12)

and hence

Kx,�(w) =
k∏

i=1

1 + W(x, yi)wyi
Kyi ,�\x(w̃(i−1))

1 + wyi
Kyi ,�\x(w̃(i−1))

. (3.13)

This identity will play a central role at the end of Section 5. In the special
case of a hard-core pair interaction, (3.13) becomes

Kx,�(w) =
l∏

i=1

1
1 + wyi

Kyi ,�\x\{y1,... ,yi−1}(w)
, (3.14)
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where {y1, . . . , yl} is an ordering of �∩�(x).
Note, finally, that the partition functions Z�(w) can be reconstructed

from the rational functions Kx,�(w). For, by the fundamental identity (3.3)
and the definition (3.7), we have

Z�(w)

Z�\x(w)
= 1 + wxKx,�(w �=x) ; (3.15)

and hence, setting �={x1, . . . , xn} (in arbitrary order) we can write

Z�(w) =
n∏

i=1

Z{x1,... ,xi }(w)

Z{x1,... ,xi−1}(w)
=

n∏

i=1

[
1 + wxKxi ,{x1,... ,xi }(w)

]
. (3.16)

3.2. Examples

Let us take a moment to compute a few examples of partition func-
tions ZW(w). We shall assume hard-core self-repulsion (i.e. W(x, x) = 0
for all x) throughout, and shall mostly restrict attention to the case of a
hard-core pair interaction, i.e. the independent-set polynomial ZG(w) for
a graph G. In some cases we shall, for simplicity, compute only the uni-
variate polynomial ZG(w) obtained by setting wx =w for all vertices x.

Example 3.1. The complete graph Kn. Clearly ZKn(w) = 1 + w1 +
· · ·+wn. In particular, R(Kn)={R : R1+· · ·+Rn <1}.

Example 3.2. The n-vertex path Pn. We limit attention to the uni-
variate independent-set polynomial. Applying the fundamental identity
(3.5) to an endvertex, we obtain the recursion relation

ZPn(w) = ZPn−1(w) + wZPn−2(w) , (3.17)

which is valid for all n � 0 if we define ZP0 ≡ZP−1 ≡1 and ZP−2 ≡0. The
solution of (3.17) is

ZPn(w) = 1√
1+4w

(λn+2
+ −λn+2

− ), (3.18)

where

λ± = 1±√1+4w

2
. (3.19)
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(An alternative method of obtaining this result is given in Example 3.2′
below.) The zeros of ZPn are located at

w = − 1

4 cos2 πk
n+2

(3.20)

for k= 1,2, . . . , �n+1
2 �. The zero nearest the origin converges from below

to w = −1/4 as n→∞. Elementary counting arguments give also the
explicit formula

ZPn(w) =
� n+1

2 �∑

k=0

(
n+1−k

k

)
wk . (3.21)

Example 3.3. The n-vertex cycle Cn. We again limit attention to the
univariate independent-set polynomial. Applying the fundamental identity
(3.5), we find

ZCn(w) = ZPn−1(w) + wZPn−3(w) , (3.22)

valid for n � 2. Inserting (3.18)/(3.19), we obtain

ZCn(w) = λn
+ + λn

− . (3.23)

(An alternative method of obtaining this result is given in Example 3.3′
below.) The zeros of ZCn are located at

w = − 1

4 cos2 π(k+ 1
2 )

n

(3.24)

for k=0,1, . . . , �n2 �−1. The zero nearest the origin converges from below
to w=−1/4 as n→∞. Elementary counting arguments (or (3.21)/(3.22))
give also the explicit formula

ZCn(w) =
� n2 �∑

k=0

n

n−k

(
n−k

k

)
wk . (3.25)
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Remark. There is a one-to-one correspondence between matchings
on a graph G and independent sets on the line graph L(G). Since L(Pn)=
Pn−1 and L(Cn)=Cn, these formulae for ZPn and ZCn can also be found
in the work of Heilmann and Lieb on matching polynomials (ref. 58, pp.
196–197). Heilmann and Lieb also noted that ZPn and ZCn can be written
as Chebyshev polynomials.

Example 3.3′. The “soft” n-vertex cycle Cn. Let us now generalize
Example 3.3 by considering the cycle Cn with edge weights

W(x, y) =
{

W if xy is an edge of Cn,

1 otherwise ,
(3.26)

where W is a constant in [0,1] (the case W = 0 corresponds to the
independent-set polynomial of Cn, while the case W = 1 corresponds to
the independent-set polynomial of the edgeless graph on n vertices). Then
the univariate polynomial ZW(w) is given by a “transfer matrix” (refs. 7,
Section 2.1; 14, Sections 2.2–2.4 and 107, Section 4.7):

ZW(w) = tr
(

1 1
w wW

)n

, (3.27)

where the first (resp. second) row or column corresponds to an empty
(resp. occupied) site, and the fugacity w is attributed to the row only. It
follows that

ZW(w) = λn
+ + λn

− , (3.28)

where

λ± = 1+wW ±
√

(1−wW)2+4w

2
(3.29)

are the eigenvalues of the transfer matrix. Simple algebra then shows that
all of the zeros of ZW are real and negative (when 0 � W � 1).

Example 3.2′. The “soft” n-vertex path Pn. Let us now generalize
Example 3.2 analogously. The univariate polynomial ZW(w) is again given
by a transfer matrix:

ZW(w) = (1 1)

(
1 1
w wW

)n−1(1
w

)
. (3.30)
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After some algebra we find

ZW(w) = A+λn+2
+ + A−λn+2

− (3.31)

with λ± given by (3.29) and

A± = 2

±(2−W +wW 2)
√

(1−wW)2+4w + W [(1−wW)2+4w]
.(3.32)

Example 3.4. The star K1,r . Let x be the center vertex of the star
and let y1, . . . , yr be the leaves. The independent-set polynomial is

ZK1,r
(w) =

r∏

i=1

(1+wyi
) + wx . (3.33)

More generally, suppose we have a pair interaction matrix W(x, yi) (with
W(yi, yj )=1 for all i �= j and W(x, x)=W(yi, yi)=0). Then

ZW(w) =
r∏

i=1

(1+wyi
) + wx

r∏

i=1

[1+W(x, yi)wyi
] . (3.34)

Example 3.5. The complete bipartite graph Km,n. Let X={x1, . . . , xm}
and Y ={y1, . . . , yn} be the bipartition. Then the independent-set polyno-
mial is

ZKm,n(w) =
m∏

i=1

(1+wxi
) +

n∏

j=1

(1+wyj
) − 1 . (3.35)

Example 3.6. The complete r-ary rooted tree.(94,98) Let T
(r)
n be the

complete rooted tree with branching factor r and depth n. We limit atten-
tion to the univariate independent-set polynomial. Fix r � 1; and to
lighten the notation, let us write Zn as a shorthand for Z

T
(r)
n

. Applying
the fundamental identity (3.5) to the root vertex, we obtain the nonlinear
recursion

Zn(w) = Zn−1(w)r + wZn−2(w)r
2
, (3.36)
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which is valid for all n � 0 if we set Z−1≡Z−2≡1. By defining

Yn(w) = Zn(w)

Zn−1(w)r
, (3.37)

we can convert the second-order recursion (3.36) to a first-order recursion

Yn(w) = 1 + w

Yn−1(w)r
(3.38)

with initial condition Y−1 ≡ 1. The polynomials Zn(w) can be recon-
structed from the rational functions Yn(w) by

Zn(w) =
n∏

k=0

Yk(w)r
n−k

. (3.39)

Let wn <0 be the negative real root of Zn of smallest magnitude (set
wn=−∞ if Zn has no negative real root). Note that w−1=−∞ and w0=
−1. Let us prove by induction that wn−1 <wn for n � 0. It is true for n=
0. For n � 1 we have

Zn(wn−1) = Zn−1(wn−1)
r + wn−1Zn−2(wn−1)

r2
< 0 (3.40)

since Zn−1(wn−1) = 0, wn−1 < 0 and Zn−2(wn−1) > 0 by the inductive
hypothesis. Therefore Zn vanishes somewhere between wn−1 and 0.

It follows that the wn increase to a limit w∞ � 0 as n→∞. Let us
show, following Shearer(98), that

w∞ = − rr

(r+1)r+1
(3.41)

by proving the two inequalities:

Proof of � . If w∈ [w∞,0), we have Zn(w)> 0 for all n and hence
also Yn(w) > 0 for all n. Since Y−1 > Y0, it follows from the monotonic-
ity of (3.38) that {Yn(w)}n�0 is a strictly decreasing sequence of positive
numbers, hence converges to a limit y∗ � 0 satisfying the fixed-point equa-
tion y∗=1+w/yr∗, or equivalently w=yr+1∗ −yr∗. Elementary calculus then
shows that w � −rr/(r+1)r+1; taking w=w∞ we obtain w∞ � −rr/(r+
1)r+1.

Proof of � . If −rr/(r + 1)r+1 � w < 0, the equation w= yr+1∗ − yr∗
has a unique solution y∗ ∈ [r/(r+1),1). It then follows by induction (using
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(3.38) and the initial condition Y−1 = 1) that 1= Y−1(w) > Y0(w) > · · ·>
Yn−1(w)>Yn(w)> · · ·>y∗ for all n � 0. In particular, Yn(w)>0 for all n,
so that wn <w for all n. This shows that w∞ � −rr/(r+1)r+1.

Let us conclude by observing that (3.38) defines a degree-r rational
map Rw : y �→1+w/yr parametrized by w∈C \0. Moreover, the zeros of
ZW(w) correspond to those values w for which Rw has a (superattractive)
orbit 0 �→∞�→1 �→1+w �→· · · �→0 of period n+3 (or some submultiple of
n+ 3). As n→∞, these points accumulate on a “Mandelbrot-like” set in
the complex w-plane. For further information on the maps y �→1+w/yr ,
see refs. 5, 18–21 and 81.

3.3. Reduction Formulae

Recall that, given W , we have defined a simple loopless graph G=GW

(“the support graph of W”) by setting xy ∈E(G) if and only if W(x, y) �=
1 and x �= y. When the support graph G has a very simple structure, the
polynomial ZW(w) can be simplified:

(1) Disconnected graph. Suppose that G can be written as the disjoint
union of G1 and G2. Set �i =V (Gi). Then clearly ZW factorizes:

Z�1∪�2(w) = Z�1(w)Z�2(w) . (3.42)

Note that Z�i
(w) depends only on {wx}x∈�i

.
(2) Cut vertex. Suppose that G=G1∪G2 where V (G1)∩V (G2)={x}.

(If G1 and G2 have at least two vertices, this means that x is a cut vertex
of G. But the formulae below hold also in the trivial cases V (G1)= {x}
or V (G2)={x} or both.) Again set �i =V (Gi). The fundamental identity
(3.3) asserts that

Z�1∪�2(w) = Z(�1∪�2)\x(w) + wxZ(�1∪�2)\x(W(x, ·)w) . (3.43)

But since the graphs G1 \x and G2 \x are disjoint14, we can apply the fac-
torization (3.42) to the right-hand side of (3.43), yielding

Z�1∪�2(w) = Z�1\x(w)Z�2\x(w) + wx Z�1\x(W(x, ·)w)Z�2\x(W(x, ·)w)

(3.44a)

= Z�1\x(w)
[
Z�2\x(w) + weff ,G1

x Z�2\x(W(x, ·)w)
]

(3.44b)

= Z�1\x(w)Z�2(w �=x,w
eff ,G1
x ), (3.44c)

14We recall that G \ x denotes the graph obtained from G by deleting the vertex x and all
edges incident with it.
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where we have defined

weff ,G1
x = wx

Z�1\x(W(x, ·)w)

Z�1\x(w)
= wxKx,�1(w). (3.45)

This can be interpreted as “integrating out” the variables in V (G1) \ x,
leaving an “effective fugacity” w

eff ,G1
x for the vertex x ∈V (G2).

Example 3.4 revisited. Integrating out the leaves y1, . . . , yr of the
star K1,r , we find from (3.34):

w
eff ,K1,r
x = wx

r∏

i=1

1+W(x, yi)wyi

1+wyi

. (3.46)

3.4. When G is a Tree . . .

When the support graph G=GW is a tree, every vertex of G is either
a cut vertex or a leaf, so the partition function ZW(w) can be calculated
by repeated use of the reduction formula (3.44)/(3.45). This can be done
in many ways, but the simplest is probably to “roll up” the tree “from the
leaves up”, as follows:

We say that a vertex x∈V (G) is a near-leaf of G if it is adjacent to at
least one leaf of G. If x is a near-leaf of G, then we can write G=G1∪G2
where V (G1)∩V (G2)={x}, G1 is a star with center x consisting of x and
some or all of the leaves of G adjacent to x, and G2 is a tree. Integrating
out G1 \x using (3.46), we obtain

weff ,G1
x = wx

∏

y∈V (G1\x)

1+W(x, y)wy

1+wy

(3.47)

and of course

Z�1\x(w) =
∏

y∈V (G1\x)

(1+wy) . (3.48)

Applying this process repeatedly, we can obtain a linear-time algorithm for
evaluating ZW(w) at any point w∈C

X whenever the support graph GW is
a tree. (It is also an algorithm for computing ZW(w) as a polynomial in w,
but in this context it may no longer be linear-time, because of the need to
multiply rational functions of w.) The simplest approach is to orient the
tree by choosing arbitrarily one vertex of the tree as the root, and then to
work upwards from the leaves. We obtain the following algorithm:
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Algorithm T. Given numbers {wx}x∈X and {W(x, y)}x,y∈X for which
the support graph G = GW is a tree, we compute ZW(w) as fol-
lows:

(1) Pick (arbitrarily) a root x0 ∈X. Define

depth(x) = dist(x, x0),

D = max
x∈X

depth(x),

children(x) = {y : xy ∈E(G) and depth(y)=depth(x)+1}.
(2) For d=D,D−1, . . . ,0, do:

For all vertices x of depth d, set

weff
x ←− wx

∏

y∈children(x)

1+W(x, y)weff
y

1+weff
y

. (3.49)

(Note that all the needed weff
y have been set at the previ-

ous iteration. If weff
y =−1 for any child y of x, the algo-

rithm is declared to fail.)

(3) Output

ZW(w) =
∏

x∈V (G)

(1+weff
x ) . (3.50)

The correctness of this algorithm (when it succeeds) follows from (3.44b),
(3.44c) and (3.48). Indeed, for any vertex x, the weff

x produced by this
algorithm is w

eff ,Gx
x where Gx is the subtree consisting of x and all its

descendants.
This also provides an algorithm for testing whether a given vector R

lies in R(W):

Theorem 3.2. Consider any repulsive lattice gas with hard-core self-
repulsion for which the support graph GW is a tree. Then a vector R � 0
lies in R(W) if and only if Algorithm T with w=−R produces −1<weff

x �
0 for all vertices x.

Proof. If Algorithm T with w=−R produces −1 <weff
x � 0 for all

x, then by the monotonicity of (3.49) in each weff
y it also does so when

w=−R′ for any vector 0 � R′ � R. By (3.50) this means that ZW(−R′)>0
for all such R′, hence that R∈R(W).

Conversely, let x be a vertex such that weff
x /∈ (−1,0] but weff

y ∈ (−1,0]
for all descendants y of x. Since weff

y ∈ (−1,0] for all children y of x, and
wx=−Rx � 0, it follows from (3.49) that weff

x � 0, so we must have weff
x �
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−1. Now set R′z=Rz for z in the subtree consisting of x and its descen-
dants, and R′z=0 otherwise. Applying Algorithm T to w′ =−R′, it follows
from (3.50) that ZW(w′) � 0. Thus R′ �∈R(W); and since R(W) is a down-
set, we have R �∈R(W).

Example 3.6 revisited. Consider again the tree T
(r)
n . Comparison

of (3.38) with (3.49) shows that in the multivariate case weff
x = Yn(w)− 1

for all vertices x of height n above the leaves. Then (3.39) is equivalent to
(3.50).

3.5. Upper Bounds on R(W) When GW is a Tree

We can use Theorem 3.2 to prove upper bounds on the set R(W)

whenever the support graph GW is a tree. Let us begin by considering the
special case of a hard-core pair interaction, i.e. the independent-set poly-
nomial for a tree G on the vertex set X. As before, pick (arbitrarily) a root
x0 ∈X, and define Xi = {x ∈X : depth(x)= i} for i = 0, . . . ,D. Given any
vector R � 0, define R̃i to be the geometric mean of Rx over all vertices
x of depth i:

R̃i =



∏

x∈Xi

Rx




1/|Xi |

. (3.51)

Now apply Algorithm T to w=−R, let px =−weff
x , and define

p̃i =



∏

x∈Xi

px




1/|Xi |

(3.52)

(we assume here that weff
x � 0 for all x ∈Xi). By (3.49) we have

px = Rx∏
y∈children(x)(1−py)

, (3.53)

so that

p̃i = R̃i
(∏

y∈Xi+1
(1−py)

)1/|Xi | . (3.54)



Repulsive Lattice Gas, Independent-Set Polynomial and Lovász Local Lemma 1203

Now




∏

y∈Xi+1

(1−py)




1/|Xi+1|

� 1 − 1
|Xi+1|

∑

y∈Xi+1

py (3.55a)

� 1 −



∏

y∈Xi+1

py




1/|Xi+1|

(3.55b)

by two applications of the arithmetic–geometric mean inequality. It follows
that

p̃i � R̃i

(1− p̃i+1)
|Xi+1|/|Xi | . (3.56)

So, suppose we fix the numbers (R̃i)
D
i=0 and define (p̂i)

D
i=0 by the recursion

p̂i = R̃i

(1− p̂i+1)
|Xi+1|/|Xi | (3.57)

with initial condition p̂D+1 = 0 (which is well-defined as long as p̂i+1
remains < 1). Then it follows immediately from the monotonicity of the
right-hand side of (3.56) that p̃i � p̂i as long as the former is well-defined.
In particular, if for some level i we have p̂i � 1, then p̃i is either � 1 or
else ill-defined, so that there exists x∈Xi with weff

x /∈(−1,0]. It then follows
from Theorem 3.2 that R /∈R(W). Moreover, since this calculation depends
only on the numbers (R̃i)

D
i=0, the same conclusion holds for any R with

the given geometric means on levels.
Let us now generalize this argument to the case of a soft-core pair

interaction 0 � W(x, y) � 1. It is easily verified that 1−Wp � (1− p)W

whenever 0 � p � 1 and 0 � W � 1. Therefore, defining px =−weff
x as

before and applying Algorithm T to w=−R, we have

px � Rx∏
y∈children(x)(1−py)1−W(x,y)

. (3.58)

Now let us assign to each vertex x a weight

αx =
d∏

j=1

[1−W(xj−1, xj )], (3.59)
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where x0, x1, . . . , xd ≡ x is the unique path in GW connecting x to the
root x0. (In particular, αx0 = 1 and if y is a child of x, then αy = [1−
W(x, y)]αx .) Setting

α̃i =
∑

x∈Xi

αx , (3.60)

let us define R̃i and p̃i to be the weighted geometric means

R̃i =



∏

x∈Xi

Rαx
x




1/α̃i

, (3.61)

p̃i =



∏

x∈Xi

pαx
x




1/α̃i

. (3.62)

The preceding argument can then be repeated verbatim (using the weighted
arithmetic–geometric mean inequality), yielding

p̃i � R̃i

(1− p̃i+1)
α̃i+1/α̃i

, (3.63)

which can be analyzed analogously to (3.56). We have therefore proven:

Proposition 3.3. Consider any repulsive lattice gas with hard-core
self-repulsion for which the support graph GW is a tree. Define weights
(αx)x∈X and (̃αi)

D
i=0 by (3.59)/(3.60), and define numbers (p̂i)

D
i=0 by the

recursion

p̂i = R̃i

(1− p̂i+1)
α̃i+1/α̃i

(3.64)

(as long as p̂i+1 remains < 1), with initial condition p̂D+1 = 0. Suppose
that there exists an i for which p̂i � 1. Then R /∈R(W) for all vectors
R � 0 satisfying

∏
x∈Xi

R
αx/α̃i
x � R̃i for all i.

Just as Proposition 3.3 “homogenizes” each level of a tree, we can
also “homogenize” between levels. Let us again begin by considering the
special case of a hard-core pair interaction. We first define branching fac-
tors bi =|Xi+1|/|Xi |. Choose any number b̄ >0 and define

γi = |Xi |/b̄i . (3.65)
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Fix an integer k � 1 (the number of levels to be averaged together) and
define

γi,k =
i+k−1∑

j=i

γj . (3.66)

Then define the weighted inter-level geometric means

p̃i,k =



i+k−1∏

j=i

p̃
γj

j




1/γi,k

, (3.67)

R̃i,k =



i+k−1∏

j=i

R̃
γj

j




1/γi,k

(3.68)

for i=0, . . . ,D+1−k, and p̃i,k= R̃i,k=0 for i � D+2−k. It follows from
(3.56) that

p̃i,k � R̃i,k
∏i+k−1

j=i (1− p̃j+1)
bj γj /γi,k

= R̃i,k
∏i+k−1

j=i (1− p̃j+1)
b̄γj+1/γi,k

. (3.69)

Now

i+k−1∏

j=i

(1− p̃j+1)
γj+1/γi+1,k � 1 −

i+k−1∑

j=i

γj+1

γi+1,k

p̃j+1

� 1 −
i+k−1∏

j=i

p̃
γj+1/γi+1,k

j+1

≡ 1 − ˜̃pi+1 (3.70)

by two applications of the arithmetic-geometric mean inequality, so that

p̃i,k � R̃i,k

(1− p̃i+1,k)
b̄γi+1,k/γi,k

(3.71)
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for i=0, . . . ,D+1−k. This holds true for an arbitrary choice of the num-
bers b̄ and k.

In the special case in which the sequence {b0, b1, . . . , bD−1} is periodic
of period k (where D � k), we can choose b̄ to be the geometric mean of
the bi over one period:

b̄ =
(

k−1∏

i=0

bi

)1/k

. (3.72)

Then the sequence {γ0, γ1, . . . , γD} is also periodic of period k, so that
γ0,k=γ1,k=· · ·=γD+1−k,k, and (3.71) simplifies to

p̃i,k � R̃i,k

(1− p̃i+1,k)
b̄

(3.73)

for i= 0, . . . ,D+ 1− k (note that for i=D+ 1− k we have p̃i+1,k = 0, so
the value of the exponent b̄γi+1,k/γi,k is in this case irrelevant).

So we can argue as before: suppose we fix the numbers (R̃i,k)
D+1−k
i=0

and define (p̂i,k)
D+1−k
i=0 by the recursion

p̂i,k = R̃i,k

(1− p̂i+1,k)
b̄γi+1,k/γi,k

(3.74)

(as long as p̂i+1,k remains <1), with initial condition p̂D+2−k,k=0. Then it
follows immediately from the monotonicity of the right-hand side of (3.71)
that p̃i,k � p̂i,k as long as the former is well-defined. In particular, if for
some level i we have p̂i,k � 1, then p̃i,k is either � 1 or else ill-defined,
so that there exists x ∈⋃i+k−1

j=i Xj with weff
x /∈ (−1,0]. It then follows from

Theorem 3.2 that R /∈R(W). Moreover, since this calculation depends only
on the numbers (R̃i,k)

D+1−k
i=0 , the same conclusion holds for any R with the

given geometric means on-and-between levels.
The same argument works with soft-core pair interaction if we replace

|Xi | by α̃i . We have therefore proven:

Proposition 3.4. Consider any repulsive lattice gas with hard-core
self-repulsion for which the support graph GW is a tree. Define weights
(αx)x∈X and (̃αi)

D
i=0 by (3.59)/(3.60). Fix an integer k � 1 and a real

number b̄ > 0, and define γi = α̃i/b̄
i . Then define (γi,k)

D+1−k
i=0 , (p̃i,k)

D+1−k
i=0
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and (R̃i,k)
D+1−k
i=0 by (3.66)–(3.68). Finally, define numbers (p̂i,k)

D
i=0 by the

recursion

p̂i,k = R̃i,k

(1− p̂i+1,k)
b̄γi+1,k/γi,k

(3.75)

(as long as p̂i+1,k remains < 1), with initial condition p̂D+2−k,k = 0. Sup-
pose that there exists an i for which p̂i,k � 1. Then R /∈R(W) for all

vectors R � 0 satisfying
∏i+k−1

j=i

(∏
x∈Xj

R
αx/α̃j
x

)γj /γi,k

� R̃i,k for all i =
0, . . . ,D+1−k.

We will return to these ideas in Section 8.2.

4. DEPENDENCY GRAPHS AND THE LATTICE GAS

4.1. Hard-Core Version

Let (Ax)x∈X be a finite family of events on some probability space,
and let G be a graph with vertex set X. We say that G is a dependency
graph for the family (Ax)x∈X if, for each x ∈X, the event Ax is indepen-
dent from the σ -algebra σ(Ay : y ∈X \ �∗(x)). (Here we have used the
notation �∗(x)=�(x)∪ {x}, where �(x) is the set of vertices of G adja-
cent to x.) Note that this is much stronger than requiring merely that Ax

be independent of each such Ay separately.
A family of events typically has many possible dependency graphs: for

instance, if G is a dependency graph for events (Ax)x∈X, then any graph
obtained by adding edges to G is also a dependency graph. In particular,
if the events Ax are independent, then any graph on X is a dependency
graph. Nor must there be a unique minimal dependency graph. Consider,
for instance, the set of binary strings of length n with odd digit sum (giv-
ing each such string equal probability), and let Ai be the event that the
ith digit is 1. Any graph without isolated vertices is a dependency graph
for this collection of events.

There is also a stronger notion of a dependency graph G for a col-
lection of events (Ax)x∈X, where we demand that if Y and Z are dis-
joint subsets of X such that G contains no edges between Y and Z,
then the σ -algebras σ(Ay : y ∈ Y ) and σ(Az : z ∈Z) are independent. In
this case we shall refer to G as a strong dependency graph for the events
(Ax)x∈X.15 Alternatively, the dependency-graph hypothesis can be replaced

15For instance, this situation arises in any statistical–mechanical model with variables living
on the set X and pair interactions only on the edges of G, where each Ax depends only on
the variable at x.
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by a weaker hypothesis concerning conditional probabilities, as in the
lopsided Lovász local lemma (Theorem 1.2). It will follow from Theo-
rem 4.1 below that all three hypotheses lead to the same lower bounds on
P(
⋂

x∈X Ax).
The various forms of the Lovász local lemma (e.g. Theorems 1.1 and

1.2) provide a sufficient (but not necessary) condition to have P(
⋂

x∈X Ax)>

0, in terms of the existence of numbers (rx)x∈X satisfying px � rx
∏

y∈�(x)

(1− ry) for suitable probabilities or conditional probabilities p= (px)x∈X.
As discussed in Section 1, we shall approach the problem by dividing our
analysis into two parts. First, in this section, we examine a best-possible
condition to have P(

⋂
x∈X Ax) > 0, in terms of the independent-set poly-

nomial ZG(−p); then, in the next section, we discuss a sufficient condition
to have ZG(−p)> 0, in terms of the existence of such numbers (rx)x∈X or
generalizations thereof.

The following result is a development of Shearer (ref. 98, Theorem 1).

Theorem 4.1. Let (Ax)x∈X be a family of events on some probabil-
ity space, and let G be a graph with vertex set X. Suppose that (px)x∈X
are real numbers in [0,1] such that, for each x and each Y ⊆X \�∗(x), we
have

P



Ax

∣∣∣
⋂

y∈Y
Ay



 � px . (4.1)

(a) If p∈R(G), then

P

(
⋂

x∈X
Ax

)
� ZG(−p) > 0 (4.2)

and more generally

P

(
⋂

x∈Y
Ax

∣∣∣
⋂

x∈Z
Ax

)
� ZG(−p 1Y∪Z)

ZG(−p 1Z)
> 0 (4.3)

for any subsets Y,Z⊆X. Moreover, this lower bound is best possible in
the sense that there exists a probability space on which there can be con-
structed a family of events (Bx)x∈X with probabilities P(Bx) = px and
strong dependency graph G, such that P(

⋂
x∈X Bx)=ZG(−p).
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(b) If p /∈R(G), then there exists a probability space on which there
can be constructed:

(i) A family of events (Bx)x∈X with probabilities P(Bx) = px and
strong dependency graph G, satisfying P(

⋂
x∈X Bx)=0; and

(ii) A family of events (B ′x)x∈X with probabilities P(B ′x)= p′x � px

and strong dependency graph G, satisfying P(B ′x ∩B ′y)=0 for all xy∈E(G)

and P(
⋂

x∈X B
′
x)=0.

Remarks. 1. Please note that G is here an arbitrary graph with ver-
tex set X; it need not be a dependency graph for the events (Ax)x∈X.
Rather, given G, we can regard p as defined by

px = max
Y⊆X\�∗(x)

P



Ax

∣∣∣
⋂

y∈Y
Ay



 (4.4)

(this is clearly the minimal choice). There is then a tradeoff in the choice
of G: adding more edges reduces px (since there are fewer conditional
probabilities to control) but also shrinks the set R(G) (by the last sentence
of Proposition 2.15).

2. Though (4.1) is the weak hypothesis of the lopsided Lovász local
lemma (Theorem 1.2), we will prove in (a) and (b) that the extremal fami-
lies (Bx)x∈X and (B ′x)x∈X have G as a strong dependency graph. Therefore,
all three dependency hypotheses lead to the same optimal lower bound on
P(
⋂

x∈X Ax).
3. The proofs given here of Theorems 4.1 and 4.2 are logically inde-

pendent of nearly all of Theorem 2.10. More precisely, if we define R(G)

and R(W) by condition (b) of Theorem 2.10, then the only part of The-
orem 2.10 that is used in the proofs of Theorems 4.1 and 4.2 is the (rela-
tively easy) implication (b)
⇒ (f).

Proof. For p∈R(G), we wish to define a family of events (Bx)x∈X
(on a new probability space) such that the hypotheses of the theorem are
satisfied and P(

⋂
x∈X Bx) is as small as possible. An intuitively reasonable

way to do this is to make the events Bx as disjoint as possible, consis-
tent with the condition (4.1) (or with either of the two stronger notions
of dependency graph). With this in mind, for �⊆X let us define

P

(
⋂

x∈�
Bx

)
=






∏
x∈�

px if � is independent in G,

0 otherwise.

(4.5)
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This defines a signed measure on the σ -algebra generated by (Bx)x∈X;
indeed, inclusion-exclusion gives

P




⋂

x∈�
Bx ∩

⋂

x �∈�
Bx



 =
∑

I⊇�

(−1)|I |−|�| P

(
⋂

x∈I
Bx

)
(4.6a)

=
∑

I⊇�,I independent

(−1)|I |−|�|
∏

x∈I
px (4.6b)

= (−1)|�|ZG(−p;�) , (4.6c)

where ZG(−p;�) is defined as in (2.37). In particular, taking �=∅, we
have P(

⋂
x∈X Bx)=ZG(−p). Theorem 2.10(f) implies that (4.6c) is nonneg-

ative for all �, so that (4.5) defines a probability measure on σ(Bx : x ∈
X). (This is the probability measure defined in Theorem 2.10(g).)

If Y and Z are disjoint subsets of X such that G contains no edges
between Y and Z, it follows from (4.5) that for Y0 ⊆ Y and Z0 ⊆Z the
events

⋂
x∈Y0

Bx and
⋂

x∈Z0
Bx are independent. This implies (see, for

instance, ref. 116, Theorem 4.2 or 16, Theorem 4.2) that σ(Bx : x∈Y ) and
σ(Bx : x ∈Z) are independent, and so G is a strong dependency graph.

We next show that (Bx)x∈X is a family minimizing P(
⋂

x∈X Bx). For
�⊆X, we define

P�=P

(
⋂

x∈�
Ax

)
, (4.7)

Q�=P

(
⋂

x∈�
Bx

)
. (4.8)

Let us now prove by induction on |�| that P�/Q� is monotone increasing
in �. Note first that by inclusion–exclusion,

Q� =
∑

I⊆�

(−1)|I | P

(
⋂

x∈I
Bx

)
(4.9a)

=
∑

I⊆�,I independent

(−1)|I |
∏

x∈I
px (4.9b)

= ZG(−p 1�) . (4.9c)
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Thus Q� > 0 for all �, since p∈R(G) and R(G) is a down-set. Further-
more, for y /∈�,

Q�∪{y} =
∑

I⊆�∪{y}, I independent

(−1)|I |
∏

x∈I
px (4.10a)

= Q� − py

∑

I⊆�\�(y), I independent

(−1)|I |
∏

x∈I
px (4.10b)

= Q� − pyQ�\�(y) . (4.10c)

(Note that this is just the fundamental identity (3.5) applied to ZG(−p 1�).)
On the other hand,

P�∪{y} = P� − P

(
Ay ∩

⋂

x∈�
Ax

)
(4.11a)

� P� − P



Ay ∩
⋂

x∈�\�(y)

Ax



 (4.11b)

� P� − pyP�\�(y) (4.11c)

by the hypothesis (4.1). Now we want to show that P�∪{y}/Q�∪{y} �
P�/Q�, or equivalently that P�∪{y}Q� −Q�∪{y}P� � 0. By (4.10) and
(4.11) we have

P�∪{y}Q�−Q�∪{y}P� � [P�−pyP�\�(y)]Q� − [Q�−pyQ�\�(y)]P�

(4.12a)

= py [P�Q�\�(y)−Q�P�\�(y)] (4.12b)

� 0 (4.12c)

since

P�

Q�

� P�\�(y)

Q�\�(y)

(4.13)

by the inductive hypothesis.
Since P�/Q� is monotone increasing in �, we have PX/QX �

P∅/Q∅=1, which proves (4.2). More generally, for any subsets Y,Z⊆X,
we have PY∪Z/QY∪Z � PZ/QZ and hence PY∪Z/PZ � QY∪Z/QZ, which
gives (4.3).
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For p �∈R(G), choose a minimal vector p′ � p such that p′ � 0 and
ZG(−p′)=0 (such a p′ is in general nonunique). Then the family of events
(B ′x)x∈X defined by (4.5) with px replaced by p′x satisfies P(

⋂
x∈X B

′
x)=

ZG(−p′)= 0 (by (4.6c) with �=∅). Since p′ is in the closure of R(G),
it follows by the minimality of p′ and the continuity of ZG that this is a
well-defined probability measure; note that if x and y are adjacent then
P(B ′x ∩B ′y)= 0 by (4.5). Thus we have constructed a collection of events
satisfying part (ii) of the theorem.

To construct a collection of events satisfying part (i), let (Cx)x∈X be
an (independent) collection of independent events satisfying

[1−P(B ′x)] [1−P(Cx)] = 1−px . (4.14)

Then the events Bx=B ′x ∪Cx satisfy P(Bx)=px and P(
⋂

Bx) � P(
⋂

B
′
x)=

0.

Remarks. 1. If (Ax)x∈X is a family of events satisfying (4.2) with
equality, then we have PX =QX in the foregoing proof; and since P∅ =
Q∅ = 1, the monotonicity of P�/Q� implies that we have P� =Q� for
every �⊆X. Thus, if (Ax)x∈X is an extremal family, the probabilities of
all events in σ(Ax : x ∈X) are completely determined and are given by
(4.5)/(4.6).

2. The Lovász local lemma can be formulated more generally for fam-
ilies of events with a dependency digraph: each event Ax is independent
from the σ -algebra σ(Ay : y ∈X \�∗+(x)), where �∗+(x)=�+(x)∪ {x} and
�+(x) is the out-neighborhood of x. See e.g. ref. 2, Lemma 5.1.1 or 23,
Theorem 1.17. It would be interesting to have a digraph analogue of The-
orem 4.1, but we do not know how to do this.

3. There are other probabilistic inequalities that are expressed in
terms of a dependency graph (see for instance Suen(109) or Janson(68)); it
would be interesting to know if any of these have counterparts in statisti-
cal mechanics. One obstacle here is the need for a counterpart of Theorem
4.1. However, even without such a result, there may be scope for proving
further inequalities in the presence of weak dependency conditions of the
form discussed in the next subsection.

4.2. Soft-Core Version

Let us now consider how to extend Theorem 4.1 to the more gen-
eral case of a soft-core pair interaction, i.e. to allow “soft edges” xy of
strength 1−W(x, y)∈ [0,1]. The first step here is to replace the hard-core
dependency condition (4.1) by an appropriate soft-core version.
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Let W : X×X→ [0,1] be symmetric and satisfy W(x, x)=0 for all x∈
X; and let (Ax)x∈X be a collection of events in some probability space. For
each x ∈X, let Sx be a random subset of X, independent of the σ -algebra
σ(Ax : x ∈X), defined by the probabilities

P(y ∈Sx) = W(x, y) (4.15)

independently for each y∈X. (Thus in the case of a hard-core pair interac-
tion, we have Sx=X \�∗(x) with probability 1.) Let (px)x∈X be real num-
bers in [0,1]. We say that (Ax)x∈X satisfies the weak dependency conditions
with interaction W and probabilities (px)x∈X if, for each x ∈X and each
Y ⊆X \x we have

E



P



Ax ∩
⋂

y∈Y∩Sx

Ay







 � pxE



P




⋂

y∈Y∩Sx

Ay







 . (4.16)

(Note that in the special case of a hard-core pair interaction, we have
Y ∩ Sx = Y \�∗(x) with probability 1, so that (4.16) reduces to (4.1).) Of
course, the reference here to a random subset Sx can be replaced by an
explicit expression for the probabilities P(Y ∩ Sx = Y ′), so that (4.16) is
equivalent to

∑

Y ′⊆Y




∏

y∈Y ′
W(x, y)








∏

y∈Y\Y ′
[1−W(x, y)]



P



Ax ∩
⋂

y∈Y ′
Ay





� px

∑

Y ′⊆Y




∏

y∈Y ′
W(x, y)








∏

y∈Y\Y ′
[1−W(x, y)]



P




⋂

y∈Y ′
Ay



 .

(4.17)

We can now state a soft-core version of Theorem 4.1:

Theorem 4.2. Let (Ax)x∈X be a family of events in some probability
space, and let W : X×X→ [0,1] be symmetric and satisfy W(x, x)=0 for
all x ∈X. Suppose that (Ax)x∈X satisfies the weak dependency conditions
(4.16)/(4.17) with interaction W and probabilities (px)x∈X.

(a) If p∈R(W), then

P

(
⋂

x∈X
Ax

)
� ZW(−p) > 0 (4.18)
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and more generally

P

(
⋂

x∈Y
Ax

∣∣∣
⋂

x∈Z
Ax

)
� ZW(−p 1Y∪Z)

ZW(−p 1Z)
> 0 (4.19)

for any subsets Y,Z ⊆ X. Furthermore, this bound is best possible in
the sense that there exists a family (Bx)x∈X with probabilities P(Bx)=px

that satisfies the weak dependency conditions (4.16)/(4.17) with interaction
W and probabilities (px)x∈X, has strong dependency graph GW , and has
P(
⋂

x∈X Bx)=ZW(−p).

(b) If p /∈R(W), then there exists a probability space on which there
can be constructed:

(i) A family of events (Bx)x∈X with probabilities P(Bx)=px and sat-
isfying the weak dependency conditions (4.16)/(4.17) with interaction W ,
such that P(

⋂
x∈X Bx)=0; and

(ii) A family of events (B ′x)x∈X with probabilities P(B ′x)= p′x � px

and satisfying the weak dependency conditions (4.16)/(4.17) with inter-
action W , such that P(B ′x ∩ B ′y) = W(x, y)P(B ′x)P(B ′y) for all x, y and
P(
⋂

x∈X B
′
x)=0.

Proof. For p ∈R(W), we define a family of events (Bx)x∈X (on a
new probability space) by

P

(
⋂

x∈�
Bx

)
=
(
∏

x∈�
px

)


∏

{x,y}⊆�

W(x, y)



 (4.20)

(here the second product runs over all two-element subsets {x, y}⊆X (x �=
y)). As before, inclusion–exclusion gives

P




⋂

x∈�
Bx ∩

⋂

x �∈�
Bx



 =
∑

I⊇�

(−1)|I |−|�|P

(
⋂

x∈I
Bx

)
(4.21a)

=
∑

I⊇�

(−1)|�|
∏

x∈I
(−px)

∏

{x,y}⊆I

W(x, y) (4.21b)

= (−1)|�|ZW(−p;�) . (4.21c)
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In particular, we have P(
⋂

x∈X Bx)=ZW(−p)> 0, and more generally for
�⊆X we have

P

(
⋂

x∈�
Bx

)
=
∑

I⊆�

(−1)|I |P

(
⋂

x∈I
Bx

)

=
∑

I⊆�

(−1)|I |
(
∏

x∈I
px

)


∏

{x,y}⊆�

W(x, y)





= ZW(−p 1�)

> 0.

We define P� and Q� as in (4.7)/(4.8). Note that Q�=ZW(−p1�)>

0, as QX =ZW(−p) > 0 and R(W) is a down-set. Let us now prove by
induction on |�| that P�/Q� is monotone increasing in �. For �⊆X and
y ∈X \�, we have

Q�∪{y} = ZW

(−p 1�∪{y}
)

(4.22a)

= ZW(−p 1�) − pyZW(−W(y, ·)p 1�) (4.22b)

= ZW(−p 1�) − py

∑

Z⊆�

(
∏

z∈Z
W(y, z)

)

×



∏

z∈�\Z
[1−W(y, z)]



ZW(−p 1Z) (4.22c)

= Q� − py

∑

Z⊆�

(
∏

z∈Z
W(y, z)

)


∏

z∈�\Z
[1−W(y, z)]



QZ,

(4.22d)

where we have used the fundamental identity (3.3)/(3.6). On the other
hand,

P�∪{y} = P�−P

(
Ay ∩

⋂

z∈�
Az

)
(4.23a)

= P�−
∑

Z⊆�

(
∏

z∈Z
W(y, z)

)


∏

z∈�\Z
[1−W(y, z)]



P

(
Ay ∩

⋂

z∈�
Az

)

(4.23b)
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� P�−
∑

Z⊆�

(
∏

z∈Z
W(y, z)

)


∏

z∈�\Z
[1−W(y, z)]



P

(
Ay ∩

⋂

z∈Z
Az

)

(4.23c)

� P�−py

∑

Z⊆�

(
∏

z∈Z
W(y, z)

)


∏

z∈�\Z
[1−W(y, z)]



P

(
⋂

z∈Z
Az

)
.

(4.23d)
where the last line uses the weak dependency condition (4.16)/(4.17). We
then have

P�

Q�

Q�∪{y} = P�−py

∑

Z⊆�

(
∏

z∈Z
W(y, z)

)


∏

z∈�\Z
[1−W(y, z)]



 P�

Q�

QZ

(4.24a)

� P�−py

∑

Z⊆�

(
∏

z∈Z
W(y, z)

)


∏

z∈�\Z
[1−W(y, z)]



PZ

(4.24b)

� P�∪{y} , (4.24c)

where the first inequality uses the inductive hypothesis and the second
inequality uses (4.23). Hence P�∪{y}/Q�∪{y} � P�/Q� as claimed.

The bounds (4.18) and (4.19) follow as in Theorem 4.1.
Part (b) follows as in Theorem 4.1. For p /∈R(W) choose a minimal

vector p′ with 0 � p′ � p and ZW(−p′)= 0. The events (B ′x)x∈X defined
by (4.20) with px replaced by p′x satisfy P(

⋂
x∈X B

′
x)=0 and P(B ′x ∩B ′y)=

W(x, y)P(B ′x)P(B ′y) for all x, y. A collection of events satisfying (i) is con-
structed as before.

Remark. The uniqueness of a family of events satisfying (4.18) with
equality follows as before: since PX/QX = P∅/Q∅ = 1 and P�/Q� is
increasing we have P� =Q� for all � ⊆ X and so the probabilities of
events are given by (4.21).

5. SUFFICIENT CONDITIONS FOR ZW �=0 IN A POLYDISC

In this section we shall exhibit sufficient conditions on a set of radii
R={Rx}x∈X so that the partition function ZW(w) is nonvanishing in the
closed polydisc |w| � R. We shall restrict attention to the case of a repul-
sive lattice gas with hard-core self-repulsion, i.e. 0 � W(x, y) � 1 for all



Repulsive Lattice Gas, Independent-Set Polynomial and Lovász Local Lemma 1217

x, y and W(x, x)=0 for all x, and we shall use the notation introduced in
Section 3.1. Our main tool will be the fundamental identity (3.3), applied
inductively.

5.1. Basic Bound

Our first (and most basic) bound is due to Dobrushin(37,38) in the
case of a hard-core interaction; the generalization to a soft repulsive inter-
action was proven recently by one of us.(101) The method of proof is, how-
ever, already implicit (in more powerful form) in Shearer (ref. 98, Theorem
2).

Theorem 5.1 (Dobrushin (37,38) and Sokal (101)). Let X be a finite
set, and let W satisfy

(a) 0 � W(x, y) � 1 for all x, y ∈X,

(b) W(x, x)=0 for all x ∈X.

Let R={Rx}x∈X � 0. Suppose that there exist constants {Kx}x∈X satisfying
0 � Kx <1/Rx and

Kx �
∏

y �=x

1−W(x, y)KyRy

1−KyRy

(5.1)

for all x ∈X. Then, for each subset �⊆X, Z�(w) is nonvanishing in the
closed polydisc D̄R={w∈C

X : |wx | � Rx for all x} and satisfies there

∣∣∣∣
∂ log Z�(w)

∂wx

∣∣∣∣ �






Kx

1−Kx |wx | for all x ∈�,

0 for all x ∈X \�.

(5.2)

Moreover, if w,w′ ∈ D̄R and w′x/wx ∈ [0,+∞] for each x ∈�, then

∣∣∣∣log
Z�(w′)
Z�(w)

∣∣∣∣ �
∑

x∈�

∣∣∣∣log
1−Kx |w′x |
1−Kx |wx |

∣∣∣∣ , (5.3)

where on the left-hand side we take the standard branch of the log, i.e.
| Im log · · · | � π .

Remark. It follows from (5.1) that Kx � 1 and hence that Rx <1.
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Proof. Note first that (5.2) for any given � implies (5.3) for the
same �, by integration.

The proof is by induction on the cardinality of �. If �=∅ the claims
are trivial. So let us assume that (5.2) (and hence also (5.3)) holds for all
sets of cardinality <n, and let a set � of cardinality n be given. Let x be
any element of �. Let us apply the fundamental identity (3.3), and observe
that W(x, ·)w∈D̄R since |W(x, y)| � 1. Therefore, by the inductive hypoth-
esis we have Z�\x(w) �=0 and Z�\x(W(x, ·)w) �=0; and from (3.3) we have

∂

∂wx

log Z�(w) = Kx,�(w)

1+Kx,�(w)wx

, (5.4)

where

Kx,�(w) = Z�\x(W(x, ·)w)

Z�\x(w)
. (5.5)

Now by the inductive hypothesis (5.3) for � \ x, and using the fact that
w′ =W(x, ·)w satisfies w′y/wy =W(x, y) � 0, we have

|Kx,�(w)| �
∏

y∈�\x

1−W(x, y)Ky |wy |
1−Ky |wy | �

∏

y∈X\x

1−W(x, y)Ky |wy |
1−Ky |wy | ,

(5.6)

which is � Kx by the hypothesis (5.1). This proves (5.2) for �, and hence
completes the induction.

It is convenient to rewrite Theorem 5.1 in terms of the new variables
rx =KxRx :

Corollary 5.2. Let X be a finite set, and let W satisfy 0 � W(x, y) �
1 for all x, y ∈X and W(x, x)= 0 for all x ∈X. Suppose that there exist
constants 0 � rx <1 satisfying

Rx � rx
∏

y �=x

1− ry

1−W(x, y)ry
(5.7)

for all x∈X. Then, for all w satisfying |w| � R, the partition function ZW

satisfies

|ZW(w)| � ZW(−R) �
∏

x∈X
(1− rx) > 0 (5.8)
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and more generally

∣∣∣∣
ZW(w 1Y∪Z)

ZW(w 1Z)

∣∣∣∣ �
∏

x∈Y
(1− rx) > 0 . (5.9)

In particular, if we define the “maximum weighted degree”

�W = max
x∈X

∑

y �=x

[1−W(x, y)] (5.10)

and write

F(�W) =
2+�W −

√
�2

W +4�W

2
, (5.11)

R(�W) = F(�W) e−[1−F(�W )], (5.12)

we have

|ZW(w)| � [1−F(�W)]|X|>0 (5.13)

whenever |wx | � R(�W) for all x ∈X.

Proof. Setting rx=KxRx , we find that (5.1) becomes (5.7), and (5.3)
with �=X and w′ =0 becomes (5.8).

To obtain the last claim, note first that

1− r

1−Wr
= 1− r

1− r+ (1−W)r
= 1

1+ (1−W) r
1−r

� e−(1−W)r/(1−r) (5.14)

whenever 0 � W � 1 and 0 � r � 1. Therefore, if we set rx=r for all x∈X,
we have

rx
∏

y �=x

1− ry

1−W(x, y)ry
� re−�W r/(1−r) . (5.15)

We then choose r to maximize the right-hand side of (5.15); simple
calculus yields r = F(�W) and �Wr = (1 − r)2, so that the right-hand
side of (5.15) is bounded below by R(�W). It follows that if we define
Rx = R(�W) and rx = F(�W) for all x ∈ X then (5.7) and so (5.8) are
satisfied.
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Remarks. 1. The radius R(�W) behaves as

R(�W) =





1−2�
1/2
W + 5

2�W +O(�
3/2
W ) as �W→0,

1
e�W

[
1− 1

�W
+ 3

2�W
+O(�−3

W )
]

as �W→∞.
(5.16)

Example 3.6 (the r-ary rooted tree) shows that this bound is sharp (to
leading order) as �W →∞. At the other extreme, the 1− const ×�

1/2
W

behavior at small �W is also best possible, since the two-site lattice gas
with W(x, x)=W(y, y)=0 and W(x, y)=1− ε has ZW(w)=1+2w+ (1−
ε)w2 and hence has a root at w=−1/(1+√ε). (However, the coefficient
2 rather than 1 in the �

1/2
W term of (5.16) may not be best possible.)

2. From Proposition 2.15(c) we know that the set R(W) is log-con-
vex; it is therefore natural to ask whether the subset of R(W) produced
by (5.7) is also log-convex. (If it were not, then we could improve Corol-
lary 5.2 by taking the log-convex hull.) It turns out that the set of vectors
satisfying (5.7) is indeed always log-convex: in fact, if (r,R) and (r′,R′) are
two pairs of vectors satisfying (5.7), and 0 � λ � 1, then (rλr′1−λ,RλR′1−λ)

also satisfies (5.7). In the hard-core case this follows from the inequality
1− rλ

y (r ′y)1−λ � (1− ry)
λ(1− r ′y)1−λ, which is proven by two applications

of the weighted arithmetic–geometric mean inequality as in (3.55). In the
general case it can be shown by a similar argument (using four applica-
tions of the weighted arithmetic–geometric mean inequality!).

Specializing Corollary 5.2 to the case of a hard-core pair interaction
for a graph G,

W(x, y) =
{

0 if x=y or xy ∈E(G),

1 if x �=y and xy /∈E(G),
(5.17)

we have:

Corollary 5.3. Let G be a finite graph with vertex set X, and let
R={Rx}x∈X � 0. Suppose that there exist constants 0 � rx <1 satisfying

Rx � rx
∏

y∈�(x)

(1− ry) (5.18)

for all x ∈X. Then, for all w satisfying |w| � R, the independent-set poly-
nomial ZG satisfies

|ZG(w)| � ZG(−R) �
∏

x∈X
(1− rx) > 0 (5.19)
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and more generally

∣∣∣∣
ZG(w 1Y∪Z)

ZG(w 1Z)

∣∣∣∣ �
∏

x∈Y
(1− rx) > 0 . (5.20)

In particular, if G has maximum degree �, then |ZG(w)| � [�/(�+
1)]|X|>0 whenever |wx | � ��/(�+1)�+1 for all x ∈X.

Proof. The last claim is obtained by setting rx=1/(�+1) for all x∈
X.

Remark. The radius ��/(�+1)�+1 behaves for large � as

��

(�+1)�+1
= 1

e�

[
1− 1

2�
+ 7

24�2
− 3

16�3
+O(�−4)

]
, (5.21)

which agrees with (5.16) to leading order in 1/� but is slightly larger
(hence better) at order 1/�2.

Combining Corollary 5.3 with Theorem 4.1, we immediately obtain
the lopsided Lovász local lemma (Theorem 1.2). Combining Corollary 5.2
with Theorem 4.2, we obtain a “soft-core” version of the lopsided Lovász
local lemma:

Theorem 5.4. Let (Ax)x∈X be a family of events in some probabil-
ity space, and let W : X×X→ [0,1] be symmetric and satisfy W(x, x)=0
for all x ∈X. Suppose that (Ax)x∈X satisfies the weak dependency condi-
tions (4.16)/(4.17) with interaction W and probabilities (px)x∈X. Suppose
further that (rx)x∈X are real numbers in [0,1) satisfying

px � rx
∏

y �=x

1− ry

1−W(x, y)ry
(5.22)

Then

P

(
⋂

x∈X
Ax

)
�
∏

x∈X
(1− rx) > 0 (5.23)

and more generally for sets Y,Z⊆X, we have

P

(
⋂

x∈Y
Ax

∣∣∣
⋂

x∈Z
Ax

)
�

∏

x∈Y\Z
(1− rx) = 0 . (5.24)
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Defining the weighted degree �W as in (5.10), we obtain the follow-
ing:

Lemma 5.5. Let (Ax)x∈X satisfy the weak dependency conditions
(4.16)/(4.17) with interaction W and probabilities (px)x∈X. If px < �

�W

W /

(�W +1)�W+1 for every x ∈X, then P(
⋂

x∈X Ax)>0.

Proof. As in the proof of Corollary 5.3, set rx = r≡1/(�W +1) for
all x ∈X. Then check (5.7):

rx
∏

y �=x

1− ry

1−W(x, y)ry
� rx

∏

y �=x

(1− ry)
1−W(x,y)

� r(1− r)�W

�
�

�W

W

(�W +1)�W+1
. (5.25)

In the first inequality we have used the fact that 1 −W(x, y)ry � (1 −
ry)

W(x,y) for 0 � W(x, y)≤1.

It would be interesting to see applications of Theorem 5.4 and
Lemma 5.5.

5.2. Improved Bound

Let us now attempt to improve the bound of Theorem 5.1. Note, first
of all, that we need not insist that the bound (5.2) hold with the same con-
stant Kx for all �� x; rather, we can use constants Kx,� that depend on
�. Inspection of the inductive argument shows that we can define the con-
stants Kx,� ∈ [0,+∞] as a function of the family {Rx} by the recursion

Kx,� =






∏

y ∈�\x
W(x, y) �=1

Ry >0

1−W(x, y)Ky,�\xRy

1−Ky,�\xRy

if Ky,�\xRy <1 for all terms in the product,

+∞ otherwise .

(5.26)

(Note that Kx,{x} = 1 for all x, because the product (5.26) is empty.) It
follows immediately by induction that each Kx,� is an increasing rational
function of {Ry}y∈�\x up to the first pole, and +∞ thereafter. More pre-
cisely, suppose we define the rational functions K̂x,�(R) by the recursion
(5.26) without the restrictions Ky,�\xRy <1; then it is easy to see that

Kx,�(R) =
{

K̂x,�(R) if K̂x,�(R′)<∞ for 0 � R′ � R,

+∞ otherwise.
(5.27)
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Moreover, it is easily proven by induction that all the partial derivatives
of K̂x,� are nonnegative at R= 0; it then follows from Proposition 2.11
that the Taylor series of K̂x,�(R) about 0 converges throughout the region
where the first case in (5.27) holds, and that all the partial derivatives of
Kx,�= K̂x,� are nonnegative there. Finally, it is obvious from the defini-
tion (5.26) ff. that Kx,� is an increasing function of �.

Let us now define a graph G with vertex set V ={x ∈X : Rx >0} and
edge set E= {x, y ∈V : W(x, y) �= 1}; and for each �⊆X, let G� be the
subgraph of G induced by �∩V . Then only the connected component of
G� containing x plays any role in the definition of Kx,�: that is, if G�

has several connected components with vertex sets �1, . . . ,�k and x ∈�i ,
then Kx,�=Kx,�i

.
Let us now call a pair (x,�) “good” if Kx,� <∞ and Kx,�Rx < 1.

It follows immediately from the definition (5.26) ff. that if (x,�) is good,
then (y,�\x) is also good whenever y∈�\x with W(x, y) �=1 and Ry >0,
i.e. whenever y is a neighbor of x in G�. (Indeed, this follows under the
weaker hypothesis that Kx,� <∞.)

We then have:

Theorem 5.6 (Improved Dobrushin–Shearer bound). Let X be a finite
set, and let W satisfy

(a) 0 � W(x, y) � 1 for all x, y ∈X,

(b) W(x, x)=0 for all x ∈X.

Let R={Rx}x∈X � 0. Define the constants Kx,� ∈ [0,+∞] as above. Sup-
pose that in each connected component of G� there exists at least one ver-
tex x for which the pair (x,�) is good. Then Z�(w) is nonvanishing in the
closed polydisc D̄R; and for every good pair (x,�) and every w∈ D̄R, we
have

∣∣∣∣
∂ log Z�(w)

∂wx

∣∣∣∣ � Kx,�

1−Kx,�|wx | . (5.28)

Moreover, if w,w′ ∈ D̄R and w′x/wx ∈ [0,+∞] for each x ∈�, and in addi-
tion the pair (x,�) is good whenever w′x �=wx , then

∣∣∣∣log
Z�(w′)
Z�(w)

∣∣∣∣ �
∑

x ∈�
w′x �=wx

∣∣∣∣log
1−Kx,�|w′x |
1−Kx,�|wx |

∣∣∣∣ , (5.29)

where on the left-hand side we take the standard branch of the log, i.e.
| Im log · · · | � π .
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Proof. Note first that (5.28) for any given � implies (5.29) for the
same �, by integration.

The proof is by induction on the cardinality of �. If �=∅ the claims
are trivial. So let us assume that (5.28) (and hence also (5.29)) holds for all
sets of cardinality <n satisfying the stated hypotheses, and let a set � of
cardinality n satisfying these hypotheses be given. If G� is not connected,
i.e. has components with vertex sets �1, . . . ,�k (k � 2), then Z�(w) fac-
torizes as

Z�(w) =
k∏

i=1

Z�i
(w) ; (5.30)

moreover, each connected component has cardinality < n and satisfies
the hypotheses of the theorem, so it follows immediately from the induc-
tive hypothesis that (5.28) and (5.29) hold also for �. We may therefore
assume that G� is connected.

Let x be any element of � for which the pair (x,�) is good. Since
G� is connected, the vertex x has at least one neighbor y in each con-
nected component of G�\x . Moreover, as noted previously, the pair (y,�\
x) is good whenever y is a neighbor of x in G�. Therefore, the induc-
tive hypothesis is applicable to � \ x. Let us now apply the fundamen-
tal identity (3.3), and observe that W(x, ·)w∈ D̄R since |W(x, y)| � 1. By
the inductive hypothesis we have Z�\x(w) �=0 and Z�\x(W(x, ·)w) �=0; and
from (3.3) we have

∂

∂wx

log Z�(w) = Kx,�(w)

1+Kx,�(w)wx

, (5.31)

where

Kx,�(w) = Z�\x(W(x, ·)w)

Z�\x(w)
. (5.32)

Now each y ∈� \ x with w′y �=wy necessarily has W(x, y) �= 1 and Ry > 0
(i.e. is a neighbor of x in G�), so that the pair (y,� \ x) is good. We
may therefore apply the inductive hypothesis (5.29); using the fact that
w′ =W(x, ·)w satisfies w′y/wy =W(x, y) � 0, we have

|Kx,�(w)| �
∏

y ∈�\x
W(x, y) �=1

Ry >0

1−W(x, y)Ky,�\x |wy |
1−Ky,�\x |wy | � Kx,� (5.33)
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since |wy | � Ry . This proves (5.28) for (x,�), and hence completes the
induction.

Remark. It is unclear whether the set of vectors R satisfying the
hypotheses of Theorem 5.6 is log-convex. If it is not, then the conclusion
of Theorem 5.6 can be improved by taking the log-convex hull.

As a corollary of Theorem 5.6, we can deduce a bound due originally
(in the Lovász context) to Shearer (ref. 98, Theorem 2), which improves
the last sentence of Corollary 5.3 by replacing � by �−1. Indeed, we can
very slightly improve Shearer’s bound by allowing one vertex x0 to have a
larger radius Rx0 :

Corollary 5.7. Let G= (X,E) be a finite graph of maximum degree
� � 2, and fix one vertex x0 ∈X. Suppose that |wx0 | � (�−1)�/�� and
that |wx | � (�−1)�−1/�� for all x �=x0. Then ZG(w) �=0.

Proof. Since ZG factorizes over connected components, we can
assume without loss of generality that G is connected. (Indeed, if G is dis-
connected, then we can allow one “x0-like” vertex in each connected com-
ponent.) Set Rx0 = (�−1)�/�� and Rx = (�−1)�−1/�� for all x �=x0.

We first claim that if x0 /∈�, and x ∈� is a vertex with at least one
neighbor in X \�, then

Kx,� <

(
�

�−1

)�−1

(5.34)

(note the strict inequality). The proof is by induction on |�|, using the
definition (5.26): it certainly holds if �= {x}; since every y appearing in
the product on the right-hand side of (5.26) has at least one neighbor
outside of � \ x (namely, x itself), Ky,�\x satisfies (5.34) by the inductive
hypothesis and so Ky,�\xRy < 1/�; and finally, since x has at least one
neighbor outside �, there are at most �−1 factors in the product. Thus

Kx,� <

(
1

1−1/�

)�−1

=
(

�

�−1

)�−1

.

It then follows that

Kx0,X <

(
�

�−1

)�

, (5.35)

since the bound (5.34) applies to all the terms Ky,�\x0 appearing on the
right-hand side of (5.26). We therefore have Kx0,XRx0 <1, and so the pair
(x0,X) is good. The claim then follows from Theorem 5.6.
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Replacing ��/(�+1)�+1 by (�−1)�−1/�� may seem to be a neg-
ligible improvement, since both quantities have the same leading behavior
≈1/(e�) as �→∞, and differ only at higher order:

(�−1)�−1

��
= 1

e�

[
1+ 1

2�
+ 7

24�2
+ 3

16�3
+O(�−4)

]
(5.36)

(cf. (5.21)).16 But Shearer’s bound (�− 1)�−1/�� has the great merit of
being best possible: for, as he showed(98), if G is the complete rooted tree
with branching factor r =�− 1 and depth n, then ZG(w) has negative
real zeros that tend to w=−(�− 1)�−1/�� as n→∞ (see Example 3.6
above).

We remark that Corollary 5.7 does not appear to extend naturally to
the soft-core case (note that having one neighbor outside � in the argu-
ment around (5.34) need not reduce the weighted degree of a vertex in �

by 1).

5.3. Optimal Bound

Now let us try to further improve Theorem 5.6. Where in the proof
did we lose equality? This happened only in (5.33), where we applied
(5.29), which in turn arose from integrating (5.28): the point is that the
bound (5.28) in general improves as we pass from w downwards to w′ =
W(x, ·)w, but we failed to take advantage of this fact. The solution is
to order (arbitrarily) the vertices y1, . . . , yk arising in the product (5.33)
and to write Kx,�(w) as a telescoping product; then we will have a sharp
bound, i.e. one that becomes equality when w=−R.

Let us show this first in the special case of a hard-core pair interac-
tion: setting �(x)∩�={y1, . . . , yk}, we have

Kx,�(w) = Z�\�∗(x)(w)

Z�\x(w)
=

k∏

i=1

Z�\x\{y1,... ,yi }(w)

Z�\x\{y1,... ,yi−1}(w)
. (5.37)

Therefore we can improve (5.33) by writing

|Kx,�(w)| �
k∏

i=1

1
1−Kyi,�\x\{y1,... ,yi−1}Ryi

, (5.38)

16The amusing similarity of (5.21) and (5.36) arises from the fact that −(−�)−�/(−� +
1)−�+1= (�−1)�−1/��.
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and so we can replace the definition (5.26) by

K
opt
x,� =

k∏

i=1

1

1−K
opt
yi ,�\x\{y1,... ,yi−1}Ryi

(5.39)

if K
opt
yi ,�\x\{y1,... ,yi−1}Ryi

< 1 for all terms in the product, and K
opt
x,� =+∞

otherwise (note that K
opt
x,{x} = 1). Moreover, if we use K

opt
x,�, then all the

bounds in the proof become equality when w=−R.
In the general case of a “soft” interaction W(x, y), things become

slightly more complicated, since the vectors w′ =W(x, ·)w have their com-
ponents depressed but not set to zero. To handle this case, we need to
define the numbers K

opt
x,� explicitly as functions of a vector R �=x . We begin

by writing Kx,�(w) as a telescoping product as in (3.10):

Kx,�(w) =
k∏

i=1

Z�\x(w̃(i))

Z�\x(w̃(i−1))
, (5.40)

where the vectors w̃(i) are defined by

(w̃(i))y =
{

W(x, y)wy if y=yj for some j � i,

wy otherwise.
(5.41)

Therefore we can improve (5.33) by writing

|Kx,�(w)| �
k∏

i=1

1−W(x, yi)Kyi,�\x(R̃
(i−1)
�=x )Ryi

1−Kyi,�\x(R̃
(i−1)
�=x )Ryi

(5.42)

(where R̃(i)
�=x is defined by the obvious analogue of (5.41)), and so we could

have replaced the definition (5.26) by

K
opt
x,� =

k∏

i=1

1−W(x, yi)K
opt
yi ,�\x(R̃

(i−1)
�=x )Ryi

1−K
opt
yi ,�\x(R̃

(i−1)
�=x )Ryi

(5.43)

if K
opt
yi ,�\x(R̃

(i−1)
�=x )Ryi

<1 for all terms in the product, and K
opt
x,�=+∞ oth-

erwise.
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Another way of looking at all this is: We want to choose the con-
stants Kx,� so that the bound (5.28) holds. By (3.8) and (3.9), the optimal
choice is manifestly

K
opt
x,� = sup

0�R′�R
Kx,�(−R′) , (5.44)

where Kx,�(w) was defined in (3.7). We now claim that (5.44) is identical
to (5.43) et seq. Indeed, the recursion (3.13) shows that the rational func-
tion Kx,�(−R) is identical to what one obtains from the recursion (5.43)
if one omits the condition following the equation; and the monotonicity
of (5.43) up to the first pole guarantees that implementing the condition
following the equation is equivalent to taking the supremum over all R′
satisfying 0 � R′ � R.

In summary, this second improvement of Theorem 5.1 is optimal in
the sense that it is equivalent to calculating the exact Kx,�(w) and hence
(by (3.16)) the exact Z�(w). So this “optimally improved Dobrushin–
Shearer theorem” is not usually going to be useful in practice; but it does
give insight into what has been lost in Theorems 5.1 and 5.6.

6. TREE INTERPRETATION

Further insight into Theorem 5.6 and its “optimal” improvement à la
(5.43)/(5.44) can be obtained by considering the tree structure underlying
the recursions (5.26) and (5.43).

6.1. Tree Interpretation of Theorem 5.6

Let us first consider (5.26), which provides a recursive definition of
the functions Kx,�(R) (or K̂x,�(R) if we ignore the conditions Ky,�\xRy <

1 following (5.26)). This recursion can be encoded as a tree: at the top
(root) of the tree is the pair (x,�); immediately underneath it are all the
pairs (y,� \ x) for which W(x, y) �= 1 (that is, for which xy is an edge of
the support graph G=GW restricted to �); and so on. Another way of
saying this is as follows:

Definition 6.1 (see also ref. 78). Let G be a simple loopless graph,
and let x1∈V (G). Then the path-tree or self-avoiding-walk tree (SAW-tree)
of G rooted at x1 – let us call it SAW(G, x1) – is the graph whose vertex
set is the set of paths in G starting at x1 (i.e. paths x1x2 · · ·xk in G with
k � 1) and whose edges connect P to P ′ whenever P ′ is a one-step exten-
sion of P (i.e. whenever P ′ =x1 · · ·xk with k � 2 and P =x1 · · ·xk−1). The
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root of SAW(G, x1) is the zero-step path x1. (Note that if G happens to
be a tree, then SAW(G, x1) is isomorphic to G for any x1 ∈V (G).)

We then associate a path x1 · · ·xk with the pair (xk,�) where � =
V (G) \ {x1, . . . , xk−1}. Note that a given pair (xk,�) can correspond
to many paths x1 · · ·xk, which arise from different orderings of the set
{x2, . . . , xk−1}=V (G)\�\x1.

Given a nonnegative vector R={Rx}x∈V (G), let us now assign to the
vertices of SAW(G, x1) the fugacities

ŵx1···xk
= −Rxk

, (6.1)

and to the edges of SAW(G, x1) the weights

Ŵ (x1 · · ·xk−1, x1 · · ·xk) = W(xk−1, xk) . (6.2)

We can then apply Algorithm T from Section 3.4 to calculate the effec-
tive fugacities ŵeff

x1···xk
on the tree SAW(G, x1), working upwards from the

leaves:

Proposition 6.2. In the foregoing set-up, we have

ŵeff
x1···xk

= −Rxk
K̂xk,V (G)\{x1,... ,xk−1}(R), (6.3)

where the rational functions K̂x,�(R) are defined by the recursion (5.26)
ignoring the conditions Ky,�\xRy <1.

Proof. The proof runs inductively up from the leaves.
If x1 · · ·xk is a leaf (i.e. a maximal SAW), then ŵeff

x1···xk
= ŵx1···xk

=−Rxk

by Algorithm T and the definition (6.1); moreover, K̂xk,V (G)\{x1,... ,xk−1} ≡1
because xk is an isolated vertex in G \ {x1, . . . , xk−1} (since x1 · · ·xk is a
maximal SAW), so that the product (5.26) is empty.

Let P = x1 · · ·xk be a nonleaf, and suppose that (6.3) holds for all
one-step extensions P ′ =x1 · · ·xkxk+1. Then Algorithm T gives

ŵeff
x1···xk

= ŵx1···xk

∏

xk+1∈V (G)\{x1,... ,xk}

1 + W(xk, xk+1)ŵ
eff
x1···xkxk+1

1 + ŵeff
x1···xkxk+1

= −Rxk

∏

xk+1∈V (G)\{x1,... ,xk}

1 − W(xk, xk+1)Rxk+1K̂xk+1,V (G)\{x1,... ,xk}
1 − Rxk+1K̂xk+1,V (G)\{x1,... ,xk}

= −Rxk
K̂xk,V (G)\{x1,... ,xk−1}, (6.4)
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where the second equality uses the inductive hypothesis, and the last
equality follows immediately from (5.26).

Now let us apply Theorem 3.2 to the tree SAW(G, x1) with the fugac-
ities ŵ defined by (6.1) and edge weights Ŵ defined by (6.2). We conclude
that the vector R̂ defined by

R̂x1···xk
= Rxk

(6.5)

lies in R(Ŵ ) if and only if RxK̂x,� < 1 for all �⊆ V (G) and all x ∈�.
(By (6.3), this latter condition is sufficient to have R(Ŵ ); indeed, only cer-
tain sets �⊆V (G) actually arise. Conversely, given any �⊆V (G) and any
x∈�, we can choose x1=x and restrict to the subtree of SAW(G, x1) con-
sisting of paths inside �. Using the monotonicity of R(Ŵ ) to restrict to
this subtree, we conclude by Algorithm T that ŵeff

x1
∈ (−1,0] and hence by

(6.3) that RxK̂x,� <1.) On the other hand, by Theorem 5.6 this is a suffi-
cient condition to have R∈R(W).

In summary, the bounds produced by Theorem 5.6 for the lattice gas
on G with edge weights W correspond to solving exactly (via Algorithm
T) the lattice gas on the tree SAW(G, x1) with edge weights Ŵ (for any
x1 ∈V (G)). And this produces a lower bound on the set R(W).

6.2. Tree Interpretation of the “Optimal” Bound: Hard-Core Case

Next let us consider the “optimal” recursion (5.43) in the special case
of a hard-core pair interaction, i.e. the independent-set polynomial for the
graph G.

For each vertex x1 · · ·xk of the SAW-tree, let us choose (in any way we
like) an ordering of the children x1 · · ·xkxk+1. We then define the pruned
SAW-tree corresponding to this ordering to be the subtree of SAW(G, x1)

whose vertex set consists of those paths x1 · · ·xk satisfying the rule that
“you cannot use an elder sibling of a vertex of G that you have previ-
ously used”. More precisely, for each path x1 · · ·xi , let us define the set
S(x1 · · ·xi) of “spurned vertices at step i” to be the set of all x∈V (G) such
that x1 · · ·xi−1x is a path that precedes x1 · · ·xi−1xi in the ordering of chil-
dren of x1 · · ·xi−1. A path x1 · · ·xk then belongs to the pruned SAW-tree if
and only if for all 2 � i <j � k we have xj /∈S(x1 · · ·xi).

Let us remark that the pruned SAW-tree is in general much smaller
than the full SAW-tree. For example, if G=Kn, then the SAW-tree has
(n− 1)! leaves and (n− 1)!

∑n−1
i=0 1/i! vertices, while the pruned SAW-tree

(for any choice of ordering) has 2n−2 leaves and 2n−1 vertices.
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Having defined the pruned SAW-tree, we then identify a path x1 · · ·xk

in the pruned SAW-tree with the pair (xk,�) where

� ≡ �(x1, . . . , xk) = V (G)\ {x1, . . . , xk−1}
∖ k⋃

i=2

S(x1 · · ·xi) , (6.6)

that is, V (G) minus the vertices already visited or already spurned. (Note
that this differs from the definition �=V (G) \ {x1, . . . , xk−1} used in the
preceding subsection.)

Given a vector w={wx}x∈V (G) of fugacities on G, let us now assign
to the vertices of the pruned SAW-tree the fugacities

ŵx1···xk
= wxk

(6.7)

and, as before, assign to the edges the weights

Ŵ (x1 · · ·xk−1, x1 · · ·xk) = W(xk−1, xk) (6.8)

(which, in the hard-core case currently under consideration, takes the
value 0 for each edge of the pruned SAW-tree). We can then apply Algo-
rithm T from Section 3.4 to the pruned SAW-tree to calculate the effective
fugacities ŵeff

x1···xk
:

Proposition 6.3. For all x1 · · ·xk belonging to the pruned SAW-tree,
we have

ŵeff
x1···xk

= wxk
Kxk,�(x1,... ,xk)(w) . (6.9)

Proof. The proof runs inductively up from the leaves.
If x1 · · ·xk is a leaf (i.e. a maximal pruned SAW), then ŵeff

x1···xk
=

ŵx1···xk
= wxk

by Algorithm T and the definition (6.7); moreover,
Kxk,�(x1,... ,xk) ≡ 1 because xk is an isolated vertex in the subgraph of G

induced by �(x1, . . . , xk) (since x1 · · ·xk is a maximal pruned SAW), so
that all factors in the product (3.14) are 1.

Let P = x1 · · ·xk be a nonleaf, and suppose that (6.9) holds for all
one-step extensions P ′ = x1 · · ·xkxk+1 that are pruned SAWs. These one-
step extensions are children of x1 · · ·xk, hence are ordered: let the ith
such walk in order be x1 · · ·xkyi (1 � i � l for some l � 1). Note that
{y1, . . . , yl}=�(xk)∩�(x1, . . . , xk) and that

�(x1, . . . , xk, yi) = �(x1, . . . , xk)\ {xk, y1, . . . , yi−1} . (6.10)
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Then Algorithm T gives

ŵeff
x1···xk

= ŵx1···xk

l∏

i=1

1 + W(xk, yi)ŵ
eff
x1···xkyi

1 + ŵeff
x1···xkyi

= ŵx1···xk

l∏

i=1

1
1 + wyi

Kyi ,�(x1,... ,xk,yi )(w)

= ŵx1···xk

l∏

i=1

1
1 + wyi

Kyi ,�(x1,... ,xk)\{xk,y1,... ,yi−1}(w)

= ŵx1···xk
Kxk,�(x1,... ,xk)(w), (6.11)

where the second equality uses the inductive hypothesis and the fact that
W(xk, yi)= 0, the third equality uses (6.10), and the final equality uses
(3.14).

Now let us apply Theorem 3.2 to the pruned SAW-tree with the fu-
gacities ŵ defined by (6.7) with w=−R, and edge weights Ŵ defined by
(6.8). We conclude that the vector R̂ defined by

R̂x1···xk
= Rxk

(6.12)

lies in R(Ŵ ) if and only if RxKx,�(−R)< 1 for all �⊆V (G) and all x ∈
�; and by the discussion surrounding (5.43)/(5.44), this is a necessary and
sufficient condition to have R∈R(W).

Therefore, we have shown that the “optimal” Dobrushin–Shearer
bound à la (5.43)/(5.44) for the independent-set polynomial (= hard-core
lattice gas) on G corresponds to computing exactly (via Algorithm T) the
independent-set polynomial for the pruned SAW-tree (for any x1 ∈ V (G)

and any choice of orderings of children). And this produces an exact com-
putation of the set R(W).

6.3. Tree Interpretation of the “Optimal” Bound: General Case

Finally, let us consider the “optimal” recursion (5.43) in the gen-
eral case of a soft-core pair interaction W . Here we work again on the
full SAW-tree SAW(G, x1), where G = GW is the support graph of W ;
“pruning” will be replaced by a “soft suppression of spurned vertices”. As
before, we begin by choosing (in any way we like) an ordering on the chil-
dren of each vertex in the SAW-tree, and we use this ordering to define
the set S(x1 · · ·xi) of “spurned vertices at step i”. Then, given a vector
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w={wx}x∈V (G) of fugacities on G, we assign to the vertices of the SAW-
tree the modified fugacities

ŵx1···xk
= wxk

∏

2 � i � k
xk ∈S(x1 · · ·xi )

W(xi−1, xk) . (6.13)

(Note that the product in (6.13) could equally well be written 2 � i < k,
since xk /∈S(x1 · · ·xk).) As before, we assign to the edges the weights

Ŵ (x1 · · ·xk−1, x1 · · ·xk) = W(xk−1, xk) . (6.14)

We can then apply Algorithm T to calculate the effective fugacities ŵeff
x1···xk

on the tree SAW(G, x1). We obtain:

Proposition 6.4. In the foregoing set-up, we have

ŵeff
x1···xk

= w̃
[x1···xk ]
xk

Kxk,V (G)\{x1,... ,xk−1}(w̃
[x1···xk ]), (6.15)

where w̃[x1···xk ] is defined by

w̃
[x1···xk ]
y = wy

∏

2 � i � k
y ∈S(x1 · · ·xi )

W(xi−1, y) . (6.16)

Proof. The proof runs inductively up from the leaves.
If x1 · · ·xk is a leaf (i.e. a maximal SAW), then

ŵeff
x1···xk

= ŵx1···xk
= wxk

∏

2 � i � k
xk ∈S(x1 · · ·xi )

W(xi−1, xk) = w̃
[x1···xk ]
xk

, (6.17)

where the first equality uses Algorithm T and the subsequent equalities are
the definitions (6.13) and (6.16). On the other hand, Kxk,V (G)\{x1,... ,xk−1} ≡1
because x1 · · ·xk is a maximal SAW, so that the product (3.14) is empty.

Let P = x1 · · ·xk be a nonleaf, and suppose that (6.15) holds for all
one-step extensions P ′ = x1 · · ·xkxk+1. These one-step extensions are chil-
dren of x1 · · ·xk, hence are ordered: let the ith such walk in order be
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x1 · · ·xkyi (1 � i � l for some l � 1). Note that {y1, . . . , yl} = �(xk) ∩
{x1, . . . , xk−1}. Then Algorithm T gives

ŵeff
x1···xk

= ŵx1···xk

l∏

i=1

1 + W(xk, yi)ŵ
eff
x1···xkyi

1 + ŵeff
x1···xkyi

= w̃
[x1···xk ]
xk

l∏

i=1

1+W(xk, yi)w̃
[x1···xkyi ]
yi

Kyi ,V (G)\{x1,... ,xk}(w̃[x1···xkyi ])

1+ w̃
[x1···xkyi ]
yi

Kyi ,V (G)\{x1,... ,xk}(w̃[x1···xkyi ])
.

(6.18)

Note now that from (6.16) we have

w̃
[x1···xkyi ]
y =

{
W(xk, y)w̃

[x1···xk ]
y if y=yj for some j < i,

w̃
[x1···xk ]
y otherwise.

(6.19)

Therefore, the product on the right-hand side of (6.18) is identical
to (3.13) if we set x = xk and � = V (G) \ {x1, . . . , xk−1} and w is
replaced by w̃[x1···xk ], for then (6.19) becomes precisely the vector w̃(i−1)

defined in (3.11). Therefore, (6.18) equals the right-hand side of (6.15), as
claimed.

7. UNFOLDING

In Section 6.2 we showed that the “optimal” Dobrushin–Shearer
bound à la (5.43)/(5.44) can be interpreted, in the special case of the inde-
pendent-set polynomial (= hard-core lattice gas) for a graph G, as an
exact computation of the set R(G) based on computing exactly (via Algo-
rithm T) the independent-set polynomial of the pruned SAW-tree of G.
In this section we would like to show how this tree bound can be under-
stood as arising from the repeated application of a single “unfolding”
step.

Let G= (V ,E) be a graph, and let us select a pair of adjacent ver-
tices x, y. As previously, G \ x (resp. G \ y) denotes the graph obtained
from G by deleting the vertex x (resp. y) and all edges incident with it.
We then define Ĝxy to be the graph obtained from the disjoint union
of G′ ≡ G \ y and G′′ ≡ G \ x by adjoining an extra edge connect-
ing the vertex x in G′ to the vertex y in G′′ (Fig. 1). To each ver-
tex z in G \ x \ y ≡ (G \ x) \ y, there corresponds a vertex z′ in G′
and a vertex z′′ in G′′. Given a vector w with index set V (G), we
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Fig. 1. The graphs G and Ĝxy .

define the corresponding “diagonal” vector ŵ with index set V (Ĝxy)

by

ŵx = wx, (7.1a)

ŵy = wy, (7.1b)

ŵz′ = wz, (7.1c)

ŵz′′ = wz. (7.1d)

By considering the occupation of sites x and y, it is easily seen that

ZG(w) = ZG\x\y(w) + wxZG\�∗(x)(w) + wyZG\�∗(y)(w) (7.2)

and

ZĜxy (ŵ) = ZG\x\y(w)2 + wxZG\x\y(w)ZG\�∗(x)(w)

+wyZG\x\y(w)ZG\�∗(y)(w)

(7.3a)

= ZG\x\y(w)ZG(w) . (7.3b)

We have the following fundamental result:

Theorem 7.1. R∈R(G) if and only if R̂∈R(Ĝxy). In other words,
R(G) is (isomorphic to) the “diagonal cross section” of R(Ĝxy).

Proof. Suppose first that R ∈R(G). Then we also have R ∈R(G \
x \ y) by the monotonicity statement at the end of Proposition 2.15.
Therefore, if −R � w � 0 we have ZG(w) > 0 and ZG\x\y(w) > 0, and
hence deduce by (7.3b) that ZĜxy (ŵ) > 0. In particular, ZĜxy (−λR̂) >

0 for 0 � λ � 1. Applying Theorem 2.10(a) 
⇒ (b) to the line seg-
ment connecting 0 to −R̂, we conclude that ZĜxy (w′) > 0 whenever
−R̂ � w′ � 0 (whether or not w′ lies “on the diagonal”). Hence R̂ ∈
R(Ĝxy).
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Conversely, suppose that R̂ ∈ R(Ĝxy). If −R � w � 0 we have
−R̂ � ŵ � 0 and hence ZĜxy (ŵ) > 0; by (7.3b) this implies
ZG(w) �=0.

Assume now that G is connected. Let G̃xy be the component of
Ĝxy containing x and y. Any other component of Ĝxy must be con-
tained either in G′ \ x or in G′′ \ y; either way, it corresponds to some
component of G \ x \ y. Now, for any component H of G \ x \ y, there
are three possibilities: either H is adjacent to x in G, or H is adja-
cent to y in G, or both. In the first case, the copy H ′ of H in G′
is contained in G̃xy , while the copy H ′′ of H in G′′ is disjoint from
G̃xy ; in the second case, the reverse holds; in the third case, both cop-
ies of H are contained in G̃xy . Therefore, any component of Ĝxy other
than G̃xy has a mirror image contained in G̃xy , and hence is isomorphic
to a subgraph of G̃xy (with the same weights when we are “on-diago-
nal”).

Given a vector w with index set V (G), let us define the vector w̃ with
index set G̃xy by restricting ŵ from V (Ĝxy) to V (G̃xy).

Lemma 7.2. Let H be a subgraph of G, and let R= {Rx}x∈V (G) ∈
R(G). Then RH ≡{Rx}x∈V (H) ∈R(H).

Proof. Define first R 1V (H) (with index set V (G)) by

(R 1V (H))x =
{

Rx if x ∈V (H),

0 if x /∈V (H).
(7.4)

Since R 1V (H) � R, we have R 1V (H) ∈R(G) because R(G) is a down-set.
Equivalently, RH ∈R(G[V (H)]), where G[V (H)] is the induced subgraph
of G with vertex set V (H). But R(H)⊇R(G[V (H)]) by the monotonicity
statement at the end of Proposition 2.15.

Corollary 7.3. Assume that G is connected. Then R ∈R(G) if and
only if R̃∈R(G̃xy).

Proof. If R ∈R(G), then R̂ ∈R(Ĝxy) by Theorem 7.1. Then R̃ ∈
R(G̃xy) by Lemma 7.2, because G̃xy is a subgraph of Ĝxy .

Conversely, suppose that R̃∈R(G̃xy). Let H1, . . . ,Hk be the compo-
nents of Ĝxy other than G̃xy . Then

ZĜxy (ŵ) = ZG̃xy (w̃)

k∏

i=1

ZHi
(ŵ �Hi). (7.5)
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If −R � w � 0, then −R̃ � w̃ � 0 and hence ZG̃xy (w̃)> 0. But since each
component of Hi is isomorphic to a subgraph of G̃xy (with the same
weights in the mirror copy), Lemma 7.2 implies that ZHi

(ŵ � Hi) > 0 as
well. Hence ZĜxy (ŵ)>0 by (7.5), so that ZG(w) �=0 by (7.3b). This shows
that R∈R(G).

Remark. It would be interesting to know whether there is a version
of unfolding in the case of soft-core interaction.

8. INFINITE GRAPHS

In this section we discuss briefly the repulsive lattice gas on a count-
ably infinite graph. We begin by deriving some general properties valid
on an arbitrary countably infinite graph (Section 8.1). Next we discuss
two cases of special interest: trees (Section 8.2) and regular lattices (Sec-
tion 8.3). Finally we show how quantitative bounds on R(W) can be
obtained, using as an example the square lattice Z

2 (Section 8.4).

8.1. General Properties

Let X be a countably infinite set, and let W : X × X→ [0,1] be
symmetric. For every nonempty finite subset �⊂X we can consider the
partition function Z�(w) defined for w ∈C

� in the obvious way, i.e. by
considering the lattice gas on � with interaction W ��. Then, to each such
� there corresponds a set R(W � �)⊆ [0,∞)�. From the Remark after
Proposition 2.15, we observe that if �′ ⊆� and R∈ [0,∞)�

′
, then

R∈R(W ��′) ⇐⇒ (R,0)∈R(W ��) (8.1)

(here 0 has index set �\�′).
Now let us define, for each finite �⊂X, the set

R�(W) = R(W ��) × [0,∞)X\� (8.2)

in the infinite-dimensional space [0,∞)X. Otherwise put, a vector R ∈
[0,∞)X belongs to R�(W) if and only if R �� lies in R(W ��). Note that

∂R�(W) = ∂R(W ��) × [0,∞)X\� . (8.3)

Clearly R�(W) is open (in the product topology) and is a down-set.
Moreover, it follows immediately from (8.1) and the fact that R(W � �)
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is a down-set that if �′ ⊆�, then R�′(W)⊇R�(W). In other words, the
{R�(W)} form a decreasing family of sets in [0,∞)X (when � runs over
the collection of finite subsets of X ordered by inclusion). We define the
limiting set

R(W) =
⋂

�

R�(W) . (8.4)

Note that, because {R�(W)} is a decreasing family, we also have

R(W) =
∞⋂

n=1

R�n(W) (8.5)

for any increasing sequence �1⊆�2⊆· · · whose union is all of X.

Remark. If W(x, x)< 1 for all x ∈X, then it follows from Proposi-
tion 2.16 that there exist constants Cx <∞ such that R(W)⊆∏x∈X[0,Cx ],
so that R(W) is relatively compact in the product topology.

In view of the fact that each set R�(W) is open, it is perhaps surpris-
ing that the limiting set R(W) is “almost” closed:

Theorem 8.1. Let X be countably infinite, and let R∈R(W) (where
the closure is taken in the product topology). If every component of
GW [supp R] is infinite, then R∈R(W).

Corollary 8.2. Let X be countably infinite, let r∈ [0,∞)X, and sup-
pose that every component of GW [supp r] is infinite. Then {λ � 0: λr ∈
R(W)} is a closed interval of [0,∞) (which may reduce to {0} or to all
of [0,∞) ).

Remark. If W(x, y)< 1 for some x, y ∈ supp r, then it follows from
Proposition 2.16 that the interval {λ � 0: λr∈R(W)} is bounded, i.e. not
all of [0,∞).

Proof of Theorem 8.1. By hypothesis we have

R ∈
⋂

�

R�(W) ⊆
⋂

�

R�(W) . (8.6)

If R ∈R�(W) for all �, we are done. So assume that R ∈ ∂R�(W) for
some �, i.e. R � � ∈ ∂R(W � �) and in particular Z�(−R)= 0 by Prop-
osition 2.17(b). Let �1, . . . ,�k be the vertex sets of the components of
GW [supp R ∩�]. Since Z�(w) =∏k

i=1 Z�i
(w) whenever supp w ⊆ supp R,
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there must be at least one index i for which Z�i
(−R)=0, so that R ��i ∈

∂R(W ��i) (recalling that R ��i ∈R(W ��i) by (8.6)). Now choose a ver-
tex x ∈ (supp R) \�i that is adjacent to �i in GW (this is possible since
each component of GW [supp R] is infinite); and define �̃i =�i ∪ {x}. By
(8.6) we have R � �̃i ∈R(W � �̃i); and hence by Corollary 2.19 we have
(R ��i,0)∈R(W � �̃i) (where 0 corresponds to the xth entry), i.e. R ��i ∈
R(W � �i). But this contradicts R � �i ∈ ∂R(W � �i) since R(W � �i) is
open.

8.2. Infinite Trees

In Example 3.6 we considered the complete r-ary rooted tree and
showed, following Shearer(98), that there are negative real roots of the uni-
variate polynomial ZG(w) that tend to w∞=−rr/(r+1)r+1 as the number
of levels tends to infinity. Let us now use the “homogenization” ideas of
Section 3.5 to extend this result to trees that are not complete.

Proposition 8.3. Let G be an infinite tree with (arbitrarily chosen)
root vertex x0, and let Xi = {x : dist(x, x0)= i}. Let b̄= lim sup

i→∞
|Xi |1/i . If

R > b̄b̄/(b̄+ 1)b̄+1, then any vector R � 0 satisfying
(∏

x∈Xi
Rx

)1/|Xi |
� R

for all i does not lie in R(G). In particular, R1 /∈R(G).

Proof. Let R � 0 be a vector satisfying R̃i≡ (
∏

x∈Xi
Rx)

1/|Xi | � R for
all i, and suppose that R∈R(G). Then by definition we have R∈R(GD)

for every D, where GD=G[
⋃

i �D Xi ] is the subtree consisting of the first
D+1 levels of G.

Let us fix D, and apply Algorithm T of Section 3.4 to the tree GD

with w=−R. For 0 � i � D, define p̃i as in (3.52). Let bi = |Xi+1|/|Xi |
and define p̂i by the recursion (3.57). Then it follows from Proposition 3.3
(or the discussion after (3.57)) that p̃i � p̂i for 0 � i � D, since by hypoth-
esis R ∈R(GD). By monotonicity of (3.57) in the R̃i , it follows that the
sequence (q

(D)
i )∞

i=1 defined by the recursion

q
(D)
i = R

(1−q
(D)

i+1)
bi

(8.7)

with initial condition q
(D)
i = 0 for i � D + 1 satisfies 0 � q

(D)
i � p̃i for

0 � i � D. In particular, we have 0 � q
(D)
i <1 for every i.

Now let D→∞. Monotonicity of (8.7) in q
(D)

i+1 implies that, for each
i, q

(D)
i is increasing in D. Since q

(D)
i is bounded above by 1, taking qi =
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limD→∞ q
(D)
i gives a sequence (qi)

∞
i=0 satisfying

qi = R

(1−qi+1)
bi

(8.8)

for every i. Furthermore, 0 � qi ≤ 1 for every i, and so (8.8) implies that
0 � qi <1 for i � 1.

The proposition is then a consequence of the following lemma.

Lemma 8.4. Let (bi)
∞
i=1 be a sequence of positive real numbers, let

b̄ = lim sup
i→∞

(b1b2 · · ·bi−1)
1/i , and let R � 0. Suppose that there exists a

sequence (qi)
∞
i=1 satisfying 0 � qi <1 and

qi � R

(1−qi+1)
bi

(8.9)

for all i � 1. Then R � b̄b̄/(b̄+1)b̄+1.

As preparation for proving Lemma 8.4, let us prove an analogous
result for finite sequences.

Lemma 8.5. Let k � 1, let b0, b1, . . . , bk−1 > 0, and define b̄ =(∏k
i=0 bi

)1/k

. Let R � 0. Suppose that there exist q0, q1, . . . , qk ∈ [0,1) sat-
isfying

qi � R

(1−qi+1)
bi

for i=0,1, . . . , k−1 (8.10)

and

q0 � qk . (8.11)

Then R � b̄b̄/(b̄+1)b̄+1.

Proof. When k=1, the lemma is proved by straightforward calculus.
So let us treat the case k >1. Define weights

γi =



i−1∏

j=0

bj




/

b̄i (8.12)
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for i=0,1, . . . , k and note that γ0=γk=1. Let �=∑k
i=1 γi . Now define

q̃0 =
(

k−1∏

i=0

q
γi

i

)1/�

, (8.13a)

q̃1 =
(

k∏

i=1

q
γi

i

)1/�

. (8.13b)

The argument at (3.65)–(3.73) shows that

q̃0 � R

(1− q̃1)
b̄

. (8.14)

If q0 � qk, then q̃0 � q̃1; it then follows from the k=1 case of the lemma
that R � b̄b̄/(b̄+1)b̄+1.

Proof of Lemma 8.4. If R >b̄b̄/(b̄+1)b̄+1, let us choose ε >0 and
c̄ < b̄ such that

R

1+ ε
>

c̄c̄

(c̄+1)c̄+1
>

b̄b̄

(b̄+1)b̄+1
. (8.15)

Since lim supi→∞(b1b2 · · ·bi−1)
1/i > c̄, we can find integers 1<j1 <j2 < · · ·

with

jt+1∏

i=jt+1

bi > c̄jt+1−jt (8.16)

for t = 1,2, . . . Since the sequence (qjt )
∞
t=1 lies in the interval [R,1) and

R >0, there must exist t such that qjt � (1+ ε)qjt+1 . To simplify the nota-
tion, let us set k= jt+1− jt and q̂i = qjt+i for i= 0, . . . , k. By hypothesis
we have

q̂i � R

(1− q̂i+1)
bi

for i=0,1, . . . , k−1 (8.17)

and q̂0 � (1+ ε)̂qk. It follows that if we set S=R/(1+ ε), ̂̂qi = q̂i for i=
1, . . . , k, and ̂̂q0= q̂0/(1+ ε), we have

̂̂qi � S

(1−̂̂qi+1)
bi

for i=0,1, . . . , k−1 (8.18)
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and ̂̂q0 � ̂̂qk. Lemma 8.5 together with (8.16) then imply that S �
c̄c̄/(c̄+1)c̄+1, which is a contradiction.

8.3. Regular Lattices

The most important situation in statistical mechanics is that of a
model defined on a regular lattice (which we take for simplicity to be
Z

d ) with a translation–invariant interaction.(100) In this case one expects
to be able to prove that the free energy per site (or “pressure”) F� ≡
|�|−1 log Z� converges to an infinite-volume limit

F∞ ≡ lim
�↗∞

F� , (8.19)

where �↗∞ denotes convergence in the Følner–van Hove sense, i.e.
|�|→∞ in such a way that the surface-to-volume ratio tends to zero (see
ref. 113, Section 2.4.1 and Appendix A.3.1 for a variety of equivalent con-
ditions). Indeed, there are several standard arguments for proving such
convergence:

(1) Almost additivity. A large volume � is subdivided into
smaller (but still large) cubes �i separated by wide “corridors”, and
| log Z�−

∑
i log Z�i

| is shown to be suitably small (ref. 67, Section I.2).
This method applies to all models with bounded interaction energies, and
yields Følner–van Hove convergence (ref. 67, Theorems I.2.3–I.2.5).

(2) Superadditivity. In some cases it can be shown that log Z�∪�′ �
log Z� + log Z�′ whenever � and �′ are disjoint. This occurs, in par-
ticular, for systems with certain symmetries, for ferromagnets, and for
systems with negative interaction energies. Moreover, arbitrary models
with bounded interaction energies can be reduced to the case of negative
interaction energies simply by adding suitable constants to the interaction
terms (ref. 100, Theorem II.2.4 and Examples 1–4 following it; see also
Section II.4). However, this method does not yield Følner–van Hove con-
vergence, but only a slightly weaker convergence in which |�|/diam(�)d

must be bounded below away from zero (ref. 113, Appendix A.3.3).
Moreover, the limiting free energy F∞ could be +∞; a separate argument
is needed to exclude this possibility.

(3) Subadditivity. In some cases it can be shown that log Z�∪�′ �
log Z�+ log Z�′ whenever � and �′ are disjoint. This occurs, in particular,
for systems with positive interaction energies. Moreover, arbitrary models
with bounded interaction energies can be reduced to the case of positive
interaction energies by adding suitable constants to the interaction terms.
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Like superadditivity, this method does not yield Følner–van Hove conver-
gence, but only the slightly weaker convergence in which |�|/diam(�)d

is bounded below away from zero. Moreover, the limiting free energy F∞
could be −∞; a separate argument is needed to exclude this possibility.

Remark. Although we shall concentrate here on the case of a reg-
ular lattice (namely, Z

d ), arguments of the foregoing types can usu-
ally be generalized to handle arbitrary quasitransitive amenable infinite
graphs;(69,91) we expect that the same should be true for our results.

Let us therefore consider the lattice gas on X=Z
d with a translation-

invariant interaction W(x, y)=W(x−y) satisfying 0 � W(x, y) � 1. Let us
place the same fugacity w � 0 at each site. (More generally, we could con-
sider a periodic or quasiperiodic fugacity w={wx}x∈Zd ; but let us stick to
a constant fugacity for simplicity.) Under these assumptions we can prove
that the infinite-volume limit of the free energy exists. Indeed, the subad-
ditivity argument applies immediately to our model, thanks to the hypoth-
esis of repulsive interactions; moreover, since Z� � 1 for all � (thanks to
the contribution of the empty configuration), it follows that F∞ � 0 and
in particular that F∞ �=−∞. But this method does not yield Følner–van
Hove convergence.

To prove Følner–van Hove convergence, we use the almost-additivity
argument. The standard theorems (ref. 67, Theorems I.2.3–I.2.5) do not
apply to our model, because the interaction energies can be unbounded,
indeed for either of two reasons:

(a) the infinite interaction energy when W(x, y)= 0 for some x �= y;
and/or

(b) the unboundedness of the interaction energies in the absence of
hard-core self-repulsion (i.e. for W(x, x) �= 0), arising from the fact that
the occupation number nx at a site can be arbitrary large.

We can nevertheless make slight adaptations in the standard almost-addi-
tivity argument so as to make the proof go through. We assume that the
total interaction of any site with the rest of the world is finite, i.e.

∑

y∈Zd

[1−W(x, y)] <∞ . (8.20)

In particular, there is a number R <∞ such that W(x, y) > 0 whenever
|x−y|>R.
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Let us begin with the case of hard-core self-repulsion, so that we need
only deal with problem (a). This is handled by the following lemma:

Lemma 8.6. Consider any repulsive lattice gas with hard-core self-
repulsion and fugacities wx � 0. Suppose that �=⋃n

i=1 �i ∪ �0 (disjoint
union). Then

(
n∏

i=1

Z�i

)





∏

1 � i <j � n
x ∈�i

y ∈�j

W(x, y)




� Z� �

(
n∏

i=1

Z�i

)


∏

x∈�0

(1+wx)



 .

(8.21)

Proof. We make use of the definition

Z� =
∑

X′⊆�

∏

x∈X′
wx

∏

{x,y}⊆X′
W(x, y) . (8.22)

The lower bound is on Z� is obtained by considering only those configu-
rations in which �0 is empty (i.e. X′ ∩�0=∅) and writing

∏

{x,y}⊆X′
W(x, y) �




n∏

i=1

∏

{x,y}⊆X′∩Xi

W(x, y)








∏

1� i<j �n

∏

x ∈�i

y ∈�j

W(x, y)



 ,

(8.23)

which is valid since 0 � W(x, y) � 1. The upper bound on Z� is obtained
by writing

∏

{x,y}⊆X′
W(x, y) �

n∏

i=1

∏

{x,y}⊆X′∩Xi

W(x, y) . (8.24)

We then have:

Theorem 8.7 (Infinite-volume limit, hard-core case). Consider a trans-
lation–invariant repulsive lattice gas on Z

d , with hard-core self-repul-
sion, satisfying

∑
y∈Zd [1 −W(x, y)] <∞, with the same fugacity w � 0

at each site. Then F∞(w)≡ lim�↗∞ |�|−1 log Z�(w) exists in Følner–van
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Hove sense and satisfies 0 � F∞(w) � log(1+w). Moreover, F∞(w) is an
increasing and convex function of log w; in particular, it is continuous on
0 � w <∞.

Proof. Fix integers a, c > 0 and consider the paving of Z
d by dis-

joint cubes of side a+ c with corners located at (a+ c)Zd , i.e. cubes Cn=
[0, a+c)d+ (a+c)n for n∈Z

d . Consider also the subcubes C′n⊂Cn of side
a with the same lowermost corner, i.e. C′n= [0, a)d+ (a+c)n. For any finite
subset �⊂Z

d , let C� be the collection of all cubes Cn that are contained
in �, and let C′�={C′n : Cn ∈C�}. By Lemma 8.6,

∣∣∣∣∣∣
log Z� −

∑

C′∈C′�
log ZC′

∣∣∣∣∣∣
� α(c)|�| + β

∣∣∣∣∣∣
�
∖ ⋃

C′∈C′�
C′
∣∣∣∣∣∣
, (8.25)

where α(c)=−∑ x ∈Zd

|x|>c

log W(x) and β= log(1+w). By translation invari-

ance, log ZC′ = log ZC′0 for all C′ ∈ C′�. Moreover, |C′�| = |C�| by construc-
tion. Dividing (8.25) by |�|, we get

∣∣∣∣∣
1
|�| log Z� −

ad |C′�|
|�|

1
ad

log ZC′0

∣∣∣∣∣ � α(c) + β

(
1− ad |C�|

|�|
)

(8.26)

and hence

|F�−FC′0 | � α(c) +
(

1− ad |C�|
|�|

)(
β+ 1

ad
| log ZC′0 |

)
(8.27a)

� α(c) + 2β

(
1− ad |C�|

|�|
)

(8.27b)

since 1 � ZC′0 � (1+w)a
d
. Taking (8.27b) for two finite subsets �, �̃⊂Z

d

and subtracting, we get

|F�−F�̃| � 2α(c) + 2β

(
1− ad |C�|

|�|
)
+ 2β

(
1− ad |C�̃|

|�̃|
)

. (8.28)

Now let (�n)↗∞ in Følner–van Hove sense; this implies that the
fraction of volume of �n contained in the cubes C�n tends to 1, i.e.
limn→∞(a+ c)d |C�n |/|�n|=1. Therefore,

lim sup
m,n→∞

|F�m −F�n | � 2α(c) + 4β

[
1−
(

a

a+ c

)
d

]
. (8.29)
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Now, given any ε > 0, we can (by (8.20)) choose c large enough so that
α(c) � ε; and we can then choose a large enough so that 1− [a/(a+c)]d �
ε. Hence

lim sup
m,n→∞

|F�m −F�n | � 2ε+4βε . (8.30)

Since ε is arbitrary, we have lim supm,n→∞ |F�m − F�n | = 0, so that
(|�n|−1 log Z�n)

∞
n=1 is a Cauchy sequence and hence converges. (The limit

is the same for all Følner–van Hove sequences, since interleaving two
Følner–van Hove sequences yields another one.)

The bounds 0 � F∞(w) � log(1+ w) follow immediately from 1 �
Z� � (1 + w)|�|. Finally, each F�(w) is manifestly increasing, and by
Lemma 2.32 it is a convex function of log w; and these properties are pre-
served under pointwise limits.

Now let us turn to problem (b), arising from the unboundedness of
the occupation number nx when W(x, x) �=0. We begin with a well-known
fact about positive correlation of increasing functions on a totally ordered
space:

Lemma 8.8. Let µ �≡ 0 be a nonnegative measure on a totally
ordered space 
, and let f and g be increasing functions on 
. Then
(provided the functions concerned are integrable):

(a)
(∫

fg dµ
) (∫

1dµ
)

�
(∫

f dµ
) (∫

g dµ
)
.

(b)

∫
f eαg dµ∫
eαg dµ

is an increasing function of α∈R.

Proof. (a) We have

(∫
fg dµ

) (∫
1dµ

) − (∫ f dµ
) (∫

g dµ
)

= 1
2

∫
[f (x)−f (y)] [g(x)−g(y)]dµ(x) dµ(y) , (8.31)

and the integrand on the right-hand side is nonnegative both when x � y

and when x � y.
(b) We have

d

dα

(∫
f eαg dµ∫
eαg dµ

)
= (
∫

fgeαg dµ)(
∫

eαg dµ) − (
∫

f eαg dµ)(
∫

geαg dµ)

(
∫

eαg dµ)2
.

(8.32)

Now apply part (a) with µ replaced by eαgµ.
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Now let � be a finite set; for each x ∈�, let 
x be a totally ordered
space; and let 
=∏x∈X 
x . For each x ∈�, let µx �≡ 0 be a nonnegative
measure on 
x and let Fx be a nonnegative decreasing function on 
x .
Finally, let H be an increasing function on 
 and let α � 0. Define

Z
({Fx },α,H)
� =

∫ (∏

x∈�
Fx(ϕx)

)
exp[−αH(ϕ)]

∏

x∈�
dµx(ϕx) . (8.33)

Lemma 8.9. Under the above hypotheses,

Z
({Fx },α,H)
� �

(
∏

x∈�

∫
Fx dµx∫
1dµx

)
× Z

({1},α,H)
� . (8.34)

Proof. Choose one site z∈�, and let us study the integral over ϕz

with ϕ �=z held fixed. By Lemma 8.8(b), the quantity

∫
Fz(ϕz) exp[−αH(ϕz, ϕ �=z)]dµz(ϕz)∫

exp[−αH(ϕz, ϕ�=z)]dµz(ϕz)
(8.35)

is an increasing function of α∈R, so its value at α � 0 is bounded below
by its value at α=0, which is

∫
Fz(ϕz) dµz(ϕz)∫

dµz(ϕz)
. (8.36)

Therefore,

∫
Fz(ϕz) exp[−αH(ϕz, ϕ �=z)]dµz(ϕz)

�
(∫

Fz dµz∫
1dµz

)
×
∫

exp[−αH(ϕz, ϕ �=z)]dµz(ϕz) . (8.37)

Now multiply both sides by
∏

x∈�\z Fx(ϕx) and integrate with respect to∏
x∈�\z dµx(ϕx); we obtain

Z
({Fx },α,H)
� �

(∫
Fz dµz∫
1dµz

)
× Z

({1x ,F�=x },α,H)

� . (8.38)

Applying the same argument successively to each site in �, we obtain
(8.34).
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Let us now specialize these results to the repulsive lattice gas, by tak-
ing 
x =N, dµx(nx)=w

nx
x /nx !,

H(n) =
∑

x∈�
[− log W(x, x)]

nx(nx −1)

2

+
∑

{x,y}⊆�

[− log W(x, y)]nxny , (8.39)

and Fx(nx)=1(nx � Kx) for arbitrarily chosen positive constants Kx . We
then have

Z
(K)
�

Z�

�
∏

x∈�
[1−γ (Kx,wx)] , (8.40)

where Z
(K)
� denotes the sum (1.1b) restricted to the configurations satisfy-

ing nx � Kx for all x, and

γ (K,w) = e−w
∞∑

n=K

wn

n!
. (8.41)

We can now prove a variant of Lemma 8.6:

Lemma 8.10. Consider any repulsive lattice gas with fugacities wx �
0, and let (Kx)x∈� be arbitrary positive constants. Suppose that � =⋃n

i=1 �i ∪ �0 (disjoint union). Then

(
n∏

i=1

Z�i

)



∏

1 � i � n
x ∈�i

[1−γ (Kx,wx)]









∏

1 � i <j � n
x ∈�i

y ∈�j

W(x, y)KxKy





� Z� �
(

n∏

i=1

Z�i

)


∏

x∈�0

ewx



 . (8.42)

Proof. The upper bound is proved exactly as in Lemma 8.6. For the
lower bound, we begin from the trivial fact that Z� � Z

(K)
� . Now consider

only those configurations satisfying n � K and, in addition, nx =0 for all
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x ∈�0; for such configurations we have

∏

{x,y}⊆�\�0

W(x, y)nxny �




n∏

i=1

∏

{x,y}⊆Xi

W(x, y)nxny








∏

1� i<j �n

∏

x ∈�i

y ∈�j

W(x, y)KxKy



 . (8.43)

It follows that

Z
(K)
� �

(
n∏

i=1

Z
(K��i)
�i

)



∏

1� i<j �n

∏

x ∈�i

y ∈�j

W(x, y)KxKy



 . (8.44)

Now use (8.40) for each set �i .

Theorem 8.11 (Infinite-volume limit, general case). Consider a trans-
lation–invariant repulsive lattice gas on Z

d , satisfying
∑

y∈Zd [1 −
W(x, y)] <∞, with the same fugacity w � 0 at each site. Then F∞(w)≡
lim�↗∞ |�|−1 log Z�(w) exists in Følner–van Hove sense and satisfies 0 �
F∞(w) � w. Moreover, F∞(w) is an increasing and convex function of
log w; in particular, it is continuous on 0 � w <∞.

Proof. We begin by defining families of cubes C� and C′� as in the
proof of Theorem 8.7. By Lemma 8.10 with Kx =K for all x, we have

∣∣∣∣∣∣
log Z� −

∑

C′∈C′�
log ZC′

∣∣∣∣∣∣
� α(c)K2|�| + w

∣∣∣∣∣∣
�
∖ ⋃

C′∈C′�
C′
∣∣∣∣∣∣

+|�| | log[1−γ (K,w)]|, (8.45)

where α(c)=−∑ x ∈Zd

|x|>c

log W(x). By the same arguments as before, we

have

|F�−FC′0 | � α(c)K2 + 2w

(
1− ad |C�|

|�|
)
+ | log[1−γ (K,w)]| . (8.46)
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Taking (8.46) for two finite subsets �, �̃⊂Z
d and subtracting, we get

|F�−F�̃| � 2α(c)K2+2w

(
1− ad |C�|

|�|
)
+ 2w

(
1− ad |C�̃|

|�̃|
)

+2| log[1−γ (K,w)]| . (8.47)

Now let (�n)↗∞ in Følner–van Hove sense, so that limn→∞(a +
c)d |C�n |/|�n|=1. It follows that

lim sup
m,n→∞

|F�m −F�n | � 2α(c)K2 + 4w

[
1−
(

a

a+ c

)
d

]

+2| log[1−γ (K,w)]| . (8.48)

Now, given any ε > 0, we first choose K large enough so that | log[1−
γ (K,w)]| � ε; then we choose c large enough so that α(c)K2 � ε; and
finally we choose a large enough so that 1− [a/(a+ c)]d � ε. Therefore,

lim sup
m,n→∞

|F�m −F�n | � 4ε+4εw . (8.49)

The remainder of the argument is exactly as in Theorem 8.7.

Historical remark. Results like Theorem 8.11 have been proven in the
vastly more general context of “unbounded spin systems” by Lebowitz
and Presutti(75), based on superstability estimates due to Ruelle(93). See
also (refs. 9 and 74 for related work. We think that it is nevertheless useful
to give an elementary and self-contained proof for our special case.

Let us now return to the case of hard-core self-repulsion, and con-
sider the convergence of the finite-volume free energies F�(w) for complex
fugacities w. By hypothesis (8.20) we have

�W ≡
∑

y �=0

[1−W(0, y)] <∞. (8.50)

Therefore, by Corollary 5.2, all of the partition functions Z�(w) are non-
vanishing in the disc |w| < R(�W) where R(�W) is defined by (5.12).
Moreover, they satisfy the trivial bounds |Z�(w)| � e|�| |w|. It follows that
the free energies F�(w)≡ |�|−1 log Z�(w) are analytic in the disc |w|<
R(�W) and satisfy there Re F�(w) � |w| � R(�W). Finally, Theorem 8.11
shows that the F�(w) converge to a limit when w lies in the real inter-
val [0,R(�W)). These three facts are sufficient to imply the convergence
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of F�(w) to an analytic limit F∞(w) everywhere in the disc |w|<R(�W),
using the following standard result on normal families of analytic func-
tions:

Proposition 8.12 (exp log Vitali). Let D be a domain in C, let S be
a subset of D having at least one accumulation point in D, let M <∞, and
let (fn)

∞
n=1 be analytic functions in D satisfying:

(a) Re fn(z) � M for all n and all z∈D; and

(b) lim
n→∞fn(z) exists (and is finite) for all z∈S.

Then there exists an analytic function f∞ on D such that fn(z)→f∞(z)

uniformly for z in compact subsets of D.

For a proof of Proposition 8.12, see e.g. ref. 99, p. 343.

Corollary 8.13. Consider a translation–invariant repulsive lattice gas
on Z

d , with hard-core self-repulsion, with

∑

y �=0

[1−W(0, y)] ≡ �W <∞. (8.51)

Then:

(a) Each function F�(w) ≡ |�|−1 log Z�(w) is analytic in the disc
|w|<R(�W) and satisfies there Re F�(w) � |w|.

(b) There exists an analytic function F∞(w) on the disc |w|<R(�W)

such that lim�↗∞ F�(w)=F∞(w) uniformly for w in compact subsets of
|w|<R(�W).

Remark. Proposition 8.12 is a very special case of a much more
general “Vitali–Porter–type” theorem for normal families of analytic func-
tions (ref. 103, Lemma 3.5), in which condition (a) can be weakened to
“there exists a nonempty disc �⊂C such that fn(z) /∈� for all z ∈D”
(ref. 96, Example 2.3.9) or even to “there exist w1,w2 ∈C with w1 �=w2
such that fn(z) /∈{w1,w2} for all z∈D” (ref. 96, Section 2.7). Moreover, it
is sufficient for this hypothesis to hold locally in D. Detailed accounts of
these results can be found in refs. 84 and 96.

8.4. Quantitative Bounds for the Lattice Z
d

By Corollary 8.2, the set {λ � 0: λ1 ∈R(W)} is a closed interval
[0, λc] provided that each component of GW is infinite. In this section we
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sketch briefly some methods for finding reasonably sharp upper and lower
bounds on λc. We shall illustrate these examples with reference to the
hard-core lattice gas on Z

d with nearest-neighbor edges, paying particular
attention to the case of the square lattice Z

2.

8.4.1. Upper Bounds on λc

Let G be any finite subgraph of Z
d , and let w�=−λ� be the negative

real root of ZG of smallest magnitude. Then, by the definition of R(W)

for an infinite graph (cf. (8.4)) together with the monotonicity of R(G)

in G (Proposition 2.15), we can conclude immediately that λc(Z
d) � λ�.

Moreover, these bounds converge to the exact value λc if we take any
increasing sequence G1⊆G2⊆· · · whose union is all of Z

d .
More generally, as a consequence of the discussion in Section 6.2, we

can take any finite subtree T of the pruned SAW-tree for Z
d , and let w�=

−λ� be the negative real root of ZT of smallest magnitude; we again have
λc(Z

d) � λ�.

Example 8.1. Clearly Z
d contains finite paths of all lengths. By

Example 3.2 (or alternatively Example 3.6 with r = 1), these give bounds
λ� tending to 1/4 as the path length tends to infinity. Thus λc(Z

d)≤1/4.

Example 8.2. Now consider a finite subgraph G⊆Z
d consisting of

a long path P along one axis (the spine) and, radiating from each ver-
tex of P , 2d − 2 disjoint long paths perpendicular to P (the antennae).
Let us assign fugacity w � 0 to every vertex of G. Using Algorithm T
on the antennae, we must first iterate the recursion weff �→w/(1+weff ).
If the antennae were infinitely long, we would approach the fixed point

w′ =− 1
2 +

√
w+ 1

4 (provided that −1/4 � w≤ 0; otherwise we are outside
R(G)). By taking the antennae sufficiently long, we can get as close to this
value as we wish. We are now left with a “caterpillar” consisting of the
spine (with fugacity w on each vertex) along with 2d − 2 pendant verti-
ces (each with fugacity w′) attached to each vertex of the spine. Applying
Algorithm T to this graph, we get the recursion weff �→w/[(1+weff )(1+
w′)2d−2]≡w�/(1+weff ), where

w� ≡ w

(1+w′)2d−2
= w
(

1
2 +
√

w+ 1
4

)2d−2
. (8.52)

We require − 1
4 � w� � 0 in order to stay within R(G). For d = 2

this yields the bound λc(Z
2) � 4/25. For d →∞ it yields λc(Z

d) �
(log d)/(2d)+O((log log d)/d).
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Example 8.3. To get the correct bound λc(Z
d)=O(1/d), one can

argue using a subtree of the pruned SAW-tree. Note first that any walk
using only steps in the positive coordinate directions is guaranteed to be
self-avoiding. Moreover, if we define the pruning such that at each ver-
tex all steps in the positive coordinate directions are preferred to all steps
in the negative coordinate directions, then every walk using only positive
coordinate steps appears as a vertex in the pruned SAW-tree of Z

d . Thus,
the complete d-ary rooted tree (consisting of these walks) is a subtree of
the pruned SAW-tree of Z

d , and so by Example 3.6 we have

λc(Z
d) � dd

(d+1)d+1
∼ 1

ed
. (8.53)

Example 8.4. Asymptotically correct upper bounds on λc(Z
d) can

be obtained by using large cylinders, for which λc can be computed by
the transfer-matrix method.17 Let us illustrate the method for Z

2. Con-
sider the strip SL = {(x, y) ∈Z

2 : 0 � x < L}. Since S1 ⊆ S2 ⊆ · · · ⊆Z
2, we

have λc(S1) � λc(S2) � · · · � λc(Z
2). (In particular, limL→∞ λc(SL) exists.)

On the other hand, since each finite subgraph of Z
2 is contained (mod-

ulo translation) in SL for all sufficiently large L, we have limL→∞ λc(SL) �
λc(Z

2). It follows that λc(SL)↓λc(Z
2) as L→∞.

An analogous argument can also be made using strips with periodic
boundary conditions, which are more convenient for computation.(110) To
see this, let S̃L be the strip SL with an extra edge added from (L −
1, y) to (0, y) for each y. As before, each finite subgraph of Z

2 is con-
tained (modulo translation) in S̃L for all sufficiently large L, so that
lim supL→∞ λc(S̃L) � λc(Z

2). On the other hand, the pruned SAW-tree of
S̃L (for any given choice of ordering) is a subtree of the pruned SAW-tree
of Z

2 (provided we make an appropriately compatible choice of ordering):
just map each path in S̃L to its “universal cover” in Z

2, i.e. to the path in
Z

2 obtained by making the same sequence of north, south, east or west
steps. Thus λc(S̃L) � λc(Z

2) for every L (though we do not necessarily
have monotonicity in L). It follows that λc(SL)→λc(Z

2) as L→∞.

Example 8.5. Let us also remark that λc(Z
d) is strictly decreasing

in d; indeed, we can derive an inequality bounding λc(Z
d+1) above in

terms of λc(Z
d). To see this, note that Z

d+1 contains a copy of the graph
Gd obtained from Z

d by attaching two semi-infinite paths (“antennae”) to
every vertex. If we place fugacity w≤ 0 on every vertex of Gd and inte-
grate out the antennae as in Example 8.2, we are left with a copy of Z

d

17See e.g. ref. 110 for a brief discussion of transfer matrices for the hard-core lattice gas.
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with effective fugacities

weff =
w

(1+w′)2
= w

w+ 1
2 +
√

w+ 1
4

. (8.54)

If w∈ (−λc(Z
d+1),0], then weff must be in (−λc(Z

d),0]. It follows that

λc(Z
d) � λc(Z

d+1)

1
2 −λc(Zd+1)+

√
1
4 −λc(Zd+1)

, (8.55)

or equivalently

λc(Z
d+1) � λc(Z

d)

[1+λc(Zd)]2
, (8.56)

which is the desired bound.
Using (8.56) together with the initial condition λc(Z

1)=1/4, it is easy
to show by induction that λc(Z

d) � 1/(2d+2). However, this bound is less
sharp than the bound (8.53) obtained in Example 8.3.

8.4.2. Lower Bounds on λc

We now turn to proving lower bounds on λc. Corollary 5.3 gives

λc(Z
d) � ��

(�+1)�+1
= (2d)2d

(2d+1)2d+1
∼ 1

2ed
, (8.57)

while Corollary 5.7 gives the slightly better bound

λc(Z
2) � (�−1)�−1

��
= (2d−1)2d−1

(2d)2d
∼ 1

2ed
. (8.58)

For d=2 the latter bound yields λc(Z
2) � 27/256. Either of these bounds

shows, when combined with Example 8.3, that λc(Z
d)=�(1/d) as d→∞.

To get quantitatively better bounds, we can take a supertree of the
pruned SAW-tree of Z

d and calculate exactly for it. In particular, if we
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choose a supertree that is eventually periodic, the computation reduces to
finding the fixed point of a recursion.

Example 8.6. The pruned SAW-tree of Z
d is obviously contained

in the 2d-branching tree, for which the computation has been performed
in Example 3.6. This yields the bound (8.57). (This argument obviously
works for any infinite graph of maximum degree �, not just Z

d .)

Example 8.7. A smaller supertree of the pruned SAW-tree is
obtained by giving the root 2d children and every other vertex 2d − 1
children. Applying Algorithm T, the recursion (until we reach children
of the root) is w′ �→w/(1+w′)�−1. We end up with the bound (8.58).
(The argument again works for any infinite graph of maximum degree
�.)

Example 8.8. Another possibility (not the only one) is to take a
large finite piece T of the pruned SAW-tree of Z

2, and then repeat it peri-
odically (attaching to each leaf of T a copy of T starting at the root, and
repeating this). It is easily seen that this gives a supertree of the pruned
SAW-tree. We therefore use the recursion weff ,leaves �→weff ,root and demand
that there exist an attractive fixed point in (−1,0]. We have various choices
about how to order the edges to define the pruning. For instance, we can
choose an ordering of the edges at each vertex in a translation–invariant
way, find the first k levels of the pruned SAW-tree, and then repeat these
periodically. Alternatively, we can order the vertices arbitrarily at the root
of the SAW-tree, and at all other vertices of the SAW-tree order the edges
according to the angle the path turns through (e.g. 0,+π/2,−π/2) in tak-
ing the step. This defines a pruned SAW-tree, and we can take the first k

levels and repeat periodically as before. We conjecture that either method
gives bounds converging to λc(Z

2) as k grows, but we do not know how
to prove this.

Remark. In Examples 8.2 and 8.7, we have proven for Z
2 the rigor-

ous bounds

0.105468 . . . = 27
256

� λc(Z
2) � 4

25
= 0.16 . (8.59)

By extensions of those arguments and with a little calculation, these
bounds can be narrowed further; it would be interesting to see how far
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one can go. It is worth noting that Todo(110) has given the extraordinarily
precise numerical estimate

λc(Z
2) = 0.119 338 881 88(1), (8.60)

obtained by using transfer matrices and the phenomenological-renormal-
ization method (a variant of finite-size scaling). Furthermore, his compu-
tations up to L=38 show(111) that18

λc(S̃38) = 0.119 365(1) , (8.61)

which by Example 8.4 provides an upper bound on λc(Z
2). See also

Guttmann(54) for an earlier and only slightly less precise estimate of
λc(Z

2), obtained by series analysis.
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18What Todo(111) actually computed is the number λ×L for which

(a) the transfer matrix has a unique eigenvalue of largest modulus for w ∈ (−λ×L ,0],
and

(b) the transfer matrix has two dominant eigenvalues of largest modulus for w=−λ×L .

Let us show that λ×L = λc(S̃L). Let S̃
(n)
L be the cylinder of width L and length n. By

monotonicity, λc(S̃
(n)
L ) decreases in n and hence has a limit as n→∞; it is easy to see that

this limit is λc(S̃L). Now, the Beraha–Kahane–Weiss theorem(10,103) tells us that

(a′) for every ε > 0, there exist δ > 0 and n0 <∞ such that Z
S̃

(n)
L

has no (real or com-

plex) zeros within a distance δ from the interval [−λ×L + ε,0] when n � n0; and

(b′) there exist (possibly complex) zeros of Z
S̃

(n)
L

tending to −λ×L as n→∞.

Since −λc(S̃
(n)
L ) is the closest zero to the origin of Z

S̃
(n)
L

, it follows easily from (a′) and (b′)

that λ×L =λc(S̃L).
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