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Abstract
Knowledge of the values of the thermodynamic functions of natural minerals of transi-
tion elements has important applications in the study of the processes of their formation 
and geochemical migration with groundwater; when developing methods to prevent cor-
rosion of non-ferrous alloys in fresh and sea water; when immobilizing heavy metals in 
mine drainage and industrial waters, etc. Also, these values are in demand when calcu-
lating reactions and developing methods for producing synthetic analogs of minerals, 
many of which exhibit magnetic, catalytic, photochemical, and other properties. However, 
in scientific literature, there is a lack of detailed data on the thermodynamic properties 
of nickel hydroxysalts. A sample of basic nickel carbonate with the theoretical formula 
 Ni3[CO3](OH)4·3H2O was obtained using the hydrothermal synthesis method. The struc-
ture of the compound was verified by X-ray diffraction and infrared spectroscopy. Experi-
ments were carried out on sample dissolution in order to measure the solubility constant 
(solubility product):  log10 KSP =  − 45.8 ± 1.8. Based on the data obtained, the thermody-
namic parameters of the reaction of dissolution of the compound were determined and 
the main thermodynamic functions were determined: Gibbs free energy of formation 
ΔfG° =  − 1554 ± 6 kJ·mol−1; enthalpy of formation ΔfH° =  − 1798 ± 9 kJ·mol−1; standard 
entropy S° = 260.6 ± 7.8 J·mol−1·K−1.
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1 Introduction

Thermodynamic parameters of oxidized minerals of transition metals (copper, zinc, 
nickel, etc.) are important when studying minerals in the oxidation zone of ore deposits 
[1], corrosion of non-ferrous metal alloys [2], immobilization of heavy metals in envi-
ronment [3], obtaining new materials [4–6], etc.

Layered nickel compounds of this kind have unusual magnetic properties, thus, the 
structure of nickel hydroxysulfate at TN 29 K transforms from paramagnetic to a canted 
antiferromagnetic state, the magnetic moments of which are not completely antiparal-
lel. Resulting compensated structure of the arrangement of moments within one layer 
includes one ferromagnetic and three antiferromagnetic superexchange interactions 
between nickel atoms [7].

In addition, layered metal hydroxides are promising materials for water splitting and 
the development of energy storage devices. Bifunctional electrocatalyst with Co–Ni 
carbonate hydroxides exhibits an excellent catalytic activity and good stabilities, and 
achieves very low overpotentials [8]. The specific capacity of hierarchical structures 
with nickel carbonate hydroxide achieves more than 200–300 mAh/g and suitable as 
materials for supercapacitor electrodes [9, 10]; high electrochemical capacity, energy 
density, and cyclic stability allow their using in electrochemical energy storage applica-
tion [11, 12].

Questions about formation and reactivity require knowledge of the physicochemical 
properties of these compounds. However, for a number of compounds, solubility prod-
ucts and basic thermodynamic functions have not yet been determined. At present time, 
in scientific literature, there is a lack of detailed data on the thermodynamic proper-
ties of nickel hydroxo salts. One of the ways to obtain self-consistent thermodynamic 
data for sparingly soluble compounds is to study their dissolution processes at different 
temperatures.

In this work, we studied synthetic nickel hydroxycarbonate obtained by hydrothermal 
synthesis. The processes of solubility of the compound at various temperatures were 
studied and thermodynamic data on its physicochemical properties were obtained.

2  Materials and Methods

2.1  Materials

To carry out the synthesis of nickel hydroxycarbonate, nickel sulfate heptahydrate 
 NiSO4·7H2O and urea  (NH2)2CO were used as starting materials (Table  1). The rea-
gents are classified as “chemically pure” and contain at least 98% of the main substance. 
Before synthesis, the starting substances were recrystallized twice and then dried in a 
desiccator over a sulfuric acid solution with a concentration of 20 wt% to ensure a resid-
ual water vapor content of 15 mm Hg at 293 K.

2.2  X‑ray Diffraction

The powder X-ray diffraction study of the synthesized samples was carried out on a dif-
fractometer Empyrean X-ray (Malvern Panalytical Ltd). The diffractometer is equipped 
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with an X-ray tube with a copper anode (Kα1 = 1541874 Ǻ). The measurements were 
carried out at room temperature in the 2θ angle range from 0° to 90° in step-by-step 
scanning mode with a step of 0.013 degrees.

2.3  IR Spectroscopy

Infrared spectra were recorded on a Fourier spectrometer FSM-1201 (Infraspek Ltd). Sam-
ples for IR spectroscopic studies were prepared in the form of tablets compressed from 
2 mg of the test substance and 300 mg of potassium bromide KBr. The sample was crushed 
in an agate mortar, and then it was pressed at a force up to 80 kN. The tablet had a diameter 
of 13 mm and a thickness of 1 mm. The spectra were recorded in the transmission mode in 
the range from 400 to 4000  cm−1 with a spectral resolution of 4  cm−1 at room temperature.

2.4  Dissolution Experiments

To study the thermodynamic characteristics of the compound, dissolution experiments 
were performed at different temperatures. Weights of the sample were placed in 500-mL 
volumetric flasks with ground-in stoppers and topped up with distilled water to the mark. 
The sample weight was 200 ± 2 mg to ensure equilibrium dissolution conditions. The flasks 
were placed in three thermostats at temperatures of 293, 323, and 353 K with an accuracy 
of ± 1  K and kept for several weeks with periodic stirring. To determine the concentra-
tion of nickel ions in the solution, a sample was taken from the flasks for analysis once 
every few days. Samples in a volume of 1 mL were taken from the flask through a 0.45 µm 
nylon filter. To compensate the thermal expansion of water, the volume of the aliquots was 
increased by 1% at temperature 50 °C, and by 3% at temperature 80 °C. After sampling, 
distilled water was added to the flask in an appropriate amount.

Experiments were carried out until a stable concentration in the solution occurred, 
determined by the agreement of the results of the last three analyses within the standard 
deviation.

2.5  Spectrophotometric Analysis

The analysis of the nickel content in the solution (1  mL probe) was carried out by the 
method of absorption photometry by the dimethylglyoxime method [13]. The analysis of 
experimental solutions was carried out in triplicate on a photoelectric spectrophotometer 
KFK-3 (JSC «ZOMZ»). To a probe of the test solution, 1 mL of a 20% potassium-sodium 
tartrate solution, 2 mL of a 10% solution of  NH2OH·HCl, and 2 mL of 1% dimethylglyox-
ime solution are added, and bringing the solution with ammonia up to pH 9. The solution is 
extracted with two portions of chloroform in a separatory funnel. The resulting extracts are 
washed with diluted ammonia solution and nickel is reextracted with 0.5 mol·L−1 hydro-
chloric acid. The solution is placed in 50-mL volumetric flask, adding 1 mL of 1% dimeth-
ylglyoxime solution, 2  mL of 4% ammonium persulfate solution, 5  mL of concentrated 
ammonia solution, and up to the mark with distilled water. The absorbance of the resulting 
solution is measured at 445 nm using distilled water as a reference solution.
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3  Synthesis and Characterization

3.1  Hydrothermal Synthesis

The ratio of starting substances during the synthesis was 0.02 mol of nickel sulfate and 
4 mol of urea per 2 L of distilled water. The synthesis was carried out in a dismountable 
autoclave, consisting of an internal fluoroplastic vessel with a lid and an outer steel case 
secured with a threaded connection. The reaction mixture was poured into the vessel, 
which was sealed in the steel case. The assembled design was placed in a Nabertherm 
N7/H oven and kept at a temperature of 363 ± 1 K for 1 h. The resulting microcrystal-
line precipitates were filtered off on a paper filter and washed with distilled water, and 
then with ethyl alcohol and acetone for drying.

3.2  X‑ray Phase Analysis

Processing of diffractometry data (Fig. 1) and searching for individual phases were car-
ried out using the Match! v.2.3 program [14] and the PDF-2 powder diffraction database 
[15]. The compound profiles were refined by means of the Rietveld method using the 
PowderCell v.2.4 program [16].

A noticeable broadening of the reflections in the diffraction pattern indicates a fairly 
small size of the sample crystallites, at a level of 10  nm according to Scherrer. The 
resulting compound is structurally similar to compounds from the hydrotalcite group 
[6, 17–20]. When refining the profiles, the structural parameters of the takovite mineral 
were taken as a basis [21]. The best refinement results (Rp = 7.22%, Rwp = 9.35%) were 
obtained using the theoretical formula  Ni3[CO3](OH)4·3H2O. The unit cell parameters 
obtained as a result of full-profile analysis are given in Table 2.

Fig. 1  Experimental (thick black line), theoretical (thin red line), and difference (green line below) diffrac-
tion patterns of the synthetic sample of nickel hydroxycarbonate (Color figure online)
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3.3  Infrared Spectra

Experimental IR spectra were processed using the PeakFit 4.12 program [22]. In the 
smoothed spectrum, the main peaks were identified, after which hidden peaks were 
identified. To obtain a smoothed spectrum, the Lorentz-Gaussian variation of the peak 
shape parameter was used. Smoothing was performed until a correlation coefficient of at 
least 0.995 was obtained.

The main absorption bands of the synthetic sample of nickel hydroxycarbonate 
(Fig. 2) mainly correspond to the infrared spectra of similar compounds [3, 5, 23].

Intense lines in the region of 3600–3700   cm−1 refer to stretching vibrations of OH 
groups included in the structure of hydroxycarbonate. The lines at 1361, 1398, and 
1444   cm−1 belong to antisymmetric stretching vibrations of C–O bonds. The splitting 
of this vibration band into a triplet indicates a distortion of the shape of the carbon-
ate ion in the structure of the compound. Lines at 950–1200  cm−1 correspond to sym-
metrical stretching vibrations of C–O bonds. The lines at 810–940  cm−1 correspond to 
symmetrical bending vibrations of the O–C–O bond angles. The lines in the region of 
640–780   cm−1 belong to bending vibrations of hydroxyl groups. The lines at 464 and 
482  cm−1 correspond to bending vibrations of the carbonate ion. The line at 399  cm−1 
refers to vibrations of the Ni–O bonds.

Table 2  Crystal lattice 
parameters of a nickel 
hydroxycarbonate sample

Lattice parameters Ni3[CO3]
(OH)4·3H2O 
synth

Space group R−3 m
a (Å) 3.167(3)
c (Å) 21.89(1)

Fig. 2  Infrared spectrum and individual absorption bands of the synthetic nickel hydroxycarbonate



Journal of Solution Chemistry 

The spectrum contains a band at 2100–2250  cm−1, which is due to the total combination of 
torsional and deformation vibrations of water molecules and can be attributed to vibrations of 
crystalline hydrate water. The bands in the regions at 1500–1700  cm−1 and 3100–3500  cm−1 
correspond to vibrations of free and weakly bound water, which indicates the presence of 
some amount of adsorbed water in the sample.

4  Results and Discussion

As a result of the experiments, data were obtained on changes in the concentration of nickel 
ions upon dissolution of the synthesized sample (Fig. 3). The increase in the concentration of 
nickel ions occurs quite quickly and approaches a certain limiting value corresponding to the 
equilibrium concentration of nickel in the solution. The resulting sets of experimental data 
were smoothed by a dependence equation of the form y = x/(a + bx), which has an asymptotic 
limit. The asymptotic values of this function were taken as the equilibrium concentrations of 
nickel ions in solution.

The dissolution process of nickel hydroxycarbonate is described by the following equations:

where symbols in square brackets indicate equilibrium concentrations. In this case, the 
concentrations of ions in the solution are equal to each other, taking into account the stoi-
chiometric coefficients. The parameters of reaction 1 are difficult to estimate because the 
species involved have generally constant concentrations and the thermal effect of the reac-
tion is quite small [24]. Assuming the concentration of the solid substance to be a constant 
value equal to 1, the expressions for the equilibrium constant of reaction 2, in accordance 
with the law of mass action, in simple and logarithmic form have the form:

(1)Ni3
[

CO3

]

(OH)4 ⋅ 3H2O(s) ↔ Ni3
[

CO3

]

(OH)4(s) + 3H2O(aq),

(2)Ni3
[

CO3

]

(OH)4(s) ↔ 3
[

Ni2+
]

(aq) +
[

CO2−
3

]

(aq) + 4[OH−](aq),

(3)KSP =
{

Ni2+
}3

⋅

{

CO2−
3

}

⋅ {OH−}4,

Fig. 3  Change in the concentra-
tion of nickel ions in solution 
during experiments on dissolving 
a sample of nickel hydroxycar-
bonate at different temperatures. 
From bottom to top: dia-
monds—293 K; squares—323 K; 
triangles—353 K
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where the designations in curly brackets express the activities of ions in solution, which in 
extremely dilute solutions become almost equal to equilibrium concentrations. The final 
averaged experimental values of the equilibrium concentrations of nickel ions in solutions 
and ionic products at various temperatures calculated using formulas 3 and 4 are shown in 
Table 3.

The temperature dependence of the dissolution constant under equilibrium conditions is 
described by the equation

The temperature dependence of this function is shown in Fig. 4. Based on the available 
data set, the coefficients of Eq. 5 were calculated and their uncertainties were estimated. Using 
the smoothed curve, the value of the dissolution constant for nickel hydroxycarbonate at a 
standard temperature of 298.15 K and its uncertainty were calculated:  log10 KSP =  − 45.8 ± 1.8.

Thermodynamic functions of the reaction of dissolution of compounds are related to the 
coefficients of Eq. 5 by the following relations:

(4)log10 KSP = 3 log10
{

Ni2+
}

+ {O2−
3
} + 4 log10 {OH

−},

(5)log10 KSP = A − B∕T + D ⋅ log10 T .

(6)ΔrG
◦ = − 2.3026RT log10 KSP,

(7)ΔrC
◦

p
= DR,

Table 3  Equilibrium 
concentrations of nickel ions 
in solution and equilibrium 
constants

Uncertainties of concentration measurements are standard uncertain-
ties (level of confidence = 0.67); for derived values the common math-
ematic methods of uncertainty calculation were used

Temperature, K CCu, µmol/L KSP log10 KSP

293 182.8 ± 9.9 1.26 ×  10–46  − 45.9 ± 1.8
323 219.2 ± 11.3 5.37 ×  10–46  − 45.3 ± 2.2
353 246.9 ± 12.2 1.38 ×  10–45  − 44.9 ± 2.8

Fig. 4  Temperature dependence 
of the decimal logarithm of the 
dissolution constant of synthetic 
nickel hydroxycarbonate and the 
coefficients of the smoothing 
equation
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where R = 8.31446  J·mol−1·K−1 is the universal gas constant. Based on formulas 6–9, 
standard values were calculated for Gibbs free energy ΔrG°, heat capacity ΔrC°p, entropy 
ΔrS°, and enthalpy ΔrH° of synthetic nickel hydroxycarbonate dissolution reaction 1, 2 and 
their uncertainties.

Next, the values of the Gibbs free energy of formation ΔfG°, the enthalpy of formation 
ΔfH°, and the standard entropy S° of the compound were calculated in accordance with 
Hess’s law by the following expressions:

The values of the thermodynamic functions of individual ions required for calculation 
using Eqs. 10–12 were taken from the base reference book on the thermodynamic proper-
ties of minerals [25].

The final standard values of the main thermodynamic functions of synthetic nickel 
hydroxycarbonate are given in Table 4.

The obtained values of the thermodynamic functions of nickel hydroxycarbonate are in 
satisfactory agreement with the calculated data, and also coincide in order of magnitude 
with the experimental data for similar compounds [26].

5  Conclusion

A synthetic sample of nickel hydroxycarbonate was obtained using the hydrothermal 
method, for which its structure was confirmed. The processes of sample dissolution were 
studied, and based on the experimental results, solubility constants were determined, as 

(8)ΔrH
◦ = 2.3026RB + TΔrC

◦

p

(9)ΔrS
◦ = 2.3026RA + 2.3026TΔrC

◦

p
log10 T + ΔrC

◦

p
,

(10)ΔfG
◦ = 3ΔfG

◦

Ni2+
+ ΔfG

◦

CO2−
3

+ 4ΔfG
◦

OH− − ΔrG
◦,

(11)ΔfH
◦ = 3ΔfH

◦

Ni2+
+ ΔfH

◦

CO2−
3

+ 4ΔfH
◦

OH− − ΔrH
◦,

(12)S
◦ = 3S◦

Ni2+
+ S

◦

CO2−
3

+ 4S◦
OH− − ΔrS

◦

Table 4  Standard 
thermodynamic functions for 
the reactions of dissolution and 
formation of synthetic nickel 
hydroxycarbonate (temperature 
T = 298.15 K)

Uncertainties of the values are calculated from standard uncertainties 
of concentration measurements in accordance with the common math-
ematic methods (level of confidence = 0.67)

Function Value Units

ΔrG° 261.3 ± 5.5 kJ·mol−1

ΔrH° 40.61 ± 9.0 kJ·mol−1

ΔrS°  − 740.1 ± 4.8 J·mol−1·K−1

ΔfG°  − 1554 ± 6 kJ·mol−1

ΔfH°  − 1798 ± 9 kJ·mol−1

S° 260.6 ± 7.8 J·mol−1·K−1
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well as the main thermodynamic functions and their errors. The obtained values are in sat-
isfactory agreement with the calculated data.
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