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Abstract

The first ionization constants of phosphoric acid and acetic acid have been measured
in H,O and D,O from 7=373 K to T7=573 K and p=11.5 and 20 MPa to yield accu-
rate values of the deuterium isotope effect. Sequential conductivity measurements using
a unique high-precision flow-through AC conductance instrument were made on dilute
(m <1072 mol-kg™") aqueous solutions of phosphoric acid, acetic acid, potassium dihydro-
genphosphate, sodium acetate, potassium hydroxide, sodium hydroxide, hydrochloric acid,
potassium chloride and sodium chloride in light and heavy water under the same experi-
mental conditions (temperature, pressure, flow-rate), so that systematic experimental errors
between the two solvents would cancel. The experimental molar conductivities of potas-
sium dihydrogenphosphate, sodium acetate, hydrochloric acid, and the corresponding chlo-
ride salts were used to calculate the molar conductivities for the fully dissociated acids
[MD*), MD,POy) and MCH;COO™)]. Together with the molar conductivities measured for
partially ionized acids, A(D;PO,) and A(CH;COOD), these yielded values for the degree
of dissociation, a, and the ionization constants, pK,,. The iterative process was repeated at
each temperature in both H,O and D,0O where the Fuoss-Hsia-Ferndndez-Prini (“FHFP”)
and the Quint-Viallard (“QV”) equations were used to correct for ionic strength. The result-
ing values of pK,; for phosphoric acid in H,O agree with those reported from conductiv-
ity studies by previous works over the entire temperature range and with low temperature
potentiometric studies to within the combined experimental uncertainties. The results for
pK,; above 298.15 K in D,0 are the first to be reported in the literature. The new values for
pK,(CH;COOD) yield more accurate values for the deuterium isotope effect on the ioniza-
tion constant of acetic acid than those reported in our previous work (Erickson et al. in J.
Phys. Chem. B. 123:9503-9506, 2019). The single-ion limiting conductivities for dihydro-
genphosphate and acetate in D,0, M(D,PO;) and A((CH;COO™), were found to be the same
as those in H,O once corrected for viscosity effects, confirming previous observations for
other ions.
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1 Introduction

An accurate understanding of the pH and chemical speciation of aqueous systems at high
temperature is critical to optimise the plant chemistry regime of nuclear power plants and
establish safety margins. The Canadian CANDU-PHWR (“CANada Deuterium Uranium
Pressurized Heavy Water Reactor”) design is unique compared to other Pressurized Water
Reactors (PWRs) in that it uses D,O rather than H,O in the primary coolant system as a
neutron moderator and heat transport medium [1]. To optimize PHWR chemistry regimes
and safety margins, experimental values for the equilibrium constants of acid ionization
and metal oxide hydrolysis reactions in heavy water at high temperature and pressure are
required. A few high temperature aqueous systems have been reported [2—4] with the data
being much more limited for D,O systems. Understanding the deuterium isotope effects
on equilibrium constants for a variety of chemical systems over an extended temperature
range will help to probe differences in the solvation behaviour of light and heavy water to
develop accurate models of their reactions under CANDU primary coolant conditions.

A great deal of progress has been made towards understanding these effects at ambi-
ent temperatures [5—11]. The increase in the molar mass of heavy water causes small but
detectable differences in the properties of the solvent, and as temperature increases the
average number and strength of the hydrogen bonds in both H,O and D,0 weaken, result-
ing in drastic changes in the physical properties of both solvents. Experimental deute-
rium isotope effects on ionization reactions, ApK=pK, pyo—pPK, 1120, have been reported
at ambient conditions for many organic and inorganic species [5—12], where ApK values
ranged between 0.2 and 0.7. At higher temperatures accurate measurements remain scarce,
with only a few studies of acid—base ionization having been reported above 373 K [13-22].

This work adds to previous investigations carried out at the University of Guelph
[16-22], aimed at measuring the small differences in equilibrium constants between light
and heavy water over an extended range of temperatures and pressures with sufficient accu-
racy that the deuterium isotope effects can be modeled. This study reports measurements
of the phosphoric acid first ionization constant in H,O, K,; g0, and D,0, K, py, from 293
to 571 K at 20 MPa using a unique custom-made high-temperature flow AC conductiv-
ity instrument [23, 24], where the experiments were designed to measure the difference
in molar conductivity between solutions in D,0 and H,O directly, so that most system-
atic errors would cancel. The measurements also yielded values for the single-ion limit-
ing molar conductivities, A°, of K*, C1~, Na*, D,PO;/H,PO;, CH,COO~, D;0*/H,0" and
OD7/OH™ in D,0 and H,0 at temperatures up to 7=573 K. The additional measurements
on the ionization constant of acetic acid were made to reduce the uncertainties on its deu-
terium isotope effect reported in our previous study [18, 19]. The conductivity data were
analyzed with the Fuoss-Hsia-Ferndndez-Prini (“FHFP”) model [25] and the Quint-Vial-
lard (“QV”) [26-28] equations following Conrad et al. [29].

2 Experimental
2.1 Chemicals and Solution Preparation

Aqueous stock solutions of 1.1905 mol-kg™! H;PO, in H,O and 0.8679 mol-kg™! D,PO, in
D,0 were prepared from purchased phosphoric acid aqueous solutions (Fisher Scientific,
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#A242P-500, 85 wt %) and (Sigma Aldrich, #176,753, 85 wt % in D,0, 98 atom % D),
respectively. Both solutions were standardized against a standard NaOH solution at
298 K to+0.1%. Aqueous stock solutions of 0.1299 mol-kg™! HCI, 0.4677 mol-kg™' DCI,
0.2433 mol-kg™! KOH, and 0.1355 mol-kg~! KOD were prepared by dilution from pur-
chased solutions (HCI, Sigma Aldrich, #318965, 0.1 N standard; DCI, Sigma Aldrich,
#543047, 35 wt % in D,0, 99 atom % D; KOH, Fisher Scientific, #5S254-4, 50 wt %;
KOD, Sigma Aldrich, #176761, 40 wt % in D,0, 98 +atom % D). The HCI and DCI solu-
tions were standardized against a standard NaOH solution, and the KOH and KOD solu-
tions were standardized against potassium hydrogen phthalate (KHP, CgH;O,K, Fisher
Scientific, #AC17712, 99.99%) to+0.1% at 298 K. Stock solutions of 0.1163 mol-kg_1
KClI (Fisher Scientific, #BP366-500,>99%) in H,0 and 0.1134 mol-kg_1 KCI in D,0,
0.1011 mol-kg_1 KH,PO, (Sigma Aldrich, #P0662,>99%) in H,O, and 0.09297 rnol-kg_1
KD,PO, (Sigma Aldrich, #329916, 98 atom % D) in D,0 were prepared by mass from
their salts using a balance accurate to +0.00002 g with buoyancy corrections and accuracy
better than+0.2%. KHP, KCl, and KH,PO, were dried at 403 K, 573 K, and 393 K respec-
tively until a constant mass was achieved.

Degassed and deionized water from a Millipore Direct-Q 5 water purification system
(resistivity 18.2 MQ-cm) was used to prepare the H,O solutions. The heavy water used
in the D,O solution preparation was donated from Ontario Power Generation Inc. and
determined to be>99.8 mol% D with 'H NMR, using a standardized D,O solution of ace-
tic acid (CH;COOD, Sigma Aldrich, #537020, 99.85%) as the internal proton reference.
The solutions in D,0 were prepared in a glove bag purged with argon, which was con-
tinually kept under positive argon pressure. Stock solutions were diluted to a concentration
of ~10~ mol-kg™! by mass, to a relative precision of +0.01%, and stored in sealed Pyrex
glass or HDPE Nalgene bottles under a positive argon atmosphere to prevent contamina-
tion from atmospheric CO,(g).

2.2 Impedance Measurements and Experimental Design

The experimental design was based on our recent acetic acid study [18, 19]; here,
solutions of phosphoric acid, acetic acid, potassium dihydrogenphosphate, sodium
acetate, hydrochloric acid and potassium or sodium chloride, in both light and heavy
water, were injected in sequence at each temperature, pressure, and flow rate, so that
systematic errors in the experimental molar conductivities of solutions in the two sol-
vents would cancel, thus yielding more precise values of the deuterium isotope effect,
ApK=pK,; pro—PK,1 mo- Experiments were performed for dilute aqueous solutions of
H,PO,/D;PO,, CH;COOH/CH;COOD, HCI/DCI, KOH/KOD, KCl, NaCl, NaCH;COO,
and KH,PO,/KD,PO, in both H,0 and D,0 (~107* to~ 10~ mol-kg™") from T=373 K
to 573 K at a constant pressure p~11.5 or 20 MPa with a high-temperature, high-pres-
sure AC conductivity flow of cell used in our earlier studies [24, 30-34]. The tempera-
ture of the cell was controlled to +£0.15 K over the several days required for conductiv-
ity measurement and recorded to +0.02 K. High-performance liquid chromatographic
(HPLC) pumps were used to inject solutions into the flow conductivity cell, at a rate of
0.5 cm®min~!. The pressure was controlled by a back-pressure regulator (Circle Seal
Controls Inc. model BPR21U25512 6000 psi) located at the end of the flow line and
measured to an accuracy of +0.01 MPa. A set of Pyrex glass bottles or high density pol-
yethylene Nalgene bottles (for KOH, KOD, NaOH and NaOD), equipped with KIMAX
GL-45 gastight tops, contained the test solutions in both light and heavy water, and the
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two solvents, H,O and D,0, for injection into the high-pressure flow AC conductivity
instrument. The solutions and solvents in the flasks used for the feed system were kept
under a positive argon pressure for the duration of the experimental runs.

Complex impedances, Z(®) =Zg (0)—j-Z;, (o), of the aqueous solutions were measured
as a function of concentration and the angular frequency (w) at each temperature. Imped-
ance spectra were collected at nine frequencies in the range 100 to 10 kHz, to yield val-
ues for both real Zy.(w) and imaginary Z;, () components. AC impedance data (at 100,
200, 500, 1000, 2000, 4000, 6000, 8000 and 10 000 Hz) were collected for the follow-
ing sequence of solutions for the phosphoric acid measurements: H,0, D,0, NaCl/H,0,
NaCl/D,0O, KCI/H,0, KCI/D,0, H,PO,, D;PO,, KH,PO,, KD,PO,, HCI, DCI, KOH,
KOD, NaCl/H,0, NaCl/D,0, D,0 and H,O, and similarly, for the acetic acid measure-
ments: H,0, D,0, NaCl/H,O, NaCl/D,0, CH,;COOH, CH,;COOD, CH;COONa/H,0,
CH,;COONa/D,0, HCl, DC1, NaOH, NaOD, NaCl/H,0, NaCl/D,0, D,0 and H,O. Eighty
to one hundred impedance measurements were taken with a computer over a time span
of 50 min or more. Each sample injection was followed by a large injection of de-ionized
water from the main reservoir, typically 80 mL, to rinse the equipment until the cell con-
ductance had returned to its baseline value. The resistance of the solution was determined
from the high frequency limit of Zy () using Eq. 1:

Zp(@) =R, + b, - 0" (1)

where R, is the solution resistance that we seek to measure, and b, and n are fitting parame-
ters. Details on the extrapolation method and the experimental uncertainty limits in Zg (w)
and Z;, (w) are discussed in Ref. [35].

2.3 Experimental Conductivities and Solvent Correction

Experimental solution conductivities (ky,,“P= R, / k ;) were determined from the resist-
ances of the aqueous solution (R,) after a calibration of the conductivity cell. The proce-
dures used for calibrating the instrument and determining the cell constant (k) have been
reported in previous studies [18, 19, 24, 34, 36]. Temperature-dependent cell constants
used in this work are reported in Tables 1 and 2. To check the accuracy of the calibration,
two NaCl solutions (in H,O and in D,0) were run as internal standards before and after the
series of other electrolytes at each temperature. As shown in Tables 3, 4 and 5 the values
agreed with one another to within = 1 % or better, which is considered to be the precision
of our conductivity measurements. Limiting conductivity values, A°(NaCl), were derived
from these measurements, and were found to agree with literature results [24] to within
less than + 3% which is considered to be the experimental uncertainty of our conductivity
measurements. Results are shown in Figure 1.

As in our previous studies, the data treatment to extrapolate experimental conductivities
to infinite dilution is based on the theoretical Fuoss—Hsia—Fernandez-Prini (“FHFP”’) con-
ductivity model [25]. In this work the Quint-Viallard (“QV”’) conductivity model [26-28]
was also used to confirm the results from Conrad et al. [29]. The full details for the QV
treatment are reported in Ref. [29]. Experimental solution conductivities, kaf,, were cor-
rected for impurities within the solvent to yield the true solution conductivities, x. The
solvent correction is different if the considered electrolyte is an acid, a base, or a salt. For
simple salts, experimental solution conductivities were corrected for impurities within the
solvent using the expression:
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Table 1 Experimental molar conductivities, A**P, and fitted (FHFP and QV) limiting molar conductivities,
A°, for NaCl(aq), HCl(aq), NaOH(aq), NaCH,COO(aq), KCl(aq), KOH(aq), KH,PO,(aq), and H;PO4(aq),
in H,0 from 7=298 K to =573 K at p=20 MPa and p=11.5 MPa

Solute mx 100 ¢ x 10° k% 10° AP A° (FHFP) A°(QV)

mol-kg™! mol-L™! S-cm™ S-cm?-mol ™!

T=298.15 K, p=11.549 MPa, p, =1002.2 kg:m >, 5, =0.00889 P, ¢, =78.91

ke =0.06681 cm™!, k&P =0.2180 x 107 S-cm™2, k2" =0.0579 x 10° S-cm™

NaCl(aq) 167.5657+0.0053  167.93+0.17 21.6+0.2 128.6+0.9 1297409  129.7+09
HCl(aq) 266.20+0.20 266.79+0.27  29.1+0.2 417.1£3.0 419.6+£3.0  419.6+3.0
NaOH(aq) 159.707 +0.085 160.06+0.16  14.9+0.1 93.0+0.7 94.0+0.7 94.0+0.7
NaCH,COO(aq) ~ 8293.84+0.71 8309.4+8.8 690.9+5.0 83.1+0.6 89.8+0.7 89.7+0.7
CH;COOH(aq) ~ 41.9209+0.0053  42.013+£0.042 7.5+0.1 178413 3797427  379.6+2.7

T=298.17 K, p=20.30 MPa, p,, = 1006.0 kg:m~>, n,,=0.00886 P, &, =79.14

koo =0.06478 cm™!, k%P =1.159 x 1070 S-cm™2, k2"® =0.060 X 107° S-cm™2

KCl(aq) 1269.1+1.3 1276.6£1.3 187.5+1.3  146.9+1.1 1502+1.1  1502+1.1
HCl(aq) 912.90+0.91 918.33+0.92  385.7+2.7 419.9+3.0 4248+3.1  4248+3.1
KOH(aq) 2523.3+2.5 2538.3+2.6 672.9+4.8  265.1+1.9 2712420  271.1£20
H,;PO,(aq) 2626.8+2.6 2642.2+2.7 807.5+58  305.6+2.2 376.5+27  376.4+27
KH,PO,(aq) 11545+ 1.1 1150.5+1.2 118.9+0.8  99.1+0.7 101.9+0.7  101.8+0.7

T=374.22 K, p=21.28 MPa, p,,=967.27 kg:m™>, 5, =0.00284 P, e, =55.98
keen=0.06691 cm™!, k%P =1.981 x 107 S-cm™2, k2" =0.863 X 107° S-cm™

KCl(aq) 156.59+0.16 151.46£0.15 59.5+0.4 393.0+£2.8 396.8+2.8 396.8+2.8
HCl(aq) 107.14+0.11 103.63+0.10 89.2+0.6 860.8 +£6.2 865.3+6.2 865.3+6.2
KOH(aq) 264.00+0.26 255.36£0.26 159.4+1.1 624.3+4.5 630.2+4.5 630.2+4.5
H;PO,(aq) 1061.8+1.1 1027.0+1.0 600.6+4.3 584.8+4.2 746.5+5.4 746.5+5.4

T=423.35 K, p=11.488 MPa, p,,=922.95 kg-m~, ,=0.00185 P, e, =44.32
keen=0.06672 cm™", k&P =2.143 X 107° S-em ™2, k™ =1.926 X 10 S-cm™>

o

NaCl(aq) 167.5657+0.0053 154.65+0.15 82.0+£0.6  530.2+3.8 536.3+£3.8 536.3+3.8
HCl(aq) 266.20+0.20 245.69+0.25 256.8+1.8 1045.4+7.5 10559+7.6  1055.8+7.6
NaOH(aq) 162.892 +0.087 150.34+0.15 118.9+0.8 791.1£5.7 798.2+5.7 798.2+5.7
NaCH;COO(aq)  8293.84+0.71 7652.9+8.1 2972422 385.4+2.8 420.2+3.1 420.2+3.1
CH;COOH(aq) 41.9209+0.0053 38.691+0.03911.7+0.1 301.9+2.2 937.2+6.7 937.2+6.7
KCl(aq) 268.57+0.01 247.88+0.25 143.8+1.0 580.0+4.2 592.7+4.2 592.3+4.2
KOH(aq) 199.75+0.03 184.36+0.18 153.9+1.1 834.7+6.0 845.5+6.1 845.5+6.1
KH,PO,(aq) 5086.0+0.4 4694.0+4.9 1978 + 14 419.4+3.1 448.3+3.3 448.2+3.3

T=42330 K, p=2131 MPa, p,, =928.25 kg:m™3, 5, =0.00188 P, &, =44.76

Koo =0.06688 cm™", kP =2.854 x 10 S-cm™2, k'™ =2.022 x 106 S-cm™

KCl(aq) 156.59+0.16 14535+0.15 824206  566.8+4.1  572.8+4.1  572.8+4.1
HCl(aq) 107.14+0.11 99.45+£0.10  107.3+0.8  10784+7.7  1085.1+7.8 1085.1+7.8
KOH(aq) 264.00£0.26 245064025  192.8+14  786.8+56  7957+57  795.7%5.7
H,PO,(aq) 1061.8+1.1 985.6+ 1.0 620.7+44  6298+45 9353467 9353467

T=47321K, p=11.544 MPa, p,,=871.97 kgm™, ,,=0.00137 P, &, =35.16

keen=0.06669 cm™!, k&P =3.263 X 107° S-em ™%, k'™ =3.027 X 10° S-cm™>

NaCl(aq) 167.5657+0.0053  146.11+0.15  101.0+0.7 691.3+5.0 700.1+5.0  700.1+5.0
HCl(aq) 266.20+0.20 232.12+0.23  267.4%19 1151.8+8.3  11658+84 1165.7+8.4
NaOH(aq) 159.707 +0.085 139.26+0.14  136.0+£1.0  976.3+7.0 9863+7.1  986.3+7.1
NaCH,COO(aq) ~ 8293.84+0.71 7230.9+7.6 3719427 508.0+3.7 556.8+4.1  556.9+4.1
CH;COOH(ag) ~ 41.9209+0.0053  36.554+0.037 9.7+0.1 264.1+1.9 1022473 1022.5+7.3
KCl(aq) 268.57+0.01 234174023  175.6+12 749754 760.0+54  759.9+5.4
KOH(aq) 199.75+0.03 174.16+0.17  172.9+1.2 993.0+7.1 1004.7+7.2  1004.6+7.2
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Table 1 (continued)

Solute mx 10° ¢ x 10° kX 10° ASP A° (FHFP) A°(QV)
mol-kg™! mol-L~! S-cm™! S-cm?mol ™!
KH,PO,(aq) 5086.0+0.4 4398.4+4.5 2433+18 547.2+4.0 587.9+43  587.8+43
T=471.88 K, p=21.30 MPa, p,,=880.24 kg-m >, ,=0.00140 P, £,,=35.78
keen=0.06685 cm™!, k%P =3.654 x 107 S-cm ™2, k2 =3.198 X 107° S-cm™
KCl(aq) 495.27+£0.50 435.95+0.44 316022 724.9+5.2 739.9+53  739.8+5.3
HCl(aq) 839.90+0.84 739.31+0.74  871.1+6.2 11782+8.5  1202.6+8.6 1202.4+8.6
KOH(aq) 1687.8 +1.7 1485.7+1.5 1443 +10 971.5+7.0 1002472 1002.2+7.2
H;PO,(aq) 3620.3+3.6 3186.3+3.3 1233.5+8.9  387.1+2.8 1024.6+7.4 1024474
T=498.22 K, p=11.546 MPa, p,,=841.69 kg:m~, ,=0.00121 P, ¢, =31.17
keen=0.06668 cm™!, k&P =3.542 x 107° S-em ™2, k0" =3.389 x 10 S-cm™>
NaCl(aq) 1675.657+£0.0053  141.04+0.14  108.3+0.8 767.7+5.5 778.0+6.1  777.9+5.6
HCl(aq) 266.20+0.20 224.06+0.22  277.0+2.0 1236.1+£8.9  12523+9.5  1252.2+9.0
NaOH(aq) 159.707 +0.085 134.42+0.13  1363+1.0 1014.1+7.3  1025.5+7.7 10254+7.3
NaCH,COO(aq) ~ 8293.84+0.71 6980.4+7.4 4012429 566.5+4.2 622.6+5.1  623.0+4.6
CH;COOH(aq) ~ 41.9209+0.0053  35.284+0.035 8.2+0.1 233.8+1.7 1096.9+7.9  1097.2+7.9
T=498.02 K, p=21.07 MPa, p,,=849.85 kg-m >, ,=0.00123 P, &, =31.60
koo =0.06563 cm™!, k%P =3.823 x 107 S-cm™2, k2" =3.644 X 107° S-cm™2
KCl(aq) 747.52+0.75 63528+0.64  522.70+3.7  822.8+5.9 844.5+£6.1  844.4+6.1
HCl(aq) 748.10+0.75 635.77+0.64  79485+5.6  1250.2+9.0  1276.8+9.2  1276.7+9.2
KOH(aq) 1338.9+1.34 1137.9+1.15 12512489  1099.6+7.9  1132.5+8.1 1132.3+8.1
H,PO,(aq) 6136.1+6.1 5213.5+5.4 14357+109  2754+2.0 1081.1+7.9  1081.0+7.9
T=523.19 K, p=11.531 MPa, p,,=807.32 kg:-m~>, ,,=0.00108 P, e, =27.49
keen=0.06666 cm ™!, k%P =3.676 x 107 S-cm ™2, k2"® =3.482 x 107° S-cm™2
NaCl(aq) 167.5657+£0.0053  13528+0.14  114.0+0.8 842.7+6.0 8547+6.1  854.6+6.1
HCl(aq) 266.20+0.20 21491+0.22  280.2+2.0 1304.0+9.3  1322.6+9.5 13225495
NaOH(aq) 159.707 £0.085 128.94+0.13  137.6+1.0 1067.6+7.6  1080.6+7.7  1080.6+7.7
NaCH;COO(aq) ~ 8293.84+0.71 6696.2+7.1 4262 +31 625.5+4.6 689.5+5.1  690.1+5.1
CH;COOH(ag) ~ 41.9209+0.0053  33.843+0.034  6.54+0.05 1932+1.4 1157.4+83  1158.0+83
KCl(aq) 268.57+0.01 216.82+0.22  1938+1.4 893.0+6.4 908.6+6.5  909.4+6.4
KOH(aq) 217.56+0.03 175.63+0.18  188.3+1.3 1071.9+7.7  1087.1+7.8 1087.0+7.8
KH,PO,(aq) 5086.0+0.4 4062.0+4.2 2724420 663.5+4.8 7173+52  717.4%52
T=523.56 K, p=21.14 MPa, p,,=816.64 kg-m~, 5, =0.00111 P, e,,=27.87
koo =0.06562 cm ™!, k%P =3.891 x 107 S-cm™2, k2" =3.812 X 107° S-cm™2
KCl(aq) 747.52+0.75 610.45+0.61  544.08+3.9  891.3+6.4 916.4+6.6  9162+6.6
HCl(aq) 748.10+0.75 610.93+0.61  801.24+57  1311.5+94  1341.8+9.6 1341.7+9.6
KOH(aq) 1420.8+ 1.4 1160.3+1.2 1359.6+9.7  1171.8+84  1210.5+8.7 1210.4+8.7
H,;PO,(aq) 6136.1+6.1 5009.7+5.2 11542484  2304+1.7 1143.1+84  1142.9+8.4
T=548.21K, p=11.531 MPa, p,=767.24 kg-m~, ,,=0.000973 P, £, =23.98
koo =0.06664 cm ™!, k%P =4.058 x 107 S-cm ™2, k2" =3.268 X 107° S-cm™
NaCl(aq) 167.5657+0.0053  128.56+0.13  116.6+0.8 907.0+6.5 921.0£6.6  920.9+6.6
HCl(aq) 266.20+0.20 204.24+0.20  2743+1.9 1343.1+£9.6  1364.3+9.8  1364.2+9.8
NaOH(aq) 159.707 +0.085 122.54+0.12  138.0+1.0 1126.4+8.1  1141.5+82 11414482
NaCH;COO(aq)  8293.84+0.71 6365.2+6.7 4470 +33 686.4+5.1 759.0£5.6  760.1+5.6
CH;COOH(ag) ~ 41.9209+0.0053  32.163+0.032  4.38+0.03 1362+ 1.0 1203.6+8.6  1204.7+8.6
KCl(aq) 268.57+0.01 206.06+0.21  197.5+1.4 958.5+6.9 976.6+7.0  976.5+6.9
KOH(aq) 217.56+0.03 166.92+0.17  1949+1.4 1167.7+84  13643+9.8 11854+84
KH,PO,(aq) 5086.0+0.40 3860.1+4.0 2794920  717.1£52 7785+57  178.9+£5.7
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Table 1 (continued)

Solute mx 10° ¢ x 10° kX 10° ASP A° (FHFP) A°(QV)

1

mol-kg™! mol-L~! S-cm™ S-cm?mol ™!

T=548.63 K, p=20.14 MPa, p,,=778.11 kg:-m ™, 55,,=0.00100 P, e, =24.37
keen=0.06560 cm ™!, k%P =3.638 x 107 S-cm™2, k2" =3.629 X 107® S-cm™2

KCl(aq) 582.37+0.58 453.15+£0.45 436.42+3.1 963.1+6.9 988.9+7.1 988.7+7.1
HCl(aq) 671.80+0.67 522.74+0.53 700.34+5.0 1339.8+£9.6 1372.3+9.8  1372.2+9.8
KOH(aq) 1806.9+1.8 1406.1+1.4 1688 +12 1200.2+8.6 1249.0£9.0  1248.9+9.0
H;PO,(aq) 5735.3+5.7 4461.6+4.6 837.79+6.1 187.8+1.4 1160.5+8.5 1160.4+8.5

T=57343 K, p=11.517 MPa, p,,=717.92 kg-m™>, ,,=0.000869 P, £, =20.49

koo =0.06662 cm™!, k%P =2.799 x 107 S-cm™2, k2" =2.731 X 107° S-cm™2
NaCl(aq) 167.5657+0.0053 135.28+0.14  1185+08  985.1%7.1 1001.7£7.2  1001.6+7.2
HCl(aq) 266.20+0.20 214914022 2643+19 1382.8+£9.9  1407+10 1407 + 10
NaOH(aq) 162.892+0.087  128.94+0.13  1428+1.0 1221387 1239489 12393489
NaCH;COO(aq) ~ 8293.84+0.71 6696.2+7.1 4638 +34 761.4+5.6 8449462  847.0+62
CH,COOH(aq) 41.9209+0.0053 30.096+0.030  3.62+0.03 120.3+0.9 1250.6+£9.0  1252.7+9.0
KCl(aq) 268.57+0.01 191.11£0.19  199.8+1.4 1036.1£7.4  1057.5+7.6 1057.3+7.6
a>
KOH(aq) 199.75+0.03 143.40+0.14  1813+13 12644+£9.1  1284.6+92  1284.5+9.2
KH,PO,(aq) 5086.0+0.4 3611.4+£3.7  2799+20 768.0+5.6 839.1£6.1  840.0%6.1
T=571.91 K, p=21.15 MPa, p, =739.04 kg-m~>, ,,=0.00091 P, &, =21.36
keen=0.06558 cm™!, k&P =3.295 x 107 S-em™2, K" =3.269 x 10 S-cm™>
KCl(aq) 582.37+0.58 430.41+£0.43  437.67+3.1 1016973 1046375 1046.1+75
HCl(aq) 671.80+0.7 496.50+0.50 695.86+4.9  1402+10 1439+ 10 1438 +10
KOH(aq) 12454+ 1.3 920474093 1185.3+84  1287.7+93  13349+9.6 1334.8+9.6
H,PO,(aq) 5735.3%5.7 4237.6+4.4 636.10£4.6 150.1%1.1 1251.1+£9.1  1251.0£9.1
= Kean = ka0 @

where solution conductivities of acids and bases, kaf,, were corrected following:

= Koo — K57 R0 3

because these chemicals shift the auto-ionization equilibrium state of the solvent, and thus
affect its contribution to the solution conductivity. In Egs. 2 and 3, k3 is the experimen-
tal conductivity of water and x5"® is the conductivity of pure water calculated assuming
the molar conductivity of H" (H;0") and OH™ equal their limiting values. Temperature
dependent values of A°(H;O%) and A°(OH") were calculated using the Marshall reduced
density relationship [37], and for K, .0 they were obtained from the equation of state
(EOS) reported by Marshall and Franck [38] (using EOS from Refs [33] or [39] lead to
insignificant differences in the final results). D,O values of A, [A,=A°(D;0%)+1°(OD")]
were calculated using the Marshall reduced density relationship [37] and applying a cor-
rection for viscosity effects [34] using Walden’s rule. Values of Ky, were calculated
using a density model fit to the experimental data from Mesmer and Herting [15]:

10g10K p,0 = —9.742 + @ _ 417500 ( 3427

T2 12.67 - T)IOglopDzo “
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Table 2 Experimental molar conductivities, A**P, and fitted (FHFP and QV) limiting molar conductivities,
A°, for KCl(aq), D;PO4(aq), KD,PO,(aq), DCl(aq), and KOD(aq) in D,O from 7=298 K to 7=573 K at

p=20MPaand p=11.5 MPa

Solute mx 10° ¢ x 10° k% 10° AP A° (FHFP) A°(QV)
mol-kg™! mol-L™! S-cm™! S-cm?mol ™!
T=298.15K, p=11.549 MPa, p, = 1110.4 kg-m™, 5, =0.0109 P, &,,=78.61
keey=0.06681 cm™!, k&P =0.5100 x 107 S-cm™2, k2" =0.0130 x 10° S-cm™
NaCl(aq) 255.617+0.017  283.84+0.28 29.1+0.2 102.4+0.7 103.6+0.7 103.6+0.7
DCl(aq) 238.93+0.17 265.3040.27 79.8+0.6 300.6+2.2 302.6+£22  302.6+2.2
NaOD(aq) 153.256+0.017  170.18+0.17 24.0+0.2 141.1+1.0 1422+1.0  1422+1.0
NaCH;COO(aq)  8381.75+0.63  9303.7+9.8 636.1+4.6 68.4+0.5 74.1£0.5 74.0£0.5
CH,COOD(aq) ~ 48.752+0.023  54.134+0.054  3.68+0.03 68.0+0.5 273.1+£20  273.1%20
T=298.17 K, p=20.30 MPa, p,,=1114.7 kgm~>, ,=0.0109 P, &, =78.95
keen=0.06478 cm™!, k&P =1.568 x 107 S-.cm™2, k" =0.017 x 10_¢ S-cm™>
KCl(aq) 1116.4+1.1 1244.5+1.3 149.93+1.1  120.5+0.9 1232409  123.1+0.9
DCl(aq) 3244.1+3.2 3616.0+3.7 1090.7+7.8  301.6+2.2 308.8+2.2  308.7+2.2
KOD(aq) 1108.8+1.1 1236.0+1.3 210.70+1.5  170.5+1.2 173.6+1.2 173.6+1.2
D,PO,(aq) 6105.2+6.1 6803.7+7.1 989.42+7.2  1454+1.1 272.6+2.0  272.6+2.0
KD,PO,(aq) 822.77+0.82 911.24+0.92 79.16+0.60  85.0+0.6 87.0+0.6 87.0+0.6
T=37422 K, p=21.28 MPa, p,, = 1073.3 kg-m >, ,,=0.00333 P, &,,=55.75
keen=0.06691 cm ™!, k%P =6.071 x 107 S-cm™2, k2" =0.290 X 107° S-cm™
KCl(aq) 125.57+0.13 134.78 £0.13 46.03+0.30  341.5+24 344.6+£25  344.6+25
DCl(aq) 1026.7+1.0 1102.0+1.1 694.7+4.9 630.4+4.5 641.9+4.6  641.8+4.6
KOD(aq) 182.78+0.18 196.2+0.2 77.54+0.60  395.3+2.8 3992429 3992429
D,PO,(aq) 823.40+0.80 883.8+0.9 333.5+24 377.4+27 552.5+4.0  552.4+4.0
T=423.35K, p=11.488 MPa, p,=1023.9 kg-m~, ,,=0.00213 P, e, =44.19
keen=0.06672 cm™", k2P =1.516 X 107 S-cm ™, kP =0.613 X 107 S-cm™>
NaCl(aq) 255.617+0.017  261.73+0.26 121.9+£0.9 465.8+3.3 472734 472734
DCl(aq) 238.93+0.17 244.64+0.25 201.4+1.4 823.4+5.9 832.0£60  832.0+6.0
NaOD(aq) 158.646+0.019  162.44+0.16 98.2+0.7 604.8+4.3 610.9+4.4  610.9+4.4
NaCH;COO(aq)  8381.75+0.63  8579.6+9.1 2909421 337.7+2.5 369.6+£2.7  369.6+2.7
CH;COOD(aq) ~ 48.752+0.023  49.917+0.050  6.54+0.05 131.0+0.9 7289+52  728.9+52
KCl(aq) 296.13+0.01 303.21+0.30 155.6+1.1 513.0+3.7 5264+3.8  5263+3.8
KOD(aq) 149.31+0.08 152.88+0.15 98.9+0.7 647.1+4.6 655.7+47  655.7+4.7
KD,PO,(aq) 5257.40+0.40  5383.0+5.6 1997 + 14 370.3+2.7 397.1£29  397.0+2.9
T=42330 K, p=21.31 MPa, p, = 1029.9 kg-m >, ,=0.00217 P, &,,=44.56
keen=0.06688 cm ™!, k%P =9.422 x 107 S-cm™2, k2™ =0.726 X 107° S-cm™
KCl(aq) 125.57+0.13 129.32:+0.13 63.71+0.50  492.6+3.5 497.6+3.6  497.5+3.6
DCl(aq) 1026.7+1.0 1057.4+1.1 850.5+6.1 804.4+5.8 821.7+59  821.6+59
KOD(aq) 182.78+0.18 188.24+0.19 83.95+0.60  446.0+3.2 451732 451732
D,PO,(aq) 823.40+0.80 847.98+0.85 340.5+2.4 401.6+2.9 7032+50  703.1+5.0
T=473.21K, p=11.544 MPa, p,,=966.54 kg-m~>, ,,=0.00155 P, &, =35.00
keen=0.06669 cm™!, k&P =2.087 X 107° S-em ™2, k'™ =1.042 X 10° S-cm™>
NaCl(aq) 255.617+0.017  247.04+0.25 151.4£1.1 612.8+4.4 623.0+4.5  622.9+4.5
DCl(aq) 238.93+0.17 230.91+0.23 221.0+1.6 957.2+6.9 969.2+6.9  969.1+6.9
NaOD(aq) 153.256+0.017  148.12+0.15 103.3£0.7 697.7+5.0 706.0+5.1  706.0+5.1
NaCH;COO(aq)  8381.75+0.63  8099.2+8.6 3679+27 451.6+33 497.1+37  497.3+3.7
CH;COOD(aq)  48.752+0.023  47.117+0.047  5.22+0.04 110.7+0.8 8433+60  843.5+6.0
KCl(aq) 296.13+0.01 286.22+0.29 1903+ 1.4 664.9+4.8 6762+4.8  676.1+4.8
KOD(aq) 149.31+0.08 144.32+0.14 108.2+0.8 749.5+5.4 758.0+54  758.0+5.4
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Table 2 (continued)
Solute mx 10° ¢ x 10° kX 10° AP A° (FHFP) A°(QV)
mol-kg™! mol-L~! S-cm™! S-cm?mol~!
KD,PO,(aq) 5257404040  5034.6+5.2 2477+18 486.8+3.6 525.1+3.8  525.1+3.8
T=471.88 K, p=21.30 MPa, p,,=975.82 kg-m >, ,=0.00159 P, &,,=35.63
ke =0.06685 cm™", kP =13.068 x 107 S-cm™2, k2" =1.219 x 107 S-cm™
KCl(aq) 824.56+0.82 804.61+0.81 503.9+3.6 626.2+4.5 644.0+4.6  643.8+4.6
DCl(aq) 3010.1+3.0 2937.3+3.0 2724420 927.4+6.7 966.3+7.0  966.3+7.0
KOD(aq) 831.90+0.83 811.79+0.82 607.8+4.3 748.7+5.4 767.9+55  767.8+5.5
D,PO,(aq) 4753.5+4.8 4637.5+4.8 905.4+6.5 1952+ 1.4 826.0+£6.0  826.0+6.0
T=498.22 K, p=11.546 MPa, p,,=932.19 kg:-m~, ,,=0.00136 P, £, =31.00
keen=0.06668 cm™!, k&P =2.260 X 107° S-em ™2, k'™ =1.177 X 10 S-cm™>
NaCl(aq) 255.617+0.017  238.28+0.24 162.8+1.2 683.3+4.9 6953+50  6952+5.0
DCl(aq) 238.93+0.17 222.73+0.22 227.4+1.6 1021.1+£7.3 10351474  1035.0+74
NaOD(aq) 153.256+0.017  142.86+0.14 106.5+0.8 745.4+5.3 755.0+54  755.0+5.4
NaCH;COO(aq)  8381.75+0.63  7812.8+8.2 3974+29 505.0+3.7 557.7+4.1  558.1+4.1
CH;COOD(ag)  48.752+0.023  45.446+0.045  4.25+0.03 93.6+0.7 897.5+6.4  897.9+6.4
T=498.02 K, p=21.07 MPa, p,=941.45 kg-m >, ,=0.00139 P, &, =31.40
keen=0.06563 cm™!, k%P =3.097 x 107 S-cm™2, k2" =1.435 X 107° S-cm™2
KCl(aq) 609.67+0.61 573.97+0.58 406.45+2.9  708.1+5.1 7264+52  7263+52
DCl(aq) 2283.6+2.3 2149.9+2.2 2170+ 16 1009.4+7.3  1049.5+7.6  1049.5+7.6
KOD(aq) 661.60+0.66 622.87+0.63 557.1+4.0 894.5+6.4 9155+6.6  915.4+6.6
D,PO,(aq) 5657.0+5.7 5324.4+5.5 831.9+6.0 1562+ 1.1 9023+6.6  902.3+6.6
T=523.19 K, p=11.531 MPa, p,,=893.26 kg-m~, 5,,=0.00120 P, &, =27.30
keen=0.06660 cm ™!, k%P =2.372 x 1070 S-cm ™2, k2" =1.476 X 107° S-cm™
NaCl(aq) 255.617+£0.017  228.34+0.23 171.6+1.2 7517454 7658455  765.7+5.5
DCl(aq) 238.93+0.17 213.43+0.21 230.0+1.6 1077.5+7.7  1093.6+7.8  1093.5+7.8
NaOD(aq) 153.256+0.017  136.90+0.14 113.0£0.8 825.2+5.9 836.6+60  836.5+6.0
NaCH;COO(aq)  8381.75+£0.63  7487.8+7.9 4203 +31 555.6+£4.1 615.9+4.5 616745
CH;COOD(aq)  48.752+0.023  43.549+0.044  3.32+0.02 76.2+0.5 9437468  9445+6.8
KCl(aq) 296.13+0.01 264.52+0.27 212.0+1.5 801.4+5.7 8169+59  816.8+59
KOD(aq) 153.86+0.08 137.44+0.14 120.2+£0.9 874.4+6.3 886.1+63  886.1+63
KD,PO,(aq) 5257.40+0.40  4652.0+4.8 2788 +20 593.2+4.3 644.6+47  644.8+4.7
T=523.56 K, p=21.14 MPa, p,,=903.90 kg-m~, ,=0.00123 P, ¢,,=27.75
ke =0.06562 cm™!, k%P =3.072 x 10° S-cm™2, k2" =1.546 x 107 S-cm™>
KCl(aq) 609.67+0.61 551.08+0.55 428.84+3.0 7782456 799.5+57  799.3+5.7
DCl(aq) 2283.6+2.3 2064.2+2.1 2193+16 1062.4+7.7  1108.1+8.0  1108.1+8.0
KOD(aq) 715.90+0.72 647.11+0.65 624.44+4.4  965.0+6.9 990.3+7.1  990.2+7.1
D,PO,(aq) 5657.0+5.7 5112.0+5.3 669.06+4.8  130.9+1.0 9572+7.0  957.1+7.0
T=548.24 K, p=11.531 MPa, p,,=847.78 kg-m ™, ,,=0.00107 P, &, =23.75
koo =0.06658 cm™", k&P =2.282 x 107 S-cm ™2, k" =1.434 x 10° S-cm ™2
NaCl(aq) 255.617+0.017  216.71+0.22 1775+1.3 819.3+5.9 835.8+6.0  835.7+6.0
DCl(aq) 238.93+0.17 202.56 +0.20 227.8+1.6 1124.5+8.1  1143.1+82  1143.0+8.2
NaOD(aq) 153256 +£0.017  129.93+0.13 119.8+0.8 921.7+6.6 9353467  9352+6.7
NaCH;COO(aq)  8381.75+0.63  71082+7.5 4353432 603.2+4.5 671.7+50  673.0+5.0
CH;COOD(ag)  48.752+0.023  41.331+£0.041  2.37+0.02 57.2+04 979.0+£7.0  980.3+7.0
KCl(aq) 296.13+0.01 251.06+0.25 217.8+1.5 867.7+6.2 885.9+63  885.7+6.3
KOD(aq) 153.86+0.08 130.44+0.13 127.1£0.9 974.0+7.0 987.9+7.1 987.9+7.1
KD,PO,(aq) 5257.40+0.40  4415.0+4.6 286121 641.8+4.7 700.8+5.1  701.2+5.1
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Table 2 (continued)

Solute mx 10° ¢ x 10° kX 10° AP A° (FHFP) A°(QV)
mol-kg™! mol-L~! S-cm™! S-cm?mol~!
T=548.63 K, p=20.14 MPa, p,,=860.27 kg-m >, 5,,=0.00110 P, &,,=24.27
keen=0.06560 cm ™!, k%P =2.990 x 107 S-cm ™2, k2" =1.524 X 107® S-cm™2
KCl(aq) 681.09+0.68 585.93+0.59 498.82+3.5  851.3x6.1 877.5£63  877.4+63
DCl(aq) 2405.8+2.4 2069.8 +2.1 2244+ 16 1084.0+7.8  1136.6+£82  1136.7+8.2
KOD(aq) 958.70+0.96 824.78 +0.83 833.42+59  1010.5+7.3  1043.9+7.5  1043.7+7.5
D,PO,(aq) 3841.6+3.8 3304.3+3.4 41247430 1248409 970.9+7.0  971.0+7.0
T=573.46 K, p=11.52 MPa, p,,=791.31 kg-m>, 5, =0.000949 P, &, =20.22
koo =0.06656 cm™!, k%P =2.068 x 1070 S-cm™2, k2" =1.248 X 107° S-cm™
NaCl(aq) 255.617+0.017  202.28+0.20 180.6+1.3 892.7 +6.4 9124465 9122465
DCl(aq) 238.93+0.17 189.07+0.19 220.3+1.6 11654+84  1187.1+85  1187.0+8.5
NaOD(aq) 158.646+0.019  125.54+0.13 127.6+0.9 10167+7.3  1033.3+7.4  1033.2+7.4
NaCH;COO(aq)  8381.75+0.63  6638.3+7.0 4681+34 692.4+5.1 7722457  774.6+5.7
CH;COOD(aq) ~ 48.752+0.023  38.579+0.039  1.56+0.01 40.5+0.3 1046.9+7.5  1049.4+7.5
KCl(aq) 296.13+0.01 234.33+0.23 220.0+1.6 939.0+6.7 960.6+6.9  960.5+6.9
KOD(aq) 149.31+0.08 118.16+0.12 1249409 1057.4+7.6  1073.8+7.7 1073.7+7.7
KD,PO,(aq) 5257.40+£0.40  41204+43 2865+21 689.2+5.0 756.9+55  758.1+5.5
T=571.91K, p=21.15 MPa, p,,=815.87 kg-m >, 5,,=0.00100 P, &, =21.25
keen=0.06558 cm ™!, k%P =3.062 x 107 S-cm ™2, k2" =1.405 X 107® S-cm ™2
KCl(aq) 681.09+0.68 555.70+0.56 512.1+3.6 921.5+6.6 951.8+6.8  951.7+6.8
DCl(aq) 2405.8+2.4 1963.0+2.0 2209+ 16 1125.1+8.1  11843+8.6 11845486
KOD(aq) 649.11+0.65 529.61+0.53 578.5+4.1 1092.3+7.8  1124.5+8.1  1124.4%8.1
D,;PO,(aq) 3841.6+3.8 3133.7+3.2 313.7+23 100.1+0.7 1022.0+7.4  1022.2+7.4
Table 3 Experimental sodium T » mx10°  ¢x10°  ANaCh)#  A(NaCl) #2
chloride molar conductivities,
A(NaCl) in H,0, used to verify /K /MPa  /molkg™ /molL™' / /8-cm*mol™!
our calibration from T=298 K to S-cm®mol ™!
T=573 K at p=20 MPa*
298.16 20.48 1027.11 1033.25 119.95 N/A
373.15 20.89 957.86 927.00  342.83 346.32
42331 20.20 1027.11 952.79 501.54 507.63
473.07 20.17 998.01 876.41  653.31 660.91
522.88 20.19 1101.58 899.62 787.54 787.65
548.10 20.93 1124.57 877.19 821.89 821.42
572.80 20.77 964.37 71049  885.53 885.04

*Measurements were made alongside those reported by Plumridge

et al. [62]

where T is the temperature in Kelvin and pp,q the solvent density in g-cm™. Values for

Ppoo Were taken from [40].

Finally, molar conductivities for each solution, A®*P, were calculated from the corrected

conductivities, k, using the relationship:
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Table 4 Experimental sodium p mx10°  ¢x10° ANaC)#1 A(NaCl) #2
chloride molar conductivities,
A(NaCl) in D,0, used to verify /K /MPa  /molkg™!  /mol-L™! /S-em*mol™! /S-cm2-mol~!
our calibration from 7=298 K to
T=573 K at p=20 MPa* 298.16 20.48 919.32 1024.84 100.06 N/A
373.15 20.89 870.66 934.99  301.34 301.40
42331 20.20 919.32 946.15  443.43 445.52
473.07 20.17 1147.37 1116.89 586.63 590.88
522.88 20.19 933.53 843.85  708.86 712.26
548.10 2093 1124.57 877.19  745.50 744.47
572.80 20.77 943.20 766.98  805.79 806.05
*Measurements were made alongside those reported by Plumridge
et al. [62]
Table 5 Experimental limiting T P A°(NaCh)#1  A°(NaCD)#2  A°(NaCl) [24]
sodium chloride molar ) i ) o ) "
conductivities, A°(NaCl) in H,O, /K MPa /S-cm”-mol /S-cm”-mol /S-cm~-mol
used to verify our calibration
from T=298 K to T=573 K at 298.15 11.55 129.73 126.74 126.78
p=11.5 MPa 423.35 1149  536.33 536.83 527.16
473.21 11.54 700.14 700.37 687.48
49822  11.55  778.00 779.19 764.10
523.19 11.53  854.70 855.08 839.57
548.21 11.53  921.01 920.19 916.73
573.43 11.52  1001.66 1002.72 1001.44
*Measurements were made alongside those reported by Plumridge
et al. [62]
1000k
AP = —E 5)
c

where « is in SI units of S‘m~! and concentration, c, is in mol-dm™. In this study, these
were converted to units of S-cm™' and mol-cm.™, respectively. Solution molarities were
converted into molarity values following the methodology previously reported by Erickson
etal. [18, 19]

Molalities, molarities, conductivities k, k5P and «2", and the corresponding experi-
mental molar conductivities, A®P, for each aqueous solute are tabulated in Tables 1 and
2, along with the average temperature (IPTS-90) and pressure. The uncertainties in these
tables were estimated using procedures identical to those reported in Refs [18, 19, 29].
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3 Conductivity Data Treatment and Methodology to Calculate ApK
3.1 Conductivity Data
3.1.1 Limiting Molar Conductivities

The limiting conductivity data for each aqueous electrolyte, A°, in both light and heavy
water were calculated using both the FHFP [25] and QV [26-28] models for fully dissoci-
ated electrolytes. Bianchi et al. [41] have evaluated the different theoretical equations [25,
42-45] for the concentration dependence of molar conductivity, A, in H,O and have rec-
ommended the FHFP treatment for 1:1 electrolytes which yields values to within an accu-
racy of ~ 1% over the range 0-0.1 mol-cm™. Although the QV model does not reduce to
the FHFP model for 1:1 electrolytes [29], the results presented below indicate that the QV
model gives the same level of accuracy for dilute electrolytes between 298 and 573 K, with
the added advantage that it can be used for non-symmetrical electrolytes in H,O and D,0.

As in our previous work [18, 19], experimental molar conductivity values in light and
heavy water were calculated from Eq. 5 and values for the molarities, ¢, in H,O and D,0
were calculated from the molalities, m, and solution density. Solution densities were calcu-
lated from the density of pure solvents, py,q and pp,q, and the HKF standard partial molar
volumes, V°, [46] in light water (the uncertainties associated with approximating the appar-
ent molar volume with V° calculated from the HKF model are less than the experimental
uncertainties). For the phosphoric acid aqueous solutions, at each temperature, values of V°
[Ve=o-V°(HY) + - V°(H,PO, ") —(1—)-V°(H;PO,)] were calculated through an iterative
process where initial estimates for the degree of dissociation, «, in Eq. 15 were taken from
Mesmer and Baes’ results [47] for H;PO, (aq) assuming a temperature independent value
of ApK,;=0.21 [12] for D;PO,(aq). For CH;COOH (aq) and CH;COOD (aq), the initial
estimates for the degree of dissociation were calculated using Mesmer et al. [48] for pK,
and Erickson et al. [18, 19] for ApK,,.

Numerical values for the limiting molar conductivities, A°, for each electrolyte meas-
ured in this work are reported in Tables 1 and 2.

3.1.2 Single-lon Limiting Molar Conductivities

Values for the limiting molar conductivities of the chloride single ion, A°(C17), in both light
and heavy water were determined from the molar conductivity data listed in Tables 1 and
2, using KCI and NaCl transference numbers calculated following the methods described
by Plumridge et al. [34]:

0

[
1og10t§—‘(H20) = —@ +0.1027 (6)
K+
1y 25.68
1ogmt§—l (D,0) = — = +0.09394 7)
K+
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o

[y

log;g—— (H,0) = —@ +0.01049 (8)
Na*
for 55.57

log; tfl (D;0) = === +0.01416 ©)
Na*

where T is the temperature in K.
The limiting conductivity for the chloride anion was then determined from:

or Ao =12 A

AR crr = lor " ANac (10)

o _ 40
A =1 KCl1

c- = tar
using the Eqs. 6-9 and the experimental conductivities of aqueous KCl1 or NaCl to yield
single ion limiting conductivities for K* and Na™ at each experimental condition. The other
single ion limiting conductivity values were deduced from the KCI or NaCl molar con-
ductivities using Kohlrausch’s law. Single ion limiting conductivity data for K*, Na*, Cl~,
CH,COO~, H,PO;/D,PO;, H;0"/D,0* and OH™/OD" in light and heavy water are tabu-
lated in Tables 6 and 7 together with the values of #°(C17) used to split the molar conduc-
tivity results.

3.2 Equations Used to Calculate ApK

3.2.1 Equations Used to Calculate Phosphoric Acid and Acetic Acid First lonization
Constants in H,0 and D,0

Phosphoric acid can undergo three successive dissociation reactions in water according to the
following equilibria:

HyPO, = H,POT +H"; K

alc
11

l-a)c a5c (a1+2a2+3a3)c (1n

H,PO, = HPO;™ +H"; K, .
12)
ac ac (al + 2a, + 3a3)c
2~ . pO3- .

HPO;™ = PO,” + H"; K., 1%
a,c asc ((xl +2a, + 3a3)c

where a=a, +a,+ a5 is the total degree of dissociation, and a;, a,, a; are the fractions of
dissociation for Eqs. 11-13.

The equilibrium constant for the first ionization of phosphoric acid (expressed in the molar-
ity basis), Ka] » Which is the equilibrium constant we seek to measure, can be calculated from
the fractions of dissociation, the stoichiometric concentration of phosphoric acid, ¢, and the
activity coefficients:
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o (@) + 20, + 3a3)c Yu,po; Yur (14
a;,H,0 (1 _ (Z) 7H3PO4

where vy po-s v+ and yypo, are the activity coefficients of the H,PO;, H* and H;PO,.
Optimal experimental conditions where the contributions from reactions 12 and 13 are
negligible compared to reaction 11 (i.e. @ & @, and @, ® a3 ~ 0) were determined by
estimating the chemical speciation between 373 and 573 K using equilibrium constants for
Eqgs. 11-13 taken from the computer program SUPCRT [46] and neglecting activity coef-
ficient effects (i.e. y;=1).

Under these optimized experimental conditions, the equilibrium constant for the first ioni-
zation reaction of phosphoric acid, K, y, o, can be calculated assuming:

azc 2

Koo = T’ (15)
where the degree of dissociation can be derived from the conductivity results:
ACxP
(16)

a =
AH*) + A(HPO])

In Eq. 15, y, is the mean activity coefficient of the electrolyte solution based on the
hypothetical 1 mol-L~' standard state extrapolated to infinite dilution; values of vy , were
calculated using the extended Debye-Hiickel equation [25, 34]. In Eq. 16, AP is the
experimental molar conductivity of phosphoric acid and [A(H*) +A(H,PO})] corresponds
to the molar conductivity of the fully dissociated acid (at the same ionic strength /=a-c).

Values of [A(H')+ A(H,PO})] were calculated from the experimental molar conductiv-
ity values of hydrochloric acid, potassium dihydrogenphosphate and potassium chloride,
according to Eq. 17,

A(H") + 4(H,PO; ) = A®P(HCI) — A*P(KCI) + AP (KH,PO,) (17)

where the experimental molar conductivities were corrected for small differences in ionic
strength using the Fuoss-Hsia-Fernandez-Prini (“FHFP”) [34] and the Quint-Viallard
(“QV”) conductivity equations [26-28] for fully dissociated electrolytes assuming Bjer-
rum’s definition for the distance of closest approach.

The exact same methodology was adopted to determine the equilibrium constant for the
first ionization of phosphoric acid in D,0. In the analysis, the properties of water (density,
Py Viscosity, 7, and static dielectric constant, €,) were calculated from the equations of
state recommended by the International Association for The Properties of Water and Steam
(IAPWS) using software distributed by the National Institute of Standards and Technology
(NIST) [40]. The software does not include an equation of state for the dielectric constant
of D,0, and corresponding values were calculated following the approach developed by
Trevani et al. [16]. Briefly, the method is based on the assumption that values of ¢, in H,O
and D,0 at each temperature should be equal at the same number density of water mol-
ecules, as suggested from the high temperature study by Okada et al. [49]; values for ¢, in
H,0 were calculated from the Uematsu-Franck equation [50].

A similar approach was taken to examine the acetic acid data to yield temperature-
dependent ionization constants for:
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CH,COOH = CH,CO0™ + H*; K

ac (18)

(1 -a) ac ac
with:

A(H*) + A(CH;CO0™) = A™P(HCI) — A*P(NaCl) + A (CH;COONa)  (19)

3.2.2 Hydrolysis Corrections to KH,PO, and NaCH,COO Conductivity Data

The present method is based on measurements made at a single ionic strength for each
electrolyte and can only be applied at conditions where ion association is negligi-
ble. In this study, experimental molar conductivities were measured at an ionic strength
of ~10~* molkg™". The determination of MK*")+A(H,PO;) from A®P(KH,PO,) and of
MNat)+MCH;CO0™) from AP(NaCH,COO) was complicated by the hydrolysis of
H,PO, /CH;COO", according to the reactions:

H,PO; +H,0 = H;PO, + OH™; K,,/K, 1,0 (20)
H,PO; = HPO;” + H*; K, 4 0 (2]
CH;COO™ + H,0 = CH;COOH + OH; K, /K, 11,0 (22)

To address this complication, KH,PO, experimental molar conductivities were cor-
rected at each temperature following the method described by Tsurko et al. [51], using the
following equation:

Table 8 Fitted parameters (Eq. 25) for single ion limiting conductivities for C1-, K*, H/H*, OH™/OD",
CH,COO™ and H,PO;/D,POj ions in H,0 and D,0

Ton Fit (Eq. 25) Source
a b-R cR
CI"/H,O 14.49+1.63 —2054+97 280.8+14.8 Ref. [29]
CI"/D,0O 14.23+1.77 —2215+105 300.1+15.8
K*/H,0 19.57+1.34 —2396+78 326.6+12.0
K*/D,0 15.42+3.05 —2670+174 363.9+26.1
H*/H,0 19.78+2.18 —3627 533.6+19.8
+
130
H*/D,0 22.59+1.62 —3796+96 545.5+14.5
OH/H,0O 16.61 +3.69 —2641+169 38244259
OH7/D,0 9.60+6.90 —2812+342 397.3+51.6
CH;COO™/H,0  21.04+3.53 —2344+271 308.2+41.0 This work
CH,COO7/D,0O 17.24+9.04 -3676+702 498.8+104.6
H,PO,~ 891+1.21 —2756+269 370.0+39.43
D,PO,~ 9.37+1.02 —2899+214 384.8+30.95
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AP (KH,PO,) —2(1 — o’ — f)A(HPO]™) — (1 -’ —2p)A(H*) — (1 — &’) A(K")

a

A(K* +HPO}") =
(23)
where o’ is the primary degree of dissociation and f is the fraction of undissociated mol-
ecules of phosphoric acid as defined by Tsurko et al. [S1]. The molality of each species at
chemical equilibrium was calculated using the pK,, and ApK,; values determined in this
work together with the equilibrium constants reported by Mesmer et al. [47] for the second
ionization of phosphoric acid, and ApK,,=0.468, assumed to be temperature independent
[12]. In these calculations, the molar conductivity for HPO3~, DPO?~, H*, D*, K*/H,0
and K*/D,0 were calculated using the Debye—Onsager limiting law [24, 52], using limiting
conductivities A° from Conrad et al. [29] for K*/H,0 and K*/D,0 and estimates derived
from the data of Muccitelli and DiAngelo [53] for HPO%‘. The values for KO(DPO?[) were
estimated from those of A°(HPO?") by correcting the viscosity effect difference between
both solvents based on insights from Ref. [34]. The hydrolysis corrections for sodium ace-
tate were done following the same methodology. In all cases, corrections were <2.5% for
acetate and < 0.5% for hydrogen phosphate. (Table 8)

3.2.3 lonization Constants in H,0 and D,0

Tables 8 and 9 report temperature-dependent ionization constants for phosphoric acid
and acetic acid in H,O and D,O calculated from the conductivity results following
the methodology described above. The equilibrium constants are expressed in terms
of the hypothetical 1 molar (mol-L~! of solution) standard state (pK, .= —logyy K, ),
and in terms of the hypothetical 1 molal (mol-kg™' of water) standard states PKym= —
log oK, ), where:

1 Av;
Kim =K, <p_> (24)

here Au; is the difference in stoichiometry between the aqueous product and reactant spe-
cies. For example, for Eq. 11 Ay;= +1, and K, ,, =K, /p,,

Experimental values for the difference in pK, ApK=PKuip,0 — PKain,0, are also
listed in Tables 9 and 10. Standard uncertainties were estimated using procedures iden-
tical to those reported in Ref. [29]. Hydrolysis corrections were calculated by estimating
the fractions of dissociation using the methodology described in Sect. 3.1, where the
temperature-dependent values for limiting conductivities of OH™ and OD~ were taken
from Refs [29] and [54] (see discussion below in Sect. 4.1).

4 Results and Discussion
4.1 Limiting Conductivity Results
4.1.1 Molar Limiting Conductivity

To illustrate the accuracy of the present results, experimental molar conductivities for
hydrochloric acid, potassium chloride and potassium hydroxide in H,O and D,O are

@ Springer



Journal of Solution Chemistry (2024) 53:91-125 109

Table 9 Experimental equilibrium constants for the first ionization of phosphoric acid in H,O and D,O,
pK,,, and deuterium isotope shift, ApK, from 7=298 K to =573 K at p=20 MPa, expressed in molality
and molarity standard-state scales using the FHFP data treatment

T P Pk,
K MPa

l,mDZO pKal,mHZO ApKaLm pKal,cDZO pKal,cHZO ApKal,c

298.17 20.30 2.4612+0.0086 2.0657+0.0211 0.3955+0.0227 2.4140+0.0086 2.0631+0.0211 0.3509+0.0227
37422 21.28 2.9519+0.0115 2.5839+0.0167 0.3679+0.0203 2.9211+0.0115 2.5984+0.0167 0.3227+0.0203
423.30 21.31 3.2508+0.0085 2.8803+0.0109 0.3705+0.0139 3.2380+0.0085 2.9126+0.0109 0.3254+0.0139
471.88 21.30 3.5117+0.0065 3.1306+0.0069 0.3812+0.0095 3.5224+0.0065 3.1860+0.0069 0.3364 +0.0095
498.02 21.07 3.7269+0.0064 3.3078+0.0066 0.4192+0.0092 3.7531+£0.0064 3.3784+0.0066 0.3747+0.0092
523.56 21.14 3.9371+0.0066 3.5344+0.0066 0.4027+0.0093 3.9809+0.0066 3.6224+0.0066 0.3586+0.0093
548.63 20.14 4.1467+0.0064 3.7710+0.0065 0.3757+0.0091 4.2121+0.0064 3.8799+0.0065 0.3321+0.0091
57191 21.15 4.3628 +£0.0063 4.0238+£0.0064 0.3390+0.0090 4.4511+0.0063 4.1551+0.0064 0.2961+0.0090

Table 10 Experimental equilibrium constants for the ionization of acetic acid in H,O and D,0, pK,, and
deuterium isotope shift, ApK, from 7=298 K to =573 K at p=11.5 MPa, expressed in molality and
molarity standard-state scales using the FHFP data treatment

T P PKyDm PKatim ApKym PK.pe PKopc ApK, .
K MPa

298.15 11.549 5.3971+0.0071 4.7604+0.0081 0.637+0.011  5.3517+0.0071 4.7594+0.0081 0.592+0.011
42335 11.488 5.7191+£0.0077 5.1951+£0.0078 0.524+0.011  5.7088+0.0077 5.2299+0.0078 0.479+0.011
47321 11.544 6.0166+0.0079 5.4261+0.0079 0.590+0.011  6.0314+0.0079 5.4856+0.0079 0.546+0.011
49822 11.546 6.2302+0.0080 5.6188+0.0079 0.611+0.011  6.2607+0.0080 5.6936+0.0079 0.567+0.011
523.19 11.531 6.4637+£0.0081 5.8557+0.0079 0.608+0.011 6.5127+0.0081 5.9486+0.0079 0.564+0.011
54821 11.531 6.7542+0.0082 6.2207+0.0079 0.534+0.011  6.8260+£0.0082 6.3358£0.0079 0.490+0.011
57343 11.517 7.1209+0.0082 6.3699+0.0080 0.751+£0.012  7.2225+0.0082 6.5138+0.0080 0.709+0.012

compared in Fig. 2 to other literature studies [18, 19, 54-56] which used the same
experimental technique. The limiting molar conductivities of HC1, DC1, KCI/H,0, KCl/
D,0 and KOH agree with other literature studies [18, 19, 54-56] to within the com-
bined experimental uncertainties between 373 and 573 K. The KOD results measured
at p=20 MPa differ from those reported by Arcis et al. [54]; the viscosity effect on
the A°(KOD) data measured in this work is not smooth, suggesting an experimental
problem with the solution preparation, as illustrated by the discrepancy for the two
data points measured at 373 K and 423 K. These data were originally measured for
the hydrolysis correction and were discarded. The viscosity effect on the limiting molar
conductivity of KH,PO, and KD,PO, at 20 MPa was also found to be irregular and
supplementary measurements were conducted at 11.5 MPa to replace these data (the
20 MPa KH,PO,/KD,PO, data were not considered in the final analysis because of
problems with the solution preparation, confirmed by the subsequent set of experiments
at 11.5 MPa). No literature comparisons were done as no experimental limiting conduc-
tivity data have been reported for KH,PO, in H,O or D,0O above 323 K. Except for a few
outliers, the NaCH;COO, NaCl (in H,0 and D,0), NaOH and NaOD results were found
to be consistent with Refs, [34, 54] and [57] to within the experimental uncertainties.
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Fig. 1 a Experimental limit-

ing conductivity of NaCl

from T=298 Kto T=598 K

at p =20 MPa: filled circle,

this work; solid line, best fit
from Zimmerman et al. [84]; b
Experimental limiting conductiv-
ity of NaCl from 7=298 K to
T=573 K atp=11.5 MPa: open
circle, this work (run 1); open
diamond, this work (run 2); solid
line, best fit from Zimmerman

et al. [84]

Fig.2 Limiting molar conduc-
tivity of a hydrochloric acid, b
potassium chloride, ¢ potassium
hydroxide in H,O and D,0 from
298 to 573 K:open inverted
triangle, this work; filled inverted
triangle, this work; open circle,
Ref. [5]; filled circle, Ref. [5];
open diamond, Refs [31, 32] ;
open square, Refs. [21, 22]; filled
square, Refs [21, 22] solid line,
fit [5] (open and filled symbols
refer to H,O and D,0 data,
respectively)
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4.1.2 Single lon Limiting Conductivity

Single ion limiting conductivities are compared with other literature results for dihydro-
genphosphate [51] and acetate [18, 19, 57-60] in Fig. 3.

The new acetate results compare much better with previous literature studies [57—60] in
H,0 and D,0 (Fig. 3) over the whole temperature range, and confirmed the previous meas-
urements by Erickson et al. [18, 19] were not accurate.

The 11.5 MPa H,PO, conductivity data in light water are consistent with the low tempera-
ture data from Tsurko et al. [51], however it became evident that there was an issue with the
H,PO; and D,PO; conductivity data measured at 20 MPa. No other data could be identified
for comparison; because of the limited concentration range investigated and the lower accu-
racy of the static method the KH,PO, and NaH,PO, conductivity measurements from Ref.
[53] could not be used to derive accurate limiting conductivity data for H,POj;. The H,PO;
and D,PO} conductivity measurements at 20 MPa were therefore discarded. The discrepancy
at 20 MPa is believed to be due to errors in the solution preparation combined with non-opti-
mal experimental concentrations. Recognising that it was not practical to duplicate the full set
of phosphoric acid measurements, the analysis that follows used the H,PO,™ and D,PO; limit-
ing conductivities measured at 11.5 MPa and corrected to 20 MPa using fitted values (Eq. 25).
Because no measurements were made at 298 K and 11.5 MPa it was decided to use Tsurko’s
298 K data in the fit that is presented below; Tsurko’s 298 K data was also used for D,PO;
once corrected for viscosity effects [34]. This approach is supported by our recent results [29,
34, 54].

The semi-empirical model proposed by Plumridge et al. [34] (Eq. 25) was fitted to the
experimental limiting conductivities for H,PO;, D,PO; and CH;COO™ (in H,0 and D,0)
reported in Tables 6 and 7.

log,o(An,) =a+ b I

d
7t T8 + 7108100 (25)

where p,, is the solvent density in kg-m~> and 7, is the solvent viscosity in Poise (P). Fit-
ting parameters listed in Table 10, some of which had been reported in our earlier studies
[29, 34, 54], were found to represent the temperature dependence of the limiting conductiv-
ity in Tables 6 and 7 to within the experimental uncertainties, and no attempts were made
to further fine-tune the parameters.

4.2 Equations of State for the First lonization Constant of Phosphoric Acid
and the lonization Constant of Acetic Acid in H,0

Following [20, 21, 29] the equilibrium constants in light water for the ionization of H;PO,
and CH;COOH were fitted as a function of temperature and molar volume by using a mod-
ified form of the ‘density’ model reported by Mesmer et al. [61]:

P> p3 s
pKa,m =D + ? - FIOgIOVHzo (26)

where p|, p,, and p; are adjustable fit parameters, T is the temperature in Kelvin, and the
solvent density py,o has been replaced by its molar volume, Vi | =My o/py,0. in

cm>mol~'. The thermodynamic justification for using molar volumes of the two solvents
rather than densities in this model is discussed in more detail in Ref. [20].
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Fig.3 Limiting conductivity of a dihydrogenphosphate and b acetate in H,O and D,O versus solvent
viscosity from 288 to 573 K: a open circle, this work (H,0); open diamond, [75]; filled circle, this work
(D,0); solid line, Eq. 25 (pg,); b open diamond, [36], open inverted triangle, (H,O) [11]; filled inverted
triangle, (D,0) [11]; multiplication sign , [81]; open square, [48]; red open triangle, (H,O) [21, 22] (not
included in the fit); red filled triangle (D,0O) [21, 22], (not included in the fit); open circle, this work (H,0);
filled circle, this work (D,0); solid line, Eq. 25 (py,,)

Equation 26 was fitted to the experimental values of pK, , tabulated in Tables 9 and 10
for H;PO, and CH;COOH along with literature sources listed in Tables 11 and 12. Param-
eters are tabulated in Tables 11 and 12. Our experimental pK, ,, values are compared with
other literature studies in Figs. 4 and 5 for H;PO, [62-68] and for CH;COOH [18, 19, 48,
57, 58, 69-78].
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Table 11 Fitted parameters

for Egs. 26, 27, 28 to yield the
first ionization constants of
phosphoric acid in H,0 and D,0
and their deuterium isotope effect
as a function of temperature and
solvent molar volume based on
the FHFP data treatment

Parameter Value Uncertainty Sources
pK’cL,m (H3PO4)=p1 + [% - p—;long:{ZO
» 2.724 0.060 [47, 62-68]
pyx 107 —8.709 0.218
pyx 107 —6.791 0.187
ApK, = Ap, + 22 _ B)ge yx log, 220
PRom = APy + =7 = 5710810V o =13 Oglom
Ap, 1.031 0.133 [65], this work
Ap, x 107 1412 0318
Apyx 107 1.309 0.285
PK,m (DsPO)=p, + % — ”—T”loglovgzo
2 3.755 0.146
pyx 1072 - 17.297 0.386
pyx 107 —5.482 0.341

4.2.1 Phosphoric Acid pK, , in H,0

There have been several studies of the first ionization constant of phosphoric acid in H,O
[47, 62-68, 74]. Briefly, Nims [62], Schwarzenbach et al. [74], Glasoe and Long [75],
McDougall and Long [63], Salomaa et al. [64], Paabo and Bates [65] and Mesmer and Baes
[47] used potentiometry, Read [66] conductivity, Izatt et al. [67] calorimetry and Rudolph
[68] Raman spectroscopy techniques. At 373 K and above, the pK, ,, values reported by
Rudolph [68], Read [66] and Izatt et al. [67] are consistent with our results to within the
combined experimental uncertainties. The results are also consistent with the potentiomet-
ric measurements from Mesmer and Baes [47] up to 450 K; but above this temperature the
temperature dependence differs. The residuals in the fit, or differences between the experi-
mental data and the fit under the same conditions (pK.,,—pKj,), are shown in Fig. 4.b and

Table 12 Fitted parameters

for Eqgs. 26, 27, 28 to yield the
ionization constants of acetic
acid in H,0 and D,0 and their
deuterium isotope effect as a
function of temperature and
solvent molar volume based on
the FHFP data treatment

Parameter Value Uncertainty Sources
PK,m(CH;COOH) = p,; + 22 — ”]—%10gv,§20
2 3.903 0.049 [19, 48,
P, x 107 - 1047 0.197 ;Z gg’
_3 =19,
p3x 10 —8.534 0.167 7578,
82]
Ap, Aps * VI;ZO
Ap, + 222 — Elog  VE | —pilog, =22
ApK,. = Y4 T 7 '0810Yp,0 T P310810 Vo
Ap, 0.388 0.026 (19, 58,
Ap, x 107 —0.750 0.565 ggi 7%_
—3 , this
Ap; x 10 —0.625 0.518 work
PK,m (CH;COOD)=p; + 2 — ”—;mgmvgzo
P 4291 0.026
pyx 107 —11.22 0.598
pyx 107 —9.159 0.544
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Fig. 4 a Phosphoric acid first ionization constant in H,O, pK,, ,, vs T from 288 to 573 K, b deviation plot
between experimental and fitted values (pK.,—pKj): Literature data (p=py,) open square, [49]; filled dia-
mond, [56]; open hexagon, [47]; open circle, [70]; open triangle, [60]; open inverted triangle, [67]; filled
square, [33]; red open diamond, [69]; open star, [71] (not included in the fit); filled circle, This Work
(p=20 MPa); solid line, Eq. 26 (p =20 MPa); doted solid line, Eq. 26 (p=p,,)

reach up to~0.3 pK units at 573 K. The cause of the discrepancy with the other studies
observed at high temperature is not clear; Read [66] postulated the presence of polyphos-
phate species in Mesmer and Baes’ experimental solutions. The data from Mesmer and
Baes were included in our fit (Eq. 26) which is able to represent their data up to 450 K to
within their reported experimental uncertainties.

The fitted value given by Eq. 26 at 298 K and 0.1 MPa (pK,,,=2.143+0.016) is
consistent with the Nuclear Energy Agency’s (NEA) recommended value for the first
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Fig.5 a Acetic acid ionization constant in H,O, pK, , vs T from 288 to 623 K, b deviation plot between
experimental and fitted values: plus, [43]; open inverted triangle, [57] recalculated by [81]; multiplication
sign , [29]; open star, [71]; open diamond, [35]; filled diamond, [26]; filled inverted triangle, [20]; open
circle, [25]; filled triangle, [24]; filled hexagon, [59]; open square, [52]; open hexagon, [81]; filled square,
[73]; open triangle, [21, 22]; filled circle, This Work; solid line, Eq. 26 (p=20 MPa); doted solid line,
Eq. 26 (p=pg)

ionization constant of phosphoric acid in light water (pK, ,=2.140+0.030) [79, 80] and
the more recent critical evaluation by Rard and Wolery [81]. These recommended values
compare well with Read’s result [pK, ,(298.15, 0.1 MPa)=2.15+0.01], which was care-
fully estimated from his 20 MPa measurements [pK, ;,(298.15, 20 MPa)=2.09+0.01] by
considering the change in the partial molar volume of reaction (A, V°) for Eq. 11. Our result
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at 298 K and 20 MPa (pK, ,,=2.07+£0.02) is consistent with Read to within the combined
experimental uncertainties and the pressure effect is similar to that for the ionization con-
stant of light water at 298.15 K [pK,, ,(0.1 MPa)—pK, (20 MPa)=0.074] [39].

4.2.2 AceticAcid pK,, ,,in H,0

The ionization constant of acetic acid has also been well-studied in H,O [18, 19, 48, 57,
58, 69-78, 82]. Briefly, Noyes et al. [69], MacInnes and Shedlovsky [70], La Mer et al. [58,
82], Ellis [71], Fisher and Barnes [72], Zimmerman and Wood [57], and Erickson et al.
[18, 19] used conductivity, Harned and Ehlers [73], Schwarzenbach et al. [74], Glasoe and
Long [75], Gary et al. [76], Mesmer et al. [48], Sue et al. [77] used potentiometry, and
Oscarson et al. [78] used calorimetry techniques. Between 373 and 450 K, our results agree
with the literature to within the combined experimental uncertainties. Above 450 K larger
discrepancies appear, consistent with the difficulties with making hydrothermal measure-
ments using different techniques. Except for Mesmer et al. [48] these remain to within+0.1
pK units, as shown by the residual plot in Fig. 5b. Similar to what was observed for H;PO,,
the acetic acid potentiometric pK data from Mesmer et al. start to deviate from the other
results around 450 K, showing up to 0.3 pK units difference at 573 K. It might be that there
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is a systematic error in the Oak Ridge National Laboratory (ORNL) results that becomes
gradually more significant above 450 K due to assumptions in their data treatment. This
matter was not addressed in their study and deserves closer attention. The data from Mes-
mer et al. were included in the fit (Eq. 26) weighted by the inverse square of their standard
uncertainties.

The fitted value given by Eq. 26 at 298 K and 0.1 MPa (pK, ,,=4.764 +0.014) is con-
sistent with MaclInness and Shedlovsky’s value for the first ionization constant of acetic
acid in light water (pK, ,=4.756+0.010) [70] and the other low temperature literature
studies (e.g., [57, 73]). The pressure effect on our conductivity result [pK, ,(298.15 K,11.5
MPa)=4.701+0.014] is similar to that observed for the ionization constant of phosphoric
acid.

4.3 D,0 Isotope Effect ApK on the First lonization Constant of Phosphoric Acid
and the lonization Constant of Acetic Acid

Experimental values of ApK, ,=[pK,,(D,0)—pK, ,(H,0)] for phosphoric and acetic
acid are listed in Tables 9 and 10 and plotted in Fig. 6 alongside literature results for phos-
phoric acid and acetic acid. To maintain consistency with our experimental approach to
yield the most accurate difference in the ionization constant between light and heavy water,
we chose to model the experimental values for ApK, , directly [20, 21, 29] according to

the expression:
.

Ap Ap; " D,0
ApI(a,m = pKa,m (DZO) - pKa,m (H2O) = Apl + 2 10g10Vb o) _p3]0g10 *2
T T 2 VHZO
27

where Ap,, Ap,, and Ap; are adjustable fit parameters, T is the temperature in Kelvin, and
V]’Szo = Mp,0/pp,0 is D,0 molar volume in cm®mol~!. The fitted parameters are given
with their uncertainties in Tables 11 and 12. Combining these parameters with those for
Eq. 26 from the light water data will yield the corresponding equation for heavy water, as
given in Tables 11 and 12.

No other groups have reported experimental data on ApK for any of these ionization
reactions above 323 K. A few studies on the deuterium isotope effect on the first ionization
constant of phosphoric acid have been reported [63-65, 68, 74], and except for Ref. [65],
which reported pK,; ,,D;PO, from T=278 K to T=323 K, all the studies focused on ambi-
ent conditions. Similar for observations can be made about the acetic acid system [18, 19,
58, 64, 75, 76], with the measurements reported from other groups also stopping at 323 K
[76].

4.3.1 Selected Values for D;PO,and CH;COOD ApK, at 298.15 K

A few studies have reported ApK, values for D;PO, and CH;COOD at 298 K. For
D;PO, Glasoe and Long reported ApK, . =0.20 (ApK, ,,=0.24) [75], McDougall and
Long ApK, .=0.234 (ApK,,=0.278) [63], Paabo and Bates ApK,,=0.272 [65],
Salomaa et al. ApK, . =0.205 (ApK,,,=0.249) [64] and Rudolph ApK,  =0.280
[68]; for CH;COOD La Mer et al. reported ApK, .=0.514, (ApK,,,=0.559) [58, 82],
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Glasoe and Long ApK, ,=0.56 [75] and Gary et al. ApK,, =0.557 [76]. All these
data were measured at 0.1 MPa. While the acetic acid ApK, ,, data are in fair agree-
ment, the phosphoric acid literature show some discrepancies. At 293 K the results
from Schwarzenbach et al. [ApK, (D;PO,)=0.249, ApK, (CH;COOD)=0.499] [74]
compare less well with Paabo and Bates [ApK, ,(D;PO,)=0.181] [65] and Gary et al.
[ApK, ,(CH;COOD)=0.561] [76].

Our 298 K result at 20 MPa for D;PO, (ApK, .=0.351, ApK, ,=0.396) and CH,COOD
(ApK,.=0.592, ApK,,,=0.637) does not compare well with the other literature data at
0.1 MPa, with differences of about ~0.12 and ~0.08 pK units, respectively. The cause of
the discrepancies between our conductivity results and the other literature data at 298 K
is not clear and the effect seems too large to attribute to a pressure effect in going from
0.1 to 20 MPa. The change in the partial molar volume of reaction (A, V°) for the ioniza-
tion of D;PO, and CH;COOD were not investigated as part of this work and further stud-
ies are underway in our laboratory to quantify these effects. Paabo and Bates [65] did not
study the deuterium isotope effect on ApK, ,(D;PO,) directly and instead made use of data
from Bates [83] measured 19 years previously. They noted that some of the assumptions in
their pK, calculations could have introduced “major uncertainty”. Salomaa et al. [64] also
observed discrepancies up to 0.07 pK units between the results from their potentiometric
and conductivity techniques.
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Fig.8 Acid ionization constants for a phosphoric and b acetic acid in H,0 and D,O, pK vs 7, from this
work and literature. a open square, [50]; filled diamond, [56]; open hexagon, [47]; open circle, [70]; open
triangle, [60]; open inverted triangle, [67]; filled square, [33]; open diamond, [69]; open star, [71] (not
included in the fit); filled circle, This Work; solid line, Eq. 26 (p =20 MPa); —, Eq. 26 (p=p,,); b open tri-
angle, [21, 22]; open square, [52]; open hexagon, [81]; open diamond, [35, 36]; open inverted triangle, [57]
recalculated by [81]; addition sign , [43]; filled inverted triangle, [20]; filled triangle, [24]; multiplication
sign , [29]; open star, [71]; filled diamond, [26]; open circle, [25]; filled square, [73]; filled hexagon, [59];
filled circle, This Work; solid line, Eq. 26 (p =20 MPa); doted solid line, Eq. 26 (p=p,)

ApK, ,, experiments are difficult and because our flow conductivity instrument is
designed for high temperature measurements it was decided not to anchor the fit discussed
below to the 298 K data reported in this study. For phosphoric acid the 298 K value from
Paabo and Bates (ApK, ,,=0.272) [65] was included, whereas for acetic acid all the litera-
ture sources at low temperature were included in the fit.
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4.3.2 Equations of State for the First lonization Constant of Phosphoric Acid
and the lonization Constant of Acetic Acid in D,0

The temperature and pressure dependence of the ionization of phosphoric and acetic acids
in heavy water are given by:

p ,
—1og1Vp,0 (28)

where p,, p,, and p; were calculated by adding the adjustable fit parameters for Eqs. 26 and
27. Parameters are tabulated in Tables 11 and 12 and the difference in ionization are shown
in Figs. 7 and 8.

5 Conclusions

This work reports accurate ApK, , measurements of the first ionization of phosphoric
acid between 373 and 573 K. These are the first experimental D;PO, ionization constants
reported above 323 K. The results are consistent with other literature studies to within the
combined experimental uncertainties and confirm that the supercritical flow AC conduc-
tivity cell is a powerful tool to measure ionization constants and the D,O isotope effect
under hydrothermal conditions. Observed differences up to 0.3 pK units in pK, ,, for both
phosphoric and acetic acid in H,O from Mesmer et al. [47, 48] suggest that there might be
a systematic error in the ORNL treatment resulting in an increasing systematic error above
450 K. Discrepancies with other studies observed at 298 K were not resolved as part of
this work and will be addressed in a future publication. The ApK, , results reported here
complete a series of experimental projects on acid ionization started in our research group
[16-22] and together the results of these studies provide the basis for developing a pre-
dictive model for transition metal hydrolysis and oxide solubility in D,0 under CANDU-
PHW primary coolant conditions, from H,0O-based measurements. We are exploring the
use of DFT methods [7] to seek a better understanding of the differences in ionic hydration
between light and heavy water systems, and these results together with the new-built high
temperature D,0 database will be used to derive algorithms for computer codes used by
the nuclear industry to calculate and monitor chemical speciation and pH in heavy water
coolant and moderator conditions such as the EPRI code MULTEQ [84].
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