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Abstract

The present work reports surface tension and viscosity studies of the cationic surfactant,
DTAB (dodecyltrimethylammonium bromide) and the anionic surfactant, SDS
(sodium dodecylsulphate) in 0.01 mol-kg™! aqueous solutions of the ionic liquids (ILs)
tetraalkylammonium bromide (R,NBr), tetraalkylammonium nitrate (R,NNO;) and
tetraalkylammonium acetate (R,NOAc) where alkyl (R) is propyl (Pr), butyl (Bu) or
pentyl (Pen). Experimentally determined values of surface tension have been further
analysed in terms of surface-active (interfacial) parameters including the surface excess
at the air—water interface (I',,,,), minimum area per surfactant molecule (A,;,), surface
pressure at the CMC (x.,,.), efficiency of surfactant in reducing surface tension (pC,,) and
adsorption at air/water interface relation to micellization (CMC / C,). The thermodynamic
parameters of micellization and adsorption viz. change in standard Gibbs free energy of
adsorption (AGy,), change in standard free energy of micellization (AG)) and change in
standard free energy of transfer (AG}) for both DTAB and SDS have also been calculated.
The viscometric data have been utilized to compute relative viscosity (#,) and viscous
relaxation time (7). All these parameters afford insight into structural rearrangement of
amphiphilic molecules at the interface and the relative involvement of hydrophobic and
electrostatic interactions between surfactant and IL molecules.

Keywords Surface tension - Viscosity - Interfacial parameters - Relaxation time -
Hydrophobic interactions

1 Introduction
The substitution of toxic and volatile organic solvents with eco-friendly alternatives has

been key area of current research in order to reduce environmental pollution and risks
to human beings. The incredible and beneficial properties of ionic liquids (ILs), such as
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wide operating temperature range, negligible vapour pressure, high chemical and thermal
stability, high ionic conductivity, large electrochemical window and easily adjustable
thermo-physical properties, by the appropriate choice of ions, make them suitable greener
contenders for this purpose. Ionic liquids comprise a new class of solvents where the
molecules are composed of ions (organic cation and inorganic/organic anion); co-ordinated
weakly by electrostatic interactions, due to which most of these are liquids at or near the
room temperature. Owing to their properties, these have been used for a broad range of
applications in the fields of catalysis, separations, electrochemistry, novel extraction,
reaction solvents and organic synthesis [1-7].

In recent years, the applicability of ILs as solvents for amphiphilic assemblies has
been substantially increased owing to their zero vapour pressure, non-flammability and
potency to alter self-aggregation behaviour of amphiphiles. Surfactant-IL interactions
have been mainly investigated by techniques like surface tension [8—12], conductivity
[12-15], viscosity [13, 16, 17], density and speed of sound measurements [18, 19].
The association of surfactant monomers with IL molecules has also been monitored
using fluorescence [10-13], UV-Visible [8, 15], NMR [8, 12], FT-IR [8, 19], cyclic
voltammeter measurements [14, 15], etc. The knowledge of thermo-physical properties of
(IL—amphiphilic) mixtures, particularly surface tension and viscosity is vital to understand
the nature of interactions between the components of the system and for the modulation
of chemical and industrial processes involving the flow of liquids. Surface tension is an
essential fundamental thermodynamic property of gas/liquid interfaces, which provides
information related to the Gibbs free energy of formation at the interface, intermolecular
interactions and shapes of the surface. On the other hand, viscosity is a commonly studied
transport property of surfactant solutions, which represents index of inner friction of
the liquids. The interactions of solvents with hydrophobic as well as hydrophilic parts
of the surfactants result in changes in the viscous flow as well as surface tension of the
liquid. Therefore, study of these properties is crucial for the elucidation of solute—solvent
interactions and to describe the properties of micro-emulsions and liquid crystals with
respect to micellar solution of surfactant system. For instance, Abezgauz et al. have
employed surface tension and viscosity methods to investigate the influence of monovalent
anions of the lyotropic series on micellization of cationic surfactant N-cetylpyridinium
chloride (CPyCl) [16]. The methods have also been successfully used to get information
about the physico-chemical properties of mixtures of (mixed zwitterionic surface-active
ionic liquids (SAILSs) + anionic surfactant) [11] and (SAILSs and cationic/gemini surfactants)
[12]. Brown et al. [20] have carried out a surface tension study for SAILs based, on organic
surfactant anions with substituted quaternary ammonium cations, and found a weak
dependence of aggregation and adsorption parameters on tetraalkylammonium structure
and a very low surface tension at the CMC (y =25 mN-m™!) for triple-chain anions coupled
with the tetrapropylammonium cation.

In the literature, focus on self-assembling behaviour of surfactants in the presence of
imidazolium cation-based ionic liquids is prominent. But recent studies suggest some
drawbacks related to imidazolium ILs, including their cost, harmful preparatory materials,
toxicity and decomposition in the reactions involving basic salts and active metals [9, 21,
22]; therefore, some new classes of ILs need to be explored. One of such class is based
on relatively less toxic quaternary ammonium cations [23, 24]. In this context, in our
previous works, we have reported synthesis and characterization of ionic liquids containing
tetraalkylammonium cations and inorganic anions. Further, the micellar properties of
DTAB and SDS have been investigated in the aqueous solutions of these ILs using
techniques such as conductivity, density and speed of sound, fluorescence and UV—Visible
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measurements. The antimicrobial activities of these (surfactant-IL) systems have also
been tested by measuring the zone of inhibition and minimum inhibitory concentration
(MIC) [25-28]. These ILs have significantly altered the physico-chemical properties
of surfactants by interacting with different parts of surfactants via electrostatic and
hydrohobic interactions. In continuation to this, the present paper deals with tensiometric
and viscometric behaviour of ionic surfactants, DTAB and SDS in the presence of these
synthesized ILs at temperatures ranging from 293.15 to 318.15 K at intervals of 5 K.
The surface tension data have been utilized to calculate critical micelle concentration
(CMC), interfacial and thermodynamic parameters of micellization and adsorption for
(surfactant-IL) systems. The variation of various viscometric parameters viz. relative
viscosity (#,) and viscous relaxation time (z) has been deployed to form an opinion about
intermolecular interactions prevailing in these mixtures.

2 Experimental
2.1 Materials

The deionized distilled water with a conductivity of 1 to 2x107% S:cm™! and pH of 6.8
to 7.0 (at 298.15 K) was obtained from a Millipore-Elix system and was used for all
the experiments. The specification of the chemicals used is provided in Table 1. All the
chemicals and reagents have been dried at~333.15 K for 24 h in a vacuum oven before
use. The synthesis and characterization of ionic liquids (ILs) tetraalkylammonium nitrate
([R,N*] [NOZ]) and tetraalkylammonium acetate ([R,;N*] [OAc~]) and where R=propyl
(Pr), butyl (Bu) and pentyl (Pen) has been reported in our previous study [28].

2.2 Methodology

Surface tensions of (surfactant-IL) mixtures have been measured by drop weight method
using Man Singh Survismeter supplied by Spectro Lab Equipments Pvt. Ltd [28]. The sur-
vismeter has been subjected to calibration before use at 298.15 K by DMSO and MeOH
having y values 43.33 and 22.41 mN ‘m~! which were in good agreement with those
reported in the literature [29, 30]. The instrument has been washed periodically with chro-
mic acid, water and then with ethyl alcohol and dried for 3—4 h in an oven. Then it is filled
with the experimental solution, clamped in a high precision water thermostat (+0.01 K)

Table 1 Specification and mass fraction purity of chemical samples

Chemical name Supplier CAS no Mass
fraction
purity?®

Tetrapropylammonium bromide, Pr,NBr Fluka 1941-30-6 0.98

Tetrabutylammonium bromide, Bu,NBr SRL 1643-19-2  0.99

Tetrapentylammonium bromide, Pen,NBr Acros organics 866-97-7 0.99

Dodecyltrimethylammonium bromide, C,,H,sN(CH;);Br ~ S.D.fine 1119-94-4 098

Sodium dodecylsulphate, CH;(CH,),;0SO;Na Himedia 151-21-3 0.99

*Provided by supplier
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provided by NSW Pvt. Ltd., New Delhi. The reproducibility for the surface tension meas-
urements comes out to be in the range +0.10 mN-m™".

Viscometric measurements were carried out using a jacketed Ostwald viscometer which
was subjected to calibration before use at 298.15 K using water, dioxane and DMSO as
solvents [31-33]. The temperature of the viscometer filled with experimental solutions has
been kept constant by circulating water from thermostat (+0.01 K). The efflux time of flow
has been measured by a digital stop watch with a precision of £0.01 s. The experimental
uncertainty in viscosity measurements is found to be 0.01 mPa-s.

3 Results and Discussion
3.1 Tensiometry
3.1.1 Effect of Additive on Surface Tension

The effect of ILs on the micellar behaviour and interfacial properties of surfactants, DTAB
and SDS have been examined by measuring the surface tension of (surfactant-IL) system
in the temperature range (293.15-318.15) K using the formula

v = [(ny X )/ (0 X py)]7, (1)

where n, and n are the number of drops of solvent and solution respectively. Similarly,
p, and p refer to the density of solvent and solution, respectively, and y, is the surface
tension of solvent. The values of y are reported in Tables S1-S3 of Supplementary data and
the representative plot of surface tension (y) vs. log,, [surfactant] for DTAB and SDS in
0.01 mol-kg™! aqueous solution of Buy;NOAc has been given in Fig. 1. It has been observed
that the surface tension initially decreases as the surfactant concentration increases up to
a certain point, after which the surface tension remains roughly constant. This is common
behaviour shown by surfactant solutions [33-35] and is used to determine their critical
micelle concentrations (CMC). The decrease in surface tension for aqueous surfactant
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Fig. 1 Representative plots of surface tension, y versus log, [surfactant] of a DTAB and b SDS in
0.01 mol-kg™! aqueous solution of Bu,NOAC at different temperatures
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system may be due to the presence of hydrophobic effect causing amphiphilic molecules
to adsorb at interfaces, even at low amphiphilic concentrations. Various interactive
forces like electrostatic interactions, van der Waals interactions, hydrogen bonding, and/
or solvation and de-solvation of adsorbate and adsorbent species are responsible for the
process of adsorption. The results show that the value of surface tension of both DTAB and
SDS decreases on the addition of ILs. For a particular anion of IL, the surface tension of
surfactant varies as

[Pen,N*| [X"] < [Bu,N*] [X"] < [Pr,N*] [X"] < water,

which is in accordance with the hydrophobic character of the cation. The presence
of hydrophobic cations may be more effective in screening electrostatic repulsions
between surfactant head groups at air—water interface, thereby reducing the free energy
of micellization [36]. Hence, the surfactant molecules accumulate on the solvent surface,
decreasing the surface tension. On the other hand, y follows the order:

[RyN*] [0AcT] < [R,N'] [NO;] < [RyN*] [Br ] < water

for common cation. This trend is in compliance with the polarizability of the anion.
Anions with higher polarizability may interact strongly with electric field at the interface,
which further enhance the binding of anions to the micellar aggregate, eventually
lead to the decrease in the electrostatic repulsions between the charged head groups
[37]. Moreover, surface tension of both the surfactants show decline in the values with
temperature, which may be due to the fact that thermal motion cause the establishment of a
dynamic equilibrium between adsorption and desorption making amphiphilic concentration
higher at surface as compared to that in the bulk.

3.2 IL Influence on the Micellization of DTAB and SDS

The impact of ILs on the micellization of the surfactant, which has been found to be more
prominent in comparison to that of simple electrolytes, may be due to the amphiphilic
nature of ILs. In general, the main interactions in (IL-surfactant-water) system are
electrostatic as and hydrophobic, which are in turn dependent on the type of head group,
counter-ion and hydrophobic chain length of both surfactant and IL molecules.

The CMC values have been determined from the intersection of two straight lines in
low and high surfactant concentration in (y-log;, [surfactant]) profiles and are recorded
in Table 2. It has been found that the CMC values of both the surfactants show a
significant reduction in the values on addition of ILs. The short hydrophobic alkyl chains
of ILs may penetrate into the hydrophobic core of surfactant micelle, thereby acting as
spacers between the head group resulting in the shrinkage of micelle. These hydrophobic
interactions between the hydrocarbon parts of the surfactant and IL favour the micellization
of surfactant. Thus, for a particular anion, the CMC of both SDS and DTAB follows the
order:

[Pen,N*] [X7] < [Bu,N*| [X7] < [Pr,N*] [X7] < water,

This decrease in CMC values can be correlated to the hydrophobic chain length of IL.
The increased ionic size from [Pr,N*] to [Pen,N*] enhances the hydrophobic interactions
between the hydrophobic chains of IL and surfactant micelles. This further reduces the
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repulsions between ionic head groups of the surfactants, resulting in promoted micelliza-
tion. However, the additional electrostatic interactions between the anionic micelles and
cationic counter-ions neutralize the effective charge on the head groups of the surfactant in
(SDS-IL) system thereby reducing the repulsions between polar head groups and stabilize
the micelles to greater extent [38—42].

On the other hand, anions of ILs interact well with the surfactant’s head groups,
increasing their tendency to aggregate. The effective size as well as the polarizability of the
anion influences this process of micellization. According to Hedin et al. [43], small anions
don’t lose their water of hydration and hence interact feebly with the cationic micelles,
whereas anions of large size form water-insoluble ion pairs with micellar structures. In the
present work, CMC of DTAB follows the order:

[R,N*| [NO3] < [R,N*] [Br'] < [R,NT| [OAcT] < water

The observed trend for CMC is in agreement with the effective size of the ions. The
larger anion is less hydrated and thus effectively interact with the cationic micelles,
neutralizing its charge to some extent [16, 46, 47]. The ionic charge density is another
factor that significantly alters the micelle formation of surfactants. Since the bigger
ions have lesser charge density, they have weaker potential to bind. In case of SDS, the
competition between anion adsorption and electrostatic repulsions between anion and head
group of anionic micelles results in following inclination in CMC:

[RyN*] [0AcT] < [RyN*] [BrT] < [R,N*| [NO;| < water

The effect of temperature on the CMC values of the surfactants has been plotted in
Fig. 2. It has been observed that CMC of both the surfactants first decreases and then
increases with increase in temperature, displaying a typical parabolic plot with a broad min-
imum at around 298.15 K. In general, the variation of CMC with temperature in aqueous
surfactant solution is complex and can be seen as interplay of hydrophilic and hydrophobic
hydrations of surfactant monomers in aqueous solution [25, 27]. The gradual decrease of
CMC values at lower temperature and gradual increase of CMC values at higher tempera-
ture may be due to the dominating effect of first and second factors, respectively.

3.2.1 Surface-Activity Parameters

To gain insight into the structural rearrangement of amphiphilic molecules at the interface
and the relative involvement of hydrophobic and electrostatic interactions between
surfactant and IL, the surface tension data have been further analysed in terms of surface-
active (interfacial) parameters including the surface excess at the air—water interface
(T'a), minimum area per surfactant molecule (A,,,), surface pressure at the CMC (7,,,.),
efficiency of surfactant in reducing surface tension (pC,,) and relationship of adsorption
at air/water interface to micellization (CMC/ Cy). All these parameters have been
documented in Tables S4, S5 of the Supplementary data.

A quantitative idea about the surfactant adsorption at the solution surface can be
obtained in terms of surface excess concentration at the interface, I',,, which is the
maximum value that adsorption can attain and has been calculated using the Gibbs
adsorption equation [48-50]:
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Fig.2 Variation of CMC of a
DTAB and b SDS as function 164
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where (dy / dlogo[Cl)p) is the slope calculated from the plot between y versus
log g[surfactant], R is the universal gas constant, T is the absolute temperature and n is
the number of species formed in the solution by the dissociation of surfactant molecules.
The value of #n is taken as 2 for the conventional surfactant and 3 for a dimeric surfactant
(a divalent surfactant ion and two univalent counter-ions in the absence of an electrolyte).

Using the value of I',,,, the minimum area occupied by each surfactant molecule at
saturated air-liquid interface can easily be evaluated according to the following equation
[51,52]:

Amin = 1Olg/l—‘maxjvo (3)

where N, is Avogadro’s number and the factor 10'® arises as a conversion factor of area

from m? to nm>.
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The value of I',,,, mainly depends upon the hydrophobic chain length of the surfactant
and temperature. It is measure of amount of species adsorbed at air—water interface and
is important parameter to provide information regarding the intermolecular interactions
prevailing among the components of the systems under consideration [36]. In general,
the magnitude of I',,, has been considered as the combined effect of (i) the attractive
interactions between the hydrophobic parts of surfactant and IL molecules in the monolayer
formed at the air-liquid interface of the solution and (ii) steric hindrance due to the bulky
hydrophobic tails of surfactant molecules. By the inspection of data in the tables, it can be
concluded that I'_,, values shift towards lower magnitude with the temperature as well as
addition of IL. Rise in temperature causes an increase in thermal motion of the molecules,
which, in turn, leads to poorer packing of adsorbed surfactant molecules at the interface,
thereby decreasing the surface excess concentration (I',,,) [53]. Further, the addition
of IL gives rise to a significant decline in the values of I',,, probably due to increased
hydrophobicity of the system. The bulkier and hydrophobic ion pairs formed between the
tetraalkylammonium ions and hydrophobic parts of the surfactant may be adsorbed on
air—water interface with the result in lowering I',,,,, [15]. Therefore, for the particular anion
of the IL, the observed trend for surface excess concentration is as follows:

[Pen,N*| [X"] < [Bu,N*] [X7] < [Pr,N*] [X7] < water,
However, for the common cation, the values follow the order:
water > [R,N*] [Br'] > [R,N*| [OAc"] > [R,N*| [NO3]

A, 1S the minimum area occupied by the surfactant molecule at the interface and
depends upon various factors such as

(i) The changed structure around the head group due to surfactant hydrophilic group—
additive interaction;
(i) The changed nature of water in the presence of additives; and
(iii) The presence of additives at the air/water interface.

A perusal of data shows that the A,,;, values increase with rise in temperature due to
increased thermal motion of the molecules leading to poorer packing at the interface.
Moreover, inclusion of IL allows some of the IL molecules to occupy the interface,
therefore the total number of surfactant molecules at the interface decreases and A,
increases [15]. The trends for A,;, are opposite to those for I',,,, values (Eq. 3).

From the surface tension data, three additional parameters: the effectiveness of
surface tension reduction (7.,.), adsorption efficiency (pC,,) and adsorption at air/
water interface relation to micellization (CMC / C,y) have also been evaluated. The
lowering of the surface tension can be expressed in terms of the surface film pressure
(7eme) [51] which is the difference in the surface tension of the pure solvent (y,) and
surface tension at the CMC (y,,,.) and can be calculated using the relation;

Teme = Yo — Yeme €]

where y, and y_,. are the surface tension of the solvent and of the micellar solution at
the CMC , respectively. The parameter 7,  is a measure of effectiveness of surfactant
molecules to reduce the surface tension at the solvent surface. The values of z_,. have
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been found to be lower in the aqueous solutions of ILs as compared to those in water. The
surface pressure, 7., however, decreases with increase in temperature.

On the other hand, pC,, is an important parameter related to the efficiency of
adsorption of surfactant molecules at the air-liquid interface. It is defined as the
negative logarithm of C,,, where C, is the concentration required to reduce the surface
tension of the solvent by 20 mN-m~".

~ Yeme — 20

pCyy = —logy; Gy = A 606RIT—
. max

Higher values of pC,, indicate a high absorption efficiency of the surfactant and hence
greater reduction in the surface tension [36, 54]. pC,, values of aqueous solutions of both
DTAB and SDS have been found to be independent of the type of IL and temperature.
However, the values are higher for SDS in comparison with DTAB indicating better
adsorption efficiency of former at air—water interface.

The CMC / C,, ratio is an index of adsorption onto air-liquid interface to the
micellization in the bulk of surfactant solution. Inspection of data in Tables S4, S5
reveals that the values increase with the hydrophobic character of the ionic liquid. Thus
the results emphasis on the conclusion that with the enhancement in the hydrocarbon
chain length of the IL, surfactant molecules prefer to adsorb at the air—solvent interface
rather than undergoing micellization [55].

3.3 Thermodynamics of Micellization and Adsorption

The thermodynamic parameters of micellization and adsorption viz. change in standard
Gibbs free energy of adsorption (AG? ), change in standard free energy of micellization
(AGY) and change in standard free energy of transfer (AGy) for both DTAB and SDS have
been calculated and the values are documented in Table 3.

The change in standard Gibbs free energy of adsorption (AG?,) values have been
evaluated using following relation [36]:

AG;)d = AGom - NoAmin”cmc (6)
where, AG? is known as the change in standard Gibbs free energy of micellization and
calculated as AG) = RT In(X,.)-

The change in standard Gibbs free energy of transfer (AG,) of surfactants has been
obtained from I',,,,, values using following equation:

100r,,, No/? )

(CMC)*/3 )

AG, = —RTIn (
The value of AG?, signifies the work required for the transfer of surfactant molecules
from monomeric form to the micellar phase, whereas AGY, is an index that represents the
shifting of molecular species from the bulk to micellar interior. From thermodynamic data
of micellization (Table 3), AG® and AG) values have been observed to be more negative
for SDS-IL systems as compared to DTAB-IL systems. However, the values merely show
dependence on temperature and nature of IL.
Negative values of AGY, indicate that the adsorption of surfactant molecules at air-lig-
uid interface is Gibbs free energy favourable. AG?, is the change in standard free energy
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of transfer of one mole of the surfactant in the solution to the interface. Moreover, the
absolute values are greater than absolute .. values suggesting that the surfactant mol-
ecules preferably adsorb at the interface, rather than undergo micelle formation until the
full surface coverage. This may be due to the greater freedom of motion of hydrocarbon
chains at air-liquid interface than in the interior of the micelle, because of minimal repul-
sions between hydrophobic phases and aqueous solution at interface [56]. After that, the
molecules diffuse to the bulk of the solution to form micelles. The absolute values of AGY,
for SDS are greater than those for DTAB in aqueous solutions of ILs. Thus, the micelliza-
tion as well as adsorption of the surfactant molecules seems to be governed by various
thermodynamic aspects.

3.4 Viscometry

We have also performed the viscometric studies of cationic surfactant, DTAB, and
anionic surfactant, SDS, in the presence of 0.01 mol-kg™' aqueous solutions of ILs in
the temperature range (293.15-318.15 K) to explore the intermolecular forces prevailing
between the different components in ternary (surfactant—IL—water) system. The viscosity
data have been analysed in the form of relative viscosity; 5, = #/#n,[57] and viscous
relaxation time; T = 4#/3pu’[58] where 7 is the viscosity of solution and #,, is the viscosity
of the pure solvent.

In the present case, viscosity of both the surfactants decreases with rise in temperature
(Tables 4-6). Increase in temperature increases the kinetic energy of molecules and
ions present in the solution. This increase in random motion of the species intrinsically
decreases the forces of attraction, which the moving solute and solvent molecules and ions
have to overcome. Such a decrease in interactions seems to be responsible for the decrease
in viscosity with increase in temperature [59-61]. Increasing the surfactant concentration
or addition of IL may result in structural transitions and micellar growth in the surfactant
solutions that may enhance viscosity of the system. For a particular anion, the viscosity of
both the surfactants varied in the sequence:

[Pen,N*| [X7] > [Bu4N+J [X7] > [PN*] [X7] > water,
which is exactly the same as expected from the hydrophobic character of these cations.
Higher the hydrophobicity of the cation, greater will be its interactions with the micellar
core of the surfactant and hence higher will be the viscosity of the system [16]. On the
other hand, if we compare the viscosity of surfactants in R,NOAc, R,NNO;, R,NBr and
water, the values have been found to decrease in the order:

[R,N*] [Br] < [R,N*] [NO;| < [R,N*| [OAcT] < water

However, the viscosity data have been further investigated in the form of relative vis-
cosity (#,). An increase in #, values (Tables S6-S8 of Supplementary data) demonstrates
the presence of enhanced electrostriction effects. This is probably due to the insertion of
tetraalkylammonium cations into the micelles of surfactant, owing to the steric compul-
sions, which in turn results in structural changes. This will expose the tetraalkylammonium
head groups to the water continuum thereby increasing the electrostriction [62]. Notewor-
thy is that the shape of #, vs. surfactant concentration curves is qualitatively the same as is
generally observed in the case of surfactant solutions [63, 64] (Fig. 3).

Similar observations can be made from the behaviour of viscous relaxation time (7)
values (Tables S9-S11 of Supplementary data). Relaxation time may be defined as the

@ Springer
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Fig.3 Representative plots of relative viscosity, #, vs. concentration of a DTAB and b SDS in
0.01 mol'kg™' aqueous solution of Pr,NBr at 293.15 K (filled square), 298.15 K (filled circle), 303.15 K
(filled triangle), 308.15 K (down-filled triangle), 313.15 K (left-filled triangle) and 318.15 K (right-filled
triangle)

time taken for the excitation energy to appear as translational energy, which is affected by
the presence of any impurity and temperature. It is directly proportional to viscosity and
inversely related to isentropic compressibility of the solution. In the present work, gradual
increase in 7 values has been found with increase in concentration of these surfactants,
but the same decrease with rise in temperature, mainly owing to the structural relaxation
processes occurring in the system because of the rearrangement of the molecules [65]. This
observation confirms the existence of intermolecular interactions in present ternary (sur-
factant + IL + water) system (Table 5).
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4 Conclusion

The work presents the effect of tetraalkylammonium cation-based ionic liquids (ILs) on
the surface and viscometric properties of two conventional surface-active agents, DTAB (a
cationic surfactant), and SDS (an anionic surfactant). The ionic liquids have significantly
altered the surface-active properties and viscometric parameters of these surfactants. The
tensiometric studies have revealed that CMC values of the surfactants decrease on the
addition of ILs, which can be explained on the basis of hydrophobic as well as electrostatic
interactions between the components of ternary (surfactant+ IL+ water) system. The
processes of both micellization and adsorption are favourable as shown by their negative
magnitudes, but the AG?, values are more negative than AG) , demonstrating the preferable
adsorption of surfactant molecules over their micelle formation until the surface is fully
covered. The viscometric measurements have also established the presence of enhanced
electrostriction effects and structural transitions and micellar growth due to rearrangement
of molecules in this system.
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