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Abstract
We examine in detail the activity coefficient of higher-charge electrolytes, which, in dilute 
solutions, can display negative deviations from the Debye–Hückel limiting law instead of 
the usual positive deviations typical of lower-charge electrolytes. This fact is of consider-
able relevance for scientists concerned with extrapolation to infinite dilution of thermo-
dynamic and kinetic quantities. It is shown that this “strange” behavior originates merely 
from the electrostatic interactions between each ion and all other ions, with no necessity of 
hypothesizing the presence of chemical association; these negative deviations, indeed, are 
predicted even at the level of the “primitive model” (ions assumed as charged, unpolariza-
ble, rigid spheres inside an unstructured, isotropic, dielectric fluid). Three different approx-
imations for the behavior of the primitive model of low-charge and high-charge electrolytes 
are tested, in addition to the Debye–Hückel theory; i.e. IPBE (a numerical accurate integra-
tion of the Poisson–Boltzmann equation), the Mayer theory of the electrolytes in the so-
called DHLL + B2 approximation, and the Bjerrum theory. In the Supporting Information, 
the fundamentals of the respective algorithms are reported, and the effects produced by the 
differences of size between cations and anions, are also examined.

Keywords Activity coefficient · Electrolyte solutions · Debye–Hückel theory · Bjerrum 
theory · Mayer theory

1 Introduction

In 2018, Fraenkel published a paper [1] that reexamined the activity coefficients of sev-
eral high-charge electrolytes using his DH-SiS theory [2]. He reached the conclusion 
that the negative deviations from the Debye–Hückel limiting slope (LL), which have 
been observed for many years in dilute solutions (ionic strengths, I < 10–2 mol·kg–1) of 
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2–2 [3–7], 2–3 [8, 9] or 3–2 [10, 11], and 3–3 electrolytes [12], were presumably not 
real. DH-SiS, like the Debye–Hückel theory (DH), is based on the primitive model (PM: 
rigid unpolarizable charged spheres inside a continuum, isotropic dielectric medium); 
the principal difference consists in the fact that while DH adopts the restricted primi-
tive model (RPM), where all spheres have an identical size a, the DH-SiS theory is able 
to account for the different sizes of the cation and anion. Both DH and DH-SiS adopt 
a mathematical-statistical approach based on the Poisson–Boltzmann equation (PB) in 
its linear approximation (L-PB), and by consequence neither DH nor DH-SiS are able 
to predict activity coefficients that deviate negatively from the LL in the dilute regions. 
Fraenkel disputes that it is possible for the RPM and PM to predict the negative devia-
tion of the high charge electrolytes since the L-PB always predicts positive deviations. 
He argues that at extreme dilution levels the only solute–solute interactions that do not 
vanish are the electrostatic ones, thus PM necessarily becomes a correct representation 
of any electrolyte solution; ergo, negative deviations should not exist.

Biver and Malatesta proved that Fraenkel’s reexaminations of past experimental 
data on high-charge electrolytes were affected by basic errors [13]. Fraenkel rejected 
their conclusions in a reply paper [14] in which he provides a plot based on incorrect 
data. In their turn, the arguments of [14] are rejected in Sect. 7 of the electronic sup-
plementary information (S.I.) of the present paper. The definitive conclusion is that the 
negative deviations in the dilute region are a non-questionable experimental reality for 
a number of highly charged electrolytes,  MSO4 (M = Mg, Ca, Sr, Zn, Cd, Co, Ni, Mn), 
 M3[Fe(CN)6]2 (M = Mg, Ca, Sr, Ba),  M3[Co(CN)6]2 (M = Mg, Ca), [Co(en)3]2(SO4)3 
(where “en” denotes ethylenediamine),  La2(SO4)3, La[Fe(CN)6], La[Co(CN)6], 
[Co(en)3][Fe(CN)6], and [Co(en)3][Co(CN)6] [3–12]; the only question that possibly 
can be raised concerns the reasons why these negative deviations occur, i.e. whether 
these are a sign of chemical associations—i.e. for weak electrolytes—or originate in the 
intrinsic properties of the PM for the corresponding ionic charges.

Yet, the debate about the negative deviations reveals that the theoretical and experi-
mental behavior of the electrolytes (in particular, high-charge electrolytes) in dilute 
solutions is even today a non-definitely settled subject for many scientists.

Knowledge of the behavior of the different kinds of electrolytes in the dilute and 
hyper-dilute regions is a necessity that cannot be given up for researchers concerned 
with equilibrium and kinetic measurements in electrolyte solutions, since the problem of 
extrapolation to infinite dilution is involved in manifold experimental situations (deter-
mination of standard potentials of cells, equilibrium constants, kinetic constants, activ-
ity coefficients from relative activity coefficients, etc.). There exists the incorrect dif-
fused idea that, once dilution levels of the order of  10–2–10–3 mol·kg–1 or so are reached, 
one can rely on the certainty that the system will behave subsequently in a DH-like 
manner. This thought can lead to incorrect extrapolations. Theories that go beyond the 
DH approximation may be of help to predict the kind of behavior to really be expected. 
Therefore, we will provide here an overview of what, in the regions that are important 
for extrapolation to zero concentration of experimental results, is to be expected for the 
activity coefficients of different kinds of electrolytes. Calculations are performed on the 
basis of the simple primitive model, i.e. rigid spheres and electrostatic interactions, with 
only the radii of the spheres as parameters. We will see that the striking differences 
experimentally noticed between higher charge (2–2, 2–3 and 3–3) and lower charge 
(1–1, 1–2, 1–3, and also 1–4) electrolytes, are already present in the primitive model.
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2  The RPM and PM in the Dilute Regions

“Experimental” results (Monte Carlo simulations) about the behavior of the PM have gen-
erally been limited to situations that mimic 1–1 and other low charge electrolytes, although 
computations exist for 2–2 electrolytes that cover the low concentration regime and support 
the negative deviations [15–17]. Yet, systematic identification of the general behavior of 
RPM or PM via Monte Carlo calculations for the different kinds of electrolytes in situa-
tions comparable to very dilute solutions  (10–5 to  10–2 mol·L–1) to study the direction and 
extent of the deviations from the LL, seems a prohibitive task (the same considerations 
apply also to Molecular Dynamics computations).

Useful information can be obtained more easily by the coordinated use of radically 
dissimilar approximations to RPM. IPBE (numerically accurate integration of the Pois-
son–Boltzmann equation, PB) [18–22], and Mayer’s cluster theory in its basic approxi-
mation, usually named DHLL + B2 [23–30], are a possibility.1 The mechanical-statistical 
frameworks of such treatments, whose cumbersome underlying equations are reported 
in the S.I. are completely different and independent, since Mayer’s theory (unlike IPBE, 
DH, and DH-SiS) does not rely at all on the Poisson–Boltzmann equation or the Güntel-
berg or Debye charging processes, but adopts a peculiar development of the PM,2 based 
on an infinite series of clusters of ion–ion interactions. The combinatorial complexity of 
this development is extreme; only the more important kinds of clusters were considered 
and collected (the simpler ones generate the LL), neglecting those that become important 
only at higher concentrations, thus causing DHLL + B2 to be suitable only for very dilute 
solutions. In addition, the main terms of the DHLL + B2 equations present serious com-
putational problems, as they incorporate slowly convergent infinite series of exponential 
integrals that, in the original Mayer paper [23] and subsequent developments [24–27], were 
in their turn approximated quite drastically. Appreciable improvements were attained in the 
1970′s with a method used by Indelli and De Santis [28, 29] and by Indelli and Malatesta 
[20], allowing the sums of integrals to be extended to hundreds rather than tens of terms as 
previously and later by Malatesta who, developing a Meeron idea [27], inverted the order 
between integrations and sums inside the different infinite series of integrals, thus trans-
forming these infinite series into numeric integrals of single functions [30]. With modern 
computers, the DHLL + B2 computations are now easy, but the relevant predictions are 
usually considered of little utility since the theory, by its intrinsic limitations, applies only 
to very dilute solutions (and in addition, the situation worsens in cases of higher charges, 
spheres of smaller size, and solvents with low dielectric constant). However, an interesting 
result of Mayer’s theory is the fact that it converges to the LL in the limit of infinite dilu-
tion, thus confirming the soundness of the LL by a method that is completely independent 

1 DHLL + B2, unlike IPBE and DH, applies consistently also to unrestricted PM (as many distances of 
closest approach aij between the centers of two ions i and j, as the possible combinations of i and j). The 
special emphasis on the RPM restriction is to permit comparison with DH and IPBE, which do not admit 
the use of different aij values. However, as shown in Sect. 4 of the S.I., for solutions of single electrolytes 
the postulation of different aij values rather than one single a has a negligible effect as long as a is taken 
equal to a+-, independently of the values of a++ and a–. This observation indicates that for single salts in 
dilute solutions there exists no perceptible difference between PM and RPM.
2 Mayer’s theory is not necessarily limited to PM, it can be extended freely to more realistic descriptions 
of the short-range interactions. Yet, at the concentrations imposed by the drastic truncation of the cluster 
series, only suitable in very dilute solutions, any improvement at the level of short range interactions is as 
effective, as lightening the buttons of the shirt for a man of over 100 kg to make easier his walking.
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of the adoption of the PB mechanical-statistical approach and Güntelberg or Debye charg-
ing processes. Since IPBE and DHLL + B2 are two completely independent ways to esti-
mate the behavior of diluted RPM, where their results coincide, this necessarily suggests 
the true behavior of RPM and PM.

In addition to IPBE and DHLL + B2, the approximate Bjerrum theory (BT) [31] is con-
sidered. Bjerrum used his fictitious “ion pairs” as a simplification to avoid the complex 
problem of the ion distribution in the nearer neighborhoods of each ion, i.e. at distances 
too low for the linear approximation of PB to hold. A critical distance, d, from the ion on 
which the coordinates are centered, is selected to separate approximately the zone where 
the L-PB is expected not to hold, from the surroundings where the L-PB is expected to 
hold.3 We skate over the details and discussions, available in several past papers and text-
books [32–37], regarding the rationale of the original Bjerrum choice for d, calculation 
of the association constant, arbitrariness of the conception of ion pairs, etc. The Bjerrum 
artifice of ion pairs does not necessarily imply any real existence of associated species, 
and can be considered rightly as a simplified, approximate development of the RPM, a sort 
of poor substitute for IPBE. However, it provides also an example of the effects that real 
chemical association would have in an incompletely dissociated electrolyte, thus proving 
that effects of chemical association and effects of strong electrostatic diffuse interactions 
are virtually equivalent. Activity coefficients of high-charge electrolytes which deviate neg-
atively from the LL can nearly always be interpreted as the cumulative consequence of the 
electrostatic long range interactions intrinsically involved in the PM, and additional pos-
sible effect of weak chemical bonds (short range interactions). Unusually low values of a 
required by the RPM to fit particularly large negative deviations of some electrolytes (typi-
cally, sulfate salts) may be a symptom of chemical association that adds to the long-range 
interactions. In the absence of independent experimental determinations, the trend of the 
activity coefficients alone does not provide sufficient information to separate such effects.

Figure  1 displays IPBE, DHLL + B2, and BT approximations for the RPM of a 2–2 
electrolyte with a = 0.4 nm, at 298.15 K in a dielectric fluid equivalent to water. Points cal-
culated with the MPB and SPB equations [38, 39] are also reported (data kindly supplied 
by Outhwaite and Bhuiyan). We see that for I1/2 < 0.1  mol1/2·L–1/2 IPBE, DHLL + B2, the 
Bjerrum theory and MPB agree perfectly, supporting the premise that the negative devia-
tions are an intrinsic property of the RPM. SPB also displays the same type of negative 
deviations, with values only slightly higher for I1/2 > 0.07  mol1/2·L–1/2. The reason why 
IPBE and SPB are not perfectly equivalent is because IPBE neglects the uncharged hard 
sphere contribution. It is not so clear instead why IPBE graphically coincides with MPB 
because the latter includes the uncharged hard sphere contribution like SPB. The MPB also 
accounts for the fluctuation effect, and the latter probably balances in part the uncharged 
hard sphere involvement, thus providing (in dilute solutions) results very similar to IPBE 
that neither considers fluctuation nor uncharged hard sphere contributions. DH fails in 
accounting for the negative deviations, because of the L-PB approximation that does not 
interpret the RPM correctly in the case of 2–2 electrolytes; the radial distribution of the 
ionic atmosphere in the nearer neighborhoods of the ions differs appreciably from the dis-
tribution deduced via L-PB (see Chap. 4 of [36]).

3 In the Bjerrum theory, d is a univocal function of charges of ions, temperature, and dielectric constant of 
the solvent. In water at 298.15 K, Bjerrum values of d are: 0.358 nm for 1–1, 0.715 nm for 1–2, 1.073 nm 
for 1–3, 1.431 nm for 1–4 and 2–2, 2.146 nm for 2–3, 2.861 nm for 2–4, and 3.219 nm for 3–3 electrolytes. 
When d < a, no ion pairs exist and Bjerrum’s theory exactly coincides with the DH theory.
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The situation is profoundly different when we deal with 1–1 electrolytes, where the 
L-PB is instead sufficient to reproduce correctly the behavior of the RPM. In this case, DH 
agrees with other theories, and all predict positive deviations from the LL (Fig. 2).

Spheres of smaller size enhance the negative deviations in the RPM of 2–2 electrolytes; 
negative deviations become possible even in the RPM of 1–1 electrolytes, though only 
for improbable a values lower than 0.15 nm. Conversely, larger spheres cause the oppo-
site effect; for instance, the RPM of a 2–2 electrolyte with a > 0.7 nm only yields positive 
deviations; the inversion occurs for a between 0.6 and 0.7 nm. The RPM of non-aqueous 

Fig. 1  RPM of a 2–2 electrolyte in water, a = 0.4 nm, according to approximations DH, IPBE, DHLL + B2, 
BT, MPB, and SPB. For comparison, Debye Hückel limiting law LL

Fig. 2  RPM of a 1–1 electrolyte in water, a = 0.4 nm, in the DH, IPBE, DHLL + B2 and Bjerrum theory 
approximations (note that in this case the DH and Bjerrum curves coincide since d < a). For comparison, 
Debye Hückel limiting law LL
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solutions proves that lower dielectric constants favor, as expected, negative deviations. For 
instance, a dielectric constant of one quarter than of water causes the 1–1 electrolytes to 
behave like the equivalent 2–2 electrolyte in water, which is logical since the electrostatic 
interactions are equal [20].

As expected, at a parity of a, the negative deviations of 3–3 electrolytes are much larger 
than those of 2–2 electrolytes. Unfortunately, also the discrepancies between IPBE and 
DHLL + B2 become much larger, making the identification of the exact behavior of RPM 
problematic (Fig. S7 in the S.I.), except for spheres of rather large size like those consid-
ered in Fig. 3 (a = 0.8 nm). Extremely large, improbable values of a (from 1.5 nm onwards) 
are required for the negative deviations of the RPM in the hyper dilute regions to disappear 
and convert into positive deviations. Therefore, we must conclude that 3–3 electrolytes are 
affected always by negative deviations.4 

Considering spheres of 0.4 nm, the RPM of 1–2 and 1–3 aqueous electrolytes does not 
yield negative deviations. The agreement between IPBE and DHLL+ B2 is excellent, and 
the DH, too, is not so different. The Bjerrum theory approximation worsens with unsym-
metrical electrolytes, where the ion pairs also have a net charge. It is hard to think that BT 
may still represent an accurate approximation to the RPM in such situations; and in fact, 
compared to IPBE and DHLL+ B2 whose nearly indistinguishable curves draw the correct 
behavior of the RPM, BT tends to overestimate the negative deviations. This situation is 
even more evident for 1–4 electrolytes, where for I < 5 × 10–3 mol·L–1 we find again very 
good agreement between IPBE and DHLL+ B2, which in this region do not deviate appre-
ciably from the LL, whereas BT predicts moderate negative deviations. DH, of course, 
always predicts positive deviations. Figures for 1–2, 1–3 and 1–4 electrolytes are reported 
only in S.I., Sect. 5, where the different colors are an aid to distinguish the different curves.

Fig. 3  RPM of a 3–3 electrolyte in water, a = 0.8 nm, in the DH, IPBE, DHLL + B2 and BT approxima-
tions. For comparison, Debye Hückel limiting law LL

4 The opposite opinion of Fraenkel, based on those he presented as the correct experimental data for 
La[Fe(CN)6] (Fig. 2 of ref.[14]), arises from an incorrect interpretation of the real experimental data of Ref.
[40]. See S.I., Sect. 7.



1542 Journal of Solution Chemistry (2020) 49:1536–1551

1 3

As for 2–3 electrolytes, the RPM yields as expected considerable negative deviations 
for a = 0.4 nm; yet in this case the exact behavior can be identified only for I < 10–4 mol·L–1 
since at higher ionic strengths the trends of IPBE and DHLL + B2 are progressively diver-
gent (Fig. S5 in the S.I.). Satisfactory results are obtained for larger a, such as 0.6  nm 
(Fig.  4), where for I < 0.01  mol·L–1 IPBE, DHLL+ B2, and to a slightly lesser degree 
Bjerrum theory, predict for the RPM the same behavior. Spheres with size larger than ca. 
1.0 nm no longer yield negative deviations in the initial zone.

The predicted behavior of 2–4 electrolytes is intermediate between 2–3 and 3–3. Yet, 
there exist no 2–4 electrolytes whose experimental activity coefficients are known. The 
apparent molar volumes of  Mg2[Fe(CN)6] and  Sr2[Fe(CN)6] have been determined using 
dilatometric methods down to concentrations of ca. 2 × 10–4 mol·L–1 [41], and deviations 
from the corresponding LL were found occur in the direction opposite to predicted by DH 
(i.e. positive deviations, where DH predicts negative deviations; the signs are inverted with 
respect to activity coefficients). Inverted deviations have been observed also in the relative 
apparent molal enthalpies [42, 43].

No calculations for 3–4, 4–4, etc. electrolytes have been performed since no correspond-
ing real salts exist whose experimental activity coefficients have been determined, making 
the respective theoretical calculations a vain exercise.

Fig. 4  RPM of a 2–3 electrolyte in water, a = 0.6 nm, in the DH, IPBE, DHLL + B2 and Bjerrum theory 
approximations. Truncation of cluster series causes DHLL + B2 predictions be intrinsically unreliable for 
I > 0.01 mol·L–1
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3  The Reason Why the Dilute Regions are Important

Determinations of activity coefficients are usually intended as determinations of In γ±.5 
Yet, experiments never provide directly such quantities, but other quantities ln γ±

’ biased 
by an unknown additional constant, ln γ±

’  = const + ln γ± (γ±
’ being denoted as relative mean 

activity coefficient). The nature and origin of the const depends on the method with which 
the values of ln γ±

’ are obtained. Potentiometric methods typically provide quantities ln 
γ±

’  = ln γ± – ln γ± (r), where γ± (r) is the unknown value of γ± in a solution (r) used as refer-
ence; here, const means –[ln γ± (r)]. Conversely, with methods based on integration of the 
osmotic coefficients (ϕ, obtained via cryoscopy or isopiestic methods), const represents the 
integration error generated by the unknown trend of the integrand (ϕ – 1)/m1/2 between the 
lower m accessible to experimental determination of ϕ, and m = 0 (see discussion in Ref 
[5].).

No matter its specific meaning, for the experimental sets of ln γ±
’ to be transformed into 

sets of ln γ±, the value of const needs be determined. The function ln γ±
’ has to be extrapo-

lated to infinite dilution, where it becomes equal to const. Extrapolation to infinite dilution, 
however, requires knowledge of the law the activity coefficients obey in the dilute regions. 
Preliminary knowledge of the dilute solutions is, therefore, of vital importance; otherwise, 
the activity coefficients of concentrated electrolytes remain biased by an unidentified error 
in their turn.

For low charge electrolytes, in particular 1–1, extrapolation to infinite dilution usually 
relies on the empiric equation:

where S1 is the LL slope; S2 and the other Si are empirical coefficients. Subtracting the LL 
from experimental ln γ±

’ , we have therefore:

Supposing that the concentrations are sufficiently low for ∑i>2 Si Ii/2 to be negligi-
ble, one expects a quasi-linear trend of ln γ±

’ – LL plotted vs. I, with intercept const (of 
course, this supposition is suspect in the case of negative deviations from the LL). In real-
ity, the method is problematic also in absence of negative deviations, since the omitted 
residual terms often generate trends whose slope varies continuously and does not per-
mit linear extrapolation of const. Figure 5 shows the situation observed with Mn(ClO4)2, 
whose relative activity coefficients have been measured with high precision down to 
m = 5.739 × 10–5 mol·kg–1 using a cell with permselective liquid membranes [7]. The ref-
erence solution was 9.183 × 10–4  mol·kg–1; therefore, in this case const means the value 

(1)ln 𝛾
�
±
= const + S

1
I
1∕2 + S

2
I +

∑

i>2
S
i
I
i∕2

(2)1n 𝛾
�
±
− LL = const + S

2
I +

∑

i>2
S
i
I
i∕2

5 In the present paper the mean activity coefficients are always denoted as γ±. Indeed, the differences 
between activity coefficients γ± (molal scale), γ±

’ (molar scale), and f± (rational scale = mole fraction 
scale) vanish at the dilution levels required for DH, IPBE, DHLL + B2 and BT to agree with the RPM. 
We selected γ± for better consistence with the experimental determinations of activity coefficients, usually 
performed in solutions of know molality m, rather than molarity C. Furthermore, C and m are nearly pro-
portional at high dilutions (C ≈ m d° with d° = solvent density), and nearly equal when the solvent is water. 
Therefore, although the natural variable of ionic interaction theories is C rather than m, at high dilution the 
results obtained in function of molar concentrationsor molar ionic strengths apply also to the molal concen-
trations, or molal ionic strengths. For C and m we intend generally the dimensionless quantities C/(C° = 1) 
and m/(m° = 1).
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of –ln γ± at m = 9.183 × 10–4 mol·kg–1. It is evident that, although Mn(ClO4)2 is a perfectly 
normal 1–2 salt, ln γ±

’ – LL does not obey any linear law, and no linear extrapolation as 
a function of I is feasible. Even worse: when (as is rather usual) no data are available at 
so high dilution as for Mn(ClO4)2, pseudo-linear trends observed at higher concentrations 
may suggest biased extrapolations.

It is strongly advisable to proceed in a different manner. As shown in the previous sec-
tion (see also the S.I. for 1–2, 1–3 and 1–4 electrolytes) IPBE, DHLL + B2 and BT (and 
also DH, if we deal with a low-charge electrolyte) are able to mimic to a good approxima-
tion the RPM in the dilute regions, where the RPM in its turn mimics the limiting behavior 

Fig. 5  Values of ln γ±
’ − LL in function of I for Mn(ClO4)2. In spite of the high dilution levels, no linear 

trend is observed, and the plot is of no particular aid to extrapolate the intercept const at I = 0. Experimental 
data from Ref [7]

Fig. 6  IPBE, DHLL + B2, Bjerrum theory, and DH used as extrapolation tools for the relative activity coef-
ficients of Mn(ClO4)2; horizontal trends individuate const =  − ln γ± (r), where (r) is 9.183 × 10–4 mol kg−1 
Mn(ClO4)2. Experimental data are from Ref [7]
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of the real electrolytes; the only problem is to identify the appropriate diameter of the 
spheres, a.6 We proceed by attempts, for any different theory, calculating γ± (theory, a) for 
each theory with different values of a. The differences ln γ’

± (exp) – ln γ± (theory, a) are plot-
ted in function of I using a logarithmic abscissa. The correct value of a yields points that, 
in the dilute regions, group around a horizontal line that identifies const; other values of a 
provide trends that in their turn converge towards the same horizontal line. Figure 6 shows 
the application of this method to Mn(ClO4)2 using IPBE, DHLL + B2, BT, and DH, in the 
concentration range 0.02937 to 5.739 × 10–5  mol·kg–1. All trends converge to a value of 
const of 0.110, i.e. to ln γ±

’ (r) = –0.110, which is indeed the value reported in Ref [7] for 
9.183 × 10–4 mol·kg–1 Mn(ClO4)2.

The method described above (theory assisted extrapolation to zero concentration) can 
be used reliably also for electrolytes with negative deviations like those of Figs. 1, 3 and 
4, provided the dilution levels are sufficient for the theories used to agree with each other 
on the behavior of the RPM. The method has been used for bivalent metal sulfates [5–7] (a 
plot similar to Fig. 6 is shown in Ref [5] for  ZnSO4), bivalent metal hexacyanoferrates(III) 
and hexacyanocobaltates(III) [8, 9], and 3–2 electrolytes that presented moderate negative 
deviations [44]. The DH is obviously failing in these cases, as are other linear theories such 
as DH-SiS [1, 2]. Even the integral equation approach of the mean spherical approxima-
tion MSA [45] fails, being incapable of reproducing the intrinsic negative deviations of the 
RPM of high-charge electrolytes (negative deviations within the MSA can only be achieved 
by adopting the hybrid approach of using ion pairing, such as in the MSA-MAL approach 
of Ebeling and Grigo for the osmotic coefficients of 2:2 salts [46] and similar, more recent, 
applications [47, 48]). It is expected, instead, that the integral equation approach of the 
hypernetted chain equation (HNC), which predicts the negative deviations of the PM of 
high charge electrolytes [49–52], and the SPB and MPB theories [38, 39, 53–56] as well, 
are better than DHLL + B2, IPBE, and Bjerrum theory for theory-assisted extrapolation to 
zero concentration.

With trivial modifications, the theory-assisted extrapolation method is directly extended 
to extrapolation of standard potentials (E°) of cells without transference from their electro-
motive forces (emf, E) experimentally determined. Similar E* quantities, that substitute for 
E° standard potentials in the liquid-membrane cells (thermodynamically equivalent to cells 
without transference)7 are determined in the same way.

Problems, however, arise with electrolytes whose negative deviations are strongly 
increased, which is the case of 3–3 electrolytes [12] and, among 3–2 electrolytes, of 
 La2(SO4)3 [11] and [Co(en)3]2(SO4)3 [10]. As is visible in Figs. S5 and S7 (S.I.), IPBE, 
DHLL + B2, and BT no longer agree well with each other (except at extreme dilutions, out 
of the experimental range) about the actual behavior of the RPM of 2–3 electrolytes for 
a = 0.4 nm or lower, or of 3–3 electrolytes for a = 0.6 nm or lower. Theory assisted extrapo-
lation to zero concentration in similar situations leads IPBE, DHLL + B2 and BT not to 
agree about the value of const (or of E° or E*) making this method unusable. Fortunately, 
there exists an alternative method to transform the relative activity coefficients of 2–2, 2–3 
or 3–2, and 3–3 electrolytes into corresponding activity coefficients, thanks to an indirect 

6 The single value of a of the RPM is equivalent to the distance of closest approach of cation-to-anion in 
the PM. Computations applied to PM prove, indeed, that in dilute solutions the effects of the distances of 
closest approach cation–cation and anion–anion are practically unimportant (see S.I., Sect. 4).
7 Concerning the rationale of cells based on perfectly permselective liquid membranes, see Ref.[57] or the 
SI of Ref.[13]. Diagrams of membrane electrodes and cell assemblage are reported in the S.I. of Ref.[22].
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thermodynamic cycle that we will designate for brevity as the “absolute reference point” 
method.

3.1  The “Absolute Reference Point” Method

The rationale of the “absolute reference point method” is easily understood if we start with 
the elementary case of four cells without transference, for HCl, HBr, KBr and KCl:

 (1). Ag, AgCl | HCl solution |  H2 (Pt)
 (2). Ag, AgBr | HBr solution |  H2 (Pt)
 (3). Ag, AgBr | KBr solution | K (saturated amalgam in Hg)
 (4). Ag, AgCl | KCl solution | K (saturated amalgam in Hg)

Naming Eo

1
 , Eo

2
 , Eo

3
 , and Eo

4
 for the respective standard potentials, these E° necessarily 

obey the thermodynamic cyclic relationship Eo

1
 – Eo

2
 + Eo

3
 – Eo

4
 = 0, and hence it suffices to 

know three of these four E° to univocally determine also the fourth one.
Similar relationships apply also to the E° of cells planned for high charge electrolytes, 

and to the equivalent quantities E* that substitute for E° in the case of liquid membrane 
cell. The advantage consists in the fact that the E° (E*) of a cell for an electrolyte where 
both the cation and anion are multiply charged (2–2, 2–3 or 3–3), whose determination 
by theory-assisted extrapolation to zero concentration could be problematic or impossible, 
can be expressed as a linear combination of the E° (E*) of three auxiliary cells for electro-
lytes of lower charge, with which the theory-assisted extrapolation has no problem, e.g., 
the E° (E*) of a cell without transference (or a cell with perfect permselective membranes) 
for  La2(SO4)3, made of an electrode for  La3+ and another for SO2−

4
 (principal cell) can be 

calculated by linear combination of the E° (E*) of three auxiliary cells, (i) one for  LaCl3 
(made of the above electrode for  La3+, and another for  Cl–); (ii) another for  K2SO4 (made 
of the above electrode for SO2−

4
 , and another for  K+); and the third, to close the cycle, for 

KCl using the previous electrodes for  K+ and  Cl–. The E° (E*) of the auxiliary cells are 
deduced from the respective electromotive forces (emf, E) measured at known concentra-
tions, via theory-assisted extrapolation to zero concentration. The explicit relationships to 
be used to calculate the E° (E*) of the principal cell from the E° (E*) of its auxiliary cells, 
are reported e.g. in the electronic supporting information of Ref.[13]. As soon as the E° 
(E*) of the principal cell has been determined, the activity coefficient of the high-charge 
electrolyte in its reference solution (the “absolute reference point”) is immediately calcu-
lated from the relevant value of E via the Nernst equation. Details are available in the Sup-
porting Information of Ref.[13].8

The absolute reference point method applies to all electrolytes where both the cation 
and anion have a charge greater than 1. Where both theory-assisted extrapolation and an 
absolute reference point can be used, their independent results (generally in very good 
agreement) provide a useful estimate of the residual systematic error made in the transfor-
mation of the original set of ln γ±

’ into definitive ln γ±.

8 Erratum in the S.I. of [13]: page SI 5, line 7, substitute "Mg2+,  ds2–,  Na+ and  Cl−" for "Mg2+,  ds2–,  K+ 
and  Cl–".
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4  The Behavior of Real Electrolytes

The real behavior of electrolytes in dilute solutions is much better known than in the past. 
This is thanks to liquid membrane cells, which are able to determine the relative activity 
coefficients for nearly all electrolytes down to dilution levels previously unattainable with 
other methods (even  10–5 mol·kg–1 and beyond in a few cases), and to the ability to trans-
form the relative activity coefficients into reliable activity coefficients in nearly all cases. 
In some cases, the experimental advancements overtook the theoretical developments; for 
instance, the accurate results in mixed solutions of high charge electrolytes (in particular of 
3–3 salts in a predominant quantity of 2–2 or 2–3 salts) [22] are still awaiting a theoretical 
interpretation.

For 1–1 strong electrolytes in aqueous solutions no negative deviations are predicted 
by the RPM, because these deviations would be possible only for unreasonably low values 
of a (ca 0.15 nm). For 1–2 or 2–1 electrolytes, negative deviations would occur only for 
values of a lower than ca 0.3 nm, which is rather unusual. However,  K2SO4 [6] displays 
in the dilute regions a trend that, in terms of RPM, means just a similar low value of a (ca 
0.30  nm according to both IPBE and DHLL-B2, 0.34  nm according to BT); we observe 
occurrence of an initial quasi-linear trend that coincides approximately with the LL up 
to I ≅ 0.01  mol·kg–1, before deviating positively. Other 1–2 and 2–1 salts studied by the 
Malatesta research group using liquid membrane cells [7, 58, 59] display the regular trend 
that RPM predicts for a ≅ 0.4 nm or greater.9

Also for 1–3 and 3–1 electrolytes no negative deviations are generally expected, except-
ing particularly low values of a as in the case of [Co(en)3](NO3)3 (a ≅ 0.30 nm [58]). Just 
a hint of negative deviation, or a trend that coincides with the LL up to concentrations 
higher than expected, are observed for [Co(en)3]Cl3 (a ≅ 0.37 nm [10]), [Co(en)3](ClO4)3 
(a ≅ 0.40  nm [58]),  K3Fe(CN)6 (a ≅ 0.42  nm [40, 58]),  K3Co(CN)6 (a ≅ 0.42  nm [9]), 
La(NO3)3 (a ≅ 0.43 nm [11]).  LaCl3 (a ≅ 0.51) [40, 58] and La(ClO4)3 (a ≅ 0.64 [11]) exhibit 
regular positive deviations.

No experimental data of activity coefficients in very dilute solutions of 1–4 electrolytes 
are available.

Negative deviations have been definitively ascertained for bivalent metal sulfates; accu-
rate activity coefficients are available for magnesium, calcium, strontium, zinc, cadmium, 
nickel, cobalt, and manganese sulfates [5–7]. These salts behave approximately as predicted 
by the RPM with spheres sizing between 0.34 and 0.42 nm (the two extreme values being 
those of cadmium sulfate and magnesium sulfate): see Fig. 4 of Ref.[6]. The non-sulfate 
2–2 salt Mgds (where  ds2– stands for 1,5-naphthalenedisulfonate anion) instead does not 
present negative deviations, behaving like the RPM for a ≅ 0.75 nm [44]. It is apparent that 
the sulfate anion has a peculiar tendency to generate negative deviations which, in terms 
of RPM, correspond to rather low values of a (or a± in the PM). Compare for instance the 
values of a required by sulfate salts with those required by perchlorate salts, quite differ-
ent despite the equal geometry and similar size of SO2−

4
 and ClO−

4
 ; e.g., the RPM requires 

a ≅ 0.68 nm for Mn(ClO4)2 and a ≅ 0.38 nm for  MnSO4. Other examples are shown in Table 
V of Ref.[58].

9 Mn(ClO4)2: ca 0.67–0.68  nm [7]; Co(ClO4)2 and Ni(ClO4)2: ca 0.66  nm [58];  CaCl2: ca 0.51  nm [58]; 
 K2C2O4: ca 0.38 nm [59];  Na2ds: ca 0.68 nm [59].
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All 2–3 salts  (M3X2) examined (magnesium, calcium, strontium and barium 
hexacyanoferrate(III) [8]; magnesium and calcium hexacyanocobaltate(III) [9]) dis-
play moderate negative deviations, like those of the corresponding RPM for a rang-
ing from ca 0.57  nm for barium hexacyanoferrate(III), to ca 0.67  nm for magnesium 
hexacyanocobaltate(III). As for 3–2 salts  (R2Y3), we observe once again the particu-
lar effect of the sulfate ion in [Co(en)3]2(SO4)3 [10, 44, 58] and  La2(SO4)3 [11], whose 
impressive negative deviations are like those the RPM predicts for a of ca. 0.38 nm [58] 
and 0.35  nm [44], respectively. Conversely, the non-sulfate 3–2 salts [Co(en)3]2ds3 and 
 La2ds3 display moderate negative deviations like those RPM predicts for a of ca. 0.60 and 
0.75 nm, in that order [44]. The fact that [Co(en)3]2(SO4)3 requires a value of a higher than 
 La2(SO4)3 (0.38 nm vs. 0.35 nm) while on the contrary [Co(en)3]2ds3 requires a value of a 
lower than  La2ds3 (0.60 vs. 0.75 nm), is probably an indication that sulfate ion enters the 
hydration sphere of the cations while ions such as ClO−

4
 and  ds2– do not (which also would 

explain the particularly low values of a of all sulfate salts). Bare [Co(en)3]3+ behaves as a 
“sphere” smaller than hydrated  La3+, yet larger than bare  La3+.

3–3 salts [12, 40, 60] all display impressive negative deviations, comparable, for 
La[Fe(CN)6], to those that IPBE and BT approximations to RPM predict for a ≅ 0.65 nm 
(IPBE) or 0.67  nm (BT); slightly larger values of a are required for La[Co(CN)6] 
(a ≅ 0.66 nm, IPBE; 0.68 nm, BT). With spheres of ca 0.7–0.6 nm (or less) of cross size, 
the different approximations to RPM become less accurate for 3–3 electrolytes, and May-
er’s DHLL + B2 in particular diverges from IPBE and from BT (which instead remain in 
a more acceptable agreement with each other: see Fig. S7 of the S.I.). Both the negative 
deviations and the differences between IPBE, BT and DHLL + B2 increase in the case of 
[Co(en)3][Fe(CN)6] and [Co(en)3][Co(CN)6]; both salts require a ≅ 0.46  nm in the IPBE 
approximation and 0.51 nm in the BT approximation [12]; DHLL + B2 is of no utility at all 
in these extreme conditions.

5  Conclusions

All electrolyte theories agree on the fact that electrolytes attain the theoretical limiting 
slope LL in the limit of infinite dilution and, therefore, that at sufficiently high dilution lev-
els their trends have to approach asymptotically the LL. However, sufficiently high dilution 
levels is a highly undefined term; it means in some cases (1–1 to 1–3 electrolytes) some-
thing like  10–2–10–3 mol·kg–1; in other cases (3–3 electrolytes and a few 3–2 electrolytes), 
it can mean  10–6–10–8 mol·kg–1 and beyond, a range inaccessible to experiments. Further-
more, it is not stated absolutely that the asymptotic approach to LL has to proceed neces-
sarily from above, as DH predicts, rather than from below. Examination of the behavior 
of the primitive model using independent theoretical approximations, indicates that, while 
low charge electrolytes in water usually have to display the positive deviations from the 
LL predicted by the DH theory, the combination of higher charges, smaller ions and lower 
dielectric constants necessarily produce the onset of negative deviations from the LL in 
the dilute regions (by increasing concentration, the covolume effects modify the situation, 
causing the slope to vary progressively in the positive direction). In water, the negative 
deviations are predicted (and found) unavoidable for 3–3 salts, very probable with 2–3 or 
3–2, often present with 2–2, rare with 1–3 or 3–1, and virtually impossible for 1–2 or 2–1 
and 1–1 electrolytes.
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Some electrolyte theories, typically the DH theory because of the L-PB approximation, 
and likewise the DH-SiS theory of Fraenkel [2], are not able to allow for the negative devi-
ations; in its turn, also the integral equation approach of the mean spherical approximation 
(MSA) [45] is not able to predict negative deviations [61]. Clearly, these theories do not 
reproduce the correct behavior of the primitive model in situations of stronger interactions 
between ions, such as those that can occur with high charge electrolytes (or in solvents with 
low dielectric constant).

Acknowledgements The author is indebted to Chris. Outhwaite and L. Bari Bhuiyan for providing theSPB 
and MPB data.
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