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Abstract

The atomic-level Al topological indices and the modified Xu (Xu) index were utilized
for quantitative structure—property relationship (QSPR) modeling of the infinite dilution
activity coefficients of 108 oxo compounds in water at 298.15 K. Stepwise multiple lin-
ear regression (SMLR) analysis using the topological descriptors resulted in a model with
R2=R§dj=0.9904, SE=0.3769, F=1267.1 and an average relative error of 4.89%. The
selected descriptors were then used to develop an artificial neural network (ANN) model
for the activity coefficients. Findings of the study indicated that a 7-8-1 ANN trained by
Levenberg—Marquardt algorithm results in the improved predictions, especially in view of
a decrease as large as 47.24% in the average relative error compared to the SMLR model.
The Al indices with a total contribution of 81.43% showed the dominant role of the atomic
groups of the oxo compounds in determination of their activity coefficients at infinite dilu-
tion in water.

Keywords Infinite dilution activity coefficient - Quantitative structure—property
relationship - Atomic-level topological indices - Modified Xu index - Artificial neural
network

1 Introduction

The infinite dilution activity coefficient, y, is an important thermodynamic property of
both practical and theoretical interest. The parameter provides insight into the kinds of
physical and chemical intermolecular forces involved in the solute—solvent interactions,
which is useful for estimating aqueous solubility and selecting solvents in many industrial
processes including high purity extraction, azeotropic rectification, chemical separations
and environmental pollution control [1]. Moreover, study of the infinite dilution activity
coefficients is of great value in investigating the thermodynamic behavior of dilute aque-
ous solutions, developing new thermodynamic models [2] as well as calculating the solu-
bility of solids in supercritical gases [3], excess enthalpies [4] and Henry constants [5].
Many practical implications in environmental, chemical and biochemical processes [6] and
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extensive applications in commercially important products like pharmaceuticals, coatings
and paints [7, 8] make it essential to study y* values. Gas-liquid chromatography [9], the
dilutor method [10] and differential ebulliometry [11] are the most common methods of
measuring y* values. Nevertheless, for the reasons like safety, cost and technical availabil-
ity, prediction of the infinite dilution activity coefficients by QSPR modeling [12—-15] as an
alternative method is of great importance.

Since 1947 when Wiener reported the first application of graph theory to QSPR mod-
eling, many graph theoretical topological descriptors possessing high prediction potency
of various physicochemical properties have been developed [16, 17]. Using the descrip-
tors, useful information is obtained about molecular features such as size, shape, branch-
ing, symmetry, as well as the atom and bond types without the need for optimizing the
geometry of molecules [18]. Atomic-level indices are highly efficient topological descrip-
tors, which allow estimation of the individual contributions of the molecular fragments
and atomic groups to the properties of chemical compounds. One of the most important
descriptors of this type called atom-type-based Al indices was introduced by Ren [19].
In addition to describing the structure of a molecule at the atomic-level, the descriptors
encode the structural environment of each atom-type in the molecule. The atomic-level
Al indices combined with the bulk property topological descriptor of Xu [20, 21] (or "Xu
[22]) showed satisfactory linear correlations to various properties such as molecular total
surface area, enthalpies of vaporization, Pitzer’s acentric factor, water solubility, narcosis
activity, etc. [23-26]. Ren also employed the indices in linear regression modeling of the
quantitative structure-retention relationship (QSRR) of aldehydes and ketones on gas chro-
matographic columns [27]. Moreover, Panneerselvam et al. used the atomic-level indices
to predict the boiling points of trialkyl phosphates [28]. Recently, our group has success-
fully applied the atom-type-based topological descriptors combined with MLR technique
for estimating the standard formation enthalpies of acyclic alkanes [29] and normal boiling
points of esters [30]. The group has also reported the first application of ANN modeling in
a QSRR study of monomethylalkanes using the topological indices [31].

In this work, the benefits of the atomic-level Al and ™Xu topological descriptors in
QSPR modeling of the infinite dilution activity coefficients of a group of oxygen contain-
ing organic compounds in water are illustrated. The structure—property relationships were
investigated by SMLR and ANN modeling techniques. Additionally, the role of atomic
groups affecting the activity coefficients of the studied molecules was characterized. As
far as the author is aware, this is the first report on QSPR modeling of the infinite dilution
activity coefficient of organic compounds using the atomic-level Al topological indices.

2 Method
2.1 Data Set and Topological Descriptors

The experimental values of the room temperature activity coefficients at infinite dilution
for 108 oxygen containing organic compounds in water were taken from the literature
[32-39]. Table 1 lists the data set including C,—C,¢ linear and branched alcohols, ketones,
ethers, esters, aldehydes and carboxylic acids with In y* values in the range of 1.32-23.34.

The topological indices for the studied molecules were calculated during the following
steps [27]:
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(1) Mlustration of the hydrogen depleted structure of each molecule by the molecular graph.

(i) Deriving the distance matrix, D=[d,],,, whose elements are the shortest path length
between the atoms i and j in the molecular graph. Then, the sum over the column i (or row j)
of the matrix was calculated to give the distance sum vector, S=[s,],,5;-

(iii) Coding of the graph by the vertex degree vector, V=[v;],;, whose elements are the
number of connections to the atom i.

(iv) Calculation of Xu index for each graph by the following equation where the sum is over

all i atoms in the molecular graph.

n n
Xu = n'/?log,, <Zvisi2/zvisi) 1
P P

(v) Calculation of the atomic-level Al topological descriptors for each atom i belonging to
Jjth atom-type in the graph as follows:

ALG)=1+e,() =1+ <Vi(f)s,-2(i)/ Z Vi5i> @)
i=1

where the perturbing term, ¢,(j), reflects the impact of the structural environment of the
ith atom on the topological index value. The AI(j) values of m atoms of the same type was
then utilized to obtain the desired atom-type topological descriptor, Al(j), using the following
equation:

nx1s

AIG) = Y AL(G) =m+ (2 V() s2G) / D s,-) 3)
=1 i=1 i=1

To modify the Xu and Al topological descriptors for differentiation of the heteroatoms
(oxygen in the work) and multiple bonds, v; values were replaced by the degree of vertex
developed by Ren, v, [19]. The parameter is defined using the number of connections of the
atom (5), valence connectivity of Kier—Hall, " [40], and the principal quantum number of the
valence shell (V).

" 1
Q/N)26" + 1

4

where 0 is calculated by the difference between the number of valence electrons and the
number of hydrogens bonded to an atom.

2.2 Model Development

The quantitative structure—activity coefficient correlations for the studied compounds were
firstly generated by SMLR using SPSS software [41]. In the modeling process, the room tem-
perature values of In y* for the oxo compounds (dependent variable) and the calculated topo-
logical descriptors (independent variables) were mathematically correlated by the following
equation:

In y* = ay + a," Xu + bAl(j) (5)

@ Springer
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where a; is a constant and the parameters @, and b; are the contribution coefficients of ™Xu
index and jth Al index, respectively. The oxo compounds was randomly split into a training set
with 86 molecules and a prediction set with 22 molecules, and the corresponding In y* values
were utilized for developing the model and model validation, respectively. To select the best
linear model, the coefficient of multiple determination R, adjusted correlation coefficient
(Ri dj), Fisher-ratio (F) and standard error (SE) of the generated equations were compared.
Moreover, the values of #-scores for the model coefficients indicating the level of significance
of the topological indices in the model, along with the statistics of standard error for the coef-
ficients, were evaluated to choose a high quality subset of the indices.

In the next step, a feed-forward back propagation ANN algorithm was written in MAT-
LAB [42] to develop the nonlinear QSPR model. The theoretical explanations for the mod-
eling technique can be found in the literature [43]. The nonlinear model was generated using
inputs and targets, normalized in the range of — 1 to+1 to achieve the minimum computational
errors. The network included an input layer with N, neurons equal to the number of topological
indices selected by SMLR, a hidden layer with N, neurons, and an output layer with 1 neuron
representing the targets, i.e. the In y* values. The neurons were intercorrelated by the connec-
tions called weight (W) and bias (b) whose values were modified during the network training.
In this work, the Levenberg—Marquardt algorithm was utilized to train the network because
of its robustness and accuracy [44] and the performance function of root mean squared error
(RMSE) was employed based on the following definition:

N
1 2
RMSE = ]T] j; (ln Yexpj — In Vpred,i) ©

where the subscripts exp and pred refer to the experimental and predicted values of the
activity coefficients for jth molecule of N model compounds, respectively. Optimum N, value
was also determined during the training stage of ANN through search within the range defined
by the criterion, p, (Eq. 7) and observing the variations in RMSE.

_ Number of compounds presented to the neural network

Number of connections in the neural network )

where the lower limit of p value is adjusted at 1 to avoid memorizing the data by the neural
network, and the upper limit should not exceed 3 due to the inability of ANN to generalize
[45].

The data used as the training and prediction sets for ANN modeling were the same as those
employed for developing SMLR model. Howeyver, the training set was randomly divided into
two sets with 64 and 22 data as the training and validation sets, respectively, to reveal the over-
training of ANN by tracking RMSE values as a function of epoch number. Additionally, dif-
ferent combinations of the linear, logarithmic sigmoid and hyperbolic tangent sigmoid transfer
functions were utilized for the hidden and output layers to achieve the best architecture for the
neural network.
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3 Results and Discussion
3.1 Quantitative Structure—Activity Coefficient Relationships

As mentioned, the "Xu index in combination with Al topological indices was firstly cor-
related to In y* data using SMLR modeling technique. The best SMLR model obtained for
the activity coefficients is as follows:

Iny® = 0.408(+0.171) + 2.148(10.117)mXu—0.073(iO.033)A1(—CH3)
+ 0.054(10.007)A1(—CH2—) + 0.090 (£0.025)AI(> CH-) —0.326(+0.041)AI(—OH)
—0.123(+0.038)AI(> C =) — 0.244(+0.062)Al(= O)
N=86 R’=R},=09904 F=1267.1 SE= 03769
®)
The statistics of R? show that the developed model explains ~99% of the variances in
the activity coefficients. Moreover, RZ 4 equals R? indicating a high significance level of
the model and the F-value implies that the relationship described by SMLR equation is
significant with a certainty of 99.99%. Values of the r-scores for the model coefficients
are 18.291,—-2.225, 7.658, 3.615,—7.872,—3.241 and —3.951, respectively, proving
that all the selected topological descriptors are significant to the model developed for
In y* data. Investigation of the prediction power of the linear model was graphically
done using the residual plot shown in Fig. 1. As illustrated, the residuals with a range
of —1.36 to+ 1.11, did not follow a normal distribution around the average error of zero.
Moreover, the average relative deviation (ARD) obtained for the model was 4.89%, sug-
gesting that the present model can not make sufficiently accurate predictions for the
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Fig. 1 The plot of the residuals resulted from MLR model vs. experimental In y* values of the oxygen con-
taining organic compounds
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desired data. Values of ™Xu and Al indices entered in the SMLR model and the pre-
dicted activity coefficients are listed in Table 1.

In order to achieve a more accurate model, ANN modeling of the In y® values was
also examined. Therefore, the topological descriptors were used as inputs for develop-
ing the nonlinear model. To find the best ANN architecture, different combinations of
the transfer functions were applied and the optimum N, value of the generated networks
was sought within the range of 3-9, based on Eq. 7. By comparing the results (not
shown), the best statistical quality was found to belong to an ANN with 7-8-1 topol-
ogy and the transfer functions of tansig-linear for the hidden-output layers. Table 2
gives the characteristics of the best ANN model found for predicting In y* values of the
studied compounds. As shown, the nonlinear model could predict In y* values for the
three sets of training, validation and prediction with R%>0.99 and RMSE <0.3. Opti-
mum values of the weights and biases for the proposed ANN model are presented in
Table 3. Additionally, Fig. 2 indicates the values of mean squared error (MSE) against
the epoch number for the training, validation and prediction sets. Obviously, the best
performance of the ANN was achieved at epoch 26 with a MSE value of 0.0718. The
ANN predicted In y* values for the model molecules are given in Table 1, and the qual-
ity of the predictions is graphically illustrated in Figs. 3 and 4. According to Fig. 3, the
nonlinear model offers satisfactory efficiency to correlate the activity coefficients to the
topological indices as judged from the good agreement between the data points and the
straight line indicating perfect predictions. Moreover, the residual plot shown in Fig. 4
shows that there is no systematic error in the developed model, and the residuals rang-
ing from —0.63 to+0.71, are considerably smaller than those obtained by SMLR. To
further illustrate the efficiency of proposed ANN model for prediction of In y* values,
the residuals reported by He and Zhong [46] as well as Estrada et al. [47] for the same
compounds are also shown in the figure. The data clearly indicate the narrower range
of the residuals resulted from the ANN model compared to those previously obtained
by the researchers. It was also found that the average relative deviation of the nonlinear
model (2.58%) was not only 47.24% lower than the developed SMLR model, but also
33.16% lower than ADR reported by He and Zhong, and 65.08% lower than the report
of Estrada et al. Relatively small deviations of ANN predicted activity coefficients from
the experimental values prove the superiority of the nonlinear model over the previous
regression models developed for In y* of the oxo compounds.

Table 2 Characteristics of the

best artificial neural network Topology 7-8-1
generated for prediction of In Transfer function ~ Hidden layer Hyperbolic tangent sigmoid
y* data Output layer Linear

R? Training set 0.9988

Validation set 0.9949
Prediction set 0.9924
RMSE Training set 0.1325
Validation set 0.2680
Prediction set 0.2933
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Best Validation Performance

is 0.071831 at epoch 26
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Fig.2 Mean squared errors of the training, validation and prediction sets versus epoch numbers for the best

ANN topology found for estimation of In y* values
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Fig. 3 Predicted versus experimental In y* values based on the developed ANN model
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Fig.4 Comparison of the residuals obtained from ANN model for the (filled circle) training, (filled square)
validation and (filled diamond) prediction sets used in this work, with those reported by (open triangle) He
and Zhong [46], and (open circle) Estrada et al. [47]

3.2 Structural Interpretation of the Infinite Dilution Activity Coefficients

To assess the role of structural characteristics of the studied compounds which determine
the In y* values, the relative importance of each topological descriptor (IM;) was calcu-
lated using the connection weights of the developed ANN by the following equation [48]:

T (s 9
Lo (wy s wn) < awe )} ®

where the superscripts i, & and o for the weights refer to the input, hidden and output
layers of the network, and the superscripts k, m and n refer to the corresponding neurons,
respectively. Calculated values of IM; for the topological indices are presented in Fig. 5.
Obviously, the "Xu index characterizing the molecular size [20] had the maximum contri-
bution indicating the dominant role of the molecular size in determining the In y* values.
The atomic-level Al topological indices with an overall contribution of 81.43% showed
highly considerable role in determination of the activity coefficients of the oxo compound.
Among the indices, Al (-CH;) had a contribution of 17.59% indicating that the degree of
branching was nearly as effective as bulkiness of the molecule in determining the In y* val-
ues. The functional groups of -OH and=0 as an indication of the molecular polarity were
in the next ranks in view of contribution to the activity coefficients. Moreover, relatively
large IM; values for Al (>CH-) and Al (-CH,-) proved the dominant role of the posi-
tion of branching in the molecule as well as the hydrophobic interactions in determining In
y* values, respectively. The descriptor of A/ (>C=) with IM;=9.90% was also important
in determination of the activity coefficients for the studied oxo compounds. According to
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Fig.5 Relative importance of the topological descriptors entered in the generated ANN model

the results, the topological indices entered in the proposed ANN model allowed to achieve
beneficial insights about the contribution and role of the structural characteristics affecting
In y* of the oxygen containing organic compounds.

4 Conclusion

In the study, the atomic-level Al topological indices combined with ™Xu index were
employed for SMLR and ANN modeling of the room temperature activity coefficients at
infinite dilution for a group of oxygen containing organic compounds. The results showed
that a 7-8-1 ANN was superior over the linear model in predicting the activity coefficients.
Obtaining an average relative deviation of 2.58%, which is significantly lower than those
previously reported using the regression models, validated the prediction power of the non-
linear ANN model generated for the desired data. Among the topological indices, "Xu and
Al (-CH,3) were found to be the most important descriptors affecting In y* values indicat-
ing the major role of the molecular bulkiness and degree of molecular branching in deter-
mining the activity coefficient values. The findings of the study suggest the atomic-level
topological indices combined with the neural network modeling as a promising choice to
achieve improved prediction results in QSPR study of the infinite dilution activity coeffi-
cients of the oxo compounds in water at 298.15 K.
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