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Abstract The dynamic solvent effect often arises in solution reactions, where coupling

between chemical reaction and solvent fluctuation plays a decisive role in the reaction

kinetics. In this study, the Z/E isomerization reaction of nitoroazobenzene and benzyli-

deneanilines in the ground state was computationally studied by molecular dynamics

simulations. The non-equilibrium solvation effect was analyzed using two approaches: (1)

metadynamics Gibbs energy surface exploration and (2) solvation Gibbs energy evaluation

using a frozen solvation droplet model. The solute–solvent coupling parameter (Ccoupled)

was estimated by the ratio of the solvent fluctuation Gibbs energy over the corresponding

isomerization activation Gibbs energy. The results were discussed in comparison with the

ones estimated by means of the analytical models based on a reaction–diffusion equation

with a sink term. The second approach using a frozen solvation droplet reached qualitative

agreement with the analytical models, while the first metadynamics approach failed. This is

because the second approach explicitly considers the non-equilibrium solvation in the

droplet, which consists of a solute at the reactant geometry immersed in the pre-organized

solvents fitted with the solute at the transition state geometry.
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1 Introduction

Chemical reactions in solution are decisively influenced by the surrounding media in the

diffusion-controlled regime [1] or in the fluctuation-controlled regime [2, 3]. In the latter

case, the viscosity-dependent suppression of ultrafast reactions in the excited states, known

as Kramers turnover [4], arises as the retardation of solvent fluctuation adapts to solute

reactions in the excited state where the solute–solvent system undergoes a breakdown of

chemical equilibrium. Even in the ground states this anomaly can be observed when a

reaction proceeds in quite viscous solvents under sufficiently high pressure. Our experi-

mental studies have focused on the Z/E thermally backward isomerization kinetics of

azobenzenes and benzylideneailines in solution under a wide range of pressure (up to 1

GPa), where the suppression of isomerization reaction rates is invoked by strong solute–

solvent friction [5, 6].

From theoretical viewpoints, condensed phase reaction rate theories have a long history,

starting from the landmark Transition State Theory (TST) which supposes that (1) local

equilibrium between reactant and transition state (TS) and (2) the point of no return

assumption are satisfied. The regime of TST applicability and its extended theories for-

mulated as an activated barrier crossing process or others have been extensively investigated

[7–10]. The solute–solvent coupling scheme for solution reactions has been formulated

using two models: the ‘one’ and ‘two’ dimensional ones where the solute coordinate (fast

chemical reaction) and the solvent coordinate (slow fluctuation) are coupled synchronously

or asynchronously, respectively (Fig. 1). First, the Grote–Hynes (GH) model [11, 12], based

on an activated barrier surmounting process governed by the generalized Langevin equation,

can be interpreted within the TST framework as a system bilaterally coupled with the

surrounding heat bath [13–15]. That means that the GH model can be renormalized into the

one-dimensional model where the solute and solvent coordinates are coupled synchronously.

On the other hand, the two-dimensional model was studied by Agmon and Hopfield [16],

which is based on a diffusion–reaction differential equation with a sink term. The model was
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Fig. 1 Schematic explanation of the reaction (solute–solvent coordinate coupling on a Gibbs energy
surface) for two limiting cases. Left panel: equilibrium mechanism. The reaction proceeds while exactly
following the intrinsic reaction coordinate through the transition state. Right panel: Non-equilibrium
mechanism. The reaction proceeds with solvent pre-organized fluctuation, which is a rate-determining step
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reformulated by Sumi and Marcus (SM) [17, 18] and Basilevsky and Weinberg (BW) [19].

The models originated from the multidimensional case of GH theory [20, 21] and can be

interpreted as a limiting case when the anisotropy between chemical reaction and solvent

fluctuation is sufficiently large [22]. There have been arguments over the applicability scope

of one- or two-dimensional models in various solution reactions. For example, the GHmodel

combined with the mode coupling theory (MCT) partly reproduced the viscosity dependence

of the isomerization rate in a high friction region [23], while the fractional viscosity

dependence of the rate failed to be reproduced without the two-dimensionality of ballistic

solute reaction and diffusive solvent fluctuation [24–26].

Qualitatively, features of the FreeEnergy Surface (FES) play a decisive role in the reaction

kinetics. Many computational approaches to evaluating the Gibbs (free) energy have been

developed, including thermodynamic integration (TI), free energy perturbation (FEP),

Benett’s acceptance ratio (BAR) among others [27]. These approaches can realize the FES

prediction at chemical accuracy (within a few kJ�mol-1) but suffer from an explosive com-

putational burden because they have to consider many intermediate states between the

reaction starting and end points. To circumvent the huge computational cost in the free energy

estimation, a series of enhanced sampling techniques have been developed to mitigate the

computational burden [28, 29]. Metadynamics, which herein we employ, is one of the rep-

resentative methods among the enhanced FES sampling techniques, which can aggressively

accelerate the occurrence of rare events by accumulating Gaussian functions (biased

potential) on deep basins to surmount the deep FES barrier along Collective Variables (CVs)

navigating the reaction [30, 31]. Its original form evolved into several more sophisticated

variants: the well-tempered [32], parallel-tempering [33], and bias-exchange [34]. The per-

formance and accuracy of metadynamics have been examined in detail [35, 36].

In the present study, the Z/E isomerization kinetics of 4-dimethylamine-40-nitroa-
zobenzene (DNAB) and three benzylideneailines (N-[4-dimethylamino-benzylidene]-40-
nitroaniline (DBNA), N-[4-dimethylamino-benzylidene]-40-ethoxyaniline (DBEA), N-[4-

(dimethylamino)benzylidene]-40-bromoamine] (DBBA)), as shown in Fig. 2, were com-

putationally studied by using molecular dynamics (MD) simulations and comparison with

the results obtained by the SM and BW models, essentially within the two-dimensional

framework.

2 Experimental Insights

In our experimental studies, the Z/E isomerization rate constants of azobenzenes have been

measured in non-viscous solvents [37, 38] and in the viscous solvents glycerol triacetate

(GTA) and 2-methyl-2,4-pentanediol (MPD) [11, 12]. The corresponding rate constants of
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Fig. 2 Nitroazobenzene (DNAB) and benzylideneanilines (DBNA, DBEA, DBBA) examined in this study
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benzylideneanilies were also reported [5, 39–41]. All of the isomerization rate constants of

azobenzenes and benzylideneanilines range within micro- to miliseconds and their

behavior is rigorously explained within the TST framework. As high pressure is imposed

on the system in viscous solvents, the isothermal rate constant plot shows Kramers turn-

over. The Z/E isomerization mechanism has been discussed based on switching charac-

teristics that depend on the solvent, rotation or inversion, as shown in Fig. 3. The sign of

the activation volumes calculated from the pressure dependence of the rate constants is

used to judge the mechanism, positive (rotation) and negative (inversion). Excluding

DNAB, all of the compounds undergo the inversion mechanism, where the twist angle (/)
around the central (N=N) or (C=N) double bond remains almost unchanged and then the

bond angle (h) gradually changes as was observed for (Z)-azobenzene [37]. Even for

DNAB, the isomerization proceeds with the inversion mechanism in non-polar solvents but

the mechanism is altered in polar solvents into the rotation mechanism where the heavily

intramolecular-polarized TS structure is stabilized by the polar environment and the twist

angle (/) gradually changes during the isomerization (electronic contraction) [38, 42]. The

inversion mechanism of the C=N double bond for the model compound benzenamines was

quantum chemically studied in detail [43], which supports the inversion pathway.

3 Computational Procedures

The two independent schemes (the equilibrium and the non-equilibrium schemes explained

in the following Sect. 4.1) were adopted to computationally estimate Ccoupled, the coupling

magnitude of the solute and solvent coordinates, defined also in the following Sect. 4.1.

First, in the equilibrium scheme, MD simulations were carried out using Amber12 [44].

The TIP3P force field was used for water and the generalized AMBER force field (GAFF)

[45] for other molecules, respectively. GAFF for the molecules were constructed using the

Antechamber utility [46] and the Restrained Electrostatic Potential (RESP) charges were

assigned to the molecules computed at the B3LYP/6-31G(d) level using Gaussian 09 [47].
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Fig. 3 Z/E isomerization mechanism: rotation, inversion (perpendicular), and inversion (planar)
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Metadynamics FES calculations were carried out with a well-tempered scheme using the

Plumed 2.2 program [48]. Finally, the solute–solvent coupling magnitudes Ccoupled for the

respective solution systems were evaluated by the FES gap between the solute and the

solution systems at the reactant and at the TS, respectively.

Second, all of the non-equilibrium scheme calculations were done using an in-house

shell script. In the scheme, the whole calculations were further decomposed into two

procedures for the homogeneous and the heterogeneous systems, respectively. In the

heterogeneous systems, as explained in Fig. 4, the solvent cavities were created by

extraction of the solute molecule from the trajectory snapshot of NVT MD simulations.

The docking of the solvent cavities with the corresponding solute molecule was carried out

using the Megadock 4.0 GPU version [49]. The docked droplets were immersed in a

solvation box and equilibrated by NVT MD simulations. The solvation Gibbs energies

were evaluated by the Energy Representation (ER) method [50] implemented in ERMOD

0.3.2 software [51]. The parameter Ccoupled for the respective solution systems were

constructed from the solute Gibbs energies using QM harmonic vibrational frequency

calculations and the solvation above Gibbs energies.

Alternatively, the umbrella sampling simulations with 100 ns NVT-MD duration were

carried out to evaluate the FES for DNAB in comparison with the metadynamics FES, as

shown in Table 1.

The comprehensive details of the computations are described in the Supporting

Information.

Fig. 4 Flowchart of non-
equilibrium solvation energy
calculations: (1) Dock
geometrically fixed solute
molecule into solvent cavity
(using MEGADOCK); (2)
immerse the geometrically fixed
solvation droplet into the solvent
box and equilibrate the whole
system (using AMBER); (3)
calculate the non-equilibrium
solvation energy and the Gibbs
energy (using ERMOD)
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4 Results and Discussion

4.1 Two Schemes to Evaluate the Solute–Solvent Coupling Magnitude: The
Equilibrium and Non-equilibrium Schemes

The two-dimensional FES are described by two parameters (x, y), which represent solvent

and solute coordinates, respectively, in line with the pilot solute algorithm reported by

Dhaliwal et al. [52]. (x1, y1) and (x2, y2) denote the equilibrated system at the reactant (Z-

form) and at the TS, respectively.

The Gibbs energy of whole equilibrated system at (x1, y1) and (x2, y2) can be decom-

posed into contributions from solute, solvent and solute–solvent interactions (solvation), as

expressed in Eqs. 1 and 2, respectively:

Uallðx1; y1Þ ¼ Usoluteðy1Þ þ Usolventðx1Þ þ Usolute�solventðx1; y1Þ ð1Þ

Uallðx2; y2Þ ¼ Usoluteðy2Þ þ Usolventðx2Þ þ Usolute�solventðx2; y2Þ ð2Þ

Daliwal et al. successfully constructed the two dimensional potential energy surfaces along

the solvation and the solute coordinates for DBBA by means of the solute exchange

strategy [52]. They subsequently computed the corresponding two-dimensional FESs using

the simplified TI scheme where the solvent molecules were approximately expressed as

monoatomic particles.

The present study treats a whole system consistently in a realistic way, where the

solvent molecules are explicitly dealt with as real molecules, instead of using the

monoatomic approximation. Ccoupled, the coupling magnitude of solute and solvent coor-

dinates, is defined by the ratio of the Gibbs energy variation from at (x2, y1) to at (x2, y2)

over the isomerization activation Gibbs energy, as expressed by Eq. 3, and schematically

explained in Fig. 5. The numerator in Eq. 1 corresponds to the Gibbs energy variation

along the solvent fluctuation coordinate between (x1, y1) and (x2, y1), before crossing the

Gibbs energy barrier from the point (x2, y1) to the TS (x2, y2):

Table 1 Computed solute–solvent coupling magnitude Ccoupled of DNAB by means of the equilibrium
scheme

Water EtOH MPD GTA DCMP

Ccoupled (this work) 0.48a 0.05a 0.25a 0.39a 0.20a

0.54b 0.20b 0.20b 0.30b 0.23b

BW-C2 (this work) – – 0.42c 0.18c –

Sumi-c – – 0.76d 0.27d –

aWell-tempered metadyamics
bUmbrella sampling
cEvaluated by using the BW model, Ref. [19]
dReference [5]
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Ccoupled �
Uallðx2; y1Þ � Uallðx1; y1Þ
Uallðx2; y2Þ � Uallðx1; y1Þ

ð3Þ

Ccoupled can be qualitatively correlated with the parameter C2 obtained by the BW model

[19] and the parameter c by the SM model [53], respectively.

BW-C2 is defined by Eq. 4, where the numerator e denotes the effective Gibbs energy

variation, purely derived from solvent fluctuations, and is evaluated by numerically solving

the reaction–diffusion equation with the sink term at the anisotropic viscosity limit (the

BW-equation) in an iteratively optimized way [19]. Within the BW model, the solvent

fluctuation is a rate-determining step and drives the solute into the hindered (non-equi-

librium solvated) environment along the x-axis (solvent axis) to surmount the Gibbs energy

barrier. The solvation-dependent micro rate constant k(x) (x is a solvation coordinate)

contributes to the total reaction rate constant in proportion to a Boltzmann distribution in

the x-coordinate.

BW-C2 �
e

Uallðx2; y2Þ � Uallðx1; y1Þ
ð4Þ

In the present study, the terms in Eq. 3 are approximately evaluated by the two schemes as

follows.

solvent
coupled

UC
U

Δ
Δ

P 

R 

TS

solventUΔ
UΔ

≅

Fig. 5 Schematic explanation of the solute–solvent coupling magnitude Ccoupled. The denominator DU is
the overall Gibbs energy gap between at the reactant and product at the TS, which corresponds to the
activation Gibbs energy of TST in a solution reaction. The numerator DUsolvent is the Gibbs energy gap
between at the reactant and product in the equilibrated solvation state and at the reactant in the pre-organized
solution state into TS. That is, DUsolvent corresponds to the pure solvation Gibbs energy variation between
the reactant and product at the TS
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4.1.1 Equilibrium Scheme: FES Calculations Using Metadynamics

This approach approximates the solute–solvent interaction term Usolute–solvent (x2, y1) with

Usolute–solvent (x2, y2):

Ccoupled ’ 1� Usoluteðy2Þ � Usoluteðy1Þ
Uallðx2; y2Þ � Uallðx1; y1Þ

ð5Þ

This ‘diagonal’ approximation allows the standard Gibbs energy sampling techniques to be

directly applied to evaluate all the terms in Eq. 5. Uall (x1, y1) and Uall (x2, y2) in the

denominator were evaluated by using metadynamics at an equilibrated state, (x1, y1) and

(x2, y2), respectively. The solute contributions Usolute(y1) and Usolute(y2) in the numerator

are also obtained by solute-only metadynamics using the NVT ensemble where the box

size is large enough (in a 50 9 50 9 50 Å cubic box) to diminish the solute–solute

interactions.

4.1.2 Non-equilibrium Scheme: Solvation Gibbs Energy Calculation for a Frozen
Solvation Droplet

This approach introduces an approximation to the solvent term by equating Usolvent(x1)

with Usolvent(x2):

Ccoupled ’
Usolute�solventðx2; y1Þ � Usolute�solventðx1; y1Þ

fUsoluteðx2; y2Þ þ Usolute�solventðx2; y2Þg � fUsoluteðx1; y1Þ þ Usolute�solventðx1; y1Þg
ð6Þ

In Eq. 6, the solvation Gibbs energies Usolute–solvent (x2, y1) at (x2, y1) and Usolute–solvent (x2,

y2) at (x2, y2) in the numerator are calculated using the ER method, respectively. That is,

the heterogeneous Usolute–solvent (x2, y1) and the homogeneous Usolute–solvent (x2, y2) are

computed with the solute geometry at y1 (y2) fixed in the solvent coordinate at x2, which are

approximately expressed by the finite size of the solvation droplet immersed in the solvent

box, respectively.

Finally, the solute Gibbs energies Usolute (y1) and Usolute (y2) in the denominator are

estimated independently by the QM electronic energies combined with harmonic vibra-

tional calculations.

4.2 Equilibrium Approach

The computed Ccoupled for DNAB and DBNA, DBEA, DBBA are shown in Tables 1 and 2,

respectively. In the case of the Z/E isomerization process of azobenzene and benzylide-

neanilines, the coupling between solute and solvent is expected to be weak because drastic

Table 2 Computed solute–solvent coupling magnitude Ccoupled of DBNA, DBEA, DBBA by means of the
equilibrium scheme

Water EtOH MPD GTA DCMP

DBNA 0.46 0.00 0.01 0.24 0.01

DBEA 0.39 - 0.02 0.10 0.29 0.05

DBBA 0.22 - 0.03 0.11 0.13 0.08
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change in the solute coordinate, i.e., bond creation/fission, doesn’t occur with the

isomerization.

Ccoupled of DNAB exhibits good coincidence between those obtained by umbrella

sampling and metadynamics. The agreement indicates the excellent performance of

metadynamics, which requires far less computational burden than umbrella sampling. The

magnitude of Ccoupled in TIP3P is DNAB[DBEA[DBBA in descending order, which

indicates weaker interaction between water and the replaced group in the aniline ring

(NO2[COOEt[Br). Ccoupled and the coupling parameters of the two-dimensional

models (BW-C2, Sumi-c) show opposite relative magnitudes for the two solvents {0.25

(0.42, 0.76) in MPD and 0.39 (0.18, 0.27)} in GTA, respectively. The discrepancies

between Ccoupled and (BW-C2, Sumi-c) in MPD and in GTA were also found for DBNA,

DBEA, DBBA.

The qualitative disagreements in Table 2 can be traced back to the two causes. The

primary one lies in the inherent error of the solvation energy calculation approximated by

Eq. 5, which lacks consideration of the ‘non-equilibrium solvation effect’ between solute

and surrounding solvent interactions. The estimations using Eq. 5 correspond to the

equilibrated solvation Gibbs energy, not the non-equilibrated one which correctly includes

the gap between the activation barrier at (x2, y2) and (x2, y1). That is, the pre-organized

solvation structure with the solute coordinate fixed at the reactant (x2, y1) has to be

considered in order to compute the non-equilibrium solvation energy at (x2, y1). The second

cause lies in the isomerization mechanism falsely predicted by metadynamics. The pre-

dicted isomerization undergoes rotation around the N = N bond as shown in Fig. 3, not the

inversion which is supported experimentally and computationally at the ab initio QM level.

This failure is derived from the GAFF force field parametrization. Highly accurate

quantum chemical calculations are required to correctly locate the Z/E reaction path, as

shown in the next Sect. 4.3.

4.3 Non-equilibrium Approach

Table 3 shows the components of the potential energy and Gibbs energy of DNAB in

TIP3P water. The coupling magnitude Ccoupled of DNAB and DBNA, DBEA, DBBA for

the respective solvents are shown in Table 4.

In contrast to the equilibrium approach, the DFT-optimized structures at the TS were

correctly located as an inversion intermediate with the bond angle (h) of nearly 180�. The
non-equilibrium solvation energy can be therefore correctly estimated by the frozen sol-

vation model that adequately treats the asynchronous solvation states.

In Table 3, the non-equilibrium effect between the frozen solvation droplet and the

outer region is clearly shown in the case of reactant/TS (the solute with the reactant

geometry docked with the TS-equilibrated cavity which is immersed in the outer solvent

region). The corresponding positive solvation Gibbs energy (12.26 kJ�mol-1) means that

the system is destabilized and reflects the mismatch between the inner (droplet) and outer

region.

In Table 4, the relative magnitudes of Ccoupled in MPD and in GTA were corrected for

all of the molecules, in contrast to the metadynamics results mentioned in the previous

section. The computed Ccoupled were in qualitative agreement with the BW-C2 and Sumi-c
for the all solutes in the respective solvents but absolute agreements were not attained. The

present ad-hoc approach, where the electronic energy is computed by DFT and the sol-

vation energy is computed by the classical force field, is not expected to give quantitative

agreement between the present results and BW-C2 and Sumi-c.
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The limitation of this approach comes from the inherent error in the estimation of the

non-diagonal Usolute–solvent (x2, y1), where the solvent state was approximated by a finite

solvation droplet, not by an infinite solvation state at (x2, y1). This error, however, can be

expected to smoothly diminish as the solvation droplet size becomes sufficiently large. In

the present scheme, the solvation droplet is as large as 30 Å in diameter and the error can

be safely ignored.

Conversely, the limitations will lie also in the BW and the SM models where an

idealized simple harmonic FES, not a quantitatively accurate FES, is assumed for the

numerical evaluations of BW-C2 and Sumi-c, respectively. Therefore, the pursuit of

absolute agreement of the coupling parameters does not seem meaningful between the

present study and the two-dimensional models.

5 Conclusions

Our past experimental studies revealed that the Z/E isomerization rate constants of

nitroazobenzene and benzylideneanilines show the Kramers turnover in viscous solvents

under high pressure, which indicates that the breakdown of the solute–solvent chemical

Table 3 Potential energy (E) and Gibbs energy (G) components of reactant and at the transition state of
DNAB in TIP3P water

Solute/
Solvent

Esolute

(kJ�mol-1)
Esolvation (kJ�mol-1) Gsolute

(kJ�mol-1)
Gsolvation

(kJ�mol-1)
Gsolute ? Gsolvation

(kJ�mol-1)
Inner
sphered

Outer
spheree

Reactant/
reactanta

- 2389732.6 - 142.9 - 21.8 - 2389860.2 - 6.65 - 2389866.8

Reactant/
TSb

- 2389732.6 - 118.0 4.69 - 2389860.2 12.26 - 2389847.9

TS/TSc - 2389649.3 - 195.6 - 1.67 - 2389777.8 - 6.95 - 2389784.7

aA homogeneous system. DNAB at the reactant geometry and the surrounding solvents adapted to the
reactant
bA heterogeneous system. DNAB in reactant geometry and the surrounding solvents adapted to the TS
cA homogeneous system. DNAB at the TS geometry and the surrounding solvents adapted to the TS
dPotential energy contribution from the interaction between DNAB and inner-sphere solvents
ePotential energy contribution from the interaction between DNAB and outer-sphere solvents

Table 4 Computed solute–solvent coupling magnitude Ccoupled of DBNA, DBEA, DBBA by means of the
non-equilibrium scheme

Water EtOH MPD GTA DCMP

DNAB 0.23 0.34 0.55 0.55 0.37

DBNA 0.55 0.55 0.89 0.62 0.18

DBEA 0.76 0.55 0.76 0.66 0.42

DBBA 0.69 0.45 0.78 0.69 0.39

136 J Solution Chem (2018) 47:127–139

123



equilibrium arises in the reactions. In the present study aimed to elucidate the non-equi-

librium solvation effect, the solute–solvent coupling magnitude was computationally

evaluated. The coupling key parameters (Ccoupled), the ratio of solvation Gibbs energy

contribution over the corresponding activation Gibbs energy, were estimated by using the

two MD-based schemes: (1) the equilibrium scheme (2) the non-equilibrium scheme.

In scheme (1), efficient as well as quantitative metadynamics FES calculations were

performed along the two CVs (the dihedral angle between the two aryl rings). The sol-

vation Gibbs energies were evaluated as pure solvation contributions by subtraction of the

solute Gibbs energy from the total Gibbs energy. The Gibbs energy contributions from the

solute and the solvent coordinate were evaluated in vacuo and in solution, respectively. In

scheme (2), the pure solvation Gibbs energies, decoupled contributions to the total Gibbs

energies, were calculated independently using the frozen solvation droplet models

immersed in an outer solvent box by means of the Energy Representation solvation theory.

The computed Ccoupled by means of the two schemes were compared with the corre-

sponding parameters BW-C2 and Sumi-c obtained by the BW and the SM models,

respectively, which are the solute–solvent two-dimensional models based on the Fokker–

Planck equation with a sink term using the hypothetical harmonic FES. The Ccoupled

obtained by the scheme (2), using a frozen solvation droplet, showed qualitative agree-

ments with BW-C2 and Sumi-c, while those by the scheme (1) failed to reach qualitative

agreement. This is because the scheme (2) explicitly considers the ‘pre-organized’ sol-

vation droplet that consists of a solute at the reactant geometry immersed in the pre-

organized solvent cavity fitted with the solute at the transition state geometry, while the

scheme (1) did not consider such a type of non-equilibrium solvation effect.

Final remarks on future prospects. A straightforward extension of the MD-based

approach presented here in a fully QM way is blocked by the explosion of computational

burden. The continuing efforts to overcome this problem are in progress and will be

reported in future.
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Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Wolf, R.M., Liu, J., Wu, X., Brozell, S.R.,
Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D.R., Mathews,
D.H., Seetin, M.G., Salomon-Ferrer, R., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A.,
Kollman, P.A.: AMBER 12. University of California, San Francisco (2012)

45. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general
AMBER force field. J. Comp. Chem. 25, 1157–1174 (2004)

46. Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automatic atom type and bond type perception in
molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

47. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G.,
Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P.,
Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R.,
Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr.,
J.A., Peralta, J.E., Ogliaro, F., Bearpark, J., Heyd, J., Brothers, E., Kudin, K.N., Staroverov, V.N.,
Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J.,
Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jar-
amillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski,
J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Ortiz, J.V., Cioslowski,
J., Fox, D.J.: Gaussian 09 Revision B.1. Gaussian Inc., Wallingford CT (2009)

48. Tribello, G.A., Bonomi, M., Branduardi, D., Camilloni, C., Bussi, G.: PLUMED2: new feathers for an
old bird. Comp. Phys. Comm. 185, 604–613 (2014)

49. Ohue, M., Shimoda, T., Suzuki, S., Matsuzaki, Y., Ishida, T., Akiyama, Y.: MEGADOCK 4.0: an ultra-
high-performance protein–protein docking software for heterogeneous supercomputers. Bioinformatics
30, 3281–3283 (2014)

50. Matubayasi, N., Nakahara, M.: Theory of solutions in the energetic representation. I. Formulation.
J. Chem. Phys. 113, 6070–6081 (2000)

51. ERMOD. https://sourceforge.net/projects/ermod/
52. Dhaliwal, M., Basilevsky, M.V., Weinberg, N.: Dynamics effects of nonequilibrium solvation: potential

and free energy surfaces for Z/E isomerization in solvent–solute coordinates. J. Chem. Phys. 126,
234505 (2007)

53. Sumi, H.: Theory on reaction rates in nonthermalized steady states during conformational fluctuations in
viscous solvents. J. Phys. Chem. 95, 3334–3350 (1991)

J Solution Chem (2018) 47:127–139 139

123

https://sourceforge.net/projects/ermod/

	Computational Analysis of Solute--Solvent Coupling Magnitude in the Z/E Isomerization Reaction of Nitroazobenzene and Benzylideneanilines
	Abstract
	Introduction
	Experimental Insights
	Computational Procedures
	Results and Discussion
	Two Schemes to Evaluate the Solute--Solvent Coupling Magnitude: The Equilibrium and Non-equilibrium Schemes
	Equilibrium Scheme: FES Calculations Using Metadynamics
	Non-equilibrium Scheme: Solvation Gibbs Energy Calculation for a Frozen Solvation Droplet

	Equilibrium Approach
	Non-equilibrium Approach

	Conclusions
	Acknowledgements
	References




