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Abstract Chemical thermodynamics is of central importance in chemistry, physics, the

biosciences and engineering. It is a highly formalized scientific discipline of enormous

generality, providing a mathematical framework of equations (and a few inequalities),

which yields exact relations between macroscopically observable thermodynamic equi-

librium properties of matter and restricts the course of any natural process. While these

aspects alone are already of the greatest value for practical applications, in conjunction

with judicially selected molecular-based models of material behavior, that is to say by

using concepts from statistical mechanics, experimentally determined thermodynamic

quantities contribute decisively towards a better understanding of molecular interactions

and hence of real macroscopic systems. A plenary lecture affords the lecturer an oppor-

tunity to survey a few reasonably large sub-areas of the fields he works/worked in and to

reflect on them from the perspective of many years of research. The general subject I

selected for this review, i.e. chemical thermodynamics of liquid nonelectrolytes (pure or

mixed), is vast. Over the last decades, the field’s impressive growth has been stimulated by

the continuously increasing need for thermophysical property data and phase equilibrium

data in the applied sciences, and it has greatly profited by advances in experimental

techniques, by advances in the theory of liquids in general, and by advances in computer

simulations of reasonably realistic model systems in particular. Specifically, I shall focus

on just three topics of increasing complexity: (1) heat capacities and related quantities of

fairly simple molecular liquids, predominantly at or near orthobaric conditions; (2)

chemical thermodynamics of binary liquid mixtures containing one strongly dipolar

aprotic component; (3) caloric properties of dilute solutions of nonelectrolytes, with

emphasis on properties of aqueous solutions at infinite dilution (which are of importance in

biophysical chemistry).
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Every novel is a debtor to Homer. Every carpenter who shaves with a fore-plane

borrows the genius of a forgotten inventor.

Ralph Waldo Emerson in: Representative Men. Seven Lectures: I. Uses of Great

Men, pp. 7–38, The Riverside Press, Cambridge, Mass., U.S.A. (1893)

1 Introduction

Taking advantage of being a plenary lecturer at the 20th Ulm-Freiberger Calorimetry

Conference in Freiberg, Saxony, the German analogue to the Calorimetry Conference

Series in the USA, I will present some areas of chemical thermodynamics of liquid non-

electrolyte systems (either pure or mixed) which are representative of my long-time

research interests in liquid state physical chemistry. In fact, ‘‘back to the roots!’’ and

‘‘forwards to new frontiers!’’ will be the leading mottos. While the title of this lecture is

intentionally quite general, the focus will be on just three topics:

• Heat capacities and related properties of fairly simple molecular liquids, predominantly

at, or near, saturation conditions [1–9].

• Caloric properties of binary liquid mixtures containing one strongly polar aprotic

component [10–17].

• Caloric properties of dilute solutions of nonelectrolytes, with emphasis on high-dilution

properties of aqueous solutions [18–34].

All three topics are more complex and less understood than might be supposed. In order

to keep the review to a reasonable size, the coverage throughout is necessarily brief. For

the omission of many interesting papers I would like to offer my apologies in advance: my

choices for references are illustrative and not comprehensive.

Thermodynamics rests on an experiment-based axiomatic fundament. Experiments,

together with theory and computer simulation, are the pillars of science, and Fig. 1 (the

‘‘knowledge triangle’’ [35]) indicates what may be learned from a comparison of respective

results under idealized conditions. It may be used to illustrate the process of inductive

reasoning in science, also known informally as bottom-up reasoning, which amplifies and

generalizes our experimental observations, eventually leading to theories and new

knowledge. In contradistinction, deduction, informally known as top-down reasoning,

orders and explicates already existing knowledge, thereby leading to predictions which

may be corroborated by experiment, or falsified (see Popper [36]). As pointed out by

Dyson [37], ‘‘Science is not a collection of truths. It is a continuing exploration of mys-

teries…an unending argument between a great multitude of voices.’’ The most popular

heuristic principle to guide our hypothesis testing in these arguments is known as Occam’s

Razor, named after the Franciscan friar William of Ockham (England, ca. 1285–1349).

Also called the principle of parsimony or the principle of the economy of thought, it states

that the number of assumptions to be incorporated into an adequate model should be kept

minimal. While this is the preferred approach, the model with the fewest assumptions may
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turn out to be wrong. More elaborate versions of Occam’s razor have been introduced by

modern scientists, and for in-depth philosophical discussions see, for instance, Mach [38],

Popper [36], Swinburne [39], Katz [40], and Sober [41].

In the three topics I shall present in this review, the formal framework of chemical

thermodynamics has been augmented by simple ideas from molecular theory, effectively

anchoring them in the field of molecular thermodynamics. This term was coined by

Prausnitz [42, 43] more than four decades ago. It is a field of great academic fascination, an

indispensable part of physical chemistry as well as of chemical engineering. The

impressive growth of molecular thermodynamics has been stimulated by the continuously

increasing need for thermodynamic property data and phase equilibrium data [44–62] in

the applied sciences, and has greatly profited by unprecedented advances in experimental

techniques [63–71], by advances in the theory of liquids in general [72–91], and by

advances in computer simulations of reasonably realistic model systems [92–102].

2 Heat Capacities and Related Properties of Pure Liquids

Heat capacities belong to the most important thermodynamic/thermophysical properties,

this fact has been amply documented [6, 7, 9, 71, 103, 104]. For PVT systems, where P

denotes the pressure, V the molar volume, and T the thermodynamic temperature, there are

three liquid-state heat capacities in common use (in the following, for the sake of brevity

and whenever unambiguously possible, the descriptive superscript L for liquid, the

superscript V for vapor, and the superscript asterisk (*) indicating a pure-substance

property will be omitted). The molar heat capacity at constant volume CV, also known as

the molar isochoric heat capacity, is defined by

CV � ðoU=oTÞV ¼ TðoS=oTÞV ¼ �T o2F
�
oT2

� �
V
; ð1Þ

the molar heat capacity at constant pressure CP, also known as the molar isobaric heat

capacity, is defined by

CP � ðoH=oTÞP ¼ TðoS=oTÞP ¼ �T o2G
�
oT2

� �
P
; ð2Þ

Fig. 1 The three pillars of
science: experiment, theory and
computer simulation. The
double-headed arrows indicate
possible, fundamentally
important comparisons that will
contribute to a deeper
understanding of the role of
approximations concerning
interaction energies and
theoretical models [6, 27]
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and the molar heat capacity at saturation Cr of a liquid maintained at all temperatures in

equilibrium with an infinitesimally small amount of vapor at the corresponding vapor

pressure Pr Tð Þ is defined by [76]

Cr � T oS=oTð Þr: ð3Þ

This heat capacity is more closely related to conventional adiabatic calorimetry, where

measurements are performed on samples consisting of saturated liquid in equilibrium with

a small amount of its vapor enclosed in a constant-volume vessel [76, 103, 105]. Here, all

the symbols have their usual significance, i.e. U is the molar internal energy, H is the molar

enthalpy, S is the molar entropy, F is the molar Helmholtz energy, and G is the molar

Gibbs energy. The corresponding extensive quantities are obtained through multiplication

with the total amount of substance n ¼ m=Mm, where m is the mass of the liquid, and Mm is

its molar mass [106, 107]. Note that henceforward derivatives along the saturation (or

orthobaric) curve will be indicated by the subscript r.

CP and Cr are related as follows [9, 76, 103, 104]:

Cr ¼ CP � TVaPcr; ð4Þ

¼ CP � TV aP � arð ÞcV ; ð5Þ

¼ CP � VaPDvapH
�
DvapV : ð6Þ

Here, V ¼ VL T ;Pr Tð Þð Þ is the molar volume of the liquid at saturation, cr � oP=oTð Þr
denotes the slope of the vapor–pressure curve, i.e. dPr=dT , and

aP � V�1 oV=oTð ÞP¼ �q�1 oq=oTð ÞP: ð7Þ

is the isobaric expansivity of the liquid, with q � Mm=V being the mass density. For the

expansivity ar of a liquid remaining in contact with its vapor equilibrium phase we obtain

ar � V�1 oV=oTð Þr¼ aP � bTcr; ð8Þ

¼ aP 1� cr=cVð Þ; ð9Þ

where

bT � �V�1 oV=oPð ÞT¼ q�1 oq=oPð ÞT ð10Þ

denotes the isothermal compressibility, and

cV � oP=oTð ÞV¼ aP=bT ð11Þ

is the isochoric thermal pressure coefficient. Below the normal boiling point the difference

aL
P � aL

r is usually very small.

cL
V � cr ¼ aL

r

�
bL

T ; ð12Þ

and at the critical point, which is characterized by the critical temperature Tc, the critical

pressure Pc, and the critical molar volume Vc

cL
V Tc;Pcð Þ ¼ cV

V Tc;Pcð Þ ¼ cr Tcð Þ ð13Þ

remain finite. Here, the superscript V indicates the vapor phase. Equation 6 is obtained

with the help of the exact Clapeyron equation
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cr ¼
DvapH

TDvapV
ð14Þ

where DvapH is the molar enthalpy of vaporization, and DvapV � VV T ;Pr Tð Þð Þ �
VL T ;Pr Tð Þð Þ is the volume change on vaporization, with VV T ;Pr Tð Þð Þ denoting the

molar volume of the vapor at saturation.

Neither CP nor Cr is equal to the change of the enthalpy of the liquid with temperature

along the saturation curve, which quantity is given by [9, 76, 103, 104]

oH

oT

� �

r

¼ CP þ V 1� TaPð Þcr; ð15Þ

¼ Cr þ Vcr: ð16Þ
Since U = H - PV,

oU

oT

� �

r

¼ Cr � PrVar; ð17Þ

¼ CV þ VaP TcV � Tcr � Prð Þ: ð18Þ
Thus, for the saturated liquid at temperatures well below the critical temperature, where

usually 0 \ TaL
P \ 1, the following sequence is obtained:

oHL

oT

� �

r

[ CL
P [ CL

r [
oUL

oT

� �

r

[ CL
V : ð19Þ

The differences between the first four quantities are generally much smaller than the dif-

ference between oUL=oTð Þr and CL
V . At low vapor pressures, the difference between CL

r and

CL
P is frequently negligible (see above), but at higher vapor pressures corrections in the spirit

of Eq. 4 have to be applied. The general form of the equations derived above may also be

applied to the saturated vapor [76, 103], where, however, the difference CV
r � CV

P is always

significant since aV
P VV is always large. In fact, for vapors of substances consisting of small

molecules, such as argon, carbon dioxide, ammonia and water (steam), aV
P VV may be large

enough to make CV
r even negative. Finally we note that the difference between the isobaric

heat capacities in the vapor phase and the liquid phase at equilibrium may be expressed as

CV
P � CL

P ¼
oDvapH

oT

� �

r

�cr DvapV � T
oDvapV

oT

� �

P

� �
; ð20Þ

¼ oDvapH

oT

� �

r

�DvapH

T
1�

oln DvapV
� �

olnT

� �

P

� �
: ð21Þ

Equation 21 is known as the Planck equation. At temperatures well below the critical

temperature, where cr is small, the frequently used approximate relation

CV
P � CL

P �
oDvapH

oT

� �

r

ð22Þ

is obtained.

The difference between the heat capacities CP and CV may be derived as follows. Since

dS ¼ oS

oT

� �

V

dT þ oS

oV

� �

T

dV ð23Þ
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and

oS=oVð ÞT¼ oP=oTð ÞV ð24Þ

one obtains

CP � CV ¼ TVaPcV ð25Þ

or, with Eq. 11,

CP � CV ¼ TVa2
P

�
bT ð26Þ

and

CP � CV ¼ TVbTc2
V ð27Þ

respectively. With the compression factor Z : PV/RT, alternatively the difference is given

by [9]

CP � CV ¼ R
Z þ T oZ=oTð ÞP
	 
2

Z � P oZ=oPð ÞT
ð28Þ

where R is the gas constant. Note that it is fully expressed in terms of PVT quantities.

The ratio of the heat capacities, j : CP/CV, is accessible via Eqs. 1 and 2:

j � CP

CV

¼ oS=oTð ÞP
oS=oTð ÞV

¼ oS=oVð ÞP oV=oTð ÞP
oS=oPð ÞV oP=oTð ÞV

: ð29Þ

With

oS=oVð ÞP
oS=oPð ÞV

¼ � oP

oV

� �

S

ð30Þ

and

oV=oTð ÞP
oP=oTð ÞV

¼ � oV

oP

� �

T

¼ VbT ; ð31Þ

we obtain

j � CP

CV

¼ � oP

oV

� �

S

VbT : ð32Þ

At this juncture it is convenient to introduce, by definition, another auxiliary quantity,

the isentropic compressibility bS, often loosely called the adiabatic compressibility:

bS � �V�1 oV=oPð ÞS¼ q�1 oq=oPð ÞS: ð33Þ

Substituting 1/(VbS) for -(qP/qV)S in Eq. 32 yields

j � CP=CV ¼ bT=bS: ð34Þ
At low frequencies and small amplitudes, to an excellent approximation (i.e. neglecting

dissipative processes, such as those associated with shear and bulk viscosity and thermal

conductivity) the speed of ultrasound m0 is related to bS by [108, 109]
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v2
0 ¼

oP

oq

� �

S

¼ 1

qbS

: ð35Þ

Using Eq. 34, the speed of ultrasound may also be expressed as

v2
0 ¼

j
qbT

: ð36Þ

Within the constraints indicated above [9], m0 may be treated as a thermodynamic

equilibrium property. However, at higher frequencies many liquids show sound speed

dispersion due to thermal molecular relaxation and structural relaxation [108–112], i.e. the

experimental sound speed is larger than the speed v0 appearing in Eqs. 35 and 36. Thus,

care must always be exercised in deciding whether the measured speed of ultrasound is

indeed the quantity to be subsequently used in a thermodynamic analysis. In passing we

note that bS of liquids has also been determined by purely mechanical methods, i.e. by

directly measuring the volume increase on sudden decompression [113–117], though this

method is considerably less common and less accurate than that based on ultrasonics,

Eq. 35.

Using Eq. 26 in conjunction with Eq. 36, the ratio of the heat capacities (or the ratio of

the compressibilities) may now be calculated from

j ¼ 1þ TMma2
Pv2

0

CP

: ð37Þ

This is one of the most important equations in thermophysics, since at low temperatures,

where cV of liquids is very large, the direct calorimetric determination of CV of liquids is

not easy and requires sophisticated instrumentation, as evidenced by the careful work of

Magee at NIST [118–123]. It becomes more practicable near the critical point where cV is

much smaller. Most of the isochoric heat capacity data for liquids reported in the literature

have been obtained indirectly through use of Eq. 37 from

CV ¼ CP=j; ð38Þ

that is to say, from experimentally determined isobaric heat capacities, isobaric expan-

sivities and ultrasonic speeds at sufficiently low frequencies. With modern equipment,

these three quantities may be measured accurately and speedily, thereby making the

indirect method for determining CV of liquids quite attractive.

In addition, Eq. 37 provides also a valuable alternative to the direct determination of bT

via PVT measurements, since

bT ¼ jbS: ð39Þ

Combining Eqs. 26 and 34, we obtain for the difference between the compressibilities

bT � bS ¼ TVa2
P

�
CP; ð40aÞ

or

bT � bS ¼ TVa2
P

�
jCV ; ð40bÞ

while

b�1
S � b�1

T ¼ TVc2
V

�
CV : ð41Þ
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Evidently, the most important use of liquid-state bS data obtained via speed-of-sound

measurements is the calculation of CV and/or bT using the appropriate equations given

above. The indirect approaches for determining the isochoric heat capacity and the iso-

thermal compressibility of liquids usually yield highly accurate results [3, 124, 125].

According to Eqs. 10, 34, 36 and 37, the isothermal pressure dependence of the density

may be expressed as

oq
oP

� �

T

¼ 1

v2
0

þ TMma2
P

CP

: ð42Þ

which gives upon integration at constant temperature [126–130]

qðT ;PÞ ¼ qðT ;PrefÞ þ
ZP

Pref

v�2
0 dPþ TMm

ZP

Pref

a2
PC�1

P dP ð43Þ

where Pref is a conveniently selected reference pressure, usually 0.1 MPa. Thus, by

measuring the thermodynamic speed of ultrasound v0(T, P) as a function of temperature

and pressure [131], and combining these results with data at ordinary pressure, that is

q T ;Prefð Þ and CP T ;Prefð Þ, Eq. 43 provides a versatile alternative route to high-pressure

PVT data and high-pressure heat capacity data. The first integral on the right-hand side

may be evaluated directly by fitting the isothermal ultrasonic speed data v0(T, P) with

suitably selected polynomials or Padé approximants, and for the second integral several

successive integration algorithms have been devised, taking into account

oaP=oPð ÞT ¼ � obT=oTð ÞP: ð44Þ

and

oCP=oPð ÞT ¼ �T o2V
�
oT2

� �
P
¼ �TV a2

P þ oaP=oTð ÞP
	 


: ð45Þ

Equation 45 follows from

ðoH=oPÞT ¼ V � TðoV=oTÞP ¼ V � TVaP ð46Þ

which in turn is obtained by differentiating the Gibbs–Helmholtz equation H = G - T(qG/

qT)P. The simplicity, rapidity and precision of this method makes it highly attractive for

the determination of the density, isobaric expansivity, isothermal compressibility, isochoric

thermal pressure coefficient, isobaric heat capacity and isochoric heat capacity of liquids at

high pressures [132–138]. The most interesting results of these wide-temperature range/

wide-pressure range investigations of hydrocarbons, say, of heptane and toluene [133], are

the proof of the existence of (shallow) minima of the isotherms CP = CP(P) at elevated

pressures, and of a substance-specific crossing ‘‘point’’ (or small crossing region?) of the

isotherms aP = aP(P). These two effects are closely related. For heptane, this crossing

‘‘point’’ is found at ca. 120 MPa, at which pressure (qaP/qT)P & 0. Thus, for any given

pressure lower than 120 MPa aP of heptane increases with temperature, while at any given

pressure higher than 120 MPa aP decreases with temperature. For liquid water, recent

high-precision measurements of the speed of sound over large temperature and pressure

ranges have been communicated by Lin and Trusler [139] and by Baltasar et al. [140].

Note that

oCV=oVð ÞT ¼ T o2P
�
oT2

� �
V
¼ T ocV=oTð ÞV ; ð47Þ
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which follows from

ðoU
�
oVÞT ¼ �Pþ TðoP=oTÞV ¼ �Pþ TcV ; ð48Þ

¼ �Pþ TaP=bT : ð49Þ

In turn, Eq. 48 is obtained by differentiating the Gibbs–Helmholtz equation U = F -

T(qF/qT)V. Using Eqs. 35 and 37 yields the alternative expression

oU=oVð ÞT ¼ TaP

CPv2
0q

CP þ TMma2
Pv2

0

� P: ð50Þ

(qU/qV)T is called the internal pressure and is frequently given the symbol P(T, P). It is

closely related to liquid structure and thus plays an important role in liquid-state physical

chemistry [141–146]. Assuming the intermolecular pair potential energy u(r) for a simple

fluid to be spherically symmetric, as is the case, for instance, with a Mie (n,m)-type

potential energy function (introduced in 1903 [147, 148]),

u rð Þ ¼ n

m� n

� � n

m

� �m= n�mð Þ
e

r
r

� �n

� r
r

� �mh i
; ð51Þ

and pairwise additive, the molar configurational internal energy Uc, which is equal to the

molar residual internal energy Ur ¼ U � Upg, is related to the pair distribution function

g r; T ; qnð Þ by [78, 87],

Uc

NAkBT
¼ 2pqn

kBT

Z1

0

u rð Þg r; T ; qnð Þr2dr; ð52Þ

Here, r is the distance between the molecules, n and m are positive constants associated

with repulsion and attraction, respectively (n [ m), e is an intermolecular energy parameter

characterizing the well-depth of the interaction energy function, i.e. u rminð Þ ¼ �e, r is an

intermolecular distance parameter characterized by u(r) = 0, qn ¼ NA=V is the number

density, NA is the Avogadro constant, kB = R/NA is the Boltzmann constant, and the

superscript pg indicates the perfect-gas state (ideal-gas state), i.e. the real limiting state as

P ? 0. Special cases of the Mie (n,m) function were introduced by Jones in 1924 and

connected with gas viscosities [149], the equations of state of real gases [150], X-ray

measurements on crystals [151], and quantum mechanics [152]. The most common form of

the Lennard-Jones (12,6) function is [152]

u rð Þ ¼ 4e
r
r

� �12

� r
r

� �6
� �

; ð53Þ

where r ¼ 2�1=6rmin:
By using a chorostat (constant volume piezometer), the internal pressure may be

determined directly, according to Eq. 48, as the difference between the thermal (or kinetic)

pressure TcV and the total external pressure P, or indirectly, via Eqs. 49 or 50, respectively.

Interestingly, isochoric thermal pressure coefficients cV of liquids have been measured far

less frequently [153–163] than the other mechanical coefficients aP and bT, though direct

determinations with a piezometer can be carried out with high accuracy. For normal liquids

below the boiling point, P � TcV.
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The solubility parameter d [42, 43, 55, 72, 75, 141, 164–173] is a versatile quantity

introduced by Hildebrand and by Scatchard. It is generally defined as the square-root of the

cohesive energy density of a liquid and thus reflects the intermolecular interactions. While

several definitions of the molar cohesive energy may be found in the literature, the most

appropriate is

UL
coh T ;Pð Þ � Upg Tð Þ � UL T ;Pð Þ: ð54Þ

Thus, the solubility parameter is given by

d T ;Pð Þ ¼ UL
coh T ;Pð Þ

VL T;Pð Þ

� �1=2

: ð55Þ

For P ¼ Pr, the molar cohesive energy is directly connected with the molar enthalpy of

vaporization [46]:

UL
coh T ;Prð Þ � Upg Tð Þ � UL T ;Prð Þ

¼ DvapH Tð Þ � RT þ PrVL T ;Prð Þ �
ZPr

0

VV T ;Pð Þ � T oVV T;Pð Þ
�
oT

� �
P

	 

dP:

ð56Þ
The PVT behavior of the vapor phase at moderate pressures, say, at less than 0.3 MPa, is

reasonably well approximated by a two-term virial equation in pressure,

ZV T ;Pð Þ ¼ 1þ B Tð Þ
RT

P; ð57Þ

which has practical advantages. Here, B(T) is the second virial coefficient [44]. Insertion of

this volume-explicit equation of state into Eq. 56 yields

UL
coh T ;Prð Þ ffi DvapH Tð Þ � RT þ PrVL T ;Prð Þ � Pr B Tð Þ � T

dB Tð Þ
dT

� �
: ð58Þ

At sufficiently low vapor pressures and with the approximation of ideal-gas behavior of the

vapor, Eq. 58 may be further simplified to

UL
coh T ;Prð Þ � DvapH Tð Þ � RT; ð59Þ

and correspondingly the solubility parameter at saturation condition is

d T ;Prð Þ � DvapH Tð Þ � RT

VL T;Prð Þ

� �1=2

: ð60Þ

The majority of the solubility parameters found in the literature is based on Eq. 60 and

refers to 298.15 K. If the cohesive energy of a liquid is needed for P [ Pr, one has to

integrate along the desired isotherm,

UL
coh T ;Pð Þ ¼ UL

coh T ;Prð Þ �
ZVL T ;Pð Þ

VL T ;Prð Þ

oUL

oV

� �

T

dV: ð61Þ
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Concomitantly, the pressure dependence of VL must be accounted for, for instance via the

modified Tait equation (MTE), a versatile liquid-phase equation of state which is usually

satisfactory for pressures up to about 100 MPa [26, 174, 175]:

VL T ;Pð Þ
�

VL T ;Prð Þ ¼ 1þ mMTE P� Prð ÞbL
T T;Prð Þ

	 
�1=m
: ð62Þ

Here, bL
T T ;Prð Þ is the isothermal compressibility of pure saturated liquid, and mMTE is a

pressure-independent parameter. For many liquid nonelectrolytes, experimental values

cluster around mMTE = 10, with only a weak temperature dependence. For recent work on

the pressure dependence of the solubility parameter see Verdier and Andersen [176], and

Rai et al. [177].

Based on ideas introduced by van Laar [178–180], for binary mixtures of essentially

nonpolar molecules Hildebrand and Scatchard showed that the symmetrically normalized

activity coefficients (Lewis–Randall convention, see below in Sect. 3) ci, i = 1,2, can be

expressed as

RT ln c1 ¼ VL�
1 U2

2 c11 þ c22 � 2c12ð Þ; ð63aÞ

and

RT ln c2 ¼ VL�
2 U2

1 c11 þ c22 � 2c12ð Þ; ð63bÞ

where VL�
1 is the molar volume of pure liquid component 1, VL�

2 is the molar volume of

pure liquid component 2, and the corresponding volume fractions Ui are defined by

Ui �
xiV

L�
i

x1VL�
1 þ x2VL�

2

; i ¼ 1; 2; ð64Þ

with xi being the mole fraction of component i. The cohesive energy densities of the pure

liquids are denoted by

cii �
UL�

coh;i

VL�
i

; i ¼ 1; 2: ð65Þ

where UL�
coh;i is the cohesive energy of pure liquid component i, and c12 reflects the

interaction between unlike molecules. Formally, this key quantity may be related to the

cohesive energy densities of the pure liquids by

c12 ¼ c11c22ð Þ1=2
1� k12ð Þ; ð66Þ

where k12 is a binary interaction parameter. As a first approximation, Scatchard and Hil-

debrand assume k12 = 0, whence with

d2
i � cii; ð67Þ

the activity coefficients may be estimated using pure-component properties only:

RT ln c1 ¼ VL�
1 U2

2 d1 � d2ð Þ2; ð68aÞ

and

RT ln c2 ¼ VL�
2 U2

1 d1 � d2ð Þ2; ð68bÞ

J Solution Chem (2014) 43:525–576 535

123



yielding

GE ¼ RT
X

i

xi ln ci ¼ x1VL�
1 þ x2VL�

2

� �
U1U2 d1 � d2ð Þ2 ð69Þ

for the excess molar Gibbs energy. Only positive deviations from Raoult’s law are pre-

dicted. The regular-solution equations Eqs. 68a and 68b may readily be generalized to

multicomponent mixtures. For many solutions containing nonpolar components the reg-

ular-solution equations provide reasonable estimates provided that the temperature range

of application is not large and that it is well below critical conditions.

For liquids, the graph P against T at constant volume is generally close to a straight line,

i.e. the curvature of the isochores is very small, whence the density dependence of the

isochoric heat capacity is very small (cf. Eq. 47), and its determination requires precision

experiments. Starting with the pioneering work of Bridgman [181, 182] and, in particular,

of Gibson and colleagues [183–187], we know that for organic solvents at ordinary tem-

peratures (qcV/qT)V, and hence (qCV/qV)T, is negative, which fact will be discussed below

in another context.

In classical, direct high-pressure PVT measurements on fluids, isothermal compression

is achieved by applying hydrostatic pressure and measuring the resulting volume changes.

The value of bT at saturation pressure, i.e. bT(T, Pr(T)), is then obtained through appro-

priate extrapolation of the (mean) experimental values over a fairly large pressure range,

which needs careful attention to detail [188, 189]. On the other hand, vibrating-tube flow

densimeters for the determination of q(T, P) are widely used because they combine high

precision and simple operation in the flow mode (involving fairly small samples). In

addition, they allow a problem-oriented selection of the incremental pressure steps, which

may be kept quite small. Based on the work of Kratky et al. [190] in the late 1960s and of

Picker et al. [191] in 1974, Albert and Wood [192] presented a versatile high-pressure,

high-temperature flow densimeter, and since then many new, improved designs have been

introduced [193–199].

Equation 45 suggests still another method for obtaining heat capacities of fluids at

elevated pressures. At constant T

CPðT ;PÞ ¼ CPðT;PrefÞ � T

ZP

Pref

V T;Pð Þ a2
P T;Pð Þ þ oaP T ;Pð Þ

oT

� �

P

� �
dP; ð70Þ

with

V T ;Pð Þ ¼ V Tref ;Pð Þ exp

ZT

Tref

aP T ;Pð ÞdT

2

64

3

75; constant Pð Þ: ð71Þ

Here, the isobaric expansivity is the main experimental property to be measured as a

function of T and P. The other experimental properties are the molar volume V Tref ;Pð Þ as a

function of pressure at a convenient low reference temperature Tref and the molar isobaric

heat capacity CPðT;PrefÞ as a function of temperature at a convenient low reference

pressure Pref. With a scanning transitiometer [200–203] it is possible to measure aP(T,

P) over wide ranges of temperature and pressure with an uncertainty of about 1–3 %, the

reference volume isotherm with an uncertainty of about 0.6 %, and the reference heat

capacity isobar with an uncertainty of about 0.3 %. Thus, the overall uncertainty of the
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heat capacities of liquids at high pressures obtained by scanning transitiometry is estimated

to be about 2 %. Again, perhaps the most interesting results are (i) the confirmation, for

some organic liquids, of the existence of (shallow) minima of the isotherms of the isobaric

heat capacity at elevated pressures, and (ii) the confirmation, for some organic liquids, of

the existence of a crossing ‘‘point’’ (a crossing region?) of the isotherms aP = aP(P) at

elevated pressures. As concerns the experimental results for the isobaric expansivity

obtained with this technique, we note that, say for liquid hexane [201], the isotherms

aP = aP(P) show a crossing ‘‘point’’ (a crossing region?) at about (65 ± 2) MPa, where

(qaP/qT)P & 0. However, the aP isotherms of liquid hexan-1-ol [202] indicates a possible

crossing region only at much higher pressure, i.e. around 280 MPa, whence the CP iso-

therms of this hydrogen-bonded liquid do not show any minima at the conditions inves-

tigated. Closely related work has been reported by Romanı́’s group [204–207] in Spain.

The resolution of the variation of CL
V of liquids along the orthobaric curve, i.e. along

states with VL T ;Pr Tð Þð Þ, into contributions due to the increase of temperature and due to

the increase of volume, respectively, is a highly interesting problem [1, 3, 7, 73, 104, 114–

116]. It is important to realize that because of the close packing of molecules in a liquid,

even a rather small change of the average volume available for their motion may have a

considerable impact on the molecular dynamics: volume effects may become more

important in influencing molecular motion in the liquid state than temperature changes.

Since

oCL
V

oT

� �

r

¼ oCL
V

oT

� �

V

þ oCL
V

oV

� �

T

VLaL
r ; ð72Þ

in the absence of calorimetrically measured values of oCL
V

�
oT

� �
V

, evaluation of this

quantity requires knowledge of the second term of the right-hand-side of Eq. 72. At

temperatures below the normal boiling point, the saturation expansivity aL
r is practically

equal to aL
P of the liquid (see Eqs. 8 or 9), and is frequently used instead. In principle,

oCL
V

�
oV

� �
T

is accessible via precise PVT measurements, see Eq. 47, but measurements of

(q2P/qT2)V are also not plentiful. As indicated above, for simple organic liquids at ordinary

temperatures, available data indicate that this quantity is small and negative, that is to say,

at constant temperature CL
V decreases with increasing volume. Alternatively, one may use

[1, 3, 7, 73, 104]

oCL
V

oV

� �

T

¼ T

bL
T

oaL
P

oT

� �

P

�2
aL

P

bL
T

obL
T

oT

� �

P

� aL
P

bL
T

 !2
obL

T

oP

� �

T

2

4

3

5: ð73Þ

The last term in parenthesis on the right-hand side can be evaluated by means of a

modified Tait equation [1, 3, 7, 26, 73, 104, 116, 174, 175, 208], see Eq. 62. Specifically,

obL
T

oP

� �

T

¼ �mMTE bL
T

� �2 ð74Þ

which relation holds remarkably well up to pressures of about 100 MPa (see above). For

example, for liquid tetrachloromethane [3] at 298.15 K and corresponding VL T ;Prð Þ, the

calculated value of oCL
V

�
oV

� �
T

amounts to -0.48 J�K-1�cm-3, for cyclohexane

-0.57 J�K-1�cm-3 is obtained, and for 1,2-dichloroethane [4] oCL
V

�
oV

� �
T

=

-0.60 J�K-1�cm-3. These results indicate a substantial contribution of oCL
V

�
oV

� �
T
VLaL

r
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to the change of CL
V along the orthobaric curve (as well as to the corresponding change of

the residual heat capacity, see below).

Equation 37 is a suitable starting point for a discussion of the temperature dependence

of jL � CL
P=CL

V ¼ bL
T

�
bL

S along the orthobaric curve [1, 3, 104]:

ojL

oT

� �

r

¼ jL � 1
� � 1

T
þ 2

aL
P

oaL
P

oT

� �

r

þ 2

vL
0

ovL
0

oT

� �

r

� 1

CL
P

oCL
P

oT

� �

r

� �
: ð75Þ

Usually, the second term in parenthesis on the right-hand-side of Eq. 75 is positive and the

third term is negative [209]; the fourth term may contribute positively or negatively. Thus

jL T ;Pr Tð Þð Þ of a liquid may increase or decrease with temperature.

From experimental heat capacities CL
V of liquids, relatively simple approximate models

may be used to extract information on the type of motion executed by molecules in the liquid

state compared to the perfect or ideal gas state (pg). In general, they are based on the

separability of contributions due to translation, rotation, vibration and so forth. Though none

of the models is completely satisfactory, they have provided eminently useful insights and

have thereby furthered theoretical advances. By following the pioneering work of Eucken

[210, 211], Bernal [212], Eyring [213], Staveley [114, 115], Moelwyn-Hughes [116], Kohler

[1, 214, 215], Bondi [216] and their collaborators, one may resolve the total molar heat

capacity at constant volume of polyatomic non-associated liquids as follows [3, 7, 104]:

CL
V ¼ CL

tr þ CL
rot þ CL

int þ CL
or: ð76Þ

The translational contribution CL
tr arises from the motion of the centers of gravity of the

molecules under the influence of all the other molecules in the system (movement within the

respective free volumes). It is of the order 3R/2 ? R, R (the gas constant) being roughly the

excess over the molar translational heat capacity associated with the perfect gas state. CL
rot

represents the contribution from the rotational movement of the molecules as a whole (over-

all molecular rotation). For nonlinear molecules, due to hindered rotation (often called

libration), its value may be appreciably higher than its perfect-gas phase value of 3R/2 (free

rotation). The contribution from internal degrees of freedom, CL
int, can be subdivided

advantageously into a part CL
vib; resulting from internal molecular vibrations which are not

appreciably influenced by density changes (say, by going from the liquid to the perfect gas

state), and another part, CL
conf , resulting from internal rotations, i.e. conformational equi-

libria, which depend on changes in the surroundings of the molecules and hence on density

[1, 4, 214–219]. Lastly, for polar substances there is a further contribution CL
or from the

change of the dipole–dipole orientational energy with temperature, which may become quite

important [1, 4, 215, 219]. Here, the focus will be on liquids composed of quasi-rigid and not

too anisotropic molecules, possessing no or only a small permanent dipole moment, of which

tetrachloromethane, benzene and toluene are representatives. Preferably, all these contri-

butions to CL
V are discussed in terms of residual quantities in (T,V)-space [9], as elaborated in

Refs. [3] and [7]. They provide the most direct measure of the contributions due to inter-

molecular interactions at any given state condition [76]. Note that when there is no risk of

ambiguity, again for convenience quantities referring to the liquid will appear without a

superscript L. The residual molar heat capacity Cr
V T;Vð Þ at constant volume of the liquid is

directly obtained from experimentally determined isochoric liquid state heat capacities and

subtracting the corresponding heat capacity for the substance in the perfect gas state:

Cr
V T ;Vð Þ � CL

V T ;Vð Þ � C
pg
V Tð Þ: ð77Þ
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For fairly simple molecules, C
pg
V Tð Þ may be calculated using the frequencies of their

normal modes of vibration [220–222], and extensive data compilations are available [45,

62, 223]. With the separability assumption

Cr
V T ;Vð Þ = Cr

tr T ;Vð Þ þ Cr
rot T;Vð Þ þ Cr

int T ;Vð Þ ð78Þ

is obtained. For the class of liquids indicated above (i.e. quasi-rigid nonpolar or weakly

polar non-associated molecules), to an excellent approximation

Cr
int T ;Vð Þ � CL

int T ;Vð Þ � C
pg
int Tð Þ � 0; ð79Þ

whence Eq. 78 may be recast into

Cr
V T ;Vð Þ ¼ Cr

tr T;Vð Þ þ Cr
rot T ;Vð Þ: ð80Þ

Here,

Cr
tr T ;Vð Þ ¼ CL

tr T ;Vð Þ � 3R=2; ð81Þ

and for nonlinear molecules

Cr
rot T;Vð Þ ¼ CL

rot T ;Vð Þ � 3R=2; ð82Þ

which quantity represents the excess over the (classical) perfect gas phase value due to

hindered rotation in the liquid of the molecules as a whole. Using corresponding states

arguments and focusing on orthobaric states, Cr
tr T ;Vrð Þ may be approximated by the

orthobaric Cr
V Arð Þ of liquid argon [3, 73, 224] (where, of course, Cr

int ¼ 0 as well as

Cr
rot ¼ 0) at the same reduced temperature Tr ¼ T=Tc, where Tc denotes the critical tem-

perature. Thus, semiquantitative estimates of the residual molar rotational heat capacity

may be conveniently obtained from

Cr
rot T ;Vrð Þ � Cr

V T ;Vrð Þ � Cr
V Arð Þ; ð83Þ

and subsequently discussed in terms of any suitable model for restricted molecular overall

rotation (hindered external rotation) in the liquid phase. An alternative scaling has been

suggested by Harrison and Moelwyn-Hughes [116], who use the experimental value of CL
V

for mercury as giving CL
tr for the polyatomic molecules at any ‘‘reduced’’ temperature H,

which is defined in terms of the temperature of interest, the melting temperature Tmp and

the normal boiling temperature Tbp:

H ¼ T � Tmp

� ��
Tbp � Tmp

� �
: ð84Þ

Focusing on the entire orthobaric liquid range, from the triple point (tr) temperature to the

critical temperature, one may use instead

h ¼ T � Ttrð Þ= Tc � Ttrð Þ: ð85Þ
Figure 2 shows the residual molar rotational heat capacity Cr

rot T ;Vrð Þ of the liquid quasi-

spherical molecules tetrachloromethane, tetrachlorosilane, and tin tetrachloride as a function

of temperature. Specifically, these three liquids were selected [3] to corroborate and quantify

Sackmann’s geometry-based cogwheel model [225], in which interlocking of the tetrahalide

molecules hinders free rotation. Whereas the results for CCl4 and SiCl4 are quite similar,

amounting to Cr
rot T ;Vrð Þ � 3R=4 at 298.15 K, Cr

rot T;Vrð Þ for liquid SnCl4 is distinctly

larger, i.e. about 5R/4: this is a clear indication of significantly more hindered external
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molecular rotation in tin tetrachloride. Though originally developed by Pitzer and Gwinn

[226] for molecules with restricted internal rotation, their model may be adopted to deal

qualitatively with restricted external rotation (subscript rr) [3]. The resulting contributions Crr

depend on the barrier height U0 hindering free rotation and on temperature. The available

experimental data [3] suggest that at 298.15 K all the tetrahalides are already on the high-

temperature decline, i.e. past the maximum of the Pitzer–Gwinn curve Crr versus T.

For SnCl4, the experimental residual molar rotational heat capacity (see Fig. 2) at

298.15 K for one degree of freedom amounts to Cr
rot

�
3R � 0:4. Approximating this value

with Cr
rr

�
R calculated via the Pitzer–Gwinn model indicates a barrier height of ca.

U0 = 5.5 kJ�mol-1. For the other two tetrahalides where molecular rotation is less hin-

dered, the experimental value (Fig. 2) at 298.15 K for one degree of freedom is

Cr
rot

�
3R � 0:25, which corresponds to a barrier height of ca. U0 = 4.0 kJ�mol-1 [3]. For

the volume dependence of U0 of, say, CCl4 at 298.15 K, oU0=oVð ÞT� �100 J � cm�3 is

obtained: increasing the molar volume by 1 cm3�mol-1 results in the decrease of the barrier

height responsible for hindered rotation by about 100 J�mol-1. In liquids, the nuclear spin

relaxation rate via quadrupolar interaction is related to the rotational correlation time. From

its temperature dependence in liquid CCl4, O’Reilly and Schacher [227] derived the

rotational activation energy of (5.4 ± 0.4) kJ�mol-1. Relaxation times of 119Sn in liquid

SnCl4 have been measured as a function of temperature by Sharp [228], yielding a dis-

tinctly higher activation energy of 7.8 kJ�mol-1, in satisfactory accord with our results.

Over the past four decades, liquids consisting of tetrahedral molecules in general, and

liquid tetrachloromethane in particular, have been extensively studied by X-ray and neu-

tron diffraction [229–240]. These studies indicate some common orientational order, as do

computer simulations [236, 238, 241–246] and theoretical approaches [247–249] based on

the reference interaction site model (RISM), though there are important differences in the

details. For instance, it is found that the CCl4 molecules form interlocking structures which

give rise to significant orientational correlations between molecules in the dense liquid

phase, extending up to the limit of the second solvation shell, i.e. up to about 14 Å

(Å = 10-10 m). According to Rey [244], of the configurations within the first solvation

shell (which at ambient temperature reaches up to ca. 8 Å and contains about 12 mole-

cules) approximately 5 molecules belong to the edge-to-edge (2:2) configuration,

Fig. 2 Residual molar rotational
heat capacity Cr

rot T ;Vrð Þ as a

function of temperature
t=	C ¼ T=K� 273:15 of the
liquid quasi-spherical molecules
tetrachloromethane (CCl4), tetra-
chlorosilane (SiCl4), tin tetrachlo-
ride (SnCl4), and cyclohexane
(c-C6H12, not discussed in this
review) for orthobaric conditions:
Vr ¼ V T ;Pr Tð Þð Þ [3]
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approximately 3 molecules belong to the edge-to-face (2:3) configuration, at least 2 to

corner-to-edge (1:2), and at most 1 to corner-to-face (1:3). Face-to face (3:3) and corner-

to-corner (1:1) configurations share the remaining molecule. It is important to emphasize

that this (or similar) pictures will be heavily influenced by the decrease of density when

going along the saturation curve towards elevated temperatures [233, 234].

Combining the detailed analysis of molecular dynamics simulation results and the

interpretation of neutron diffraction measurements using the reverse Monte Carlo method

[250], it appears that the corner-to-face (1:3) type near-neighbor configuration (Sack-

mann’s arrangement II [225], also known as the Apollo model [230]), which has been

favored for the interpretation of structure in liquid CCl4 for more than three decades, is

quite rare, the occurrence being around 5 % [245]. We note, however, that at very short

distances (\5.8 Å), where four molecules interlock directly with the central molecule

[247], the face-to-face (3:3) configuration (Sackmann’s arrangement I) becomes more

important. Evidently, the orientational order in the liquid phase of tetrahedral molecules of

type XCl4 is much more complex and long ranged than previously thought.

3 Caloric Properties of Binary Liquid Mixtures Containing One Strongly
Polar Aprotic Component

Mixtures/solutions of practical interest for the chemist, chemical engineer or biophysicist

are usually quite complex, that is to say, the intermolecular potential energy functions

characterizing the pure components differ strongly, and frequently cause pronounced

nonideal thermodynamic behavior. At this juncture, perhaps a few words are in order to

indicate the three main reasons for the enormous efforts invested into experimental, the-

oretical and computer-based work on properties of mixtures/solutions in general, and on

liquid-phase nonelectrolyte systems in particular. First and foremost, by systematically

studying mixture/solution properties our knowledge of intermolecular interaction between

different species in bulk liquid phases will improve. Second, the appearance of new

physical phenomena in multicomponent systems is scientifically fascinating as well as

challenging, and adds a new dimension to physico-chemical research. And third, the

scientific insight gained allows the practitioner to deal efficiently (and pragmatically) with

technologically important systems and processes.

Experiments are the fundament of science, yet the huge number of potentially inter-

esting and useful mixture/solubility data connected with binary, ternary, quaternary, etc.

systems at different temperatures and pressures effectively precludes their experimental

determination for all but a few representative key systems of physico-chemical/technolo-

gical interest. This is best illustrated by calculating the number of different multicompo-

nent systems containing r components which can be formed out of, say, n = 1000

important chemicals. This r-combination is given by

C n; rð Þ ¼ n

r

� �
¼ n n� 1ð Þ � � � n� r þ 1ð Þ

r!
; ð86Þ

whence C 1000; 2ð Þ ¼ 4:995
 105 different binaries may be formed, C 1000; 3ð Þ ¼
1:66167
 108 different ternary systems, C 1000; 4ð Þ ¼ 4:141712475
 1010 different

quaternary systems, and so forth. Reliable and effective prediction methods for mixture/

solution properties are thus indispensable tools of the trade, which are provided, for

instance, by group contribution methods such as UNIFAC or DISQUAC [251–260], or the
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new MOQUAC model [261], in which the effect of molecular orientation on molecular

interaction is explicitly taken into account. While they work reasonably well for excess

molar Gibbs energies GE and excess molar enthalpies HE over not too large temperature

ranges, predicted results for activity coefficients at infinite dilution, aqueous solubilities of

hydrocarbons and excess molar heat capacities at constant pressure, CE
P , are frequently not

satisfactory [262]. Similar comments apply to the COSMO-RS and related models [263–

272]. This is not really surprising since mixture models are usually constructed at the free-

energy level. If T, P and xi are selected as independent canonical variables, GE ¼
HE � TSE becomes a generating function for all the other excess molar quantities and the

activity coefficients ci(T, P, xi) based on the Lewis–Randall rule (symmetric convention).

This is perhaps best seen from the fundamental property relation

d nGE
� �

¼ �ðnSEÞdT þ ðnVEÞdPþ RT
X

i

lncidni; ð87Þ

whence,

oGE

oT

� �

P;x

¼ �SE; ð88Þ

oGE

oP

� �

T ;x

¼ VE; ð89Þ

and

o nGEð Þ
oni

� �

T ;P;nj 6¼i

¼ GE
i ¼ RTlnci: ð90Þ

The excess heat capacity is related to the second derivative of GE with respect to tem-

perature, thus making it a very important discriminatory property for model evaluation:

CE
P ¼ oHE

�
oT

� �
P;x
¼ T oSE

�
oT

� �
P;x
¼ �T o2GE

�
oT2

� �
P;x
; ð91Þ

¼ �2RT
X

i

xi o ln ci=oTð ÞP;x�RT2
X

i

xi o2 ln ci

�
oT2

� �
P;x
: ð92Þ

Here, SE denotes the excess molar entropy, VE is the excess molar volume, xi = ni/n is

the mole fraction of component i in a multicomponent system, ni is the amount of

substance of component i, the total amount of substance is given by n ¼
P

i ni, andP
i xi ¼ 1. Note, that

o GE=RTð Þ
oT

� �

P;x

¼ � HE

RT2
: ð93Þ

The partial molar excess Gibbs energy GE
i of component i is the excess chemical

potential, that is GE
i ¼ lE

i , and since RTlnci is a partial molar property with respect to GE,

GE ¼
X

i

xiG
E
i ¼RT

X

i

xilnci ð94Þ

see also Eq. 69. Derivation of useful relations for other excess partial molar properties in a

constant-composition solution is straightforward.
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In order to overcome their inherent difficulties, GE-models may be combined with

equations of state (EOS), such as the Soave–Redlich–Kwong (SRK) EOS or the Volume-

Translated Peng–Robinson (VTPR) EOS, to yield predictive group contribution equations

of state [268, 273–279]. A survey of many popular models used to describe phase equi-

libria was recently prepared by Lei et al. [280].

For the practically and theoretically important global thermodynamic description of

liquid mixtures of nonelectrolytes [9], the excess molar isobaric heat capacities are pivotal

quantities, and one can take advantage of the exact thermodynamic relations contained in

Eq. 91 to effect a considerable economy in experimental effort. Given HE and GE at one

suitably selected temperature Tref and CE
P as a function of temperature, integration at

constant pressure of the relevant equations yields HE, SE and GE over the temperature

range of the heat capacity measurements. Well below the vapor–liquid critical region, CE
P

of a mixture of given composition and at constant pressure usually shows a simple

functional dependence on temperature, for instance [9, 252]

CE
P

R
¼ a3 þ a4sþ a5s

2; ð95Þ

where s � Tref=T ;. Starting from the differential equations of Eq. 91, integration over

temperature at constant pressure and composition yields

HE

RT
¼ a3 þ a2 � a3 þ a5ð Þs� a5s

2 � a4slns; ð96Þ

SE

R
¼ a1 þ a4 þ

a5

2
� a4s�

a5

2
s2 � a3 ln s; ð97Þ

and

GE

RT
¼ �a1 þ a3 � a4 �

a5

2
þ a2 � a3 þ a4 þ a5ð Þs� a5

2
s2 þ a3lns� a4slns: ð98Þ

The dimensionless coefficients aj = aj(P, {xi}) are related to the corresponding excess

quantities at Tref ;P; xif g by

CE
P Tref ;P; xif gð Þ

�
R ¼ a3 þ a4 þ a5; ð99Þ

HE Tref ;P; xif gð Þ
�

RTref ¼ a2; ð100Þ

SE Tref ;P; xif gð Þ
�

R ¼ a1; ð101Þ

GE Tref ;P; xif gð Þ
�

RTref ¼ a2 � a1: ð102Þ

Analogous expressions may be derived if CE
P , at constant pressure and composition, is

given by a polynomial in T instead of T-1 (see also Sect. 4 of this review). Global studies

of this kind are, however, quite rare, with some of the most careful and extensive inves-

tigations being those of Ziegler and colleagues [281, 282].

Heuristically, a discussion of mixtures/solutions may be conducted in terms of differ-

ences in molecular size, shape anisotropy, dispersion energy, polarity, molecular polariz-

ability, flexibility, and so forth. Figure 3 presents an overview of the most important

aspects at the molecular level as well as the bulk level [7, 12, 43, 76, 87, 101, 283, 284]. In

fact, in many liquid mixtures/solutions dipolar (and quadrupolar) interactions contribute

significantly to the thermodynamic properties and may involve cooperative phenomena.
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The principal obstacles for a comprehensive discussion of complex liquid mixtures/solu-

tions are:

• Uncertainty concerning the intermolecular potential energy functions of the compo-

nents, and insufficient knowledge about the potential energy functions characterizing

unlike interaction, i.e. of combining rules [43, 87, 285–288];

• Difficulties encountered when two or more of the above-mentioned molecular aspects,

say, shape anisotropy and a permanent electric dipole moment, are present simulta-

neously [43, 76, 87, 289–295];

• Meager knowledge of many-body effects [76, 78, 296–298], exemplified, for instance,

by the correlation of molecular orientation and medium effects on conformational

equilibria [1, 2, 4, 15, 214, 215, 217, 219, 299–305].

Additional aspects include molecular association via hydrogen bonds [306–308], or

charge transfer interaction [309, 310], and if aqueous solutions are involved, hydrophobic

and hydrophilic effects [311–317].

A dipolar substance is characterized by its permanent molecular electric dipole moment

p, though this quantity by itself is not sufficiently helpful in guiding the discussion of the

impact of polarity on thermodynamic properties of pure liquids and liquid mixtures. For

characterizing the effective polarity of a molecule, one may define a reduced dipole

moment [7, 12, 76] according to

p0r ¼ p2
�

4pe0r
3e

� �	 
1=2
; ð103Þ

where e0 is the permittivity of the vacuum, r is an appropriate molecular size parameter,

say, of a Mie-type intermolecular potential energy function, and e is the corresponding

interaction energy parameter (see Eqs. 51 and 53). Equivalently, by virtue of the corre-

sponding states principle, we may use

Fig. 3 Schematic summary of the most important physical aspects to be considered in a realistic description
of pure liquids and liquid mixtures/solutions at the molecular level as well as on the bulk level [7, 12]
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pr ¼ p2NA

�
4pe0VckBTcð Þ

	 
1=2
: ð104Þ

Evidently, a small dipole moment in a small molecule may cause as large a contribution to

the interaction free energy as a large dipole moment in a large molecule [76]. However,

even this quantity does not fully reflect the increase in effective polarity which results from

an unsymmetrical disposition of the polar group within the molecule, i.e. from dipole

moments exposed on the molecular periphery [7].

Here, I will only consider binary liquid systems of type [a polar aprotic component

(1) ? an aliphatic or alicyclic hydrocarbon (2)], where the focus is on dipolar orientational

effects (caused by an appreciable dipole moment p1) and increasing non-randomness in the

mixtures when the temperature is lowered. Following Pople’s treatment [318] of the

thermodynamic effects of orientational forces in liquids, which includes, but is not

restricted to, dipolar interactions, the total molar Helmholtz energy can be expressed as the

sum of spherically symmetric central-force (cf) contributions and additional orientational

(or) contributions:

FL� T;VL�� �
¼ FL�

cf T ;VL�� �
þ FL�

or T ;VL�� �
: ð105Þ

Assuming a lattice model, the extra molar Helmholtz energy in a pure liquid due to the

contribution of dipole–dipole interactions is given by [7]

FL�
or

�
RT ¼ �l p2NA

�
4pe0VL�kBT
� �	 
2 ¼ �l p2

r

�
VL�

r Tr

	 
2
; ð106Þ

where VL�
r ¼ VL�=Vc is the reduced molar volume, Tr ¼ T=Tc is the reduced temperature,

and l depends on the lattice selected. For a face-centered cubic lattice, including also

interactions beyond the first coordination sphere, l = 1.2045. We note that the orienta-

tional contribution to the Helmholtz energy of a dipolar liquid is always negative and

varies with p4
�

VL�Tð Þ2.

Similarly, one may decompose the excess molar Gibbs energy of a binary liquid mixture

containing one strongly polar aprotic component, say, component 1, into a central-force

contribution and an orientational contribution caused by the permanent electric dipole

moment p1:

GE T ;P; x1ð Þ ¼ GE
cf T ;P; x1ð Þ þ GE

or T;P; x1ð Þ: ð107Þ

Again, assuming a face-centered cubic lattice and including interactions beyond the first

coordination sphere, to a good approximation

GE
or

RT
¼ 1:2045x1x2

NAp2
1

4pe0VLkBT

� �2

; ð108Þ

where VL is the molar volume of the mixture. Thus, when mixing a dipolar liquid with a

nonpolar liquid, the net destruction of dipolar order results in a positive contribution to GE

which is proportional to the fourth power of p1, or more precisely, it is proportional to

p4
1

�
VLTð Þ2:

Alternatively, using a simple Guggenheim model [319] and including also contributions

from molecular shape anisotropy, Kalali et al. [320] also showed that the order destruction

leads to positive contributions to GE, HE and SE, and to a negative contribution to CE
P . In

this model, the excess molar Gibbs energy is given by
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GE ¼ x1x2W ; ð109Þ

where

W ¼ aþ b

T
ð110Þ

is the molar cooperative free energy, and a and b are constants characteristic for a given

pair of substances, the excess molar enthalpy is

HE ¼ x1x2 aþ 2
b

T

� �
; ð111Þ

the excess molar entropy is

SE ¼ x1x2

b

T2
; ð112Þ

and for the excess molar heat capacity at constant pressure one obtains

CE
P ¼ �2x1x2

b

T2
¼ � 2 HE � GEð Þ

T
: ð113Þ

This latter relation appears to hold well for nonpolar or weakly polar mixtures. How-

ever, for mixtures of a strongly polar liquid with an essentially nonpolar liquid, say, an

alkane, the experimental CE
P is usually less negative than demanded by Eq. 113 [6, 7, 17,

320–322]. This indicates that some dipole–dipole orientations have considerably greater

stability (one may regard this as weak association) than accounted for by the angle-

averaging procedure involved. An intuitively appealing way of treating these non-ran-

domness effects, based on Guggenheim’s quasi-chemical theory, was suggested by Saint-

Victor and Patterson [322]. To a reasonable approximation, the excess molar isobaric heat

capacity is separated into a random (r) and a non-random (nr) contribution:

CE
P=R ¼ CE

P rð Þ=Rþ CE
P nrð Þ=R

¼ �x1x2TR�1 d2W=dT2
� �

þ x1x2ð Þ2 2 W � T dW=dTð Þ½ �2g2 zR2T2
� ��1þ g2 � 1

� �
TR�1 d2W=dT2

� �n o

ð114Þ

where g ¼ exp W=zRTð Þ, and z is the coordination number [6, 7, 12, 17]. Note that in their

original expression, Eq. 7 of [322], the factor g2 is missing from the first term inside the

wavy brackets. Equation 114 is in agreement with the first-order result of the Taylor

expansion of the full quasi-chemical expression as obtained by Cobos [323]. Clearly, the

random term is always negative with a parabolic composition dependence, as expected for

mixtures where dipole–dipole order is destroyed by the mixing process. In contradistinc-

tion, the non-random term is always positive and has zero slope against the mole fraction

axis at both ends of the composition range. Thus, the superposition of the two contributions

CE
P rð Þ and CE

P nrð Þ accounts qualitatively for the appearance of W-shaped curves CE
P versus

x. The first W-shaped CE
P xð Þ curves ever reported in the literature were for three mixtures

of type (1,4-dioxane ? an n-alkane) [10, 324], see Fig. 4. Since then, such mixture

behavior has been found fairly often [17]. With decreasing temperature, the maximum

caused by CE
P nrð Þ increases, thus making the W-shape more pronounced, which behavior
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was confirmed by experiment [320, 322, 325–327]. For an analysis of W-shaped excess

heat capacities in terms of the non-random two liquid (NRTL) model [328], see Troncoso

et al. [329].

However, it is important to note that many of the mixtures showing W-shaped CE
P xð Þ

curves are quite close to liquid–liquid phase separation with an upper critical solution

temperature (UCST) Tuc. A liquid mixture near its upper critical consolute point has a weak

divergence in its heat capacity at constant pressure when determined along a path of

constant critical composition x ¼ xuc [330–333]. Thus, for the approach through the

homogeneous one-phase region (T [ Tuc), the standard power law expression, including

the first correction-to-scaling term for extending the theoretical description further away

from the critical point [334], is

CP;xuc
¼ Bþ Et þ Aþ

a
t�a 1þ DþtD1
� �

: ð115Þ

Here, t ¼ T � Tucð Þj =Tucj: is the reduced distance, temperature wise, from Tuc, B and E

refer to the background heat capacity at constant pressure, A? is the amplitude of the

leading divergence (homogeneous region), and D? is the amplitude of the first correction-

to-scaling term; a = 0.11 and D1 = 0.5 are universal critical exponents [320, 335–338].

Evidently, The quasi-chemical approximation underestimates the non-random contribution

to the excess heat capacity and becomes qualitatively incorrect for T ! Tuc.

4 Caloric Properties of Dilute Solutions of Gases in Liquids

Solubility and related phenomena constitute one of the oldest and most important fields of

physical chemistry. For more than a century, the study of the solubility of nonelectrolytes

in liquids has contributed decisively to the development of the highly formalized general

discipline of solution thermodynamics [34], a fact concisely summarized in 1950 by the

introductory statement of Hildebrand and Scott to their monograph [141]: ‘‘The entire

history of chemistry bears witness to the extraordinary importance of the phenomenon of

solubility.’’

Why, now, my long-term interest in the study of the solubility of gases in liquids? In

addition to its profound theoretical interest, practical applications can be found in sur-

prisingly diverse areas of the pure and applied sciences [20, 22, 26–28, 30–34, 339–347]:

in other words, it is a fascinating area grounded in both theory and practice. Gas solubility

data have led to useful estimates of effective Lennard-Jones parameters [348–350], which

in turn allow successful predictions of Henry fugacities and related quantities for many

gas–liquid systems over large temperature ranges using scaled particle theory [18, 22, 344,

351–354], ranging from aqueous [22, 23, 29, 355–357] to alcoholic systems [358] to the

solubility of gases in perfluoronated hydrocarbons [19]. In particular, experimental solu-

bilities determined in liquid water have been pivotal in developing modern views of

hydrophobic effects [311, 312, 359–363], that is hydrophobic solvation and hydrophobic

interaction, which field continues to be a highly active research area [313–317, 364–369].

It is far beyond the scope of this review to discuss available experimental methods

tailored for determining caloric properties of dilute solutions in general (enthalpies of

solution, heat capacity changes on solution), and of solutions of gases in liquids in par-

ticular. Those potentially interested in precision apparatus are referred to my review

articles covering this topic, say, Refs. [22, 26, 30]. Let it suffice to point out that flow
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calorimetry involves fairly direct measurement techniques, and despite sophisticated

designs they require relatively little additional thermophysical information and data

manipulation to obtain the desired quantities from the primary experimental results. In

contradistinction to this situation, to obtain thermodynamically well-defined and reliable

caloric properties from gas solubility measurements, besides sophisticated instruments,

data reduction is more complex and requires more auxiliary thermophysical data. A

comprehensive discussion of this so-called van’t Hoff approach and of the relevant ther-

modynamic fundamentals was recently presented in Refs. [30, 33, 34].

By way of example, I will focus on data reduction associated with the use of our high-

precision analytic gas solubility apparatus [23, 24, 29, 356, 357]. By and large, the method

adopted for use with our medium-precision synthetic, fully automated Ben-Naim/Baer-type

instrument, is similar [370–375]. In this context, high-precision implies an average random

error (imprecision) of about ±0.05 % in conjunction with a maximum systematic error

(inaccuracy) of about ±0.05 % or less. The imprecision associated with the Ben-Naim/

Baer-type apparatus is roughly ±0.5 %, and the corresponding systematic error is esti-

mated to be also about ±0.5 %. Our high-precision analytical method is based on earlier

work of Benson and Krause [376, 377]. The technique used to degas the solvent has been

described [378]. In order to obtain fully reproducible results, we usually use equilibration

times of up to 48 h. The temperature drift of the large water thermostat during equilibration

never exceeds ±0.003 K.

After attaining vapor–liquid equilibrium at T and P [ Pr;1, vapor phase and liquid

phase samples of precisely known volumes are isolated, and the quantities of gas contained

in each are transferred to the manometric system to determine the amounts of pure gas by

classical PVT measurements. From the measured quantities, the Henry fugacity

h2;1 T ;Pr;1 Tð Þ
� �

, also known as the Henry’s law (HL) constant, of solute 2 (gas) dissolved

in liquid solvent 1 at the experimental temperature and at the corresponding vapor pressure

of the pure solvent Pr;1 Tð Þ is obtained through straightforward though tedious isothermal

extrapolation P! Pr;1 Tð Þ, and concomitantly decreasing liquid phase mole fraction of

Fig. 4 Excess molar heat capacities CE
P at constant pressure of three liquid mixtures of type {x11,4-

C4H8O2 ? x2CnH2n?2}, n = 7, 10 and 14, at 298.15 K and ambient pressure. The circles and triangles are
experimental points obtained with a Picker flow-calorimeter [10, 324]
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dissolved gas, x2 ? 0, and decreasing mole fraction of gas in the coexisting vapor phase,

y2 ? 0, according to

h2;1 T ;Pr;1 Tð Þ
� �

¼ lim
x2!0

f L
2 T ;P; x2ð Þ

x2

� �
¼ lim

x2!0

y2P!0

/V
2 T ;P; y2ð Þy2P

x2

� �
; constant T : ð116Þ

Here, f L
2 T ;P; x2ð Þ is the fugacity of the solute in the liquid phase, and /V

2 T ;P; y2ð Þ is the

vapor phase component fugacity coefficient of the gaseous solute. Equation 116 is directly

obtained from the general criterion for phase equilibrium in PVT systems of uniform

temperature and pressure, which is formulated advantageously in terms of the equality of

the fugacity of each constituent component i in all coexisting phases [42, 43]. For the

solute (i = 2) in a binary solution this reads [26, 30, 31, 34]

f L
2 T ;P; x2ð Þ ¼ f V

2 T ;P; y2ð Þ; ð117Þ

where the liquid phase fugacity may be expressed by

f L
2 ðT ;P; x2Þ ¼ cHL

2 T ;P; x2ð Þx2h2;1 T ;Pð Þ; ð118Þ

and the vapor phase fugacity by

f V
2 T ;P; y2ð Þ ¼ /V

2 T ;P; y2ð Þy2P: ð119Þ

Note that the limiting behavior of the unsymmetrically normalized activity coefficient

based on Henry’s law is

lim
x2!0

cHL
2 ¼ 1; constant T;P: ð120Þ

While the mole fractions are experimentally determined quantities, /V
2 T ;P; y2ð Þ has to be

calculated with a suitable equation of state. For measurements at such low pressures as in our

work (P \ 120 kPa), the virial equation in pressure at the second-virial-coefficient level,

ZV T;P; fyigð Þ ¼ 1þ B T ; fyigð Þ
RT

P; ð121Þ

is entirely adequate and most convenient for the description of real gas behavior: Hence, in

a binary vapor mixture

ln/V
i ¼

P

RT
Bii þ y2

j D12

� �
; i; j ¼ 1; 2; i 6¼ j; ð122Þ

with

D12 ¼ 2B12 � B11 þ B22ð Þ: ð123Þ

B11 and B22 are the second virial coefficients of the pure components, B12 designates the

composition-independent interaction virial coefficient (cross-coefficient), and the second

virial coefficient of the mixture may be expressed as

B ¼ y1B11 þ y2B22 þ y1y2D12: ð124Þ

The fugacity coefficient of the solute at infinite dilution in the vapor phase is thus given by

ln /V1
2 ¼ P

RT
2B12 � B11ð Þ; ð125Þ
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and the fugacity coefficient of pure component 2 by

ln /V�
2 ¼

P

RT
B22: ð126Þ

The quite popular rule-of-thumb /V
2 T ;P; y2ð Þ ¼ /V�

2 T ;Pð Þ may frequently be rather

unsatisfactory. For instance, for the evaluation of /V1
2 it only holds if B12 = (B11 ? B22)/

2.

In brief, the auxiliary quantities needed for a thermodynamically rigorous data reduction

of gas solubility measurements in liquids at low pressures with our high-precision appa-

ratus are the vapor pressure of the solvent, the second virial coefficients of the pure

components, the second virial cross-coefficient, the molar volume of the pure liquid sol-

vent [23], and the partial molar volume of the gas at infinite dilution in the liquid phase

[23] (see also below). Frequently, no experimental data are available for one or more of

these properties. Thus for vapor–liquid equilibrium (VLE) data reduction in general, and

for gas solubilities in liquids in particular, one depends heavily on semiempirical esti-

mation methods, which are predominantly based on the extended corresponding states

theorem. For details I refer to the original articles and to the pertinent reviews [26, 30, 33,

34].

Once experimental Henry fugacities h2;1 T ;Pr;1 Tð Þ
� �

for a given solute/solvent system

have been collected over a certain temperature range (but not too close to the critical

temperature of the solvent), the question arises as to their most satisfactory mathematical

representation as a function of temperature. In the absence of theoretically well-founded

models of general validity, one has to rely on essentially empirical correlating equations,

subject, however, to some important thermodynamic constraints. Depending on the choice

of variables, that is T or 1/T, for expanding the enthalpy of solution (see later), either the

Clarke–Glew (CG) equation [379–381]

ln h2;1 T;Pr;1 Tð Þ
� ��

Pa
	 


¼ A0 þ A1 T=Kð Þ�1þA2ln T=Kð Þ þ
Xn

i¼3

Ai T=Kð Þi�2 ð127Þ

or the Benson–Krause (BK) equation [376, 377]

ln h2;1 T ;Pr;1 Tð Þ
� ��

Pa
	 


¼
Xm

i¼0

ai T=Kð Þ�i ð128Þ

are obtained. Both correlating equations are widely used, but on the basis of the ability to

fit high-precision Henry fugacities over fairly large temperature ranges, and of simplicity,

the BK power series in 1/T appears to be superior. In passing we note that the 3-term

version of Eq. 127 is the well-known Valentiner equation [382].

At this juncture I would like to emphasize again that the frequently found sweeping

statement ‘‘the solubility of a gas in a liquid decreases with increasing temperature’’ is

misleading/incorrect when the entire liquid range between the triple point and the critical

point of the solvent is considered. For many systems, the following behavior is well

documented: at low temperatures (starting at the solvent triple point), h2;1 T ;Pr;1
� �

increases with increasing temperature, passes through a maximum, and then decreases

towards its finite limiting value at the solvent’s critical point:

lim
T!Tc;1

Pr;1!Pc;1

h2;1 T ;Pr;1
� �

¼ /V1
2 Tc;1;Pc;1

� �
Pc;1; ð129Þ

550 J Solution Chem (2014) 43:525–576

123



where use was made of the equilibrium condition prevailing at the critical point, that is

/V1
2 Tc;1;Pc;1

� �
¼ /L1

2 Tc;1;Pc;1

� �
: ð130Þ

Here, /V1
2 Tc;1;Pc;1

� �
and /L1

2 Tc;1;Pc;1

� �
are the fugacity coefficients of component 2 at

infinite dilution in the vapor phase and the liquid phase, respectively, at the critical point.

Clearly, under these conditions Eq. 125 is no longer adequate and has to be replaced by an

expression appropriate for elevated pressures/elevated densities. As I have shown some

time ago [12, 25–27, 30, 33–35, 383, 384], this exact limiting value follows directly from

the generally valid relation

/L1
i T;Pð Þ ¼ hi;j T;Pð Þ

P
: ð131Þ

An example of the solubility behavior of gases in liquid water is provided by Fig. 5, where

the Henry fugacities, i.e. ln h2;1 T ;Pr;1
� ��

GPa
	 


, of methane dissolved in liquid water, and

of krypton dissolved in liquid water, are plotted against temperature [23, 385]. The system

{water (1) ? methane(2)} plays an important role in discussions of hydrophobic effects

[311, 312] as well as in the exploration of offshore oil fields [386].

Fig. 5 Plot of ln h2;1 T ;Pr;1
� ��

GPa
	 


against temperature T for krypton and methane dissolved in liquid

water. h2;1 T ;Pr;1
� �

denotes the Henry fugacity (Henry’s law constant) at temperature T and corresponding

pressure Pr;1 Tð Þ, the vapor pressure of water. Open circles experimental results of Crovetto et al. [385]: the

average percentage deviation of the Henry fugacities from the values calculated via BK-type fitting
equations is about ± 2 %. Filled circles experimental results of Rettich et al. [23]: the average percentage
deviation of the Henry fugacities from the values calculated via the correlating BK function, Eq. 128, is
about ±0.05 %. The temperature where the Henry fugacity exhibits a maximum is about 382 K for
H2O ? Kr, and about 363 K for H2O ? CH4. The limiting values of the respective Henry fugacities

h2;1 T ;Pr;1
� �

as T ! Tc;1 and Pr;1 ! Pc;1 are finite and given by Eq. 129, the limiting slope of the curves is

-?, see Eq. 132

J Solution Chem (2014) 43:525–576 551

123



While the Henry fugacity remains finite at Tc;1, for volatile solutes the limiting slope

diverges to -?:

lim
T!Tc;1

P!Pc;1

d ln h2;1 T ;Pr;1
� ��

Pa
	 


dT
¼ �1 ð132Þ

when the critical point of the solvent is approached along the coexistence curve [387, 388].

Nonclassically, the temperature derivative diverges as T � Tc;1

� ��
Tc;1

b�1
 , with a

critical exponent b = 0.326.

Until the mid 1980s, high-precision measurements of Henry fugacities over temperature

ranges large enough to permit van’t Hoff-type data treatment constituted the only reliable

source of information on partial molar enthalpy changes on solution,

DH12 T ;Pr;1
� �

¼ HL1
2 T ;Pr;1
� �

� H
pg�
2 Tð Þ; ð133Þ

and a fortiori on partial molar heat capacity changes on solution,

DC1P:2 T ;Pr;1
� �

¼ CL1
P;2 T ;Pr;1
� �

� C
pg�
P;2 Tð Þ: ð134Þ

Here, HL1
2 is the partial molar enthalpy of the solute at infinite dilution in the liquid

solvent, H
pg�
2 is the molar enthalpy of the pure solute in the perfect gas state, CL1

P;2 is the

partial molar heat capacity at constant pressure of the solute at infinite dilution in the liquid

solvent, and C
pg�
P;2 is the molar heat capacity at constant pressure of the pure solute in the

perfect gas state. Since the temperature dependence of the Henry fugacity is given by

o ln h2;1 T ;Pð Þ
oT

� �

P

¼ �DH12 T ;Pð Þ
RT2

; ð135Þ

and its pressure dependence by

o ln h2;1 T ;Pð Þ
oP

� �

T

¼ VL1
2 T ;Pð Þ

RT
; ð136Þ

where VL1
2 is the partial molar volume of the gas at infinite dilution in the liquid solvent,

we obtain [23, 26–28, 30–34, 383],

DH12 T ;Pr;1
� �

RT
¼ �T

d ln h2;1 T ;Pr;1
� ��

Pa
	 


dT
þ VL1

2

R

dPr;1

dT
; ð137Þ

and by analogous arguments

DC1P;2 T ;Pr;1
� �

R
¼

dDH12 T ;Pr;1
� �

RdT
� 1

R
VL1

2 � T
oVL1

2

oT

� �

P

� �
dPr;1

dT

¼ �2T
d ln h2;1 T ;Pr;1

� ��
Pa

	 


dT
� T2 d2ln h2;1 T ;Pr;1

� ��
Pa

	 


dT

ð138aÞ

þ 2
T

R

oVL1
2

oT

� �

P

dPr;1

dT
þ T

R

oVL1
2

oP

� �

T

dPr;1

dT

� �2

þ TVL1
2

R

d2Pr;1

dT2
: ð138bÞ

The ordinary differential quotients in Eqs. 137 and 138a, 138b indicate differentiation

while maintaining orthobaric conditions: the first term on the right-hand-side of Eq. 137 as
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well as the first and the second term on the right-hand-side of Eq. 138b may be obtained

from any one of the selected fitting equations, say the BK equation Eq. 128. The additional

terms on the right-hand-side, containing VL1
2 and its derivatives with respect to T and P

together with dPr;1
�

dT and d2Pr;1
�

dT2, are referred to in the literature [388, 389] as

Wilhelm terms. For aqueous solutions, say, of the rare gases below 100 �C, their contri-

butions are small, usually smaller than the experimental error associated with current

precision measurements. However, their contributions increase rapidly with increasing

temperature. In fact, the partial molar volume of a volatile solute at infinite dilution in a

liquid solvent diverges to ?? at the critical point of the solvent, see Wood et al. [390,

391], and the partial molar enthalpy at infinite dilution will diverge in exactly the same

manner. The partial molar isobaric heat capacity at infinite dilution, CL1
P;2 , diverges in a

more complex way and much stronger than either VL1
2 or HL1

2 [392–396]. The important

experiments of Wood et al. confirm the theoretical expectations. The influences of these

divergences are felt relatively far from the critical point.

As pointed out above, direct calorimetric determinations of the high-dilution partial

molar enthalpy change when a gas is dissolved in a liquid have been carried out by only a

very limited number of research groups, primarily due to the very small heat effects

involved. Besides calorimetric sensitivity, achieving the dissolution of an accurately

known amount of gas in a time interval compatible with the stability of the calorimeter is

another important experimental problem. Battino and Marsh [397] used a modified iso-

thermal displacement calorimeter to measure DH12 T ;Pr;1
� �

of argon and nitrogen in

tetrachloromethane, cyclohexane and benzene at 298.15 K, and of carbon dioxide, meth-

ane, ethane, ethene and propane in the same three solvents at 298.15 K and 318.15 K, and

derived reasonable DC1P;2 T ;Pr;1
� �

values from

DC1P;2 T ;Pr;1
� �

ffi
dDH12 T;Pr;1

� �

dT
: ð139Þ

The major step forward for measuring DH12 T ;Pr;1
� �

over extended temperature ranges

with a precision high enough to allow the reliable determination of DC1P;2 T;Pr;1
� �

is based

on the development of microcalorimeters (batch or flow) by I. Wadsö’s group at the

Thermochemistry Laboratory in Lund, Sweden, and by S. J. Gill in the Chemistry

Department of the University of Colorado in Boulder, Colorado, USA [398, 399]. There

exist only seven sets of directly determined heat capacities of gases dissolved in liquid

water, all originating from R. H. Wood’s laboratory at the University of Delaware,

Newark, Delaware, USA [394–396]. Regrettably, so far no other research groups have

continued work in this field.

Recently, Wilhelm [28, 30] and Wilhelm and Battino [32] presented comprehensive

compilations of calorimetrically determined results for DH12 T ;Pr;1
� �

and DC1P;2 T ;Pr;1
� �

for many gases dissolved in liquid water at T = 298.15 K and Pr;1 298:15 Kð Þ ¼
3:1691 kPa, together with van’t Hoff-derived enthalpy changes on solution and heat

capacity changes on solution. As representative examples, Table 1 shows such a com-

parison for argon [22, 357, 376, 389, 394, 400–403], oxygen [22, 29, 376, 377, 398, 399,

401, 405] and methane [22, 23, 396, 401, 406–408]. Evidently, comparing van’t Hoff

derived enthalpy changes (one differentiation step with respect to T) and heat capacity

changes (two differentiation steps with respect to T) with high-precision calorimetric

results constitutes a severe quality test of solubility data. For nearly all solutions, agree-

ment between these two approaches is entirely satisfactory, that is it is usually within the
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combined experimental errors. What a credit to the experimental ingenuity, perseverance

and skills of solution thermodynamicists!

5 Concluding Remarks and Outlook

By common consent, the liquid state of matter still houses by far the largest group of

unsolved/crudely solved problems in modern physical chemistry. Research on pure liquids

continues to be an active field, and water is definitely the most enigmatic solvent. When

studying liquid mixtures/solutions, the appearance of new phenomena not present in the

pure components constitutes a most stimulating theoretical challenge and is of enormous

practical importance: these aspects provide the principal reasons for investing so much

experimental and theoretical work in the investigation of mixture/solution properties.

When combined with advances in the statistical-mechanical treatment and increasingly

sophisticated computer simulations, new insights and important connections at the

microscopic, mesoscopic and macroscopic level are obtained. Pride of place, of course, is

Table 1 Partial molar enthalpy changes on solution DH12 T ;Pr;1
� �

and partial molar heat capacity changes

on solution DC1P;2 T ;Pr;1
� �

of argon, oxygen and methane dissolved in liquid water at T = 298.15 K and

Pr;1 ¼ 3:1691 kPa: comparison of values obtained via van’t Hoff-type analysis of precision gas solubility

measurements (see Eqs. 137 and 138a, 138b) with values obtained by calorimetric methods

Gas dissolved in liquid
water at 298.15 K

From solubilites (van’t Hoff-type analysis) From calorimetry

DH12 T ;Pr;1
� �

(kJ�mol-1)

DC1P;2 T ;Pr;1
� �

(J�K-1�mol-1)

DH12 T ;Pr;1
� �

(kJ�mol-1)

DC1P;2 T ;Pr;1
� �

(J�K-1�mol-1)

Ar -11.95 [376]a 186 [376]a -12.01 [401] 200 [401]

-11.92 [389] 195 [389] -11.94 [402] 185 [394]c

-11.96 [357] 192 [357] -12.00 [403]

-12.27 [22]b 178 [22]b

O2 -12.19 [376] 192 [376] -12.00 [401] 205 [401]

-12.09 [405] 138 [405] -12.06 [398]

-12.01 [377] 196 [377] -12.03 [399]

-11.97 [29] 200 [29]

-12.06 [22]b 200 [22]b

CH4 -13.19 [23] 237 [23] -13.06 [401] 242 [401]

-13.79 [22]b 207 [22]b -13.12 [406] 209 [406]

-13.18 [407] 218 [408]

212 [396]c

a In their quoted article, Benson and Krause [376] recalculated the original experimental data of Murray and
Riley [400]
b For the sake of comparison, I included van’t Hoff values obtained from older measurements as published
in the review article by Wilhelm et al. [22] more than 35 years ago. These values are the result of our critical
evaluation of the extant literature at that time, and the agreement with more modern results is satisfactorily
good
c After extrapolating the calorimetrically determined apparent molar heat capacity to 298.15 K and setting

it approximately equal to CL1
P;2 T ;Pr;1
� �

, as suggested by the authors [394, 396], Eq. 134 was used with

C
pg�
P;2 Arð Þ ¼ 20.79 J�K-1�mol-1 and C

pg�
P;2 CH4; 298:15 Kð Þ ¼ 35.79 J�K-1�mol-1, respectively, taken from

Landolt-Börnstein [404] in (1961), to obtain the DC1P;2 T ;Pr;1
� �

values reported in the table
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held by aqueous solutions, which are of central importance in biophysics and biophysical

chemistry [368, 409–412]. And, of course, studies of aqueous interfaces and of the

behavior of solutes therein (in particular ionic solutes) [413–421] have greatly profited

from recent advances in surface selective spectroscopic techniques.

Calorimetry, PVT measurements and VLE determinations (and liquid–liquid equilib-

rium determinations and solid–liquid equilibrium determinations) are the most funda-

mental and also the oldest experimental disciplines of physical chemistry. Although simple

in principle, enormous effort and ingenuity had to be invested into the construction of

scientific instruments to provide the vast array of apparatus now at our disposal for the

high-precision determination of caloric, PVT and ultrasonic properties of pure and mixed

fluids over large ranges of temperature and pressure, and for vapor–liquid, liquid–liquid

and solid–liquid equilibrium studies. The major driving forces for progress in instrumen-

tation are the desire to (I) increase the area of applicability (larger temperature and pressure

ranges, ever smaller concentrations, etc.), to (II) improve precision and accuracy (in par-

ticular for testing and developing theories), to (III) increase the speed of measurements,

and to (IV) facilitate application, data management and data transfer. Undoubtedly,

automation of instruments will continue, and so will miniaturization. In summary, chem-

ical thermodynamics of liquids and liquid mixtures/solutions in general, and of aqueous

systems in particular, will continue to be an exciting, developing field, and cross-fertil-

ization with other disciplines, notably with molecular biology and molecular medicine, will

become increasingly important. A rich research area lies ahead with many new and fas-

cinating vistas of importance for mankind, and here the ‘‘end of scientific discovery’’ [422]

is nowhere in sight.

The field of chemical thermodynamics has grown too big to be covered in one modest

review article, but for the three subsections treated above (to which I have contributed over

the years) I hope to have succeeded in providing a feeling for their scope, position in the

development of science, and potential. It is a pleasure to acknowledge the many years of

fruitful scientific collaboration with my former PhD advisor, Friedrich Kohler (�), with

Rubin Battino, now Emeritus Professor at Wright State University (WSU), Dayton, Ohio,

USA, with Jean-Pierre E. Grolier, now Emeritus Professor at Université Blaise Pascal,

Clermont-Ferrand, France, with Henry V. Kehiaian (�), with Augustinus Asenbaum, now

Retired Professor of Experimental Physics at the University of Salzburg, Salzburg, Austria,

and about 80 colleagues, post-doctoral fellows and students from 17 countries. Without

them, many projects would have been difficult to carry out. My association with chemical

thermodynamics led to two extended stays in the United States of America at WSU,

Dayton, Ohio, of about 4 years altogether, which I greatly enjoyed, and to more than

5 years, altogether, in France, first at the CRMT/CNRS, Marseille, and then at the Uni-

versité Blaise Pascal, Clermont-Ferrand, which I also greatly enjoyed. Fortunately, over the

years the University of Wien (Vienna), Wien, Austria, was generous enough to grant

repeatedly extended Leaves of Absence for scientific research abroad.

6 Glossary of Symbols

In most cases I have adhered to the nomenclature/symbols suggested by IUPAC (see Green

Book, Quantities, Units and Symbols in Physical Chemistry [423]). Deviations are due to

my desire to present a concise, unequivocal and logically consistent notation in compliance

with usage preferred by the scientific community interested in this review’s topics, i.e. by

physical chemists, physicists and chemical engineers. Such an approach is in accord with
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the spirit of the Green Book expressed so admirably by Martin Quack in his Historical

Introduction on p. XII of its 3rd edition, 2007: It is not the aim to present a list of

recommendations in form of commandments. Rather we have always followed the principle

that this manual should help the user in what may be called ‘‘good practice of scientific

language’’. Two quantities in particular I would like to single out to comment on: the

Helmholtz energy (Helmholtz function) F and the pressure P. Sometimes the Helmholtz

energy is denoted by A, which symbol is, however, almost universally used for the affinity

of a chemical reaction as introduced by Th. De Donder in 1922, as quoted by Prigogine and

Defay [424]. In addition, when surfaces are involved, A usually denotes the surface area.

The symbol P for pressure is now accepted by IUPAC as an alternative to p, as indicated in

Tables 2.2 and 2.10 of the Green Book. The reason why I (and many others) prefer P is the

following. Temperature and pressure are both intensive quantities, and together with the

composition they form a set of basic thermodynamic variables advantageously used for

homogeneous fluids in equilibrium states. They are not perceived primarily as properties of

the fluids but as conditions imposed on/exhibited by them with the valuable bonus of being

(in principle) easily measured and controlled. In other words, temperature and pressure are

quantities of ‘‘equal rank’’, which fact should be reflected in the symbols we use, that is to

say capital T and capital P. For heterogeneous PVT systems consisting of several phases in

equilibrium with each other, temperature and pressure are identical in the coexisting

phases. We note that Griffiths and Wheeler [425] call such variables fields (in contradis-

tinction to variables that are in general not equal in coexisting phases, such as volume,

enthalpy and entropy, which they call densities).

Some of the symbols listed below may be modified further, with obvious meaning, by

adding appropriate subscripts, such as r (saturation or orthobaric condition), and/or

superscripts, such as * (pure substance), ? (infinite dilution), and L (liquid) or V (vapor).

The capital superscript letters are used because (i) they are easy to read, (ii) they are

frequently used in the chemical engineering literature, including important monographs

(for instance, Prausnitz et al. [43], Poling et al. [55]) and volumes published under the

auspices of the International Union of Pure and Applied Chemistry (IUPAC) [69], and (iii)

vapor–liquid equilibrium is usually abbreviated by VLE, and not by vle. The values for

some fundamental physical constants listed in the glossary below are CODATA recom-

mended values [107, 426].

Variables

a Parameter in the expression for the molar cooperative free energy, Eq. 110

aj =aj(P, {xi}), j = 1, 2, 3, … dimensionless coefficients used to describe the

temperature dependence of CE
P

�
R, SE=R, HE=RT , and GE=RT , Eqs. 95–98

ai i = 0, 1, 2, … dimensionless coefficients used to describe the temperature

dependence of the Henry fugacity, i.e. of ln h2;1 T ;Pr;1 Tð Þ
� ��

Pa
	 


, Eq. 128

(BK)

Ai i = 0, 1, 2, … dimensionless coefficients used to describe the temperature

dependence of the Henry fugacity, i.e. of ln h2;1 T ;Pr;1 Tð Þ
� ��

Pa
	 


, Eq. 127

(CG)

A? Amplitude of the leading critical divergence in the homogeneous one-phase

region above the upper critical solution temperature Tuc for a path at constant

critical composition xuc: see the power law describing the weak divergence of

CP;xuc
, Eq. 115
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b Parameter in the expression for the molar cooperative free energy, Eq. 110

B Non-diverging background term in the power law describing the weak

divergence of CP;xuc
, Eq. 115

B Second virial coefficient of a gaseous mixture

B11, B22 Second virial coefficients of the pure gaseous components 1 and 2 when

using the volume-explicit virial equation in pressure Z : PV/RT = 1 ?

BiiP/RT, i = 1 or 2

B12 Vapor-phase interaction virial coefficient (cross-coefficient)

cii Cohesive energy density of pure liquid i, Eqs. 65 and 67

CL
P ;C

V
P

Molar heat capacity at constant pressure (molar isobaric heat capacity) of the

liquid (L) or of the vapor (V), respectively

CL1
P;2

Partial molar heat capacity at constant pressure of solute 2 at infinite dilution

in a liquid (L) solvent 1

DCP.2
? Partial molar heat capacity change on solution of a gas (2) in a liquid (1) at

infinite dilution

CL
V ;C

V
V

Molar heat capacity at constant volume (molar isochoric heat capacity) of the

liquid (L) or the vapor (V), respectively

CL
r Molar heat capacity of a liquid (L) maintained at all temperatures in

equilibrium with an infinitesimal amount of vapor (or shorter: molar heat

capacity of a liquid at saturation)

CV
r Molar heat capacity of a saturated vapor (superscript V)

C
pg�
P;2 Tð Þ Molar heat capacity at constant pressure of a pure fluid in the perfect-gas

(ideal-gas) state

C
pg
V Tð Þ ¼ C

pg
P Tð Þ � R; Molar heat capacity at constant volume of a fluid in the

perfect-gas (ideal-gas) state

CE
P

Excess molar heat capacity at constant pressure

Cr
V Residual molar heat capacity at constant volume in (T, V)-space

CL
tr Translational contribution to CL

V arising from the motion of the centers of

gravity of the molecules under the influence of all the other molecules in the

liquid system

CL
rot Contribution to CL

V originating from the rotational movement of the

molecules as a whole; includes contributions due to hindered rotation

(libration)

CL
int Contribution to CL

V originating from internal degrees of freedom

CL
or Contribution to CL

V originating from the change of the dipole–dipole

orientational energy with temperature

D? Amplitude of the first correction-to-scaling term (Wegner term),

see Eq. 115

E Parameter referring to the background heat capacity of a liquid mixture, see

Eq. 115

f Fugacity

fi Fugacity of component i in solution (liquid phase or vapor phase)

f V�
i ¼ /V�

i P; fugacity of pure substance i in the vapor phase

F Molar Helmholtz energy

g r; T ; qnð Þ Pair distribution function

G Molar Gibbs energy

GE Excess molar Gibbs energy
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GE
or

Orientational contribution to the excess molar Gibbs energy caused by a

permanent electric dipole moment of one of the components

GE
i ¼ lE

i ¼ RTlnci, excess partial molar Gibbs energy of component i of a

mixture/solution, also known as excess chemical potential

hi,j =hi,j(T, P), Henry fugacity (or Henry’s law constant) of component

i dissolved in solvent j. Usually, experimental data are reported at

pressures P ¼ Pr;j, the vapor pressure of the solvent

H Molar enthalpy

HE Excess molar enthalpy

DvapH Molar enthalpy of vaporization

DH2
? Partial molar enthalpy change on solution of a gas (2) in a liquid (1) at infinite

dilution

kB =R/NA = 1.380 650 4(24) 9 10-23 J�K-1, Boltzmann constant

k12 Scatchard–Hildebrand binary interaction parameter, Eq. 66

l =1.2045, lattice-specific constant in the Pople model (face-centered cubic),

Eq. 106; for a body-centered cubic lattice l = 1.5317

m Mass

m, n Mie parameters, Eq. 51; when m = 6 and n = 12 they are called Lennard-

Jones parameters, Eq. 53

mMTE Dimensionless parameter in the modified Tait equation, Eq. 62; for many

liquid nonelectrolytes at ordinary temperatures mMTE & 10

Mm =m/n, molar mass

n ¼
P

i ni, total amount of substance

ni Amount of substance of component i of a mixture/solution

NA =6.022 141 79(30) 9 1023 mol-1, Avogadro constant

p Permanent molecular electric dipole moment

pr Reduced dipole moment, Eq. 104

P Pressure

Pc Critical pressure

Pr Vapor pressure

Pref Suitably selected reference pressure, frequently 105 Pa = 0.1 MPa

r Distance between molecules

R =8.314 472(15) J�K-1�mol-1, (molar) gas constant

S Molar entropy

SE Excess molar entropy

t ¼ T � Tucð Þ=Tucj j, dimensionless variable measuring the reduced distance,

temperature-wise, from the upper critical solution temperature Tuc

T Thermodynamic temperature

Tc Critical temperature

Tr Reduced temperature

Tref Suitably selected reference temperature

Tmp Melting (fusion) temperature

Ttr Triple point temperature

Tbp Normal boiling temperature

Tuc Upper critical solution temperature

u(r) Pair-potential-energy function

U Molar internal energy

Ur Molar residual internal energy
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Uc Molar configurational internal energy

UL
coh T ;Pð Þ Molar cohesive energy density of a liquid, Eq. 54

oU
oV

� �
T

:P(T, P), internal pressure

v0 Thermodynamic speed of ultrasound (at low frequencies)

V Molar volume

Vc Critical molar volume

VE Excess molar volume

DvapV Molar volume change on vaporization

W Cooperative free energy in the simple Guggenheim model, see Eq. 110

xi ¼ nL
i

�
nL, liquid-phase mole fraction of component i of a mixture/solution,

P

i

nL
i ¼ nL;

P

i

xi ¼ 1

xuc Critical composition, pertaining to an upper critical solution point (liquid–

liquid equilibrium) with an upper critical solution temperature (UCST) Tuc

yi ¼ nV
i

�
nV, vapor-phase mole fraction of component i of a mixture/solution,

P

i

nV
i ¼ nV;

P

i

yi ¼ 1

Z :PV/RT, compression factor

Greek letters

a &0.11, universal nonclassical critical exponent pertaining to the weak

divergence of CV of pure liquids along the critical isochore, or universal

nonclassical critical exponent pertaining to the weak divergence of CP of a

liquid mixture when determined along a path of constant critical composition

xuc as described by the power law, Eq. 115

aP :V-1(qV/qT)P, isobaric expansivity

aL
r � VLð Þ�1

oVL=oTð Þr, expansivity of a pure liquid (L) in contact with its vapor

(saturation expansivity)

bS :-V-1(qV/qP)S, isentropic compressibility

bT :-V-1(qV/qP)T, isothermal compressibility

cV :(qP/qT)V = aP/bT, isochoric thermal pressure coefficient

cr � oP=oTð Þr, slope of the vapor pressure curve, dPr=dT

ci =ci(T, P, xi), activity coefficient of component i of a mixture/solution based on

the symmetric Lewis–Randall (LR) convention

cHL
i ¼ cHL

i T ;P; xið Þ, activity coefficient of component i of a mixture/solution based

on the unsymmetric Henry’s law (HL) convention

d(T, P) Solubility parameter, Eq. 55

d T ;Prð Þ Solubility parameter at saturation condition, Eq. 60

D1 =0.5, universal critical exponent associated with the first correction-to-scaling

term (Wegner term [334]), Eq. 115

D12 =2B12 - (B11 ? B22)

e Intermolecular energy parameter characterizing the well-depth of the

interaction energy function, say, of the Mie function, Eq. 51

e0 =8.854187… 9 10-12 F�m-1, permittivity of vacuum (electric constant)

g =exp(W/zRT), used in Eq. 114 which is based on Guggenheim’s quasi-chemical

theory

H ‘‘Reduced’’ temperature, Eq. 84 (Harrison and Moelwyn-Hughes [116])

h ‘‘Reduced’’ temperature, Eq. 85 (Wilhelm, this work)
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j :CP/CV = bT/bS, ratio of heat capacities or compressibilities, respectively

li Chemical potential of component i of a mixture/solution

li
E =Gi

E = RTlnci, excess chemical potential of component i of a mixture/solution,

LR convention

P(T, P) Internal pressure

q :Mm/V = m/(nV), mass density

qn :NA/V, number density

r Intermolecular distance parameter of the Mie intermolecular pair-potential-

energy function, see Eq. 51; it is characterized by u(r) = 0

s :Tref/T

/i Fugacity coefficient of component i in solution (liquid phase or vapor phase)

/i
V* Fugacity coefficient of pure substance i in the vapor phase

Ui � xiV
L�
i

�
x1VL�

1 þ x2VL�
2

� �
; i ¼ 1; 2, volume fraction of component i in

solution

Superscripts

E Excess quantity

HL Indicates ideal-solution behavior based on Henry’s law

L Liquid phase

LR Indicates ideal-solution behavior based on the Lewis–Randall rule

pg Perfect-gas state (ideal-gas state)

r Residual quantity in (T,V)-space

V Vapor phase

* Indicates a pure-substance property

? Infinite dilution

Subscripts

c Critical property

cf Central-force contribution

i, j, k General indices; usually i denotes a component of a mixture/solution

int Internal

or Orientational

r Reduced quantity

rot Rotational

tr Translational

r Saturation (orthobaric) condition
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8. Chorą _zewski, M.A., Hrynko, M., Góralski, P., Grolier, J.-P.E., Wilhelm, E.: Thermodynamic and
acoustic properties of mixtures of 1,6-dichlorohexane with heptane from 293 K to 313 K. J. Chem.
Eng. Data 55, 1700–1710 (2010)

9. Wilhelm, E.: What you always wanted to know about heat capacities, but were afraid to ask.
J. Solution Chem. 39, 1777–1818 (2010)

10. Grolier, J.-P.E., Inglese, A., Wilhelm, E.: Excess molar heat capacities of (1,4-dioxane ? an n-
alkane): an unusual composition dependence. J. Chem. Thermodyn. 16, 67–71 (1984)

11. Inglese, A., Grolier, J.-P.E., Wilhelm, E.: Excess volumes and excess heat capacities of ox-
ane ? cyclohexane and 1,4-dioxane ? cyclohexane. Fluid Phase Equilib. 15, 287–294 (1984)

12. Wilhelm, E.: Thermodynamics of solutions: selected aspects. Thermochim. Acta 162, 43–57 (1990)
13. Grolier, J.-P.E., Wilhelm, E.: Calorimetry, densitometry and ultrasonics: recent contributions to the

thermodynamics of fluids. Pure Appl. Chem. 63, 1427–1434 (1991)
14. Wilhelm, E., Roux-Desgranges, G., Grolier, J.-P.E.: Thermodynamics of liquid mixtures containing

alkyl alkanoates: a survey. Calorim. Anal. Therm. 26, 107–112 (1995)
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standsgrößen. Springer, Berlin, (1961)

405. Klots, C.E., Benson, B.B.: Thermodynamic properties of the atmospheric gases in aqueous solutions.
J. Phys. Chem. 67, 933–934 (1963)

406. Naghibi, H., Dec, S.F., Gill, S.J.: Heat of solution of methane in water from 0 to 50 �C. J. Phys. Chem.
90, 4621–4623 (1986)

407. Dec, S.F., Gill, S.J.: Heats of solution of gaseous hydrocarbons in water at 25 �C. J. Solution Chem.
13, 27–41 (1984)

408. Dec, S.F., Gill, S.J.: Heats of solution of gaseous hydrocarbons in water at 15, 25, and 35 �C.
J. Solution Chem. 14, 827–836 (1985)

409. Franks, F. (ed.): Water: A Comprehensive Treatise, vols. I–VII. Plenum, New York (1972–1982)
410. Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry. Part I: The Conformation of Biological Mac-

romolecules; Part II: Techniques for the Study of Biological Structure and Function; Part III: The
Behavior of Biological Macromolecules. W.H. Freeman, San Francisco (1980)

411. Franks, F.: Water: A Matrix of Life, 2nd edn. The Royal Society of Chemistry, Cambridge (2000)
412. van Holde, K.E., Johnson, W.C., Shing Ho, P.: Principles of Biophysical Chemistry, 2nd edn. Prentice

Hall, Upper Saddle River (2005)
413. Brovchenko, I.O., Oleinikova, A.: Interfacial and Confined Water. Elsevier, Amsterdam (2008)
414. Pohorille, A., Wilson, M.A.: Viewpoint 9—molecular structure of aqueous interfaces. J. Mol. Struct.

Theochem 284, 271–298 (1993)
415. Raymond, E.A., Richmond, G.L.: Probing the molecular structure and bonding of the surface of

aqueous salt solutions. J. Phys. Chem. B 108, 5051–5059 (2004)
416. Petersen, P.B., Saykally, R.J.: On the nature of ions at the liquid water surface. Annu. Rev. Phys.

Chem. 57, 333–364 (2006)
417. Wick, C.D., Kuo, I.-F.W., Mundy, J.C., Dang, L.X.: The effect of polarizability for understanding the

molecular structure of aqueous interfaces. J. Chem. Theory Comput. 3, 2002–2010 (2007)
418. Stevens, M.J., Grest, G.S.: Simulations of water at the interface with hydrophilic self-assembled

monolayers. Biointerphases 3, FC13–FC22 (2008)
419. Yancey, J.A., Vellore, N.A., Collier, G., Stuart, S.J., Latour, R.A.: Development of molecular simu-

lation methods to accurately represent protein-surface interactions: The effect of pressure and its
determination for a system with constrained atoms. Biointerphases 5, 85–95 (2010)

420. Zhang, C., Raugei, S., Eisenberg, B., Carloni, P.: Molecular dynamics in physiological solutions: force
fields, alkali metal ions, and ionic strength. J. Chem. Theory Comput. 6, 2167–2175 (2010)

421. Bresme, F., Chacón, E., Tarazona, P., Wynveen, A.: The structure of ionic aqueous solutions at
interfaces: an intrinsic structure analysis. J. Chem. Phys. 137, 1147061–11470610 (2012)

422. Stannard, R.: The End of Discovery: Are We Approaching the Boundaries of the Knowable?. Oxford
University Press, Oxford (2010)

423. International Union of Pure and Applied Chemistry: Quantities Units and Symbols in Physical
Chemistry. RSC, Cambridge (2007)

J Solution Chem (2014) 43:525–576 575

123



424. Prigogine, I., Defay, R.: Chemical Thermodynamics. Translated and revised by Everett. D.H. Long-
mans, Green, London (1954)

425. Griffiths, R.B., Wheeler, J.C.: Critical points in multicomponent systems. Phys. Rev. A 2, 1047–1064
(1970)

426. Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical
constants: 2006. Rev. Mod. Phys. 80, 633–730 (2008)

576 J Solution Chem (2014) 43:525–576

123


	Chemical Thermodynamics: A Journey of Many Vistas
	Abstract
	Introduction
	Heat Capacities and Related Properties of Pure Liquids
	Caloric Properties of Binary Liquid Mixtures Containing One Strongly Polar Aprotic Component
	Caloric Properties of Dilute Solutions of Gases in Liquids
	Concluding Remarks and Outlook
	Glossary of Symbols
	References


