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Abstract Densities of glycerol (1) + tert-butanol (2) mixtures were measured over the
temperature range 293.15 to 348.15 K at atmospheric pressure, over the entire composition
range, with a vibrating tube densimeter. Excess molar volumes, apparent and partial mo-
lar volumes of glycerol and tert-butanol, thermal isobaric expansivities of the mixture and
partial molar expansivities of the components were calculated. The excess molar volumes
of the mixtures are negative at all temperatures, and deviations from ideality increase with
increasing temperature. Excess molar volumes were fitted to the Redlich–Kister equation.
Partial molar volumes of glycerol decrease with increasing tert-butanol concentration. The
temperature dependence of the partial molar volumes of glycerol is characterized by an in-
version at x2 ≈ 0.7. “Negative expansion” of the limiting partial volumes of glycerol was
observed.

Keywords Density · Glycerol · tert-Butanol · Excess molar volume · Thermal isobaric
expansivities · Partial molar property

1 Introduction

Glycerol belongs to the class of solvents having three-dimensional networks of hydrogen
bonds, like water and diols [1–14]. This network imparts to the liquid systems some spe-
cific properties such as small isothermal compressibility and isobaric thermal expansivity,
relatively large free volume, and high viscosity among others. It is known that the H-bond
network in water is responsible for hydrophobic effects observed in aqueous solutions of
tert-butanol [15–23]. In this connection the study of the volume properties of glycerol–tert-
butanol mixtures is of interest for the purpose of discovering hydrophobic effects in these
media. Both the solvents are alcohols and have rather high melting points; however the in-
termolecular interactions in the pure solvents differ substantially.
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Glycerol (Gly, 1,2,3-propanetriol) has the following physical properties: ε = 41.14,
μ = 0.28 D, η = 1.45 Pa·s at 293 K, Tmelting ≈ 291.3 K, Tboiling ≈ 563 K (with decompo-
sition) [24–26]. The molecule, Gly, has three hydrophilic alcoholic groups forming intra-
and intermolecular H-bonds. The glycerol molecule is very flexible and it can form 126
conformers [4, 13, 14] as was shown by MD simulations. So in the crystal state, only the αα

conformation forms [5], molecules of glassy glycerol have βγ conformation [6], whereas
the data on quantitative composition of conformers in the liquid phase are still inconsistent
[1–3, 7, 14]. The presence of only two, αα and αγ , conformers was confirmed experimen-
tally; however the existence of others is also possible [2, 7, 14].

tert-Butanol (TBA, 2-methyl-2-propanol), ε = 10.9, μ = 1.66 D, η = 3.316 mPa·s at
303 K, Tmelting ≈ 298.6 K, Tboiling ≈ 355.3 K [24–26], has three hydrophobic –CH3 groups,
able to undergo solvophobic effects within H-bonds networks, and one hydrophilic –OH
group, which can form strong H-bonds both with Gly molecules and with other TBA
molecules.

Information on the volume properties of Gly–TBA binary mixtures is absent in the lit-
erature, although the individual solvents have been extensively studied. In this connection,
mixtures of these solvents over the wide range of state parameters are of interest. This work
is a continuation of our previous investigations devoted to the study of volumetric properties
of binary systems as functions of composition, temperature and pressure [27–37].

2 Experimental

Glycerol (stated purity 99.5 %) and tert-butanol (stated purity 99.3 %) were purified by
double distillation according to references [26, 38] and were kept under vacuum. Water
content was determined by the Karl Fisher method and did not exceed of 0.02 wt. % (or
4 × 10−5 mole fraction) for Gly and 0.015 wt. % (or 4 × 10−5 mole fraction) for TBA.

Mixtures were prepared gravimetrically from the degassed solvents without contact of the
solution with atmospheric air. Freshly prepared solutions were used for the measurements,
and the densimeter was filled by gravity feed from the sealed reservoir. For all stages of
density measurements a drying column with calcined silica gel was used. Mixtures under
consideration were stirred before measurements.

Densities (ρ) were determined using an Anton-Paar DMA 4500 vibrating tube densime-
ter. The densimeter was calibrated daily with twice-distilled water and dry air. Measure-
ments were performed over the temperature range of 293.15–348.15 K. Densities were not
measured in the whole composition range at 293.15 and 298.15 K due to freezing of the
mixtures.

The uncertainties of mixture preparation and temperature measurements were less than
2 × 10−5 mole fraction and 0.01 K, respectively. Reproducibility and the total uncertainty
of density measurements were 1 × 10−5 and 5 × 10−5 g·cm−3, respectively.

In Table 1 the comparison of glycerol and tert-butanol densities obtained in our work
with literature data is presented. One can see satisfactory agreement between experimental
and literature values. For glycerol the relative deviation of literature data of density changes
from +0.6 % [39] to −0.09 % [40]. Our results are in accordance with values obtained
by Ge et al. [41] (the deviation varies from +0.001 % to −0.005 % over all tempera-
tures studied) and with values by Li et al. [40] (the deviation changes from −0.032 % to
0.091 %). The maximum relative deviation for tert-butanol, within the temperature range of
303.15–323.15 K, for which there is the largest number of experimental points, varies from
+0.025 % to −0.09 %, and is −0.21 % at 348.15 K. Very good coincidence is observed
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Table 1 Experimental and literature density values of pure glycerol and tert-butanol at atmospheric pressure

Solvent T/K ρ/g·cm−3

Experimental Literature

Glycerol 293.15 1.26088 1.26044 [24], 1.2613 [63], 1.26134 [62], 1.260 [64]

298.15 1.25781 1.25822 [26], 1.25350 [39], 1.2589 [40], 1.2578 [41],
1.25512 [62], 1.25776 [65], 1.2581 [66], 1.25569 [67],
1.25835 [68], 1.2532 [69]

308.15 1.25156 1.24410 [39], 1.2527 [40], 1.2522 [41], 1.254 (308.55 K) [64]

323.15 1.24201 1.2429 [40], 1.2423 [41], 1.243 (324.75 K) [64], 1.239 [70]

333.15 1.23561 1.2360 [40], 1.2361 [41], 1.239 (330.95 K) [64], 1.234 [70]

348.15 1.22570 1.227 (349.95 K) [64]

tert-Butanol 308.15 0.77015 0.77008 [20], 0.76997 [22], 0.77020 [42], 0.77039 [71],
0.77019 [72]

323.15 0.75394 0.75401 [22], 0.75448 at 323.14 K [73], 0.7540 [74],
0.75412 [75], 0.7541 [76]

333.15 0.74270

348.15 0.72506 0.7266 [76], 0.725824 at 348.13 K [77]

for our data with ones by Kim and Marsh [22] (with temperature increasing the relative
deviation decreases) and by Martınez et al. [42].

Experimental densities of glycerol + tert-butanol mixtures over the temperature range of
293.15–348.15 K at atmospheric pressure are summarized in Table 2.

3 Calculations and Results

The excess molar volume V E
m is determined by:

V E
m = Vm − x1V

o
1 − x2V

o
2 (1)

where Vm is the mixture molar volume; V o
1 , x1, and V o

2 , x2 are the molar volumes of pure
components and its corresponding mole fraction, respectively.

V E
m values were calculated directly from the experimental data using the following ex-

pression:

V E
m = x1M1(1/ρ − 1/ρ1) + x2M2(1/ρ − 1/ρ2) (2)

where M1, ρ1 and M2, ρ2 are masses weights and densities of glycerol and tert-butanol,
respectively, and ρ is the mixture density. The uncertainty of determination of excess molar
volumes was within ±0.04 cm3·mol−1.

Values of the excess molar volumes V E
m were fitted by the Redlich–Kister equation [43]:

V E
m = x2(1 − x2)

i=n∑

i=0

Ai(1 − 2x2)
i (3)



J Solution Chem (2012) 41:536–554 539

Table 2 Densities, ρ, for glycerol (1) + tert-butanol (2) mixtures at different temperatures

x2 ρ/g·cm−3

293.15 K 298.15 K 308.15 K 323.15 K 333.15 K 348.15 K

0.00000 1.26088 1.25781 1.25156 1.24201 1.23561 1.22570

0.00284 1.25933 1.25625 1.25001 1.24048 1.23408 1.22417

0.01080 1.25500 1.25189 1.24566 1.23618 1.22976 1.21989

0.01257 1.25404 1.25096 1.24469 1.23521 1.22882 1.21892

0.02032 1.24983 1.24672 1.24043 1.23102 1.22461 1.21472

0.02502 1.24731 1.24419 1.23790 1.22848 1.22202 1.21215

0.03162 1.24374 1.24063 1.23428 1.22490 1.21846 1.20857

0.03661 1.24105 1.23786 1.23162 1.22225 1.21578 1.20577

0.04700 1.23553 1.23233 1.22596 1.21658 1.21004 1.20013

0.06370 1.22651 1.22329 1.21687 1.20748 1.20098 1.19101

0.10108 1.20641 1.20323 1.19671 1.18750 1.18066 1.17046

0.14574 1.18301 1.17980 1.17322 1.16384 1.15693 1.14603

0.20651 1.15155 1.14802 1.14154 1.13117 1.12471 1.11393

0.32677 1.09111 1.08684 1.08031 1.06939 1.06146 1.04985

0.38463 1.06287 1.05749 1.05100 1.03927 1.03115 1.01960

0.45426 1.02955 1.02352 1.01620 1.00374 0.99519 0.98310

0.52251 0.99826 0.99097 0.98336 0.96982 0.96173 0.94855

0.61690 0.95431 0.94621 0.93855 0.92460 0.91609 0.90219

0.67826 0.91869 0.91015 0.89597 0.88702 0.87300

0.74750 0.88774 0.87924 0.86479 0.85565 0.84024

0.82990 0.85130 0.84248 0.82808 0.81805 0.80223

0.88848 0.82617 0.81725 0.80195 0.79162 0.77536

0.96498 0.79431 0.78472 0.76894 0.75802 0.74081

0.97432 0.79053 0.78082 0.76494 0.75395 0.73664

0.98495 0.78623 0.77641 0.76043 0.74935 0.73191

0.99100 0.78381 0.77391 0.75785 0.74671 0.72919

0.99179 0.78348 0.77358 0.75751 0.74636 0.72883

0.99255 0.77327 0.75719 0.74604 0.72850

0.99608 0.77182 0.75569 0.74450 0.72692

1.00000 (0.78020)* 0.77022 0.75403 0.74279 0.72515

* This value was calculated by extrapolation at x2 → 1, under the assumption of mixture homogeneity over
the whole composition range

The appropriate degree n of Eq. 3 was determined by the standard deviation, σ , calculated
as:

σ =
[∑(

V E
exp − V E

cal

)2/(
N − (n + 1)

)]1/2
(4)

where N is the total number of experimental points, and (n + 1) is a number of coeffi-
cients (Ai) in Eq. 3. Calculated values of Ai and σ at every temperature are reported in
Table 3.



540 J Solution Chem (2012) 41:536–554

Table 3 Coefficients Ai , and standard deviations σ(V E
m) for representation of excess molar volumes by Eq. 3

for glycerol (1) + tert-butanol (2) mixtures at temperatures from 298.15 K to 348.15 K

T/K

(298.15)* 308.15 323.15 333.15 348.15

A0 (cm−3·mol−1) −4.5181 −5.2607 −6.1008 −6.9837 −8.5397

σ(A0) (cm−3·mol−1) 0.036 0.050 0.066 0.069 0.076

A1 (cm−3·mol−1) 0.2960 0.4725 0.2691 0.6259 0.9838

σ(A1) (cm−3·mol−1) 0.077 0.105 0.139 0.144 0.159

A2 (cm−3·mol−1) −0.3427 −0.3123 −1.1457 −1.1219 −0.6461

σ(A2) (cm−3·mol−1) 0.195 0.265 0.348 0.363 0.401

A3 (cm−3·mol−1) −0.5378 −0.2609 0.2119 0.3085 0.3903

σ(A3) (cm−3·mol−1) 0.091 0.122 0.161 0.168 0.185

A4 (cm−3·mol−1) 0.9255 0.6206 0.4740 0.0562 −0.8742

σ(A4) (cm−3·mol−1) 0.187 0.251 0.330 0.344 0.380

σV E (cm−3·mol−1) 0.013 0.015 0.022 0.020 0.020

* These values were calculated by extrapolation at x2 → 1, under the assumption of mixture homogeneity
over the whole composition range

Apparent molar volumes of glycerol Vφ1 and of tert-butanol Vφ2 for each isotherm were
evaluated from the experimental data with relations 5 and 6:

Vφ1 = (ρ2 − ρ)x2M2

x1ρρ2
+ M1

ρ
(5)

Vφ2 = (ρ1 − ρ)x1M1

x2ρρ1
+ M2

ρ
(6)

Partial molar volumes of components V̄1 and V̄2 were calculated as follows:

V̄1 = M1

(
1/ρ + (1 − w1)∂(1/ρ)/∂w1

)
(7)

V̄2 = M2

(
1/ρ + (1 − w2)∂(1/ρ)/∂w2

)
(8)

where wi is a mass fraction of component i in the mixture. To calculate the partial molar
volumes, the (∂(1/ρ)/∂wi) dependences were fitted with a fourth-order polynomial and
differentiated.

Partial molar volumes also were calculated by differentiation of Eq. 3 on x2 and combi-
nation of differentiation results with Eqs. 9 and 10:

V̄1 = V o
1 + V E

m − x2

(
∂V E

m/∂x2

)
(9)

V̄2 = V o
2 + V E

m + (1 − x2)
(
∂V E

m/∂x2
)

(10)

This procedure results in the following equations for partial molar volumes:

V̄1 = V o
1 + x2

2

i=n∑

i=0

Ai(1 − 2x2)
i + 2x2

2 (1 − x2)

i=n∑

i=0

Ai(i)(1 − 2x2)
i−1 (11)
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Table 4 Limiting partial molar volumes of glycerol V̄ ∞
1 and tert-butanol V̄ ∞

2 for glycerol (1) + tert-butanol
(2) mixtures at different temperatures

T/K V̄ ∞
1 /cm3·mol−1 V̄ ∞

2 /cm3·mol−1

From
Eq. 13

From
Eq. 15

From
Eq. 17

From
Eq. 14

From
Eq. 16

From
Eq. 17

293.15 90.37

298.15 (69.47)* (69.52)* (69.48)* 90.79 (90.83)*

308.15 68.51 68.42 68.52 91.41 91.49 91.40

323.15 66.91 66.90 66.90 91.94 92.01 91.93

333.15 65.43 65.55 65.42 92.61 92.67 92.58

348.15 63.54 63.70 63.52 93.51 93.53 93.48

* These values were calculated under the assumption of mixture homogeneity over the whole composition
range

V̄2 = V o
2 + (1 − x2)

2
i=n∑

i=0

Ai(1 − 2x2)
i − 2x2(1 − x2)

i=n∑

i=0

Ai(i)(1 − 2x2)
i−1 (12)

The largest deviations of the partial molar volumes V̄1 and V̄2 calculated by Eqs. 7, 9 and 8,
10 do not exceed 0.8 % over the whole composition range.

Partial molar volumes at infinite dilution of glycerol in tert-butanol V̄ ∞
1 and tert-butanol

in glycerol V̄ ∞
2 (Table 4) were obtained by linear extrapolation of the corresponding appar-

ent molar volumes using Eqs. 13 and 14. For this purpose molar fractions, xi , were recal-
culated to appropriate molality values, mi . The extrapolation of Vφ1 to m1 → 0 leads to the
desired quantity of V ∞

φ1 = V̄ ∞
1 and, accordingly, the extrapolation of Vφ2 to m2 → 0 gives

V ∞
φ2 = V̄ ∞

2 .

Vφ1 = (
Vm − x2V

o
2

)
/x1 (13)

Vφ2 = (
Vm − x1V

o
1

)
/x2 (14)

Extrapolation of the corresponding apparent molar volumes was done from the concentra-
tions ranges of x1 = 0.00392–0.03503 (7 points) and x2 = 0.00284–0.10108 (10 points).
The uncertainty of V̄ ∞

i determination didn’t exceed ±0.05 cm3·mol−1.
In addition, limiting partial molar volumes of the mixture components were determined

by Eqs. 11 and 12. At x2 = 1 Eq. 11 can be written as:

V̄1 = V o
1 +

i=n∑

i=0

Ai(−1)i (15)

and at x2 = 0 Eq. 12 can be written in the form:

V̄2 = V o
2 +

i=n∑

i=0

Ai (16)

Limiting partial molar volumes were also calculated from the excess molar volumes using
extrapolation of the “reduced volume” [44]. This expression was obtained by rearrangement
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Table 5 Calculated thermal isobaric expansivities α for glycerol (1) + tert-butanol (2) mixtures at different
temperatures

x2 α × 103/K−1

293.15 K 298.15 K 308.15 K 323.15 K 333.15 K 348.15 K

0.00000 0.487 0.493 0.502 0.517 0.527 0.542

0.00284 0.487 0.492 0.502 0.517 0.527 0.543

0.01080 0.489 0.492 0.502 0.518 0.528 0.544

0.01257 0.489 0.493 0.503 0.518 0.528 0.544

0.02032 0.491 0.493 0.504 0.519 0.530 0.546

0.02502 0.493 0.496 0.506 0.521 0.532 0.548

0.03162 0.495 0.497 0.507 0.522 0.533 0.548

0.03661 0.491 0.490 0.504 0.524 0.538 0.560

0.04700 0.502 0.502 0.512 0.529 0.539 0.556

0.06370 0.508 0.507 0.517 0.533 0.544 0.561

0.10108 0.509 0.508 0.525 0.550 0.567 0.593

0.14574 0.512 0.512 0.538 0.577 0.597 0.629

0.20651 0.570 0.552 0.581 0.602 0.619 0.658

0.32677 0.633 0.615 0.647 0.696 0.720 0.781

0.38463 0.725 0.674 0.699 0.737 0.764 0.805

0.45426 0.839 0.768 0.786 0.813 0.831 0.859

0.52251 0.951 0.832 0.851 0.880 0.899 0.931

0.61690 1.03 0.878 0.912 0.958 0.991 1.04

0.67826 0.936 0.978 1.02 1.04 1.11

0.74750 0.975 1.02 1.10 1.15 1.23

0.82990 1.03 1.10 1.19 1.25 1.36

0.88848 1.11 1.17 1.27 1.34 1.45

0.96498 1.21 1.28 1.39 1.47 1.60

0.97432 1.22 1.30 1.41 1.49 1.62

0.98495 1.24 1.32 1.43 1.51 1.64

0.99100 1.25 1.33 1.44 1.52 1.65

0.99179 1.26 1.33 1.44 1.53 1.65

0.99255 1.35 1.45 1.53 1.64

0.99608 1.35 1.46 1.53 1.65

1.00000 1.36 1.47 1.54 1.66

of Eq. 14 and dividing it by x1:

V E
m/x1x2 = (

Vϕ1 − V o
1

)
/x2 (17)

Linear extrapolation of the “reduced volume”, expressed as V E
m/x1x2, to x1 → 0 yields V̄ ∞

1 ,
and extrapolation of the same value V E

m/x1x2 to x2 → 0 gives V̄ ∞
2 . As one can see from

Table 4, values of V̄ ∞
1 and V̄ ∞

2 calculated by Eqs. 13 and 14, 15 and 16, and 17 agree
satisfactorily. The largest deviation of limiting partial molar volumes V̄1 and V̄2 calculated
by the above equations is less that 0.2 %.
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Thermal isobaric expansivities α (Table 5) were calculated as:

α = 1/v(∂v/∂T )p,x = −1/ρ(∂ρ/∂T )p,x = −(∂ lnρ/∂T )p,x (18)

where values of (∂ρ/∂T )p,x were calculated from ρ = f (T )p,x fitted to a second-order
polynomial followed by differentiation. To exclude the influence of changes in the number
of points in the polynomial over the whole composition range (due to limited solubility
of TBA in Gly at 293.15 K), the calculation of α over the temperature range of 298.15–
348.5 K was carried out using the densities only at five temperatures for every composition,
but for 293.15 K all six temperatures were taken into account. The uncertainty in the thermal
isobaric expansivity calculations was estimated to be less than ±2 × 10−5 K−1.

Also, values of the molar isobaric expansion Ep = (∂V/∂T )p,x of the mixture, partial
molar expansion of glycerol Ēp1 = (∂V̄1/∂T )p,x , and tert-butanol Ēp2 = (∂V̄1/∂T )p,x , were
calculated.

Ep = x1Ēp1 + x2Ēp2 (19)

The partial molar expansion of glycerol Ēp1 and tert-butanol Ēp2 were obtained by fitting
of partial molar volumes of the components by a second-order equation. Using V̄ ∞

i values
the Ē∞

pi quantities were determined.
The combined uncertainty of partial molar expansion determination was about of ±5 ×

10−3 cm3·mol−1 K−1.

4 Discussion

A solution volume reflects the equilibrium between various intermolecular interactions tak-
ing place. In liquid glycerol–tert-butanol mixtures the H-bond formation between –OH
groups, mainly between glycerol molecules, plays a dominant role. Volume fluctuations first
of all will depend on changes of both the energy and number of H-bonds. Mixture volumes
will reflect the equilibrium of conformational states of all component molecules. In liquid
glycerol there are several conformers present simultaneously [1–4, 13, 14], then the num-
ber and the ratio of Gly conformers will change depending on external physical conditions
and molecules surrounding them in solution. In any case, Gly molecules are stabilized by
optimal combination of intramolecular hydrogen bonds and intermolecular solvation of hy-
droxyl groups. When Gly molecules are solvated by molecules of a solvent unable to form
H-bonds, all three –OH groups of Gly can only form intramolecular hydrogen bonds. It was
established that in the condensed state Gly is highly associated due to intermolecular H-
bonds and almost 95 % of molecules, on average, are bonded according to MD simulations
[1, 2, 13]. These bonds are very stable and dissociation to monomers, dimers or trimers is
negligible even at high temperature. In the vitrified state 100 % of Gly molecules form an
integrated H-bonds network. High activation energy of conformational changes of Gly is the
reason for slow formation of its crystal structure [1, 5, 6, 9, 12, 14], but under dilution by an
another solvent the molecule association of Gly should become faster.

tert-Butanol is also able to form both strong intermolecular hydrogen bonds between
–OH groups of neighboring molecules and weak C–H· · · O–H hydrogen bonds between
oxygen atom of hydroxyl groups and hydrogen atoms of the methyl group. tert-Butanol
can form, like many monoatomic alcohols, either zigzag H-bonded chains [45–50] or cyclic
hexamers [51]. A characteristic feature of the TBA molecule is the presence of three –
CH3 groups, which possibly determine the steric contribution to the formation of strong
H–O· · · H–O hydrogen bonds in such chains.
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Fig. 1 Excess molar volumes V E
m versus x2 for glycerol (1) + tert-butanol (2) mixture at different tempera-

tures: (!) 298.15 K; (Q) 308.15 K; (a) 323.15 K; (�) 333.15 K; (�) 348.15 K. Values of V E
m for 298.15 K

were calculated by extrapolation of mixture density to x2 = 1. Points are experimental data; lines are calcu-
lated by the Redlich–Kister equation

Molar volumes of Gly–TBA mixtures increase with TBA concentration at all temper-
atures studied. Dependences of Vm = f (x2) are almost linear and do not display any ex-
tremes. With increasing temperature the ratio of molar volumes of the mixture components,
Vm(Gly)/Vm(TBA), decreases, so it is equal to 0.765 and 0.735 at 308.15 and 348.15 K, ac-
cordingly.

As it is shown in Fig. 1 the values of excess molar volume are negative, demonstrating
more close packing in the mixture. Mixture formation is attended either by stronger inter-
molecular interaction between Gly and TBA molecules as compared with such interactions
in pure solvents, or by formation of larger amount of such bonds. Increasing temperature
leads to a lowering of steric barriers to additional formation of both hetero- and homo-
molecular bonds. Thus absolute values of V E

m rise and the minimum at x2 ≈ 0.5 becomes
more pronounced.

As is shown in Figs. 2(a) and 3(a), the apparent and partial molar volumes of Gly decrease
at all temperatures with increasing TBA concentration in the mixture. This means that Gly
in the mixture takes less volume than in the pure state. The dependences are characterized
by a region of temperature inversion: Gly partial molar volume increases with temperature
up to x2 ≈ 0.7 with and decreases at higher TBA concentrations. Although increasing tem-
perature increases the mobility of molecules in the mixture, tert-butanol addition reduces
Gly association, i.e. it decreases the intermolecular hydrogen bonding and shifts the equilib-
rium to a more compact conformational glycerol state. It is furthered also by the lowering
of the activation energy of Gly conformational changes. The type of V̄1 = f (x2) function
at 293.15 K (that is a little bit above the Gly melting point, i.e. at 293.15 K the unified H-
bounded network in liquid glycerol is almost the same as in the crystalline state) probably
resulting from a “microheterogeneous” state in the mixture. The shape of the V̄1 = f (x2)
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Fig. 2 Apparent molar volumes Vφ of glycerol (a) and tert-butanol (b) versus x2 for glycerol (1) +
tert-butanol (2) mixtures at different temperatures: (2) 293.15 K; (") 298.15 K; (Q) 308.15 K; (a) 323.15 K;
(�) 333.15 K; (�) 348.15 K

dependence is also connected with changes in the tert-butanol structure, as the sharper de-
crease of the glycerol partial molar volume at x2 > 0.7 occurs at temperatures above the
TBA melting point. At 298.15 K and mixture compositions close to x2 = 1, the Vφ1 values
are constant, apparently due to TBA freezing; i.e. because of switching the intermolecular
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Fig. 3 Partial molar volumes V̄i of glycerol (a) and tert-butanol (b) versus x2 for glycerol (1) + tert-but-
anol (2) mixtures at different temperatures: (2) 293.15 K; (") 298.15 K; (Q) 308.15 K; (a) 323.15 K;
(�) 333.15 K; (�) 348.15 K

interactions over to the TBA molecules themselves. With increasing temperature the average
length of hydrogen bonded chains of TBA molecules shortens and its mobility increases.

As is shown in Figs. 2(b) and 3(b), the apparent and partial molar volumes of TBA in-
crease both with temperature and with tert-butanol concentration. Thus decreasing the con-
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Fig. 4 Limiting partial molar volumes V̄ ∞
i

of glycerol and tert-butanol for glycerol (1) + tert-butanol (2)
mixtures at different temperatures: (1) Gly surrounded by its own molecules; (2) Gly surrounded by TBA
molecules; (!) TBA surrounded by its own molecules; (") TBA surrounded by Gly molecules

centration of the hydrophilic glycerol leads to some changes of TBA packing in the mixture
and to its increasing volume. Probably, this is the consequence of leveling of contributions
from interactions between –OH groups of glycerol and tert-butanol to the total intermolec-
ular interactions in the mixture.

Partial molar volumes at infinite dilution V̄ ∞
i are important allowing exclusion of the

solute–solute contact interactions. However all changes of V̄ ∞
i values are mainly determined

by alterations of solvent packing due to a solute’s influence. As is seen in Fig. 4, limiting
partial molar volumes of TBA, V̄ ∞

2 , in glycerol increase with temperature like many organic
solvents, and the limiting partial molar volume of Gly V̄ ∞

1 in TBA decreases; this means that
glycerol undergoes “compression” with increasing temperature. Such phenomena as “neg-
ative expansion” was revealed earlier in various mixtures: carbamide–methanol [52, 53],
water–ethanol [54], water–iso-propanol [19, 55], water–iso-butanol [56], water–tert-butanol
[20, 23, 57, 58], water–tert-pentanol (up to ≈ 298 K) [59, 60], and ethylene glycol–tert-
butanol [61]. Decreasing limiting partial molar volumes of mono-protic alcohols in water
with temperature are observed over a confined temperature range. Such behavior probably
indicates conformational rearrangement. When there is no strong external intermolecular
hydrogen bond formed by the Gly molecule in TBA, as compared to the intermolecular
bonds in pure Gly, then the intramolecular H-bond to Gly molecules becomes dominant and
cause the molecule to fold.

Figure 5 demonstrates that the α = f (x2) dependences are similar at all temperatures:
isobaric thermal expansivities in the glycerol–tert-butanol system increase both with TBA
concentration and temperature. Small α values and weak temperature dependence are typ-
ical for glycerol resulting from H-bonds network formation. Dependences of α = f (x2) at
293.05 and 298.15 K attract attention. The distinctive kind of the dependence at 293.15 K
is connected with the partial solubility of TBA in glycerol. The increase of α at x2 ≈ 0.5, as



548 J Solution Chem (2012) 41:536–554

Fig. 5 Thermal isobaric expansivities α versus x2 for glycerol (1) + tert-butanol (2) mixtures at different
temperatures: (2) 293.15 K; (") 298.15 K; (Q) 308.15 K; (a) 323.15 K; (�) 333.15 K; (�) 348.15 K

Fig. 6 Dependences of molar thermal isobaric expansion of mixtures, Ep (2) and partial molar thermal
expansion of glycerol, Ēp1 ("); tert-butanol, Ēp2 (Q) versus x2 for glycerol (1) + tert-butanol (2) mixtures
at 323.15 K
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Fig. 7 Partial molar isobaric expansion of glycerol Ēp1 (a) and tert-butanol Ēp2 (b) versus x2 for glyc-
erol (1) + tert-butanol (2) mixtures at different temperatures: (2) 293.15 K; (") 298.15 K; (Q) 308.15 K;
(a) 323.15 K; (�) 333.15 K; (�) 348.15 K

was mentioned above, is probably caused by “microheterogeneity” of the liquid system and
according to the dependence at 298.15 K this phenomena remains at this temperature also.

From Figs. 6 and 7(a) it is evident that the partial molar isobaric expansion of glycerol
decreases in general with increasing molar fraction except at 293.15 K. At that tempera-
ture the Ēp1 value changes slowly up to x2 ≈ 0.7, and then the sign reverses and sharply
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Fig. 8 Temperature dependences of limiting partial molar isobaric expansions Ē∞
pi

of components in glyc-
erol (1)–tert-butanol (2) mixtures: (1) Gly surrounded by its own molecules; (2) Gly surrounded by TBA
molecules; (!) TBA surrounded by its own molecules; (") TBA surrounded by Gly molecules

decreasing values are observed. The concentration dependence of the partial molar isobaric
expansion of glycerol (Fig. 7(a)) has a region of temperature inversion. The partial molar
isobaric expansions of tert-butanol Ēp2 (Figs. 6 and 7(b)) are positive and increase with
increasing TBA concentration over the whole compositions range, except at 293.15 K.

In Fig. 8 one can see the temperature dependences of the limiting partial molar isobaric
expansions of glycerol Ē∞

p1 in tert-butanol and in its pure state, where the value is numer-

ically equal to Eo
p1, and of tert-butanol in glycerol Ē∞

p2 and in its pure state (numerically

equal to Eo
p2). The value of the limiting molar expansion Ē∞

pi eliminates the influence of

interactions between solute molecules. Values Eo
p2 and Ē∞

p2 are positive and increase with

temperature, and �Ē∞
p2/�T is less than �Eo

p2/�T . This implies that increases of Eo
p2 and

Ē∞
p2 of tert-butanol with temperature are mainly determined by changes in its molecules but

not by intermolecular interactions. The values of molar isobaric expansion of glycerol Eo
p1

are positive and much lower compared to Eo
p2 of TBA, and increase weakly with tempera-

ture. The value of Ē∞
p1 for infinitely dilute Gly in TBA is negative and decreases further with

increasing temperature. The different temperature dependences of glycerol’s Eo
p1 and Ē∞

p1
values show that the behavior of Gly is strongly affected by its surroundings. In the absence
(or weakening) of intermolecular bonds appearently glycerol’s properties are determined by
intramolecular bonds.

5 Conclusions

Volume properties of glycerol–tert-butanol liquid mixtures illuminate that under tempera-
ture and composition changes in the system, processes take place due to rearrangement of
intermolecular H-bonds resulting in conformational changes.
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The mixture formation is accompanied by closer packing. With increasing temperature
the absolute values of excess molar volumes increase.

Glycerol partial molar volumes, in the mixtures with TBA, are smaller than its volume
in the pure state.

With increasing temperature the limiting partial molar volume of glycerol decreases, i.e.
for Gly in the mixture “negative expansion” is observed, indicating reorganization in the
solvent. The temperature influence on volume properties of glycerol molecules vary with
changes in their molecular environment.
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